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Resumo 

Os estímulos ambientais externos ou internos que constantemente bombardeiam os 

organismos são detectados por complexos sistemas sensoriais fisiológicos. A dor 

resulta de vários eventos fisiológicos e pode ser dividida em aguda e crônica, 

inflamatória e neuropática. Nos últimos anos, vários estudos foram realizados 

buscando a descoberta de novas alternativas terapêuticas para o tratamento da dor. 

Neste cenário se inserem os trabalhos com os canais receptores de potencial 

transitório (TRPs). Os TRPs são canais de cátions não seletivos, permeáveis ao 

Ca2+ e têm participação fundamental nos complexos mecanismos de quase todas as 

respostas sensoriais. Pertencem a uma superfamília complexa e multifuncional. Nos 

mamíferos, a superfamília TRP compreende seis subfamílias conhecidas como 

canais iônicos TRPC (canônica), TRPV (vaniloide), TRPM (melastatina), TRPML 

(mucolipina), TRPP (policistina) e TRPA (ANKTM1). Estudos utilizando clonagem 

molecular têm destacado principalmente os canais TRPV1, TRPA1, TRPV4 e 

TRPM8 no envolvimento da dor. A precisa regulação da expressão, localização e 

função dos TRPs é fundamental para seu papel sensorial nos terminais 

nociceptores, particularmente durante o processo inflamatório, onde contribuem para 

hipersensibilidade à dor por sofrerem aumento na sua expressão e estimulação. 

Portanto, a inibição específica e seletiva da atividade dos canais TRPs são alvos 

potenciais para novas terapias no alívio dos processos nociceptivos.  

 

Palavras-chave: Dor, TRP, Ca
2+
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1. FUNDAMENTAÇÃO TEÓRICA 

1.1- Dor conceito e Tipos 

A dor é definida pela Associação Internacional para Estudo da Dor (IASP) 

como sendo uma “experiência sensorial e emocional desagradável associada a um 

dano tecidual real ou potencial ou descrita tal como se o dano estivesse presente”. 

Ela é uma sensação descrita como sendo uma experiência multidimensional na qual 

estão envolvidos vários componentes: motivacional, aspecto emocional, sensório-

discriminativo, afetivos e cognitivos (MERSKY, 1986; KLAUMANN; WOUK; SILLAS, 

2008; WHO, 2012). 

A dor caracteriza-se por uma resposta orgânica protetora, pois alerta o 

indivíduo para uma lesão iminente ou real dos tecidos, induzindo ao surgimento de 

respostas reflexas e comportamentais coordenadas com o intuito de manter o dano 

tecidual o mais controlado possível (WOOLF et al., 1999). Essa dor é classificada 

como aguda (TEIXEIRA et al., 2001). No entanto, quando a dor passa a se repetir ou 

sustentar-se por período prolongado, deixa de apresentar vantagens biológicas e 

passa a causar sofrimento, sendo classificada como dor crônica a qual é gerada por 

impulsos de pequena magnitude produzidos por atividade neural anormal 

(MELZACK et al., 1999; KLAUMANN; WOUK; SILLAS, 2008; WHO, 2012). 

A dor crônica pode estar associada com a continuação da patologia ou 

persistir após a recuperação da doença ou lesão. Se a dor crônica for devido à 

doença orgânica, ela é efetivamente curada ao se tratar a desordem de base. 

Geralmente não é bem localizada e tende a ser maciça, dolorida, contínua ou 

recorrente e é dividida em nociceptiva, neuropática e psicogênica (MERSKEY et al., 

1994; SMITH et al., 1986; FURST, 1999; WHO, 2012). 

A dor nociceptiva consiste na estimulação persistente de nociceptores, seja 

térmico, químico ou mecânico. Nesta dor, ocorre ativação contínua das vias centrais 

da dor e pode ser identificada, por exemplo, em pessoas com câncer (MILLAN, 

1999; WHO, 2012). 

Já a dor neuropática, segundo a IASP, é definida como uma dor causada ou 

iniciada por uma lesão primária ou por disfunção do  Sistema Nervoso Central (SNC) 

e/ou Sistema Nervoso Periférico (SNP). Esta desordem pode ser provocada por 
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compressão, transecção, infiltração, isquemia, injúria metabólica de corpos celulares 

de neurônios ou uma combinação desses fatores (GALLUZZI, 2007). Dor do 

membro fantasma e doenças como Diabetes melittus e Parkinson são as principais 

causas da dor neuropática (BOWSHER, 1999, WHO, 2012). 

A dor psicogênica, por sua vez, está relacionada à prevalência de fatores 

psicológicos na gênese da sensação dolorosa. Esse tipo de dor pode ser observado 

em distúrbios psicológicos como na depressão e na ansiedade generalizada 

(FURST, 1999; MERSKEY, 1986; WHO, 2012). 

 

1.2- Dor e Nocicepção 

Os receptores da dor na pele e em outros tecidos estão presentes em 

terminações nervosas livres sensíveis a estímulos dolorosos. A atividade no 

nociceptor e a via nociceptiva e outros processos neurofisiológicos induzidos pelo 

estímulo doloroso é chamado de nocicepção (DICKENSON, 1997). Enquanto que a 

dor representa uma percepção subjetiva com uma dimensão psicológica, a 

nocicepção consiste na recepção dos estímulos pelos nociceptores que codificam 

sinais para fornecer informações ao SNC da existência da lesão. Portanto, dor seria 

o termo mais apropriado para o homem, enquanto que nocicepção seria mais 

indicado para animais experimentais (WALL; MELZACK, 1999; JULIUS; BASBAUM, 

2001). 

 

1.3- Fisiologia da Dor 

 Vários mecanismos podem ser identificados no processamento neural dos 

sinais nocivos que levam a experiência de dor. O primeiro, na sequência dos 

eventos que originam o fenômeno doloroso, é a transdução, ou seja, a 

transformação dos estímulos agressivos em potenciais de ação que, das fibras 

nervosas periféricas, são transmitidos para o SNC como mostra a Figura 1 

(BESSON; PERL, 1969). As fibras nociceptivas aferentes são neurônios tipicamente 

pseudounipolares, com terminações periféricas e centrais. Neurotransmissores que 

são produzidos dentro do corpo celular (por exemplo, no gânglio da raiz dorsal) são 

liberados por terminações das fibras nervosas tanto periféricas quanto centrais. 

Dessa forma, estes neurotransmissores participam na produção do sinal doloroso 
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PELE 

Nociceptor 

perifericamente, bem como na promoção de eventos que levam às percepções 

centrais (SCHMELZ; PETERSEN, 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

No processo de transdução, no caso da sensação dolorosa, ocorre uma 

amplificação dos eventos pela liberação local de uma grande variedade de 

substâncias químicas denominadas genericamente de substâncias algogênicas, que 

surgem em grande quantidade nos tecidos em decorrência de processos 

inflamatórios, traumáticos ou isquêmicos. Essas substâncias incluem serotonina, 

bradicinina, noradrenalina, histamina, citocinas, substância P, prostaglandinas e 

leucotrienos (MARQUEZ, 2004). 

O segundo estágio no processamento dos sinais nociceptivos é a 

transmissão. Os nociceptores têm seus corpos celulares no gânglio da raiz dorsal e 

terminam nas camadas superficiais do corno dorsal da medula espinhal (figura 1), 

onde são retransmitidas mensagens através da liberação de mediadores como 

glutamato, a substância P e o peptídeo relacionado ao gene da calcitonina (CGRP) 

(JEFTINIJA et al., 1991; LAWSON et al., 1997; LAWSON et al., 2002). A informação 

do estímulo nocivo é transmitida principalmente através de dois diferentes tipos de 

neurônios nociceptivos aferentes primários, que conduzem o estímulo em diferentes 

velocidades, caracterizados como fibras do tipo Aδ e C (Figura 2). 

As fibras Aδ são pouco mielinizadas e podem ser divididas em duas classes 

principais, onde se diferenciam pela temperatura de ativação (Figura 2). As fibras Aδ 

do tipo I são ativadas por temperaturas inferiores à 53ºC, enquanto que as do tipo II 

Figura 1 – Nociceptor e sua conexão com a medula e encéfalo. Adaptado 
de Julius & Basbaum, (2001) 
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são ativadas por temperaturas inferiores à 43ºC. A condução da informação 

nociceptiva que ocorre via fibras Aδ é transmitida numa velocidade entre 12 e 30 m/s 

(MILLAN 1999; WALL; MELZACK 1999; JULIUS; BASBAUM 2001). As fibras C, 

também conhecidas como fibras polimodais, por transmitirem estímulos mecânicos, 

térmicos e químicos, conduzem a uma velocidade muito mais lenta em relação às 

outras fibras nociceptivas, em torno de 0,5 a 2 m/s em virtude de não possuírem 

bainha de mielina (PLEUVRY; LAURETTI 1996; MILLAN 1999; JULIUS; BASBAUM 

2001).   

As fibras aferentes nociceptivas terminam predominantemente no corno 

dorsal da medula espinhal. Este é subdividido em seis camadas (lâminas de Rexed) 

distintas, de acordo com as características citológicas dos seus neurônios; ou seja, 

classes de neurônios aferentes primários que conduzem modalidades diferentes 

terminam em lâminas distintas do corno dorsal. Neurônios nociceptivos secundários 

(de projeção) estão localizados no corno dorsal superficial, na lâmina I e na lâmina II 

(substância gelatinosa). A maioria desses neurônios recebe informação sináptica de 

fibras Aδ e C. Alguns neurônios da camada I respondem exclusivamente a 

estimulação nociva (neurônios nociceptivos específicos) e projetam-se para centros 

encefálicos superiores; outros respondem de forma gradual à estimulação mecânica 

nociva e não-nociva (neurônios de amplo espectro dinâmico). A lâmina II é formada 

quase exclusivamente por interneurônios excitatórios e inibitórios, alguns dos quais 

respondem apenas a aferências nociceptivas, enquanto outros respondem também 

a estímulos não-nocivos. As lâminas III e IV estão localizadas ventralmente à 

substância gelatinosa e seus neurônios recebem aferências monossinápticas de 

fibras Aβ. A lâmina V contém predominantemente neurônios de amplo espectro 

dinâmico que se projetam para o tronco encefálico e para regiões do tálamo. Esses 

neurônios recebem aferências monossinápticas de fibras Aβ e Aδ, além das 

aferências de fibras C diretamente em seus dendritos ou indiretamente através de 

interneurônios excitatórios que, por sua vez, recebem diretamente aferências de 

fibras C. Muitos neurônios da lâmina V também recebem aferências nociceptivas de 

estruturas viscerais. Os neurônios da lâmina VI recebem aferências de fibras de 

grande diâmetro de músculos e articulações e respondem a estímulos não-nocivos 

nas articulações. Acredita-se que esses últimos neurônios não contribuem para a 
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transmissão de informação nociceptiva (BASBAUM; JESSEL, 2000, ALMEIDA et al., 

2004). 

A informação nociceptiva é transmitida da medula espinhal para o tálamo e 

para o córtex por cinco vias ascendentes: os tratos espinotalâmico, espinoreticular, 

espinomesencefálico, cervicotalâmico, espinohipotalâmico (BASBAUM; JESSELL, 

2000; PINTO, 2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4- Tratamento farmacológico da dor: os fármacos analgésicos 

Analgesia é o termo empregado para o alívio ou o cessar da sensação 

dolorosa sem, no entanto, ocorrer à perda da consciência. As substâncias capazes 

de causar analgesia são designadas por analgésicos, os quais podem ser divididos, 

de maneira geral, em analgésicos periféricos, fármacos adjuvantes e os de ação 

central (BRAINER-LIMA, 1997; ALMEIDA; OLIVEIRA, 2006). 

Os analgésicos periféricos são representados pelos anti-inflamatórios não-

esteroidais, também conhecidos por analgésicos não-opióides. O seu mecanismo de 

ação envolve o bloqueio da produção de prostaglandinas através da inibição da 

Figura 2 - Diferentes tipos de neurônios sensoriais primários, responsáveis pela condução 

do sinal nociceptivo da periferia ao SNC. Adaptado de Julius & Basbaum, (2001). 
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enzima ciclooxigenase (COX) no local de lesão, diminuindo assim a formação de 

mediadores da dor no sistema nervoso periférico (WELCH; MARTIN, 2005). 

Os analgésicos dessa classe diminuem a produção de prostaglandinas e 

leucotrienos que sensibilizam os receptores da dor para a ação de substâncias 

liberadas durante a lesão. Os vários agentes desta classe diferem entre si quanto à 

potência anti-inflamatória, cinética e efeitos colaterais. Embora não causem 

dependência psíquica, podem provocar alterações gástricas, hepáticas e renais, 

reações alérgicas e alterações hematológicas (SAKATA; GOZZANI, 1994). 

O ácido acetilsalicílico (AAS) é um dos anti-inflamatórios não-esteroidais mais 

utilizados, visto que diminui a dor em locais predominantemente periféricos, com 

pouca interação cortical, apresentando consequentemente poucos efeitos sobre o 

SNC. Fazem ainda parte dessa classe de fármacos a indometacina, o piroxicam e o 

diclofenaco (WELCH; MARTIN, 2005). 

Vários outros fármacos adjuvantes são usados como analgésicos, 

particularmente para tratar estados dolorosos neuropáticos, que respondem mal aos 

analgésicos convencionais e trazem importantes problemas clínicos. Esse grupo 

inclui o seguinte: 

 Antidepressivos tricíclicos, particularmente imipramina e amitriptilina. Estes 

fármacos atuam centralmente, inibindo captura da noradrenalina e são altamente 

eficazes em aliviar dor neuropática em alguns casos, mas não em todos, sua ação é 

independente de seus efeitos antidepressivos. 

Antiepilépticos, como a carbamazepina, gabapentina e, ocasionalmente, a 

fenitoína são algumas vezes eficazes na dor neuropática. A carbamazepina e a 

fenitoína atuam sobre os canais de sódio controlados por voltagem. O alvo para a 

gabapentina é a subunidade α2δ do canal de cálcio do tipo L. 

A lidocaína intravenosa pode dar alívio prolongado em estados de dor 

neuropática. Provavelmente, atua bloqueando descargas espontâneas de 

terminações nervosas sensitivas lesadas, mas não está clara a razão para seu efeito 

analgésico persistente (RANG et al., 2007). 

Os opióides, cujo principal representante é a morfina, podem modificar tanto 

os aspectos sensitivos da dor quanto o emocional. Agem através da ligação a 

receptores específicos no SNC e periférico, inibindo a nocicepção. O mecanismo de 

ação destas substâncias, no processo nociceptivo, ocorre pela interação destas com 
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receptores opióides, levando ao fechamento de canais para cálcio voltagem-

dependentes nas terminações nervosas pré-sinápticas, o que reduz a liberação de 

neurotransmissores, além disso, a ativação desses receptores leva a abertura de 

canais de potássio Ca2+ dependentes, produzindo hiperpolarização da membrana 

celular de neurônios pós-sinápticos, reduzindo a liberação de neurotransmissores, a 

exemplo da substância P, pelos terminais centrais do neurônio aferente primário. 

Estes agonistas atuam ainda ativando as vias inibitórias descendentes (GRAEFF; 

GUIMARÃES, 2000).  

Foram identificadas cinco classes de receptores opióides em vários locais do 

SNC e em outros tecidos. As principais classes incluem receptores ,  e . Em nível 

molecular, todos são membros da família de receptores acoplados à proteína G, e, 

portanto, capazes de afetar a regulação iônica, o processamento do Ca2+ intracelular 

e a fosforilação de proteínas. Foi sugerida a existência de diversos subtipos de 

receptores opióides; atualmente, os mais caracterizados por critérios farmacológicos 

incluem 1, 2, 1, 2, 1, 2 e 3 (WAY; FIELDS; SCHUMACHER, 2003).  

Outros tipos de receptores como os serotoninérgicos, GABAérgicos, 

glutamatérgicos e adrenérgicos estão envolvidos no processo de analgesia (PINTO, 

2000). 

Segundo kissin (2010), de 1960 a 2009, foram introduzidos no mercado 

cinquenta e nove fármacos identificados como analgésicos, os quais ainda 

permanecem em uso. A morfina e a aspirina são, há mais de um século, os 

analgésicos mais utilizados para o tratamento da dor, e continuam a dominar as 

publicações em revistas biomédicas. Seus efeitos adversos e a ineficácia em alguns 

tipos de dor são os principais fatores que impulsionam até hoje a pesquisa e o 

desenvolvimento de novos analgésicos. 

O envolvimento do receptor TRPV1, um dos membros da superfamília dos 

TRPs, em diversas doenças já foi descrito, sendo que o seu principal foco de estudo 

atualmente é em patologias dolorosas (SCHUMACHER, 2010). Assim, diversas 

evidências levam a crer que o desenvolvimento de fármacos que possam agir como 

antagonistas ou agonistas do receptor TRPV1 em humanos possam ser utilizados 

em diversos tipos de síndromes dolorosas (Levine e Alessandrini-Haser et al., 2007; 

Patapoutian et al., 2009; Wong e Gavva, 2010). 
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Os agonistas do receptor TRPV1 causam analgesia por uma série de 

mecanismos propostos como desensibilização, pela disfunção do nociceptor, 

depleção de neuropeptídeos, e destruição dos terminais simpáticos que expressam 

o TRPV1 (Schumacher et al., 2010). Devido a isso, a aplicação de um agonista 

deste receptor, como a capsaicina, molécula presente principalmente na pimenta 

vermelha, causa desensibilização dos canais TRPV1 ocasionando diminuição da 

nocicepção em modelos animais (SZALLASI e BLUMBERG, 1999) e em humanos 

(KNOTKOVA et al., 2008). 

 O creme de capsaicina a 0,75% aplicado três ou quatro vezes ao dia durante 

seis semanas, reduz a dor da nevralgia pós-herpética. Todavia, a queimação e a 

sensação de agulhas furando, termo este definido pelos os usuários, no momento da 

aplicação e a necessidade de um tratamento frequente podem diminuir a aceitação 

do paciente a esta modalidade de tratamento. Por isso, recentemente, 

pesquisadores buscam combinar a capsaicina com um anestésico local para tentar 

evitar os efeitos adversos do creme e, consequentemente, aumentar adesão do 

paciente ao tratamento (SHUMACHER, 2010).    

 Além dos agonistas, os antagonistas dos receptores TRPV1 são eficientes na 

diminuição da nocicepção em modelos animais relacionados a diversos tipos de 

estímulos dolorosos como a inflamação, a osteoartrite,  e a neuropatia (GAVVA et al, 

2005; RAMMI et al., 2006). Os antagonistas com capacidade de atravessar a 

barreira hematoencefálica apresentaram melhor perfil anti-nociceptivo quando 

comparado aos análogos que agem apenas perifericamente, assim a expressão do 

TRPV1 em estrutura supra–espinhal parece ser importante neste efeito. (CUI et al, 

2006). 

Desta forma, tantos agonistas como antagonistas dos receptores TRPV1 têm 

sido investigados para o tratamento de diversas patologias dolorosas (WONG e 

GAVVA, 2009). Entretanto, testes em humanos e animais mostraram que os 

antagonistas TRPV1 são capazes de aumentar a temperatura corporal, sendo este o 

principal efeito adverso observado após testes clínicos com estes compostos 

(RAMANOVSKY, 2009). Então, compostos que possam agir como antagonistas dos 

receptores TRPV1 e diminuir a nocicepção em modelos animais, bem como não 

levarem ao desenvolvimento de hipertermia, parecem serem bons protótipos de 

novas drogas analgésicas.  
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1.5- Histórico dos TRPs 

A primeira descoberta relativa à superfamília TRP ocorreu em 1969 quando 

Cosens e Manning identificaram uma variedade mutante espontânea de Drosophila 

melanogaster. Devido a seu fenótipo comportamental, estas ficavam cegas quando 

colocadas sobre intensa iluminação. Analisando seu sistema visual, foi observado 

que a mosca com fenótipo mutante apresentava respostas no eletroretinograma 

transitórias à estimulação luminosa intensa e prolongada, enquanto que o fenótipo 

normal apresentava uma resposta contínua. Assim, a denominação de receptor de 

potencial transitório (TRP) foi designada ao fotoceptor desta variante mutante devido 

à resposta transitória a partir de estímulo com luz intensa (MINKE et al., 1975). 

Posteriormente, TRP foi a nomenclatura adotada para designar a superfamília de 

canais iônicos de potencial transitório (MONTELL et al., 2002).  

Em 1985, Montell e colaboradores isolaram pela primeira vez a porção de 

DNA que continha o gene trp, e após, este gene foi clonado e sequênciado, assim a 

proteína relacionada ao gene trp foi descrita como contendo 1275 aminoácidos e 

seis segmentos transmembrana (MONTELL E RUBIN, 1989; WONG et al., 1989).  

É descrito que além do receptor TRP outra proteína designada como TRP-like 

(TRPL) também é importante para a detecção do estímulo luminoso e é encontrada 

no sistema visual da espécie Drosophila. Este receptor TRPL possui homologia com 

o canal TRP, e presenta dois locais de ligação para a calmodulina na região carboxi 

terminal (PHILLIPS et al., 1992).  

A primeira descrição de que proteínas relacionadas à família TRP poderiam 

ser encontradas em sistemas biológicos diferentes dos encontrados em foto 

receptores da espécie Drosophila foi no estudo de Petersen e colaboradores (1995), 

no qual foram identificadas sequências parciais homólogas à proteína TRP em 

oócitos de Xenopus e também em cérebro camundongos. Posteriormente, a 

sequência completa de uma proteína homóloga ao TRP foi identificada em 

humanos, e este foi denominado TRPC1 (canônico) (WES et al., 1995; ZHU et 

al.,1995). Subsequentemente, diversos grupos de pesquisa clonaram e 

sequenciaram diversas outras subfamílias dos canais TRP, independente do 

receptor TRP e TRPL observado na Drosophila.  

 

1.6- A Família dos TRPs 
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 A família de receptores de potencial transitório (TRP) diferencia-se de outros 

grupos de canais de íons pela seletividade de íons, modos de ativação e função 

fisiológica. Baseado na sequência de aminoácidos, os membros da família TRP são 

classificadas em seis distintas subfamílias; TRPC (Canonico), TRPV (Vanilóide), 

TRPM (Melastatina), TRPP (Polistina), TRPML (Mucolipina) e TRPA (Anquirina). Os 

membros da superfamília TRP compartilham de características comuns de seis 

domínios transmembrana, pequenas variações nas sequências de aminoácidos e a 

permeabilidade a cátions. Além disso, as regiões N- e C-terminal são voltadas para 

o meio intracelular e os domínios transmembrana em conjunto formam um poro 

entre o domínio 5 e 6, por onde ocorre o influxo intracelular de íons (CLAPHAM, 

2003; SCHAEFER 2005; LEVINE e ALESSANDRI-HABER 2007). Embora os canais 

apresentem similaridade estrutural e na permeabilidade a cátions, os canais TRP 

são altamente diferenciados uns dos outros, podendo ser ativados de modos 

variados como por exemplo temperatura (calor ou frio), compostos químicos, 

osmolaridade, estimulação mecânica, lipídios, luminosidade, estresse oxidativo, 

ácidos e feromônios. A família TRP possui ampla distribuição tecidual, sendo que a 

maioria das células do organismo pode expressar ao menos um membro da família 

(LEVINE e ALESSANDRI-HABER, 2007; WATANABE et al. 2008). Atualmente, 

muitos outros TRPs têm sido descrito em gânglios da raiz dorsal; TRPV1, TRPV2, 

TRPV3, TRPV4, TRPM8 e TRPA1. 

A Família dos TRPs consiste de aproximadamente 30 membros nos 

mamíferos, 13 em Drosophila e 17 em C. elegans (MINKE, 2006). 

 

1.7- Receptores de Potencial Transitório e dor  

O entendimento dos mecanismos envolvidos na transmissão do processo 

doloroso tem progredido dramaticamente nos últimos anos, em grande parte devido 

a um aprimoramento na compreensão dos mecanismos envolvidos na fisiologia das 

fibras aferentes e no processo de neurotransmissão no corno dorsal da medula 

espinhal ( FURST, 1999; MILLAN, 1999).  

Durante a década passada, várias pesquisas têm revelado que membros da 

família de canais iônicos TRPs são moléculas fundamentais que detectam estímulos 

nocivos e transduzem uma ampla diversidade de estímulos químicos e físicos em 

potenciais de ação nos nociceptores somatossensoriais (Nilius et al., 2007). 
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O primeiro canal descoberto em neurônios sensoriais de mamíferos foi o 

Receptor de Potencial Transitório do tipo Vanilóide 1 (TRPV1). Este canal é o 

receptor para a capsaicina, e também o receptor alvo para o calor nocivo (>42ºC) 

(CATERINA et al., 1997). O TRPV1 é encontrado em neurônios sensoriais 

nociceptivos de diâmetro médio e pequeno (fibras C) (TOMINAGA et al., 1998). Sua 

expressão em neurônios do gânglio da raiz dorsal, gânglio trigeminal e gânglio 

nodoso, particularmente em associação com outras fibras aferentes nociceptivas, 

junto com sua ativação pelo calor, ácido e compostos vanilóides pungentes, 

fortemente indica seu papel importante na detecção e integração de estímulos 

nocivos. Análises em camundongos com deleção gênica para o receptor TRPV1 

confirmaram que este canal contribui para estímulos químicos e térmicos 

(CATERINA et al., 2000). Em particular, os camundongos com deleção gênica para 

o receptor TRPV1 mostraram respostas reduzidas aos estímulos de calor nocivo e 

completa indiferença à vanilóides pungentes. Portanto, a identificação do TRPV1 foi 

o maior catalisador que lançou os campos da pesquisa de transdução 

somatossensorial e dor para nível molecular.  

O receptor TRP do tipo melastatina 8 (TRPM8) foi subsequentemente 

descoberto em 2002. Este receptor está localizado em neurônios sensoriais de 

diâmetro médio e pequeno dentro dos gânglios trigeminais de raiz dorsal. 

Recentemente três estudos realizados, independentemente, em camundongos que 

não expressam o receptor TRPM8 sugerem que este canal está envolvido na 

transdução de sensações de refrescância e frio não nocivo em neurônios sensoriais 

de mamíferos (MCKEMY et al., 2002; PEIER et al., 2002; BAUTISTA et al., 2007; 

DHAKA et al., 2007; COLBURN et al., 2007; STUCKY et al., 2009).  

  O receptor de potencial transitório relacionado a proteína anquirina do tipo 1 

(TRPA1) é o único membro da subfamília das anquirinas encontrado em mamíferos. 

Originalmente chamado de ANKTM1, o receptor TRPA1 foi identificado 

cuidadosamente por Story e colaboradores em 2003. Sua estrutura é distinta dos 

outros canais TRPs por ser o único membro com uma extensa cadeia de anquirinas 

(14 – 17) no domínio N terminal (CLAPHAM, 2003). Os canais TRPA1 são 

expressos nos gânglios da raiz dorsal e neurônios trigeminais e em uma 

subpopulação de nociceptores não-mielinizados que também expressam o receptor 

TRPV1, sugerindo um importante papel na nocicepção. Sendo assim, este receptor 
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é ativado por diversos compostos químicos pungentes ou irritantes incluindo aqueles 

encontrados no óleo de mostarda (alil isotiocianato), óleo de canela (cinamaldeído), 

gás (acroleína), cebola e alho (alicina) e formalina(formaldeído), sendo que todos 

eles causam sensação dolorosa, como queimação ou alfinetada (STORY et al., 

2003; BANDELL et al., 2004; JORDT et al., 2004; MACPHERSON et al., 2005; 

BAUTISTA et al., 2006; MCNAMARA et al., 2007). Além disso, os receptores TRPA1 

foram descobertos como transdutores naturais para estímulos físicos, como força 

mecânica e frio nocivo (< 17ºC) (STORY et al., 2003; COREY et al., 2004). Um 

suporte indireto para a função termossensitiva do TRPA1 deriva de relatos recentes 

que animais com deleção gênica para o receptor TRPA1 mostram uma diminuição 

na hipersensibilidade ao frio, subsequente à ligação de nervos espinhais em ratos 

(KATSURA et al., 2006) e que o aumento da expressão deste canal em neurônios 

sensoriais, seguida de lesão e inflamação, contribui para a hipersensibilidade ao frio 

(OBATA et al., 2005). E, finalmente, estudos usando antagonistas específicos de 

TRPA1 dão suporte para o entendimento do envolvimento deste canal na 

hipersensibilidade ao frio e mecânica resultantes de inflamação ou lesão de nervo 

(PETRUS et al., 2008, da COSTA et al., 2010). 
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3. ARTIGO DE REVISÃO 

 

Relação dos canais iônicos receptores de potencial transitório (TRP) e a dor: 

uma revisão. 

 

Resumo 

Os estímulos ambientais externos ou internos que constantemente bombardeiam os 

organismos são detectados por complexos sistemas sensoriais fisiológicos. A dor 

resulta de vários eventos fisiológicos e pode ser dividida em aguda e crônica, 

inflamatória e neuropática. Nos últimos anos, vários estudos foram realizados 

buscando a descoberta de novas alternativas terapêuticas para o tratamento da dor. 

Neste cenário se inserem os trabalhos com os canais receptores de potencial 

transitório (TRPs). Os TRPs são canais de cátions não seletivos, permeáveis ao 

Ca2+ e têm participação fundamental nos complexos mecanismos de quase todas as 

respostas sensoriais. Pertencem a uma superfamília complexa e multifuncional. Nos 

mamíferos, a superfamília TRP compreende seis subfamílias conhecidas como 

canais iônicos TRPC (canônica), TRPV (vaniloide), TRPM (melastatina), TRPML 

(mucolipina), TRPP (policistina) e TRPA (ANKTM1). Estudos utilizando clonagem 

molecular têm destacado principalmente os canais TRPV1, TRPA1, TRPV4 e 

TRPM8 no envolvimento da dor. A precisa regulação da expressão, localização e 

função dos TRPs é fundamental para seu papel sensorial nos terminais 

nociceptores, particularmente durante o processo inflamatório, onde contribuem para 

hipersensibilidade à dor por sofrerem aumento na sua expressão e estimulação. 

Portanto, a inibição específica e seletiva da atividade dos canais TRPs são alvos 

potenciais para novas terapias no alívio dos processos nociceptivos.  

 

Palavras-chave: Dor, TRP, Ca
2+
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1. Introdução 

Os estímulos ambientais externos ou internos que constantemente 

bombardeiam os organismos são detectados por complexos sistemas sensoriais 

fisiológicos. As alterações de temperatura, a exposição a fótons e prótons, as 

deformações mecânicas, o contato com substâncias químicas extrínsecas ou 

intrínsecas podem ser potencialmente perigosos (WANG; WOOLF, 2005). É 

fundamental que o organismo consiga diferenciar os estímulos nocivos dos inócuos. 

Os primeiros provocam lesões tissulares, acompanhadas de sensações 

desagradáveis, como por exemplo, a dor. Essa resposta protetora possibilita a 

redução do contato com o agente lesivo. A sensibilidade à dor é intensificada pela 

inflamação ou injúria tissular, de forma que o contato com o tecido lesado seja 

minimizado até que ocorra a cicatrização (WANG; WOOLF, 2005). 

A dor aguda resulta de vários eventos fisiológicos, desencadeados 

imediatamente após uma injúria tecidual. A dor crônica ocorre, em circunstâncias 

patológicas, mesmo após o desaparecimento dos eventos causais (CAMPRUBÍ-

ROBLES; FERRER-MONTIEL; PLANELLS-CASES, 2010). É provocada por 

estímulos discretos ou não nocivos e pode ser classificada como: inflamatória, na 

qual há inflamação ou injúria de tecido e/ou víscera; e neuropática, com lesão ou 

disfunção do sistema nervoso. 

De acordo com a natureza da injúria, o estímulo doloroso pode ser 

classificado, como térmico, mecânico ou polimodal (misto), surgindo por 

sensibilização periférica e/ou central. A sensibilização periférica ocorre por aumento 

da excitabilidade de fibras de alto limiar (C e Aδ, das células dos gânglios da raiz 

dorsal, trigeminal ou gânglio nodoso), sendo um fenômeno transitório e permanece 

restrito à área da injúria. A sensibilização central é dependente do uso e atividade, 

aumentando a eficácia sináptica nociceptiva e a responsividade de neurônios do 

corno dorsal (CAMPRUBÍ-ROBLES; FERRER-MONTIEL; PLANELLS-CASES, 

2010). 

Nas últimas décadas, numerosas pesquisas têm tentado explicar os 

mecanismos implicados na percepção da dor e de outras sensações normais. 

Pesquisas pré-clinicas, em modelos animais, revelaram muitos fatores, vias e 

mecanismos associados ao desenvolvimento e manutenção de sensibilidade 

semelhante à dor patológica. Foram descritas alterações da função neuronal, 
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induzidas por injúria, mudanças no funcionamento do neurônio periférico e no 

processamento neuronal dentro da medula espinal (WOOLF, 1983). Todos esses 

avanços, entretanto, ainda não repercutiram de forma significativa na prática médica. 

Assim, poucos novos fármacos foram disponibilizados para o tratamento da dor nos 

últimos anos, a exemplo da gabapentina e os inibidores da cicloxigenase 2 (COX-2). 

No entanto, atualmente, a terapia ainda se baseia na utilização de opióides e anti-

inflamatórios não esteroidais (AINES). Outros agentes terapêuticos poderão advir a 

partir das pesquisas no campo da biologia molecular, que, nos últimos 20 anos, 

identificaram proteínas receptoras para substâncias algogênicas. Dentre elas, os 

canais receptores de potencial transitório (TRP) surgem como alvos promissores 

para fármacos com mecanismos diferentes dos atualmente utilizados (SZALLASI et 

al., 2007; CORTRIGHT; KRAUSE; BROOM, 2007). 

O primeiro passo para a identificação dos canais TRPs de mamíferos veio do 

estudo de fotorreceptores em Drosophila (MINKE, 1975). O alto interesse nos TRPs 

apareceu apenas após sua clonagem e sequenciamento por Montell e Rubin (1989). 

Estudos eletrofisiológicos com patch clamp por Hardie e Minke (1992) e análise de 

sequências de proteínas por Kelly et al. (1992) forneceram evidências concretas de 

que os TRPs são provavelmente canais de cátions não seletivos permeáveis ao 

Ca2+. A identificação dos TRPs de Drosophila como um canal permeável ao Ca2+ 

mediado por fosfoinositídeos (DEVARY et al., 1987; BLOOMQUIST et al., 1988; 

HARDIE; MINKE, 1993) aumentou o interesse das investigações da sinalização do 

Ca2+ nos TRPs, levando à descoberta de homólogos nos mamíferos (WES et al., 

1995; ZHU et al., 1995; ZHU et al., 1996). Estudos independentes em vários 

mecanismos biológicos finalmente revelaram a superfamília TRP (MINKE; COOK, 

2002; CLAPHAM, 2003; MONTELL, 2005; NILIUS; VOETS, 2005; PEDERSEN; 

OWSIANIK; NILIUS, 2005; VOETS et al., 2005). 

Partindo desses aspectos, torna-se de suma importância um levantamento 

bibliográfico da relação dos canais iônicos receptores de potencial transitório (TRP) 

e a dor, visando uma coletânea de informações que sirvam como suporte para 

profissionais da área, assim como um meio de pesquisa para estudantes 

interessados. 
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. Dessa forma, o presente estudo teve como objetivo produzir um artigo de 

revisão sobre relação dos canais iônicos receptores de potencial transitório (TRP) e 

a dor. 

 

2. Metodologia 

  As informações bibliográficas sobre relação dos canais iônicos receptores de 

potencial transitório (TRP) e a dor foram feitas pela busca eletrônica utilizando 

bancos de dados Medline/PubMed, Scielo, Scirus, Wiley Online Library e Science 

Direct, incluindo trabalhos publicados em revistas indexadas, capítulos de livros, 

teses, dissertações e trabalho de conclusão de curso. Os descritores utilizados para 

a busca foram dor, receptores TRPs e fisiologia da dor, assim como suas 

respectivas traduções para o inglês. 

 

3. Superfamília dos TRPs 

 Os canais iônicos TRPs têm participação fundamental nos complexos 

mecanismos de quase todas as respostas sensoriais. Pertencem a uma superfamília 

complexa e multifuncional. São numerosos, ubíquos ou expressos de forma 

específica em células excitáveis ou não-excitáveis (MORAN, 2004, VOETS; NILIUS, 

2003., MINKE, 2002). Têm propriedades biofísicas diversas e mecanismos de 

comporta, estando envolvidos na iniciação do sinal sensorial da dor. 

Os canais TRPs formam uma nova família de canais de cátions consistindo 

de aproximadamente 30 membros nos mamíferos, 13 em Drosophila e 17 em C. 

elegans (MINKE, 2006). Em mamíferos, cerca de 28 genes codificam as 

subunidades do canal iônico TRP (JIANG; GAMPER; BEECH, 2011). A superfamília 

TRP dos mamíferos compreende seis subfamílias conhecidas como canais iônicos 

TRPC (canônica), TRPV (vaniloide), TRPM (melastatina), TRPML (mucolipina), 

TRPP (policistina) e TRPA (ANKTM1) (CLAPHAM et al., 2003; CLAPHAM, 2003; 

MORAN et al., 2004; PADINJAT; ANDREWS, 2004), havendo homologia estrutural 

entre eles. Todos possuem um domínio em comum, com seis segmentos (S1 – S6) 

transmembranares (TM) com a região do poro entre o quinto (S5) e o sexto (S6) 

segmento TM, e o quarto (S4) segmento TM sendo o sensor de voltagem, estando 

todos agrupados como tetrâmeros (Figura 1).  Ambas as porções N e C terminais 

dos TRPs são intracelulares (CLAPHAM, 2003).  As porções N-terminais de alguns 
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TRPs (TRPC, TRPV e TRPA) contém de três a seis repetições de anquirina que 

medeiam a ancoragem ao citoesqueleto e aparentemente interações proteínas-

proteínas. As sequências de aminoácidos de toda a família TRP possuem 

aproximadamente 20 % de homologia, principalmente nos domínios TM. Contudo, 

dentro de cada família há um alto grau de homologia ao longo de toda sequência 

(HUANG, 2004). Quando comparados com os estudos envolvendo outros canais 

iônicos, os estudos relacionados aos canais TRPs ainda estão em fase inicial. 

 

 

Figura 1- Estrutura de uma subunidade que compõe os TRPs 
                             Fonte: adaptado de Dhaka et al. (2009). 

 

Canais TRPs não são apenas essenciais para muitos sistemas sensoriais 

(VOETS et al., 2005), mas são também componentes cruciais das funções de 

neurônios, epitélio, sangue e músculo liso. Esses fatos os tornam, importantes alvos 

para o tratamento de doenças decorrentes do seu mau funcionamento nessas 

células e para o tratamento da dor inflamatória. Esses canais também são 

importantes para um número crescente de doenças genéticas devido às mutações 

em vários tipos de canais TRPs (NILIUS; VOETS; PETERS, 2005). 

 

4. Importância dos canais TRPs na dor 

Os TRPs são expressos em neurônios sensoriais e medeiam efeitos bem 

conhecidos de substâncias algogênicas. O crescente aumento do conhecimento da 

farmacologia molecular destes canais tem gerado grande interesse em entender seu 
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papel na dor, em nível molecular. Estudos utilizando clonagem molecular têm 

destacado principalmente os canais TRPV1, TRPA1, TRPV4 e TRPM8 no tocante a 

dor (Tabela 1) (CORTRIGHT; KRAUSE; BROOM, 2007). 

 

4.1 Canais TRPV1 

A subfamília TRPV é composta por seis membros nomeados de TRPV1 a 

TRPV6. Quatro deles (TRPV1 a TRPV4) são canais iônicos do tipo 

termorreceptores. O membro mais conhecido desta família é o TRPV1, também 

conhecido como o receptor da capsaicina ou receptores vanilóides (VR1) (GOHAZ, 

2005). TRPV1 é altamente expresso em um subconjunto de fibras de neurônios 

sensoriais chamados nociceptores. Esse local de expressão dos canais justifica a 

capacidade de agonistas, como a capsaicina, desencadear estímulos nociceptivos 

em animais. Esses canais podem ser ativados por temperaturas moderadas (≥43ºC) 

(CORTRIGHT; KRAUSE; BROOM, 2007) e aumento ou diminuição do pH (DHAKA 

et al., 2009). A ativação do TRPV1 nas fibras sensoriais também libera 

neuropeptídeos, como a substância P e o peptídeo relacionado ao gene da  

calcitonina, causando aumento do fluxo sangüíneo e do edema, quadro este referido 

como inflamação neurogênica (SZALLASI; BLUMBERG, 1999). Miyamoto et al. 

(2009) demonstraram que a ação nociceptiva periférica do gás NO é mediada pela 

ativação dos  TRPV1 bem como dos TRPA1. Outro estudo mostrou que a 

inflamação pancreática aumenta significativamente a expressão e as propriedades 

funcionais do TRPV1 e TRPA1 (SCHWARTZ et al., 2010). A principal característica 

do TRPV1 é, como já foi referido, a sua capacidade de integrar os efeitos dos 

mediadores de vários estímulos nociceptivos e inflamatórios. Ainda, TRPV1 está 

envolvido na dor induzida por estresse oxidativo (MILLER; ZHANG, 2011). Esta 

característica, quando combinada com a localização celular do TRPV1, fornece uma 

base racional para a utilização de antagonistas dos TRPV1 no tratamento da dor 

(CORTRIGHT; KRAUSE; BROOM, 2007). De fato, inúmeros antagonistas TRPV1 

foram relatados como eficácazes em uma ampla gama de modelos pré-clínicos de 

dor (SZALLASI et al, 2007, KRAUSE; CHENARD; CORTRIGHT, 2005). Vários 

antagonistas TRPV1 estão sendo submetidos a ensaios clínicos de Fase II para o 

tratamento da dor (SB-705498 e MK2295/NGD 8243) e em breve o primeiro fármaco 
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com este alvo terapêuticos poderá estar disponível (CORTRIGHT; KRAUSE; 

BROOM, 2007).  

 

4.2  Canais TRPA1 

Os canais TRPA1 são expressos principalmente em um pequeno subconjunto 

de neurônios DRGs (gânglio da raiz dorsal) e têm sido considerados canais de 

sensibilidade ao frio nocivo, ativados por temperaturas inferiores a 17 °C, abaixo dos 

TRPM8 que são os receptores do mentol (McKEMY, 2005; DHAKA; VISWANATH; 

PATAPOUTIAN, 2006); e por pH alcalino (TOMINAGA, 2010). Contraditoriamente, 

estudos realizados em 2010 por Knowlton e colaboradoresl., apontam que a 

sinalização do frio nocivo é exclusiva dos TRPM8 e que os TRPA1 não participariam 

da dor aguda pelo frio em mamíferos. Os TRPA1 também podem ser ativados por 

óleo mostarda e nicotina (JIANG; GAMPER; BEECH, 2011). A bradicinina ativa esse 

canal através da atuação nos receptores B1 e B2, funcionando, potencialmente, 

como integrador de sinal com o TRPV1 (BANDELL et al., 2004). A expressão dos 

TRPA1 não se limita aos neurônios DRGs e está presente nos estereocílios das 

células ciliadas, participando do processo auditivo. Alguns estudos apontam o 

envolvimento destes canais na audição (COREY et al., 2004). Vários estudos têm 

apontado a participação dos TRPA1 no mecanismo da dor. Foi demonstrado que 

TRPA1 e TRPV1 podem contribuir para nocicepção e hiperalgesia muscular, 

sugerindo que estes canais podem participar do desenvolvimento de patologias 

relacionadas à dor muscular (RO et al., 2009). A expressão dos TRPA1 é induzida 

tanto após lesões inflamatórias como após injúria de nervos. Animais com 

deficiência destes canais apresentaram diminuição da hiperalgesia ao frio, com 

pouco efeito sobre a hiperalgesia ao calor ou alodinia mecânica (OBATA et al., 

2005). Estudos mais recentes, também utilizando engenharia genética, identificaram 

uma diminuição da hipersensibilidade produzida pela mostarda e bradicinina nos 

animais que não apresentavam os canais. Enquanto a hipersensibilidade térmica e 

mecânica mais uma vez não foram modificadas (BAUTISTA et al., 2006, KWAN et 

al., 2006). Curiosamente, embora alguns estudos tenham apontado a participação 

dos TRPA1 na detecção do frio, outras pesquisas mostram divergência quanto a 

esse efeito, pois não se conseguiu correlacionar esses canais aos neurônios 

sensoriais do frio (JORDT et al., 2004). Portanto, o papel de TRPA1 na sensação de 
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frio normal permanece controverso e são necessárias mais pesquisas para elucidar 

a sua função fisiológica em sensores de temperatura. Entretanto, os estudos têm 

sugerido que na pós-lesão, TRPA1 desempenha um papel na hipersensibilidade ao 

frio (OBATA et al., 2005; KATSURA et al., 2006) indicando que TRPA1 pode ser um 

alvo potencialmente importante para tratamento da dor induzida pelo frio. 

 

4.3 Canais TRPM8 

O Canal TRPM8 é expresso por uma subpopulação de neurônios sensoriais 

DRGs e gânglios trigeminais (MCKEMY; NEUHAUSSER; JULIUS, 2002; PEIER et 

al., 2002). 

É um canal ativado por ligante e por temperaturas ligeiramente baixas que 

geram apenas frio moderado em torno de 26 ºC, ocorrendo saturação por volta de 8 

ºC. Essa faixa de ativação se sobrepõe com os TRPA1, mas se estende a maiores 

temperaturas (MCKEMY; NEUHAUSSER; JULIUS, 2002). Apesar da sensibilidade a 

baixas temperaturas dos TRPM8, bloqueadores não conferem nenhuma alteração 

na hipersensibilidade do nervo induzida pelo frio (KATSURA et al., 2006). Por outro 

lado, a ativação dos TRPM8 demonstrou produzir analgesia e esse efeito foi 

revertido por esses bloqueadores (PROUDFOOT, 2006). Tais experimentos 

sugerem um mecanismo de analgesia com produção de frio diante da ativação dos 

TRPM8, sendo esse um dos efeitos que ocorrem com o uso do mentol 

(CORTRIGHT; KRAUSE; BROOM, 2007).  

 

4.4 Canais TRPV4 

TRPV4 é um canal que pode ser ativado pelo calor ou por ligante de forma 

semelhante a outros TRPs. Entre os ligantes que podem ativar esse canal incluem 

derivados de forbol (WATANABE et al., 2002a), endocanabinóides e metabólitos do 

ácido araquidônico (WATANABE et al., 2003). Sua temperatura de ativação é acima 

de 27 ºC, sendo inferior à necessária para ativação dos TRPV1 (WATANABE et al., 

2002b;  GÜLER et al., 2002). Curiosamente, ele também pode ser ativado por 

modificação da osmolaridade e redução do pH, podendo servir como um integrador 

entre a mecanossensação e osmorregulação (SUZUKI et al., 2003a; WISSENBACH 

et a., 2000). Consistente com um papel na osmorregulação, os TRPV4 são 

expressos nos rins e nos órgão circunventriculares do SNC (WISSENBACH et al., 
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2000; LIEDTKE et al., 2000). Eles também são expressos nos DRGs, gânglios do 

trigêmeo e terminais mecanossensoriais da pele, bem como nas células ciliadas da 

cóclea. Na verdade, os estudos identificaram uma função para TRPV4 na audição 

(SUZUKI et al., 2003a; LIEDTKE et al., 2000; TABUCHI et al., 2005). Estudos com 

camundongos knockout têm demonstrado participação dos TRPV4 na sensibilidade 

mecânica e a ácidos, enquanto esses animais apresentaram sensibilidade normal ao 

calor e ao tato (LIEDTKE; FRIEDMAN, 2003, SUZUKI, 2003b). Outros estudos têm 

apontado para um papel na sensação térmica em condições inflamatórias (TODAKA 

et al., 2004) e também no meio ambiente (LEE et al, 2005), condizendo com a 

ativação do canal pela elevação térmica. 

Foi demonstrado por Alessandri-Haber e colaboradores. (2006) que os 

TRPV4 têm participação na dor inflamatória, porém não participam da sensação 

dolorosa normal. Portanto, embora exerçam importante função nos tecidos normais, 

sem lesões, os TRPV4 demonstram ser peça importante na percepção sensorial 

patológica. Outro achado interessante indica estes canais como chave na neuropatia 

induzida pela quimioterapia, podendo tornarem-se alvos para combater esse 

desagradável efeito colateral (CORTRIGHT; KRAUSE; BROOM, 2007).  

 

5. Sinalização intracelular na regulação dos TRPs 

 Os níveis de expressão de TRPV1 diminuem substancialmente em neurônios 

nociceptores lesionados após injúria axonal periférica, mas, eles aumentam em 

neurônios vizinhos não afetados (HUDSON et al., 2001). Um aumento na expressão 

de TRPV1 ocorre em neurônios sensitivos primários após inflamação periférica e 

requer o fator de crescimento do nervo (NGF) e ativação de p38 (JI et al., 2002). 

Além do mais, a ativação da proteína cinase C (PKC) induz rápida expressão de 

canais TRPV1 na membrana celular, contribuindo para sua sensibilização 

(MORENILLA-PALAO et al., 2004). O aumento da expressão de TRPV1 para 

periferia contribui para hipersensibilidade da dor inflamatória (JI et al., 2002). 

Na fase precoce da inflamação, a maior sensibilidade à dor deve-se 

principalmente à liberação local de vários mediadores pelas células inflamatórias. 

Esses mediadores inflamatórios geralmente não ativam diretamente os nociceptores, 

mas atuam como sensibilizadores, reduzindo o limiar dos terminais nociceptores 

periféricos. Entre os principais mediadores inflamatórios estão os prostanóides, 
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especialmente a prostaglandina E2 (PGE2), bradicinina e NGF, atuando em 

receptores EP, B1 e B2 (acoplados à proteína G), e receptor catalítico tirosina cinase 

(TrkA), respectivamente. Suas ações produzem efeitos imediatos na 

hipersensibilidade dolorosa localmente nos terminais nociceptores, pela fosforilação 

de TRPV1, bem como dos canais de sódio dependentes de voltagem Nav1.8. 

Fosforilação e defosfoliação substancialmente alteram a função do canal iônico 

TRPV1, o que representa um meio de alterar rapidamente a sensibilidade à dor 

(Erro! Fonte de referência não encontrada.) (WANG; WOOLF, 2005). 

 

 

Figura 2 - Esquemas das principais vias de sinalização que regulam os TRPs. (+) representa 
sensibilização ou ativação; (-) representa desensibilização.  
Fonte: adaptado de Wang e Woolf ( 2005). 

 

A ativação, via TrkA, da fosfolipase Cγ (PLCγ) hidrolisa o fosfatidilinositol 4,5-

bifosfato (PIP2), que atua como um inibidor do canal TRPV1 e sua hidrólise reverte 

essa inibição (CHUANG et al., 2001). Hidrólise de PIP2 também libera inositol 1,4,5-

trisfosfato (IP3) e diacilglicerol (DAG), que ativa a PKC, fosforilando TRPV1. NGF 

pode também potencializar TRPV1 por ativação da PI3K ou via cinase II dependente 

de calmodulina (CaMKII), PKC ou ERK (p38) (ZHUANG et al., 2004). Em outro 

estudo, nem ERK nem PKC, mas sim a proteína cinase A (PKA) acoplou NGF a 

TRPV1 (SHU; MENDELL, 2001). 
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Bradicinina e NGF podem retirar a inibição de TRPV1 pelo PIP2, bem como 

podem ativar PKC para fosforilar TRPV1 e, dessa forma, sensibilizar o receptor 

(SUGIURA et al., 2002). O receptor B2 também acopla-se à fosfolipase A2 (PLA2), a 

qual produz ácido araquidônico (AA), que pode ser convertido a ácido 12-

hidroperoxiecosatetraenoico (12-HPETE) pela 12-lipoxigenase (LOX). HPETE ativa 

TRPV1 (SHIN et al., 2002). A inibição da PLC, PKC, PLA2 e lipoxigenase reduz a 

nocicepção periférica induzida pela bradicinina (FERREIRA et al., 2004). Bradicinina 

também ativa TRPA1 de modo dependente de PLC (BANDELL et al., 2004). 

Um outro produto do ácido aracdônico, PGE2, é catalisado pela COX-2, o qual 

é altamente induzido em células inflamatórias. A PGE2 sensibiliza TRPV1, via PKA 

(HU et al., 2002) e também sensibiliza TRPV4. A inibição da COX-2 no sítio da 

inflamação periférica é provavelmente um dos meios pelo qual os inibidores da 

COX-2 produzem analgesia, embora também haja contribuição de mecanismo de 

ação central. Ácidos epoxieicosatrienoicos (EET), metabólitos do ácido araquidônico 

convertidos pelo citocromo P45O, ativam diretamente TRPV4 (WATANABE et al., 

2003). Uma proteína ancoradora de cinase (AKAP) é requerida para potencialização 

do TRPV1 pela PKA (RATHEE et al., 2002).  

TRPV1 pode ser sensibilizado e dessensibilizado. TRPV1 sensibilizado 

contribui para dor por hipersensibilidade térmica. Contudo, a aplicação prolongada 

de capsaicina induz sua dessensibilização levando a analgesia. A dessensibilização 

do TRPV1 é dependente de Ca2+ e pode ser mediada pela calmodulina, a qual 

interage diretamente com o sítio de ligação à calmodulina presente em muitos TRPs 

(LAMBERS et al., 2004; ROSENBAUM; SIMON, 2007) (Figura 3). 

 

 

Figura 3 - Diagrama esquemático de uma subunidade do TRPV1 na bicamada lipídica. 
          Fonte: Rosenbaum e Simon ( 2007). 
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Acredita-se que a fosforilação do TRPV1 pela CaMKII é crítica para sua 

sensibilização e que a desfosforilação pela calcineurina (fosfatase 2B, ou PP2B, 

uma fosfatase dependente de Ca2+) é necessária para sua dessensibilização (JUNG 

et al., 2004). Este efeito é contraditório, já que o complexo Ca2+/CaM ativa tanto 

CaMKII quanto PP2B, necessitando de mais estudos para seu esclarecimento. 
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Tabela 1- Principais TRPs presentes em mamíferos 

Nome do canal Distribuição 
tissular 

Modalidade de ativação Mecanismo regulatório Bloqueadores 

Subfamília TRPV 

TRPV1 DRG, gânglio 
trigemial, bexiga 
urinária 

T ≥ 43 ºC, ácido, capsaicina, 
resiniferatoxina, éster de forbol, N-
araquidonil dopamina, metabolitos do 
ácido araquidônico, endocanabinóides, 
2-aminoetoxidilfenil borato (2-APB)  

(+) PKA, PKC, PI3K, p38, Src, PLC, 
PLA2/lipoxigenase, CaMKII, BK, NGF, 
PGE2, ATP, etanol, nicotina, ácido, 2-
APB 

Agatoxina 489, 
capsazepina, vermelho 
de rutênio 

   (-) PIP2, calmodulina, calcineurina, 
adenosina 

 

TRPV2 DRG, medula 
espinal, cérebro, 
baço, intestino 

T ≥ 52 ºC, 2-APB, anidrido 
difenilborônico, IGF-1 

(+) translocação pelo IGF-1 Vermelho de rutênio 

TRPV3 DRG, gânglio 
trigemial, medula 
espinal, cérebro, 
queratinócitos, língua 

T ≥ 30-39 ºC, 2-APB, cânfora, eugenol, 
carvacrol, timol, mentol, cinamaldeído 

(+) 2-APB, cânfora Vermelho de rutênio, 
difeniltetrahidrofurano 

TRPV4 DRG, gânglio 
trigemial, rins, 
cérebro, baço, 
queratinócitos, 
pulmão, testículos, 
endotélio, fígado, 
coração, células 
ciliadas do ouvido 
interno 

T ≥ 27 ºC, hipotonicidade, estímulos 
mecânicos nocivos, ácido, éster de 
forbol, endocanabinóides, metabólitos do 
ácido araquidônico, ácido cítrico,  

(+) PLA2/CYP450, Src, PGE2 Vermelho de rutênio 

Subfamília TRPM 

TRPM5 Paladar, intestino 
delgado, fígado, 
pulmão 

Paladar (doce, amargo) (+) PLCβ2, Ca
2+ 

intracelular, PIP2 pH < 7,0 

TRPM8 DRG, prostata, 
gânglio trigemial 

T ≤ 23-28 ºC, mentol, icilina, mentol, 
eucaliptol, geraniol, linalol, 
hidroxicitronelal 

(+) PIP2 Capsazepina, 2-APB,  

Subfamília TRPA 

TRPA1 DRG, fibroblastos, 
células ciliadas 

T ≤ 17 ºC, icilina, canabinóides, óleo de 
mostarda, bradicinina, estímulos 
mecânicos (células ciciadas), eugenol, 
gingerol, salicilato de metila, 2-pentenal, 

(+) PLCβ Gentamicina, cânfora, 
mentol, amilorida, 
vermelho de rutênio e 
Gd

3+
 

Fonte: Wang e Woolf, 2005 e IUPHAR 2011



 

 
 

 

6. Considerações Finais 

É crescente o número de descobertas acerca das propriedades dos canais 

TRPs. Conhecer melhor a estrutura, o funcionamento, localização e a forma de 

modulação intra e extracelular irá contribuir cada vez mais para o entendimento e 

utilização destes canais como alvos terapêuticos para novas substâncias 

analgésicas. Muitos estudos, inclusive clínicos de fase II, já estão sendo 

desenvolvidos baseados no conhecimento atual destes canais. Além do tratamento 

para dor, os TRPs podem ser alvos de regulação de outros processos sensoriais, já 

que estão envolvidos em uma gama de atividades fisiológicas 

 

7.  Referências 

ALESSANDRI-HABER, N.; DINA, O. A.; JOSEPH, E. K.; REICHLING, D.; LEVINE, J, 

D. A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is 

engaged by concerted action of inflammatory mediators, J. Neurosci., v. 26, p. 

3864–3874, 2006. 

BANDELL, M.; STORY, G. M.; HWANG, S. W.; VISWANATH, V.; EID, S. R.; 

PETRUS, M. J.; EARLEY, T. J.; PATAPOUTIAN, A. Noxious cold ion channel TRPA1 

is activated by pungent compounds and bradykinin, Neuron,v. 41, p. 849–857, 2004. 

BAUTISTA, D. M.; JORDT, S. E.; NIKAI, T.; TSURUDA, P. R.; READ, A. J.; 

POBLETE, J.; YAMOAH, E. N.; BASBAUM, A. I.; JULIUS, D. TRPA1 mediates the 

inflammatory actions of environmental irritants and proalgesic agents, Cell,v. 124, 

p.1269–1282, 2006. 

BLOOMQUIST, B. T.; SHORTRIDGE, R. D.; SCHNEUWLY, S.; PERDEW, M.; 

MONTELL, C.; STELLER, H.; RUBIN, G.; PAK, W. L. Isolation of a putative 

phospholipase C gene of Drosophila, norpA, and its role in phototransduction. Cell, 

v.54,p. 723–733, 1988. 

CAMPRUBÍ-ROBLES, M.; FERRER-MONTIEL, A.; PLANELLS-CASES, R. 

Contribution of Ion Channel Trafficking to Nociceptor Sensitization. The Open Pain 

Journal, v.3, p. 108-116, 2010. 



 

41 
 

CHUANG, H. H.; PRESCOTT, E. D.; KONG, H.; SHIELDS, S.; JORDT, S. E.; 

BASBAUM, A. I.; CHAO, M. V.; AND JULIUS, D. Bradykinin and nerve growth factor 

release the capsaicin receptor from PtdIns(4,5) P2-mediated inhibition. Nature, 

v.411,p. 957–962, 2001. 

CLAPHAM, D. E. TRP channels as cellular sensors. Nature v.426 p.517–524. 2003 

CLAPHAM, D. E.; MONTELL, C.; SCHULTZ, G.; JULIUS, D.; International Union of 

Pharmacology. International Union of Pharmacology. XLIII. Compendium of voltage-

gated ion channels: transient receptor potential channels. Pharmacol. Rev., v.55,p. 

591-596, 2003. 

COREY, D. P.; GARCIA-ANOVEROS, J.; HOLT, J. R.; KWAN, K. Y.; LIN, S. Y.; 

VOLLRATH, M. A.; AMALFITANO, A.; CHEUNG, E. L.; DERFLER, B. H.; DUGGAN, 

A.; GELEOC, G. S.; GRAY, P. A.; HOFFMAN, M. P.; REHM, H. L.; TAMASAUSKAS, 

D.; ZHANG, D. S. TRPA1 is a candidate for the mechanosensitive transduction 

channel of vertebrate hair cells, Nature, v.432,p. 723–730, 2004. 

CORTRIGHT, D. N.; KRAUSE, J. E.; BROOM, D. C. TRP channels and pain, 

Biochimica et Biophysica Acta, v. 1772 p. 978–988, 2007. 

DEVARY, O.; HEICHAL, O.; BLUMENFELD, A.; CASSEL, D.; SUSS, E.; BARASH, 

S.; RUBINSTEIN, C. T.; MINKE, B.; SELINGER, Z. Coupling of photoexcited 

rhodopsin to inositol phospholipid hydrolysis in fly photoreceptors. Proc Natl Acad 

Sci,  USA; v. 84 p. 6939–6943, 1987.  

DHAKA, A.; UZZELL, V.; DUBIN, A. E.; MATHUR, J.; PETRUS, M.; BANDELL, M.; 

PATAPOUTIAN, A. TRPV1 Is Activated by Both Acidic and Basic pH. The Journal of 

Neuroscience, v.29, p.153–158, 2009. 

DHAKA, A.; VISWANATH, V.; PATAPOUTIAN, A. TRP ion channels and 

temperature sensation, Annu. Rev. Neurosci.,  v. 29, p. 135–161, 2006. 

FERREIRA, J.; DA SILVA, G. L.; AND CALIXTO, J. B. Br. J. Pharmacol., v.141, p. 

787–794, 2004. 



 

42 
 

GOHAZ, O. The Transient Receptor Potential (TRP) Ion Channels, 2005. 

Disponível em: <http:// www.alomone.com>. Acesso em: 10 de fev. 2013. 

GÜLER, A. D.; LEE, H.; IIDA, T.; SHIMIZU, I.; TOMINAGA, M.; CATERINA, M.;  

Heat-evoked activation of the ion channel, TRPV4, J. Neurosci., v.22,p. 6408–6414, 

2002. 

HARDIE, R. C.; MINKE, B. Novel Ca2+ channels underlying transduction in 

Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ 

mobilization. Trends Neurosci,v. 16p. 371–376, 1993.  

HARDIE, R. C.; MINKE, B. The trp gene is essential for a light-activated Ca2+ 

channel in Drosophila photoreceptors. Neuron, v.8, p. 643–651, 1992. 

HU, H. J.; BHAVE, G.; GEREAU, R. W. J. Prostaglandin and protein kinase A-

dependent modulation of vanilloid receptor function by metabotropic glutamate 

receptor 5: potential mechanism for thermal hyperalgesia. Neurosci., v.22, p. 7444–

7452, 2002. 

HUANG, C. L. The Transient Receptor Potential Superfamily of Ion Channels. J. Am. 

Soc. Nephrol., v.15,p. 1690-1699, 2004. 

HUDSON, L. J.; BEVAN, S.; WOTHERSPOON, G.; GENTRY, C.; FOX, A.; AND 

WINTER, J. VR1 protein expression increases in undamaged DRG neurons after 

partial nerve injury. Eur. J. Neurosci., v.13,p. 2105–2114, 2001. 

JI, R. R.; SAMAD, T. A.; JIN, S. X.; SCHMOLL, R.; AND WOOLF, C. J. p38 MAPK 

activation by NGF in primary sensory neurons after inflammation increases TRPV1 

levels and maintains heat hyperalgesia. Neuron, v.36,p. 57–68, 2002. 

JIANG, L. H.; GAMPER, N.; BEECH, D. J. Properties and Therapeutic Potential of 

Transient Receptor Potential Channels with Putative Roles in Adversity: Focus on 

TRPC5, TRPM2 and TRPA1. Curr Drug Targets. Feb 3, 2011.  

JORDT, S. E.; BAUTISTA, D. M.; CHUANG, H. H.; MCKEMY, D. D.; ZYGMUNT, P. 

M.; HÖGESTÄTT, E. D.; MENG, I. D.; JULIUS, D. Mustard oils and cannabinoids 



 

43 
 

excite sensory nerve fibres through the TRP channel ANKTM1, Nature, v. 427,p. 

260–265, 2004. 

JUNG, J.; SHIN, J. S.; LEE, S. Y.; HWANG, S. W.; KOO, J.; CHO, H.; OH, U. 

Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulindependent kinase II 

regulates its vanilloid binding. J. Biol. Chem.,v. 279,p.7048-7054, 2004. 

KATSURA, H.; OBATA, K.; MIZUSHIMA, T.; YAMANAKA, H.; KOBAYASHI, K.; DAI, 

Y.; FUKUOKA, T.; TOKUNAGA, A.; SAKAGAMI, M.; NOGUCHI, K. Antisense knock 

down of TRPA1, but not TRPM8, alleviates cold hyperalgesia after spinal nerve 

ligation in rats, Exp. Neurol., v. 200, p. 112–123, 2006. 

KNOWLTON, W. M.; BIFOLCK-FISHER, A.; BAUTISTA, D. M.; MCKEMY, D. D. 

TRPM8, but not TRPA1, is required for neural and behavioral responses to acute 

noxious cold temperatures and cold-mimetics in vivo. PAIN, v.150 p. 40-50, 2010. 

KRAUSE, J. E.; CHENARD, B. L.; CORTRIGHT, D. N. Transient receptor potential 

ion channels as targets for the discovery of pain therapeutics, Curr. Opin. Investig. 

Drugs, v.6, p. 48–57, 2005. 

KWAN, K. Y.; ALLCHORNE, A. J.; VOLLRATH, M. A.; CHRISTENSEN, A. P.; 

ZHANG, D. S.; WOOLF, C. J.; COREY, D. P. TRPA1 contributes to cold, mechanical, 

and chemical nociception but is not essential for hair-cell transduction, Neuron,v. 50, 

p. 277–289, 2006. 

LAMBERS, T.T.; WEIDEMA, A. F.; NILIUS, B.; HOENDEROP, J. G.; BINDELS, R. J. 

Regulation of the mouse epithelial Ca2+ channel TRPV6 by the Ca 2+ sensor 

calmodulin. J Biol Chem, v.279, p. 28855–28861, 2004. 

LEE, H.; IIDA, T.; MIZUNO, A.; SUZUKI, M.; CATERINA, M. J. Altered thermal 

selection behavior in mice lacking transient receptor potential vanilloid 4, J. 

Neurosci.,v. 25, p. 1304–1310, 2005. 

LIEDTKE, W.; CHOE, Y.; MARTÍ-RENOM, M. A.; BELL, A. M.; DENIS, C. S.; SALI, 

A.; HUDSPETH, A. J.; FRIEDMAN, J. M.; HELLER, S. Vanilloid receptor-related 

osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor, Cell, 

v.103,p. 525–535, 2000. 



 

44 
 

LIEDTKE, W.; FRIEDMAN, J. M. Abnormal osmotic regulation in trpv4−/− mice, 

Proc. Natl. Acad. Sci. USA., v. 100,p. 13698–13703, 2003. 

MCKEMY, D. D. How cold is it? TRPM8 and TRPA1 in the molecular logic of cold 

sensation, Mol. Pain, v.1,p. 16, 2005. 

MCKEMY, D. D.; NEUHAUSSER, W. M.; AND JULIUS, D. Identification of a cold 

receptor reveals a general role for TRP channels in thermosensation. Nature, 

v.416,p. 52–58, 2002. 

MILLER, B. A.; ZHANG, W. TRP Channels as Mediators of Oxidative Stress. Adv 

Exp Med Biol., v.44 p.70: 74, 2011. 

MINKE, B.; COOK, B. TRP channel proteins and signal transduction. Physiol Rev, v. 

82 p.429–472, 2002. 

MINKE, B. Drosophila mutant with a transducer defect. Biophys Struct Mech, v.3, p. 

59– 64, 1975. 

MINKE, B. TRP channels and Ca2+ signaling. Cell Calcium. V.40, p. 261–275, 2006. 

MIYAMOTO, T.; DUBIN, A. E.; PETRUS, M. J.; PATAPOUTIAN, A. TRPV1 and 

TRPA1 Mediate Peripheral Nitric Oxide-Induced Nociception in Mice. PLoS ONE v.4 

p.475-480, 2009. 

MONTELL, C.; RUBIN, G. M. Molecular characterization of the Drosophila trp locus: 

a putative integral membrane protein required for phototransduction. Neuron, v.2 

p.1313–1323, 1989. 

MONTELL C. The TRP superfamily of cation channels. Sci STKE, 2005. 

MORAN, M. M.; XU, H.; CLAPHAM, D. E. TRP ion channels in the nervous system. 

Curr. Opin. Neurobiol., 14(3):362-9, 2004. 

MORENILLA-PALAO, C.; PLANELLS-CASES, R.; GARCIA-SANZ, N.; FERRER-

MONTIEL, A. J. Biol. Chem.,v. 279, p. 25665–25672, 2004. 



 

45 
 

NILIUS, B.; VOETS, T.; PETERS, J. TRP channels in disease. Sci STKE, 2;295, 

2005. 

OBATA, K.; KATSURA, H.; MIZUSHIMA, T.; YAMANAKA, H.; KOBAYASHI, K.; DAI, 

Y.; FUKUOKA, T.; TOKUNAGA, A.; TOMINAGA, M.; NOGUCHI, K.  TRPA1 induced 

in sensory neurons contributes to cold hyperalgesia after inflammation and nerve 

injury. J. Clin. Invest., v. 115, p. 2393–2401, 2005. 

PADINJAT, R.; ANDREWS, S. TRP channels at a glance. J. Cell. Sci. 117, 5707, 

2004. 

PEDERSEN, S. F.; OWSIANIK, G.; NILIUS, B. TRP channels: an overview. Cell 

Calcium, v.38 p.233–252, 2005. 

PEIER, A. M.; MOQRICH, A.; HERGARDEN, A. C.; REEVE, A. J.; ANDERSSON, D. 

A.; STORY, G. M.; EARLEY, T. J.; DRAGONI, I.; MCINTYRE, P.; BEVAN, S.; 

PATAPOUTIAN, A. A TRP channel that senses cold stimuli and menthol. Cell, v.108, 

p. 705–715, 2002. 

PROUDFOOT, C. J.; GARRY, E. M.; COTTRELL, D. F.; ROSIE, R.; ANDERSON, H.; 

ROBERTSON, D. C.; FLEETWOOD-WALKER, S. M.; MITCHELL, R. Analgesia 

mediated by the TRPM8 cold receptor in chronic neuropathic pain. Curr. Biol., v.16, 

p.1591–1605, 2006. 

RATHEE, P. K.; DISTLER, C.; OBREJA, O.; NEUHUBER, W.; WANG, G. K.; WANG, 

S. Y.; NAU, C.; KRESS, M. PKA/AKAP/VR-1 Module: A Common Link of Gs-

Mediated Signaling to Thermal Hyperalgesia. J. Neurosci.,v. 22,p. 4740–4745, 

2002. 

RO, J. Y.; LEE, J. S.; ZHANG, Y. Activation of TRPV1 and TRPA1 leads to muscle 

nociception and mechanical hyperalgesia. PAIN, v.144,p. 270–277, 2009. 

ROSENBAUM, T.; SIMON, S. A. TRPV1 Receptors and Signal Transduction. In: 

LIEDTKE, W. B.; HELLER, S. TRP Ion Channel Function in Sensory 

Transduction and Cellular Signaling Cascades. Boca Raton (FL): CRC Press; 

2007. Chapter 5.Frontiers in Neuroscience. 



 

46 
 

SCHWARTZ, E. S.; CHRISTIANSON, J. A.; CHEN, X.; LA, J. H.; DAVIS, B. M.; 

ALBERS, K. M.; GEBHART, G. F. Synergistic Role of TRPV1 and TRPA1 in 

Pancreatic Pain and inflammation. Gastroenterology, 2010.  

SHIN, J.; CHO, H.; HWANG, S. W.; JUNG, J.; SHIN, C. Y.; LEE, S. Y.; KIM, S. H.; 

LEE, M. G.; CHOI, Y. H.; KIM, J.; HABER, N. A.; REICHLING, D. B.; KHASAR, S.; 

LEVINE, J. D.; OH, U. Bradykinin-12-lipoxygenase-VR1 signalling pathway for 

inflammatory hyperalgesia. Proc. Natl. Acad. Sci. USA,v. 99,p. 10150-10155, 2002. 

SHU, X.; MENDELL, L. M. Acute Sensitization by NGF of the Response of Small-

Diameter Sensory Neurons to Capsaicin. J. Neurophysiol.,v. 86,p. 2931–2938, 

2001. 

SUGIURA, T.; TOMINAGA, M.; KATSUYA, H.; MIZUMURA, K. Bradykinin lowers the 

threshold temperature for heat activation of vanilloid receptor 1. J. Neurophysiol., v. 

88,p. 544-548, 2002.  

SUZUKI, M.; WATANABE, Y.; OYAMA, Y.; MIZUNO, A.; KUSANO, E.; HIRAO, A.; 

OOKAWARA, S. Localization of mechanosensitive channel TRPV4 in mouse skin, 

Neurosci. Lett., v.353,p. 189–192, 2003a. 

SUZUKI, M.; MIZUNO, A.; KODAIRA, K.; IMAI, M. Impaired pressure sensation in 

mice lacking TRPV4. J. Biol. Chem., v.278,p. 22664–22668, 2003b. 

SZALLASI, A.; CORTRIGHT, D. N.; BLUM, C. A.; EID, S. R. The vanilloid receptor 

TRPV1: 10 years from channel cloning to antagonist proof-ofconcept. Nature Rev. 

Drug. Disc.,v. 6,p. 357-372, 2007. 

SZALLASI, A.; BLUMBERG, P. M. Vanilloid (Capsaicin) receptors and mechanisms, 

pharmacol. Rev.,v. 51, p. 159–212, 1999. 

TABUCHI, K.; SUZUKI, M.; MIZUNO, A.; HARA, A. Hearing impairment in TRPV4 

knockout mice. Neurosci. Lett., v.382, p. 304–308, 2005. 

TODAKA, H.; TANIGUCHI, J.; SATOH, J.; MIZUNO, A.; SUZUKI, M. Warm 

temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an 

essential role in thermal hyperalgesia. J. Biol. Chem., v.279, p. 35133–35138, 2004. 



 

47 
 

TOMINAGA, M. Activation and regulation of nociceptive transient receptor potential 

(TRP) channels, TRPV1 and TRPA1. Yakugaku Zasshi.,v. 130 p. 289-94, 2010 

VOETS, T.; TALAVERA, K.; OWSIANIK, G.; NILIUS, B. Sensing with TRP channels. 

Nat. Chem. Biol.,v. 1, p.85–92, 2005. 

VOETS, T.; NILIUS, B. TRPs make sense. J. Membrane Biol., 192, 1, 2003. 

WANG, H.; WOOLF, C. J. Pain TRPs. Neuron, v. 46, p.  9–12, 2005. 

WATANABE, H.; DAVIS, J. B.; SMART, D.; JERMAN, J. C.; SMITH, G. D.; HAYES, 

P.; VRIENS, J.; CAIRNS, W.; WISSENBACH, U.; PRENEN, J.; FLOCKERZI, V.; 

DROOGMANS, G.; BENHAM, C. D.; NILIUS, B. Activation of TRPV4 channels 

(hVRL-2/mTRP12) by phorbol derivatives. J. Biol. Chem., v. 277,p. 73–77, 2002a. 

WATANABE, H.; VRIENS, J.; SUH, S. H.; BENHAM, C. D.; DROOGMANS, G.; 

NILIUS, B. Heat-evoked activation of TRPV4 channels in a HEK293 cell expression 

system and in native mouse aorta endothelial cells. J. Biol. Chem., v. 277,p.  

47044–47051, 2002b. 

WATANABE, H.; VRIENS, J.; PRENEN, J.; DROOGMANS, G.; VOETS, T.; NILIUS, 

B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate 

TRPV4 channels. Nature, v. 424,p. 434–438, 2003. 

WES, P. D.; CHEVESICH, J.; JEROMIN, A.; ROSENBERG, C.; STETTEN, G.; 

MONTELL, C. TRPC1, a human homolog of a Drosophila store-operated channel. 

Proc. Natl. Acad. Sci. USA,  p. 929652–9656, 1995. 

WISSENBACH, U.; BÖDDING, M.; FREICHEL, M.; FLOCKERZI, V.  Trp12, a novel 

Trp related protein from kidney. FEBS Lett., v.485,p. 127–134, 2000. 

WOOLF, C. J.  Evidence for a central component of post-injury pain hypersensitivity, 

Nature, v.306, p. 686–688, 1983. 

ZHU, X.; CHU, P. B.; PEYTON, M.; BIRNBAUMER, L. Molecular cloning of a widely 

expressed human homologue for the Drosophila trp gene. FEBS Lett., v.37, p.3193–

198, 1995. 



 

48 
 

ZHU, X.; JIANG, M.; PEYTON, M.; BOULAY, G.; HURST, R.; STEFANI, E.; 

BIRNBAUMER, L. TRP, a novel mammalian gene family essential for agonist-

activated capacitative Ca2+ entry. Cell,v. 85 p.661–671, 1996. 

ZHUANG, Z. Y.; XU, H.; CLAPHAM, D. E.; JI, R. R. Phosphatidylinositol 3-Kinase 

Activates ERK in Primary Sensory Neurons and Mediates Inflammatory Heat 

Hyperalgesia through TRPV1 Sensitization. J. Neurosci., v.24, p. 8300–8309, 2004. 

 

 

 

 

 

 

  


