

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE SOLOS E ENGENHARIA RURAL CURSO AGRONOMIA

QUANTIFICAÇÃO DE PERDAS DE MATERIA PRIMA NO CAMPO PARA DIFERENTES REGULAGENS DE UMA COLHEDORA DE CANA-DE-AÇÚCAR NO MUNICIPIO DE ARÊS – RN

JOÃO FÉLIX DOS SANTOS NETO

AREIA – PB

ABRIL - 2013

JOÃO FÉLIX DOS SANTOS NETO

QUANTIFICAÇÃO DE PERDAS DE MATERIA PRIMA NO CAMPO PARA DIFERENTES REGULAGENS DE UMA COLHEDORA DE CANA-DE-AÇÚCAR NO MUNICIPIO DE ARÊS – RN

Trabalho apresentado à coordenação do curso de graduação em Agronomia do Centro de Ciências Agrárias, da Universidade Federal da Paraíba, Areia-PB, em observância às exigências para obtenção do título de Engenheiro Agrônomo.

ORIENTADOR: PROF. Dr. MAURICIO JAVIER DE LEÓN

DEPARTAMENTO DE SOLOS E ENGENHARIA RURAL

AREIA – PB SETEMBRO - 2013

JOÃO FÉLIX DOS SANTOS NETO

QUANTIFICAÇÃO DE PERDAS DE MATERIA PRIMA NO CAMPO PARA DIFERENTES REGULAGENS DE UMA COLHEDORA DE CANA-DE-AÇÚCAR NO MUNICIPIO DE ARÊS – RN

Aprovado em 11 de setembro de 2013

BANCA EXAMINADORA

Orientador: Prof. Dr. Mauricio Javier De León

DSER/CCA/UFPB

- Orientador
Prof. Dr. Guttemberg da Silva Silvino

- Examinador -

Msc. Dácio Jerônimo de Almeida

- Examinador -

DEDICATÓRIA

A Deus por ter me dado forças para seguir em frente, superando as adversidades encontradas pelo caminho. A Meus pais Reginaldo Félix dos Santos Neto e Maria Luzineide dos Santos, pelo amor, carinho e apoio que sempre demonstraram. As minhas irmãs Natally Pereira dos Santos e Heloise Pereira dos Santos, que sempre torceram pelas minhas conquistas. A minha avó Olindina Marinho dos Santos, que sempre demonstrou amor e preocupação.

AGRADECIMENTOS

A Deus, por tudo de maravilhoso que proporciona em minha vida, estando sempre ao meu lado, concedendo saúde e confiança, guiando-me em minhas decisões e dando forças para seguir em frente, pelo privilégio de conceder a oportunidade de ser um estudante universitário.

À minha Maria Luzineide dos Santos, por todo seu amor, companheirismo, educação e orientação, demonstrados ao longo de minha vida.

Ao meu pai Reginaldo Félix dos Santos, que não mediu esforços para me proporcionar a melhor educação, companheirismo e incentivo para seguir em frente.

As minhas irmãs Natally Pereira dos Santos e Heloise Pereira dos Santos, pela torcida para que meus objetivos fossem alcançados.

Aos amigos que só podia ver nos finais de semana Anísio Souza e família, Junior Souza e família, a quem compartilhava momentos marcantes, de aprendizado, divertimento era onde recarregava as energias para mais uma semana de batalhas.

Agradeço a Universidade Federal da Paraíba - Centro de Ciências Agrárias e a todos os funcionários que diariamente fazem desta instituição um lugar comprometido com a formação ética e profissional de seus estudantes.

Ao meu Orientador Mauricio Javier De León, o qual levarei em meu coração por toda minha vida, agradeço pela grande contribuição oferecida para minha formação profissional, pela paciência, pela amizade demonstrada, pelos conselhos, criticas e incentivo.

A toda equipe da usina GERENTE AGRÍCOLA REGIONAL: João Airton Malta Feitosa, GERENTE AGRÍCOLA DE PRODUÇÃO: Altamiro Pereira da Silva, COORDENADOR GERAL DE PRODUÇÃO: Luiz Vital Bezerra C. Neto, A COORDENADORA DE **PLANEJAMENTO GERAIS** Aurélia Pietrina, Santos, Ivanildo COORDENADORES: Elimário Félix. Gilvan Severo. INSTRUTORES: José Genilton Lourenço de Souza, Gerailton do Nascimento, A toda Equipe da Logística, ao Traine Elenilson;, a toda Equipe da controle agricola. Fiscais do turno A, Operadores e Auxiliares Agrícolas por toda ajuda concedida no andamento do trabalho, pela paciência, e pela contribuição em minha formação acadêmica.

A todos os colegas de turma, sem exceção, e a todos os amigos de curso: Lucivaldo, Joálisson, Jardélio, José, Alécio, Adelaido, Danilo, José Ronaldo, Flaviano, Wendel, Henrique, Ponciano, Rodrigo, Lucas, Neto Garcia, Nadja, Miriam, Cristiane, Pâmela, Raiane, Renato, Marcos, entre outros.

Aos colegas da equipe de quarto, Rafael, Ricardo Martins, Marquinho Melo e Natanael, que de alguma forma contribuíram para minha formação acadêmica.

Ao Centro de Ciências Agrárias e à Universidade Federal da Paraíba por me conceder à honra de me tornar membro desta casa e sair dela com o título de Engenheiro Agrônomo.

A todos os professores e demais funcionários do CCA/UFPB.

Enfim, a todos que contribuíram de alguma forma em minha vida. OBRIGADO!!

SUMÁRIO

LISTA DE TABELAS	viii
LISTA DE FIGURAS	viii
RESUMO	ix
ABSTRACT	X
1. INTRODUÇÃO	11
2. OBJETIVOS	13
2.1. Geral	13
2.2. Específicos	13
3. REVISÃO DE LITERATURA	14
3.1. A cana-de-açúcar no Brasil	14
3.2. Crescimento do setor sucroalcooleiro	14
3.3. Opções de sistemas de colheita	15
3.4. Colheita mecanizada de cana-de-açúcar	16
3.5. Tipos de colhedoras	17
3.6. Tipos de sistemas de colhedoras	18
3.7. Tipos de perdas da colheita mecanizada	19
4. MATERIAL E MÉTODOS	21
5. RESULTADOS E DISCUSSÃO	26
6. CONCLUSÕES	30
7 DEFEDÊNCIAS	31

LISTA DE TABELAS

TABELA 1 – Descrição dos tratamentos avaliados
TABELA 2 – Definição do gabarito em função do espaçamento
TABELA 3 – Médias entre os diferentes tipos de perdas e entre os diferentes
tratamentos
TABELA 4 – Quantificação da estimativa de perda entre os diferentes tratamentos29
LISTA DE FIGURAS
FIGURA 1 – Localização da área de estudo
FIGURA 2 – Indicadores avaliados para o processo de quantificação de perdas23
FIGURA 3 – Demonstração do croqui de demarcação da parcela
FIGURA 4 – Colhedora JOHN DEERE ® - tracionadas por esteiras - Modelo 3520
FIGURA 5 – Levantamento de perdas na colheita mecanizada

SANTOS NETO, J. F. QUANTIFICAÇÃO DE PERDAS DE MATERIA PRIMA NO CAMPO PARA DIFERENTES REGULAGENS DE UMA COLHEDORA DE CANA-DE-AÇÚCAR NO MUNICIPIO DE ARÊS – RN. Areia – PB, Centro de Ciências Agrárias, UFPB, setembro de 2013, Nº de pág. 34. IN: Trabalho de conclusão de curso de graduação em Agronomia. Orientador: Prof. Dr. Mauricio Javier De León

RESUMO

A técnica de produção de cana-de-açúcar tem demonstrado evolução no que se refere à utilização de máquinas, implementos, técnicas de manejo e transporte. A colheita mecanizada da cana-de-açúcar está cada vez mais presente nos sistemas de produção no Brasil. O objetivo desse trabalho foi quantificar os diferentes tipos de perdas de matéria prima a partir de diferentes regulagens operacionais na tentativa de sugerir melhorias operacionais e ainda determinar a regulagem mais adequada para reduzir ao máximo este tipo de perdas. O experimento foi conduzido na fazenda Limoal, pertencente a Usina Estivas Localizada na rodovia BR 101 Norte, KM 60 - Arês/RN, com coordenadas de 6° 11' 40" de latitude sul e 35° 09' 37" de longitude oeste, que apresenta um solo do tipo Neossolo Quartzarénio Podzólico (Embrapa, 2006), a variedade presente foi a RB 9364 com, o TCH em torno de 41 t/ha o modelo da colhedora em estudo foi a JOHN DEERE® - de esteira- Modelo 3520. Foram avaliados 12 tratamentos, referentes a diversas regulagens de operação, onde variavam a velocidade de avanço, rotação de extrator primário, regulagem das lâminas do rolo picador. Dos resultados obtidos, o tratamento que se mostrou mais eficiente foi o 11 (velocidade de operação – 8km/h, rotação do extrator primário – 1100 RPM, regulagem do picador – 60%;) sendo seguido pelo tratamento 9 (velocidade de operação – 8 km/h, Rotação do extrator primário – 800 RPM, regulagem do picador – 60%;). Ambos os tratamentos apresentam velocidade de operação e regulagem do rolo picador iguais variam apenas na rotação do extrator primário (1100 e 800 RPM) respectivamente, sendo esta variável responsável por um aumento de perdas equivalente a 136,50 kg/ha.

Palavras chave: colheita, mecanização, produção agrícola

SANTOS NETO, J. F. MEASUREMENT OF LOSSES OF RAW MATERIAL IN THE FIELD FOR DIFFERENT ADJUSTMENTS FROM A HARVESTER OF SUGARCANE IN THE CITY OF ARES – RN. Areia - PB, Centre of Agricultural Sciences, UFPB, September 2013, N-up. 34. IN: Conclusion word of undergraduate degree in Agronomy. Professor. Dr. Mauricio Javier De Leon

ABSTRACT

The technique of production of sugarcane has been shown that the evolution related to the use of machines, implements, transportation and handling techniques. The mechanized harvesting of sugarcane is increasingly present in the production systems in Brazil. The aim of this study was to quantify the different types of raw material losses from different operational adjustments in attempting to suggest operational improvements and further determine the setting most appropriate allowable to minimize this kind of losses. The experiment was performed at the Limoal Farm, which belongs to the Usina Estivas, located in North BR 101, KM 60 - ARES / RN with the coordinates 6° 11' 40" of south latitude and 35° 09' 37" west longitude, presenting which presents a type of solo Quartzipsamment Podzolic Neossolo (Embrapa, 2006), the present variety was the RB 9364 with the TCH around 41 t/ha and the model of harvester studied was the JOHN DEERE ® - treadmill - Model 3520. Were evaluated 12 treatments, related to different operating adjustments, which varied the advance speed, rotation of primary extractor, adjustment of the chipper roll blades. From the results obtained, the more efficient treatment was the 11 (operating speed - 8km/h, rotation of primary extractor - 1100 RPM, the chipper roll adjustment - 60%), followed by the treatment number 9 (operation speed - 8 km/h, rotation of the primary extractor -800 RPM, the chipper roll adjustment - 60%). Both treatments present equal speed operation and adjustment of the chipper roll, differing only the rotation of the primary extractor (1100 and 800 rpm), respectively, being this variable responsible for an increase of losses equivalent to 136.50 kg/ha.

Keywords: harvest, mechanization, agricultural production

1. INTRODUÇÃO

A cana-de-açúcar é originária da Ásia, provavelmente de Nova Guiné. Esta cultura tem um bom desenvolvimento entre as latitudes 35° Norte e Sul da linha do Equador (DOORENBOS E KASSAM, 1979). É uma cultura de clima tropical, exigindo de 1500 a 2500 mm de água durante o período de crescimento. O crescimento ótimo é alcançado com uma média diária de temperatura entre 22 e 30°C, sendo que a temperatura mínima para um efetivo crescimento é de 20°C (DOORENBOS E KASSAM, 1979). A deficiência hídrica e nutricional além de temperaturas extremas e baixa radiação solar são algumas das principais limitações ao seu desenvolvimento (BRAY,1980).

A área brasileira cultivada com cana-de-açúcar que foi colhida e destinada à atividade sucroalcooleira na safra 2012/13 foi de 8.527,8 milhões de hectares e 596,63 milhões de toneladas, com aumento de 6,5% em relação à safra 2011/12, que foi de 560,36 milhões de toneladas, significando que a quantidade moída foi de 36,3 milhões de toneladas a mais que na safra anterior. O estado de São Paulo é o maior produtor com 51,82% (4.419,46 mil hectares), Goiás com 8,69% (741,38 mil hectares), seguido por Minas Gerais com 8,46% (721,86 mil hectares), Paraná com 7,13% (608,38 mil hectares), Mato Grosso do Sul com 6,50% (554,29 mil hectares), Alagoas com 5,26% (448,86 mil hectares) e Pernambuco com 3,63% (309,74 mil hectares). Nos demais estados produtores as áreas são menores, com representações abaixo de 3% (CONAB 2012).

A técnica de produção de cana-de-açúcar tem demonstrado evolução no que se refere à utilização de máquinas, implementos, técnicas de manejo e transporte, com a opção por veículos de maior capacidade unitária de carga (IAIA ET AL., 2006).

O tipo de colheita da cana-de-açúcar pode influenciar a produção e longevidade da cultura, os atributos físicos, químicos e biológicos do solo, o meio ambiente e a saúde pública. O sistema de colheita por cana queimada elimina a matéria seca e aumenta a concentração de gás carbônico na atmosfera, contribuindo com o efeito estufa e diminuindo o teor de matéria orgânica no solo. O decreto de Lei Estadual 47.700, de 11 de março de 2003, regulamenta a Lei Estadual 11.241, de 19 de setembro de 2002, que determinou prazos para a eliminação gradativa do emprego do fogo para despalha da cana-de-açúcar nos canaviais paulistas, sendo de grande interesse agrícola e

ecológico, estabelecendo prazos, procedimentos, regras e proibições que visam a regulamentar as queimas em práticas agrícolas (PESQ. AGROPEC. BRAS, 2005).

A colheita mecanizada da cana-de-açúcar está cada vez mais presente nos sistemas de produção no Brasil. A deficiência no controle da altura de corte das colhedoras de cana-de-açúcar, além de contaminar os colmos com terra durante a operação em profundidade, provoca também corte elevado com a consequente perda de matéria prima. Essas perdas são aquelas que ficam no campo sob a forma de material não cortado (constituem-se basicamente de tocos deixados pela regulagem da altura de corte pelo disco basal), pedaços, estilhaços, lascas e caldo, logo após a ação do disco cortador basal (VOLPATO, 2001).

Atualmente a regulagem das colhedoras é de suma importância no processo de colheita, além da variabilidade da altura de corte, a manutenção inadequada das laminas de corte basal, associada com características varietais do canavial, podem aumentar significativamente a porcentagem de tocos e rebolos rachados e mal cisalhados, o que pode acarretar em perdas visíveis e invisíveis (RIPOLI; RIPOLI, 2002).

O sistema de cultivo de cana crua foi desenvolvido com a finalidade de eliminar a queima da cultura, a mobilização superficial dos solos e mantê-los cobertos com restos culturais. Nesse sistema, busca-se a redução da erosão e o aumento do teor de matéria orgânica, que minimizam a compactação superficial do solo causada pelo aumento do tráfego de máquinas, consequentemente aumentando a densidade do solo e redução de sua porosidade total, a qual poderá restringir o desenvolvimento radicular das culturas (BLAIR ET AL., 1998; BLAIR, 2000; VASCONCELOS, 2002).

2. OBJETIVOS

2.1. Geral

Objetivou-se neste estudo quantificar os diferentes tipos de perdas de matéria prima a partir de diferentes regulagens operacionais, em busca de sugerir melhorias operacionais e determinação da regulagem visando a redução de perdas.

2.2. Específicos

- Avaliar as médias entre os diferentes tratamentos para cada tipo de perda;
- Qual a rotação do extrator primário mais indicada para minimizar as perdas;
- Qual a velocidade de operação mais adequada para reduzir as perdas;
- Determinar a regulagem mais adequada para reduzir ao máximo este tipo de perdas.

3. REVISÃO DE LITERATURA

3.1. A cana-de-açúcar no Brasil

A cana-de-açúcar, descrita por Linneu, em 1753, como *Saccharum officinarume Saccharum spicatum*, apresenta cultivo intimamente ligado à própria história e ao desenvolvimento do Brasil. Primeiramente transformada em açúcar, seguido pelo álcool carburante, ocupa papel de destaque na economia mundial, sendo o Brasil líder na produção desses derivados (CESNIK & MIOCQUE, 2004).

As primeiras mudas foram trazidas da Ilha da Madeira, em Portugal, no século XVI por Martim Afonso de Souza, responsável pela instalação do primeiro engenho brasileiro em São Vicente no ano de 1532. Em seguida, muitos outros se proliferaram pela costa brasileira, sobretudo no litoral dos estados do Pernambuco e Bahia – os quais sorveram a maior parte da produção açucareira da colônia. A maior contribuição dos engenhos, contudo, foi estar em um ponto bastante privilegiado, o que facilitava o escoamento da produção, agilizando a chegada do produto aos mercados consumidores. Alguns engenhos evoluíram e transformaram-se futuramente em usinas de cana (MATTOS, 1942).

Segundo Barbosa & Silveira (2006), o cultivo da cana-de-açúcar é considerado uma das primeiras atividades de importância nacional, ocupando posição de destaque na economia brasileira. Considerando a produção de açúcar, álcool e aguardente, essa atividade transparece com grande relevância na geração de divisas.

3.2. Crescimento do setor sucroalcooleiro

Combustíveis de fontes alternativas têm impulsionado o crescimento do setor sucroalcooleiro brasileiro, sendo o preço dos combustíveis fósseis e o impacto ambiental que estes combustíveis causam, os principais fatores que tornam o etanol um dos combustíveis mais competitivos no mercado mundial. (BRAUNBECK & MAGALHÃES, 1999).

A previsão do total de cana moída na safra 2011/12 é de 571.471,0 milhões de toneladas, com queda de 8,4% em relação à safra 2010/11, que foi de 623,905 milhões

de toneladas, que significa que a quantidade que será moída deve ser 52 milhões de toneladas a menos que a moagem da safra anterior. A produção de cana da região Centro-Sul ficou em 501.380,4 milhões de toneladas, 10,6% menor que a produção da safra anterior (CONAB, 2011).

A previsão de esmagamento de cana para a produção de açúcar é de 283,9 milhões de toneladas, correspondendo a 47,3% da previsão de moagem de 571.471,0 mil toneladas. Na região Centro-Sul a destinação de cana para a produção de açúcar foi de 48,32%. Na safra passada, a destinação de cana para produção de açúcar foi de 46%, considerando todo o Brasil. A produção total de açúcar está estimada em 36,9 milhões de toneladas que equivalem a 738,0 milhões de sacas de 50 kg. Para a produção de etanol serão esmagadas 287,6 milhões de toneladas de cana para produção de 22.857,6 bilhões de litros de etanol, 17,2% menor que a produção da safra 2010/11. Deste total, 9.069,3 bilhões de litros serão de etanol anidro e 13.788,3 bilhões de litros serão de etanol hidratado. Por estes números, o etanol anidro deverá ter um aumento de 13,1% na produção e o etanol hidratado deve ter uma redução de 29,6%, quando comparados com a produção de etanol da safra anterior (CONAB, 2011).

3.3. Opções de sistemas de colheita

As operações de corte, carregamento, transporte, e recepção da matéria-prima apresentam inúmeras opções. Os subsistemas de colheita, em utilização no Brasil e no mundo, podem ser resumidos a três grandes grupos: Sistema manual — Onde o subsistema de corte e o subsistema de carregamento se processam manualmente podendo haver um subsistema de transporte intermediário, por tração animal ou transbordo com dispositivos específicos. Apesar de aparentemente, ser um sistema arcaico, ainda, é amplamente utilizado em regiões declivosas do Nordeste brasileiro, principalmente em Alagoas e Pernambuco, onde canaviais são cultivados em relevos que chegam a ultrapassar 10% de declividade. Sistema semi-mecanizada - Envolve o subsistema de corte manual e o subsistema de carregamento, nas unidades de transporte, por carregadeiras mecânicas. É o mais amplamente utilizado em todas as regiões canavieiras do Brasil, onde o relevo não ultrapassa 20 a 25 % de declividade. Sistema mecanizado — É aquele que utiliza um subsistema mecanizado com cortadoras de diversos tipos, conforme classificação apresentada por Ripoli (1974) ou por colhedoras de cana inteira com subsistema de carregamento mecânico, ou então, utiliza se de

subsistemas por colhedoras de cana picada (colhedoras que cortam, picam, limpam parcialmente a matéria- prima e carregam-na em unidades de transportes). Admite-se a utilização deste sistema em relevos de até 15 a 17 % de declividade (dependendo da qualidade da sistematização do talhão e do centro de gravidade das máquinas). Acima disso, por questões de estabilidade dinâmica dos equipamentos, fica comprometido o trabalho, com riscos de tombamento (RIPOLI et al., 2004).

3.4. Colheita mecanizada de cana-de-açúcar

De acordo com Veiga Filho et al. (1994), "a produção de cana-de-açúcar é dirigida no sentido de obter matéria-prima da mais alta qualidade possível para a indústria processadora". Sendo a colheita uma etapa tão importante para o rendimento da cana, pois a partir daí é que se inicia a parte de processamento propriamente dita, ou seja, é o ponto que liga a lavoura à indústria, é condição necessária e essencial a definição prévia de qual tipo de colheita será realizado, pois esta decisão influenciará todas as etapas anteriores e posteriores de processamento da cana. Isto é, a colheita influencia desde o plantio até a industrialização do produto. Um ponto de grande relevância, sobretudo para a produtividade da cana-de-açúcar como matéria-prima é que esta deve ser colhida com o máximo teor de açúcar possível, realizada no período de pico de maturação da lavoura, que varia conforme o sistema de cultivo adotado, a variedade cultivada, a região de cultivo, entre outros.

De acordo com Braunbeck & Magalhães (1999), a mecanização apresenta-se atualmente como a única opção para a colheita da cana, tanto do ponto de vista ergonômico quanto econômico e, principalmente, do ponto de vista legal e ambiental, já que apenas o corte mecânico viabiliza a colheita sem queima prévia.

Até pouco tempo, o setor sucroalcooleiro dependia exclusivamente da mão-deobra humana para realizar o corte da cana-de-açúcar. O interesse pela colheita mecanizada de cana-de-açúcar por colhedoras vem se expandindo cada vez mais no Brasil, principalmente em áreas com declividade inferior a 12% e sem obstáculos naturais. (NEVES, 2003).

Considerando-se todas as etapas do sistema produtivo canavieiro a colheita junto com o transporte da matéria prima até a unidade industrial, representando cerca de 30% de todos os custos envolvidos. Esta é a principal razão motivadora dos grandes avanços ocorridos nos últimos 38 anos em sistemas mecanizados de colheita de colmos (RIPOLI

& RIPOLI, 2009). Mesmo com este elevado custo a colheita mecanizada apresenta-se como alternativa viável por conta de seu rendimento operacional ser maior que o da colheita semi-mecanizada.

Estudos mostram que na colheita manual as perdas raramente ultrapassam 5%. Já com as máquinas, esse percentual passa para 15%, fato que se reflete diretamente na produtividade. Os prejuízos advindos dessa prática, também não são pequenos. Considerando que a área plantada no estado São Paulo, é de aproximadamente três milhões de hectares e a produtividade está próxima das 100 t há-1, esse percentual equivale a uma perda anual para o setor de R\$ 20 milhões. O governo também sofre com a baixa produtividade da coleta e processamento da cana-de-açúcar. Só de ICMS, imposto sobre circulação de mercadorias, o estado deixa de arrecadar 10% do faturamento bruto das usinas, o que equivale, neste caso, um montante de 2 milhões de reais (MELLO, 2013).

As usinas de açúcar e álcool vêm buscando cada vez mais mecanizar os canaviais, mas com a preocupação de controlar custos, não perder a qualidade e diminuir cada vez mais as perdas de cana-de-açúcar no campo. Por estes motivos as avaliações de perdas pelas colhedoras de cana-de-açúcar picada vem sendo de fundamental importância para o gerenciamento da operação pelas usinas (MELLO, 2007).

3.5. Tipos de colhedoras

Maquinas cortadoras são as que somente realizam o corte basal, deixando o material cortado sobre o terreno (algumas também promovem o corte apical). É o caso da CAMECO, de fabricação americana, que opera duas linhas de cana por vez. É uma máquina de rodado de esteiras, montada sobre um chassi adaptado de uma CATERPILLAR modelo D5. A ainda o tipo Push-rake em utilização no Peru e Avaí (RIPOLI et al., 2004).

Maquinas cortadoras-enleidoras são as que, além de realizarem o corte basal dos colmos cortam ainda, o ponteiro e, em seguida, depositam os colmos sobre o terreno na forma de esteira, afim de facilitar o carregamento mecânico. É o caso por exemplo da SANTAL, modelo CTE, fora de fabricação (RIPOLI et al., 2004).

Maquinas cortadoras-amontoadoras são semelhantes as anteriormente citadas porém, em vez de esteirarem os colmos, depositam no em montes, espaçados uns dos

outros foram fabricados pela SENTAL, ARTIOLI e DEDIMAC. Maquinas colhedoras de cana picada também denominadas de combinadas, realizam o corte basal, promove a eliminação parcial da matéria estranha vegetal e mineral, por gravidade, decorrente da ação de ventiladores e /ou exaustores. Fracionam os colmos em rebolos de 15 a 40 cm de comprimento (em média) descarregando-as sobre uma unidade de transporte ou transbordo. São fabricadas no Brasil, por CASE-CNH; CAMECO da JOHN DEERE, SANTAL e CIMA, está acoplada a trator. (RIPOLI et al., 2004)

Por último tem se as colhedoras de cana inteira, que efetuam os cortes basais e dos ponteiros dos colmos e efetuam, parcialmente, a eliminação de matéria estranha vegetal, armazenam os colmos em um deposito basculante e, deslocando-se para fora do talhão, depositam o material colhido no carreador, para posterior carregamento. Fabricadas no Brasil, pela MOTOCANA (RIPOLI et al., 2004).

3.6. Tipos de sistemas de colhedoras

Paranhos (1974) comentando as características de projeto das colhedoras de cana que podem interferir na operação e na sua capacidade operacional cita os seguintes aspectos: auto propelida ou montada, potência do motor, tipo de transição, bitola e centro de gravidade, a largura da garganta de alimentação, a largura dos elevadores, rotação do elevador final, sistema de corte de rebolos, sistema de limpeza e caminhamento interno da cana na máquina, velocidade de deslocamento, estabilidade, tipo de rodado, manobrabilidade, índice de quebra, manutenção, custos, condições de trabalho para o operador e tipo de despontador.

Partindo-se do que Ripoli (1974) já discorria sobre os fatores que deveriam e que, ainda, devem ser levados em conta e que interferem na capacidade operacional e na utilização das maquinas cortadores e colhedoras, apresentam se a seguir, como novas considerações, a saber: "fatores da máquina", que dizem respeito as suas características de projeto; "fatores de campo", que dizem respeito as condições de campo em que a máquina irá operar e, "fatores de ordem administrativa" que dizem respeito aos aspectos gerenciais e de planejamento. A lamentar que ainda nos dias atuais, muitas usina e destilarias, adquirem colhedoras e não adaptam suas estruturas operacional, gerencial e de campo para o novo sistema. Ocorrendo consequentemente redução de tonelada/cana colhida em comparação aos do corte manual.

3.7. Tipos de perdas da colheita mecanizada

De acordo com medições feitas pelo CTC (Centro de Tecnologia Canavieira), 10% da matéria-prima colhida é perdida no campo quando o corte é mecanizado, representando prejuízo da ordem de US\$ 450 milhões por ano (MAGALHÃES ET AL., 2006). A colheita mecanizada apresenta alguns inconvenientes, tais como o aumento dos índices de material estranho na matéria-prima, implicando redução da qualidade, além dos colmos e frações deixados no campo.

Neves (2003), na busca de alternativas para reduzir perdas "invisíveis", observou variação de 2 a 11% nessas perdas relacionadas aos sistemas das colhedoras. O autor define perdas visíveis como aquelas passíveis de quantificação no campo, constituindo, principalmente, de colmos ou plantas inteiras, rebolos e tocos resultantes da altura do corte basal. A definição para perdas invisíveis resume-se aquelas impossíveis de serem levantadas diretamente no campo, caracterizadas na forma de caldo, serragem e estilhaços de cana. Basicamente, as perdas invisíveis ocorrem devido à ação de mecanismos rotativos que cortam, picam e limpam a cana-de-açúcar durante o processamento interno nas colhedoras. Evidentemente que as perdas na colheita são indesejáveis, tanto na operação manual quanto na mecanizada, sendo discutidas a redução de prejuízos e a otimização da produção.

As perdas e a contaminação da cana-de-açúcar com solo durante o processo de colheita estão associadas diretamente ao acompanhamento inadequado do micro relevo do solo e da varredura ineficiente realizados pelo cortador basal (VOLPATO et al., 2002). Em certos casos, essas perdas chegaram a10%, e as quantidades de terra incorporadas aos colmos estão entre 3 e 5 kg por tonelada (BRAUNBECK, 1999).

A deficiência no controle da altura de corte das colhedoras de cana-de-açúcar provoca corte elevado com a consequente perda de matéria-prima. Essas perdas são aquelas que ficam no campo sob a forma de material não cortado, constituem-se de colmos agregados e de tocos elevados deixados pela regulagem da altura de corte pelo disco cortador basal (SALVI, 2006).

O canavial pode apresentar longevidade reduzida quando a colheita é mecanizada. Tal prática influencia na rebrota, tornando-a irregular ou deficiente, em função do esmagamento de colmos, da altura inadequada de corte, da remoção de soqueiras e da compactação.

De acordo com Nussio & Schmidt (2006), esses fatores são agravados pela manutenção inadequada das facas desgastadas das colhedoras devido à robustez da cana-de-açúcar. Os autores comentam, ainda, que a perda na eficiência do corte prejudica as touceiras por esmagamento e por maceração de colmos, promovendo remoções indevidas.

O aumento da velocidade de saída de ar dos extratores das colhedoras é uma proposta para reduzir os índices de matéria estranha, contudo pode aumentar as perdas visíveis em níveis inaceitáveis economicamente. Colmos e/ou frações deixados no campo também são evidentes no sistema mecanizado da colheita de cana-de-açúcar e são classificados como perdas visíveis (NEVES et al., 2004).

A velocidade de deslocamento das colhedoras de cana-de-açúcar é influenciada diretamente pelas condições da cultura e do terreno, assim a máquina com uma velocidade elevada, sua capacidade operacional será maior. Segundo as especificações do fabricante, as colhedoras podem trabalhar com velocidades de até 9,0 km/h, mas atualmente na empresa essa velocidade depende do relevo, da produtividade da área, se a cana é bem uniforme, facilitando a colheita. Possivelmente devido à falta de sistematização dos talhões, as maiores velocidades levam um aumento de perdas, por conter maior massa a ser processada pela colhedora, assim a velocidade deve ser ajustada em função das características do talhão, com o porte do canavial e produtividade (RIPOLI & RIPOLI, 2004).

4. MATERIAL E MÉTODOS

O experimento foi realizado na Usina Estivas localizada no município de Arês – RN (Figura 1), com coordenadas de 6° 11' 40" de latitude sul e 35° 09' 37" de longitude oeste. Mais especificamente na fazenda Limoal, no talhão 144 que se encontra a uma distância de 10 Km da sede da Usina com uma área de a 8,74 ha e um solo do tipo Neossolo Quartzarénio Podzólico (Embrapa, 2006), o relevo da área é classificado como levemente ondulado, a variedade presente era a RB 9364 que apresentava 4 folhas e a idade era igual a 12,6 meses, o TCH da área realizado foi de 41 t/ha o modelo da colhedora em estudo foi a JOHN DEERE® - de esteira- Modelo 3520. A colhedora 3520 opera nas mais rigorosas e diversas condições de campo, equipada com o motor John Deere Power Tech 9.0 litros de 342 cv, com 4 válvulas por cilindro, chassi tubular (máquina e elevador) que reduz a incidência de trincas, sistema hidráulico com menor número de mangueiras e conexões, o que reduz os custos e tempos de manutenção desenvolvida especialmente para a atividade agrícola.

FIGURA 1 – Localização da área de estudo

Foram avaliados 12 tratamentos, referentes a diversas regulagens de operação, onde variavam a velocidade de avanço, rotação de extrator primário, regulagem das lâminas do rolo picador.

TABELA 1 – Descrição dos tratamentos avaliados

TRATAMENTO 1	TRATAMENTO 2	TRATAMENTO 3	TRATAMENTO 4
Velocidade de	Velocidade de	Velocidade de	Velocidade de
operação – 4 km/h	operação – 4 km/h	operação – 4 km/h	operação – 4 km/h
Rotação do extrator primário – 800 RPM	Rotação do extrator	Rotação do extrator	Rotação do extrator
	primário – 800 RPM	primário –1100 RPM	primário –1100 RPM
Regulagem do picador – 60%	Regulagem do picador – 100%		
TRATAMENTO 5	TRATAMENTO 6	TRATAMENTO 7	TRATAMENTO 8
Velocidade de	Velocidade de	Velocidade de	Velocidade de
operação – 6 km/h	operação – 6 km/h	operação – 6 km/h	operação – 6 km/h
Rotação do extrator primário – 800 RPM	Rotação do extrator	Rotação do extrator	Rotação do extrator
	primário – 800 RPM	primário –1100 RPM	primário –1100 RPM
Regulagem do picador – 60%	Regulagem do picador – 100%	Regulagem do picador – 60%	Regulagem do picador – 100%
TRATAMENTO 9	TRATAMENTO 10	TRATAMENTO 11	TRATAMENTO 12
Velocidade de	Velocidade de	Velocidade de	Velocidade de
operação – 8 km/h	operação – 8 km/h	operação – 8 km/h	operação – 8 km/h
Rotação do extrator primário – 800 RPM	Rotação do extrator	Rotação do extrator	Rotação do extrator
	primário – 800 RPM	primário 1100 RPM	primário –1100 RPM
Regulagem do picador – 60%	Regulagem do picador – 100%	Regulagem do picador – 60%	Regulagem do picador – 100%

Os indicadores avaliados (Figura 2) para o processo de quantificação de perdas foram:

- Toco todo material agregado na touceira ente 3 e 30 cm;
- Colmo agregado todo material agregado na touceira maior que 30 cm;
- Pedaço colmo menor que 1,50 metro;
- Estilhaço pequenos fragmentos da matéria prima;
- Rebolo pedaços de colmo com sinal de corte dos dois lados.

FIGURA 2 - Indicadores avaliados para o processo de quantificação de perdas

A coleta de dados para a avaliação das perdas foi realizada a partir da demarcação de 2 fileiras da cultura por meio das ruas com o auxílio de um gabarito de maneira que forme uma parcela de 10 m².

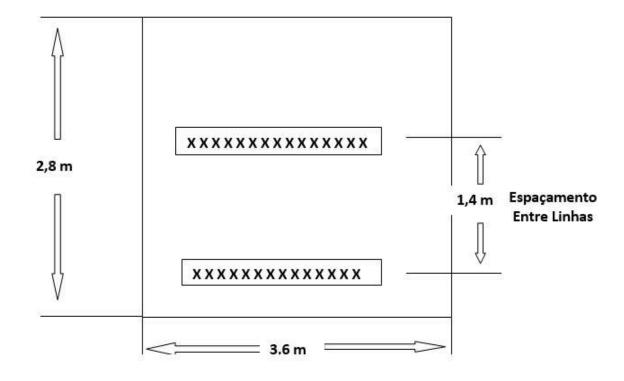


FIGURA 3 – Demonstração do croqui de demarcação da parcela

TABELA 2 – Definição do gabarito em função do espaçamento

Espaçamento	Nº de fileiras amostradas	LxC	Área (m²)
1,40	2	2,80 x 3,60	10

As estacas que delimitam a parcela foram colocadas no centro das entrelinhas. No centro da parcela foi afastada toda a palhada produzida para que todas as perdas encontradas na parcela fossem depositadas, após separação de toda a palhada da matéria prima o material era classificado separadamente.

Foi utilizado um fatorial do tipo 3 x 2 x 2, com 5 repetições onde variou a velocidade (4,6 e 8 KM/h), rotação do extrator primário (800 e 1100 RPM) e a regulagem do picador (60 e 100%).

Foi respeitada uma distância de 20 a 25 m para sair da influência do carreador e em seguida fazendo movimento de ziguezague foram selecionados aleatoriamente os locais para realizar as cinco amostras por tratamento.

Para a obtenção dos resultados, os dados encontrados foram reunidos em planilha do Pacote Microsoft Excel®, as quais foram submetidas a avaliação a partir das médias dentro de cada tratamento e realizado ente os diferentes indicadores.

A estimativa final leva em consideração a cana processada até o dia 02/03/2012. Cada tratamento foi analisado separadamente totalizando percas em R\$, gerado a partir da quantidade de material deixado no campo pela colheita mecanizada, (Figura 4). Considerando para isso a média de cada tratamento, a área colhida até o momento, o rendimento industrial (sacos/ton.), valor do açúcar cristal.

FIGURA 4 – Colhedora JOHN DEERE \circledR - tracionadas por esteiras - Modelo 3520

5. RESULTADOS E DISCUSSÃO

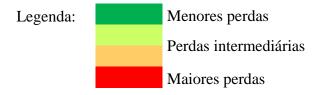
Para obtenção dos resultados foram avaliados as médias para os diferentes indicadores e no geral para cada tratamento entre as 5 repetições. Para os diferentes indicadores obteve se resultados satisfatórios, conforme mostra a tabela 3.

No caso do toco os tratamentos que se mostraram mais eficientes foram o Trat. 9 (velocidade de operação – 8 km/h, rotação do extrator primário – 800 RPM, regulagem do picador – 60%) e o Trat. 10 (velocidade de operação – 8 km/h, rotação do extrator primário – 800 RPM, regulagem do picador – 100%) os que ocasionaram maiores perdas foram o Trat. 3 (velocidade de operação – 4 km/h, rotação do extrator primário – 1100 RPM, regulagem do picador – 60%;) e o Trat. 8 (velocidade de operação – 6 km/h, rotação do extrator primário – 1100 RPM, regulagem do picador – 100%).

Para o indicador colmo agregado os resultados foram indiferentes os Trat. 3, Trat. 5, Trat. 7, Trat. 10 (velocidade de operação – 4 km/h, rotação do extrator primário – 1100 RPM, regulagem do picador – 60%; velocidade de operação – 6 km/h, rotação do extrator primário – 800 RPM, regulagem do picador – 60%, velocidade de operação – 6 km/h, rotação do extrator primário – 1100 RPM, regulagem do picador – 60%; velocidade de operação – 8 km/h, rotação do extrator primário – 800 RPM, regulagem do picador – 100%) respectivamente e os demais tratamentos não apresentaram perdas.

Com relação a pedaço o tratamento que se superou com relação aos demais foi o Trat. 11 (velocidade de operação – 8 km/h, rotação do extrator primário – 1100 RPM, regulagem do picador – 60%) e o que se apresentou menos eficiente foi o Trat. 8 (velocidade de operação – 6 km/h, rotação do extrator primário – 1100 RPM, e regulagem do picador – 100%).

Levando em consideração as perdas ocasionadas por estilhaço três se encontraram com médias parecidas são os Trat. 5, Trat. 6, Trat. 11 (velocidade de operação – 6 km/h, rotação do extrator primário – 800 RPM, regulagem do picador – 60%; velocidade de operação – 6 km/h, rotação do extrator primário – 800 RPM, regulagem do picador – 100%; velocidade de operação – 8 km/h, rotação do extrator primário – 1100 RPM, regulagem do picador – 60%) respectivamente. Os tratamentos que deixaram maiores perdas com relação a estilhaço foram Trat. 3, Trat. 8 e Trat. 12 (velocidade de operação – 4 km/h, rotação do extrator primário – 1100 RPM, regulagem


do picador – 60%; velocidade de operação – 6 km/h, rotação do extrator primário – 1100 RPM, regulagem do picador – 100%; velocidade de operação – 8 km/h, rotação do extrator primário – 1100 RPM, regulagem do picador – 100%).

Para o indicador rebolo o tratamento 11 (velocidade de operação – 8 km/h, rotação do extrator primário – 1100 RPM, regulagem do picador – 60%) se destacou em relação aos demais e o tratamento 4 (velocidade de operação – 4 km/h, rotação do extrator primário – 1100 RPM, regulagem do picador – 100%) se mostrou menos eficiente.

Considerando as perdas geral dentro de cada tratamento recomenda-se trabalhar em cima dos tratamentos 9 e 11 (velocidade de operação – 8 km/h, rotação do extrator primário – 800 RPM, regulagem do picador – 60%; velocidade de operação – 8 km/h, rotação do extrator primário – 1100 RPM, regulagem do picador – 60%) com o objetivo de diminuir as perdas uma vez que os mesmos se mostraram com médias inferiores aos demais.

TABELA 3 - Médias entre os diferentes tipos de perdas e entre os diferentes tratamentos

Velocidade km/h	Tratamento	Toco (kg/ha)	Colmo Agregado (kg/ha)	Pedaço (kg/ha)	Estilhaço (kg/ha)	Rebolo (kg/ha)	Total (kg/ha)
	Trat. 1	262	0	512	430	120	1.324,00
4	Trat. 2	156	0	586	426	228	1.396,00
4	Trat. 3	616	276	572	970	150	2.584,00
	Trat. 4	158	0	332	452	290	1.232,00
	Trat.5	166	120	344	378	48	1.056,00
	Trat.6	178	0	370	352	110	1.010,00
6	Trat. 7	298	60	380	516	224	1.478,00
	Trat. 8	600	0	801,6	990	154	2.545,60
8	Trat. 9	88	0	324	394	118	924,00
	Trat.10	60	68	420	566	68	1.182,00
	Trat. 11	220	0	198	357,5	12	787,50
	Trat. 12	196	0	364	884	80	1.524,00

Os tratamentos que se saíram com maiores média foram os 3 e 8 (velocidade de operação – 8 km/h, rotação do extrator primário – 1100 RPM, regulagem do picador – 60%; velocidade de operação – 6 km/h, rotação do extrator primário – 1100 RPM, regulagem do picador – 100%). Os demais tratamentos se mostraram eficientes uma vez que estiveram abaixo da média permitida de perda da LDC SEV que é igual a 1950 t/ ha e entre os que se mostraram eficiente, os que mais se destacaram foram os Trat. 9 e o Trat. 11 (velocidade de operação – 8 km/h, rotação do extrator primário – 800 RPM, regulagem do picador – 60%; velocidade de operação – 8 km/h, rotação do extrator primário – 1100 RPM, regulagem do picador – 60%), respectivamente, (Figura 5).

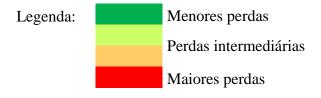


FIGURA 5 – Levantamento de perdas na colheita mecanizada

A partir da estimativa de perda em R\$ os tratamentos que apresentaram eficiência foram os Tratamentos 9 e 11, pois as perdas foram inferiores a R\$ 2,5 milhões e os que se apresentaram os piores índices de perdas foram os Tratamentos 3 e 8 com médias próximas dos R\$ 7 milhões, (Tabela 4). De acordo com as condições de campo propostas por esta pesquisa.

TABELA 4 - Quantificação da estimativa de perda entre os diferentes tratamentos

Tratamentos	Perda (Ton/ha)	Área Colhida Safra 11/12	Rendimento Industrial (Sacos/Ton)	Valor (R\$) Açúcar Cristal (Saca 50 kg)	Estimativa de Perda (R\$)
1	1,324	26.676,29	1,75	57,67	R\$ 3.564.522,95
2	1,396	26.676,29	1,75	57,67	R\$ 3.758.364,08
3	2,584	26.676,29	1,75	57,67	R\$ 6.956.742,68
4	1,232	26.676,29	1,75	57,67	R\$ 3.316.837,07
5	1,056	26.676,29	1,75	57,67	R\$ 2.843.003,20
6	1,01	26.676,29	1,75	57,67	R\$ 2.719.160,26
7	1,478	26.676,29	1,75	57,67	R\$ 3.979.127,58
8	2,545	26.676,29	1,75	57,67	R\$ 6.851.745,40
9	0,924	26.676,29	1,75	57,67	R\$ 2.487.627,80
10	1,182	26.676,29	1,75	57,67	R\$ 3.182.225,17
11	0,787	26.676,29	1,75	57,67	R\$ 2.118.791,21
12	1,524	26.676,29	1,75	57,67	R\$ 4.102.970,53
Média	1,420	26.676,29	1,75	57,67	R\$ 3.823.426,49

6. CONCLUSÕES

Concluísse com este trabalho que o tratamento 11 foi o mais eficiente pelo fato de apresenta uma diminuição nas perdas de 69,5% equivalente a uma economia de R\$ 4.837.950,75 comparado com o tratamento 3, isto na condição do canavial de 41 t/ha.

Os tratamentos 11 e 9 apresentam velocidade de operação e regulagem do rolo picador iguais variam apenas na rotação do extrator primário (1100 e 800 RPM) respectivamente, sendo esta variável responsável por uma diferença de perdas equivalente a 136,50 kg/ha.

7. REFERÊNCIAS

BARBOSA, M. H. P.; SILVEIRA, L. C. I. Cana-de-açúcar: variedades, estabelecimento e manejo. In: SIMPÓSIO SOBRE MANEJO ESTRATÉGICO DE PASTAGEM, 3., 2006, Viçosa. **Anais.** Viçosa: Universidade Federal de Viçosa, p.245-276. 2006.

BLAIR, G.J.; CHAPMAN, L.; WHITBREAD, A.M.; BALLCOELHO, B.; LARSEN, P.; TIESSEN, H. Soil carbon changes resulting from sugarcane trash management at two locations in Queensland, Australia, and in North-East Brazil. **Australian Journal of Soil Research**, v.36, p.873-882, 1998.

BLAIR, N. Impact of cultivation and sugar-cane green trash management on carbon fractions and aggregate stability for a Chromic Luvisol in Queensland, Australia. **Soil & Tillage Research**, v.55, p.183-191, 2000.

BRAY, S. C. A Cultura da Cana-de-Açúcar no Vale do Paranapanema. Tese (Doutorado em História) - FFLCH, USP, São Paulo, 1980.

BRAUNBECK, O. A. Proposta brasileira de colheita mecanizada. In: SEMINÁRIO SOLUÇÕES E NOVIDADES NA MECANIZAÇÃO DA CANA-DE-AÇÚCAR, 1., 1999, Ribeirão Preto. **Anais...** Ribeirão Preto: IDEA, p. 56-60. 1999.

BRAUNBECK, O.A.; MAGALHÃES, P.S.G. Colheita de cana-de-açúcar com auxílio mecânico, 1999. Disponível em: http://www.agencia.cnptia.embrapa.br/Repositorio/Auxilio_Mecanico_Colheita_Cana_000fxew1kab02wyiv80soht9h8k862sp.pdf>. Acesso em: 20 Fev. de 2013.

CESNIK, R.; MIOCQUE, J. **Melhoramento da cana-de-açúcar**. Brasília: Embrapa Informação Tecnológica, 2004.

CONAB. COMPANHIA NACIONAL DE ABASTECIMENTO. Safra de cana de 2008/2009 - estimativa: 1º levantamento, maio 2008. Brasília, 2008. 12 p.CONAB. **Acompanhamento da safra brasileira de cana-de-açúcar**. 2012, 18 p. < acesso em 22 de maio de 2013, 20h 23 >.

CONAB. COMPANHIA NACIONAL DE ABASTECIMENTO. *Safra de cana de 2010/2011 - estimativa*: 3º levantamento, dezembro 2011. Brasília, 2011. 20 p.CONAB. **Acompanhamento da safra brasileira de cana-de-açúcar**. 2012, 18 p. < acesso em 16 de setembro de 2013, 07h 23 >.

DE SOUZA, Z.M.; PRADO, R. M.; PAIXÃO, A. C. S.; CESARIN, L.G. Sistemas de colheita e manejo da palhada de cana-de-açúcar. Pesquisa agropecuária Brasileira, Brasília, v.40, n.3, p.271-278, mar. 2005

DOORENBOS, J.; KASSAM, A. H. Yield response to water. **Roma: FAO**, 1979. 193 p. (FAO Irrigation and Drainage Paper, 33).

EMBRAPA. Impactos ambientais da cana-de-açúcar. Disponível em: http://www.cana.cnpm.embrapa.br/. Acesso em 25 jun. 2013.

FERREIRA NETO, José. **Competitividade da produção de cana-de-açúcar no Brasil.** 2005. 87 f. Dissertação (Mestrado em Economia Aplicada) — Universidade Federal de Viçosa, Viçosa-MG.

IAIA, A.M.; MAIA, J.C.S. & KIM, M.E. Uso do penetrômetro eletrônico na avaliação da resistência do solo cultivado com cana-de-açúcar. **R. Bras. Eng. Agríc. Amb.**, 10:523-530, 2006.

MAGALHÃES, P. S. G.; MILAN, M.; MOLIN, J. P.; SOUZA, Z. M.; VOLPATO, C. E.; SIMÕES, J. Colheita de cana-de-açúcar e palha para a produção de Etanol. In: **WORKSHOP - COLHEITA, TRANSPORTE E RECUPERAÇÃO DE PALHA,** 2., 2006, Campinas: Universidade Estadual de Campinas, 2006. 19 p.

MATTOS, A. R. **Açúcar e Álcool no Brasil.** São Paulo: Companhia Editora Nacional, 1942.

MELLO, R. da C. Cana: colheita mecanizada (2000). Disponível em: http://www.revistarural.com.br/Edicoes/2005/artigos/rev92_cana.htm. Acesso em 13 de abr. de 2013.

MELLO, R. da C. Cana: colheita mecanizada (2000). Disponível em: http://www.revistarural.com.br/Edicoes/2005/artigos/rev92_cana.htm. Acesso em 13 de ago. de 2013.

MIALHE, L.G. *Máquinas agrícolas*: ensaios & certificação. Piracicaba: Fundação de Estudos "Luiz de Queiroz", 1996. cap.13, p.635-73.

NEVES, J. L. M. Avaliação de perdas invisíveis em colhedoras de cana-de-açúcar picada e alternativas para sua redução. 213p. Tese (Doutorado) - Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas. Campinas, 2003.

NEVES, J. L. M.; MAGALHÃES, P. S. G.; OTA, W. M. Sistema de monitoramento de perdas visíveis de cana-de-açúcar em colhedora de cana picada. **Engenharia Agrícola**, Jaboticabal, v.24, n.3, p.764-70, 2004.

NUSSIO, L. G.; SCHMIDT, P. **Tecnologia de produção e valor alimentício**. Disponível em: http://www.guabi.com.br/rc/bovinos_corte> Acesso em: 25 de fev. 2013.

OLIVEIRA, C. A. A. Modelagem e validação experimental de um cortador basal com discos segmentados. 2003. 110 f. Tese (Doutorado em Engenharia Agrícola) - Universidade Estadual de Campinas, Campinas, 2003.

PARANHOS, S.B. Colheita mecanizada de cana-de-açúcar. In: **SEMINÁRIO AGRONOMICO DE PINHAL**, 4., 1974, Espirito Santo Pinhal. Pinhal: Fundação Pinhalense de Ensino, Faculdade de Agronomia, 1974. 10p.

RIPOLI, T.C.C. Corte, carregamento, transporte e recepção de cana-de-açúcar. Piracicaba: ESALQ, Departamento de Engenharia Rural, 1974. 52p.

RIPOLI, T.C.C. e RIPOLI, M.L.C. Biomassa de cana-de-açúcar: colheita, energia e ambiente. Piracicaba. Ed. Barros & Marques Editoração Eletrônica, 2004. 302p.

RIPOLI, T. C. C.; RIPOLI, M. L. C. **Biomassa de cana-de-açúcar: colheita, energia e ambiente.** 2.ed. Piracicaba: Ed. Autor, 2005. 302 p.

RIPOLI, T.C.C.; RIPOLI, M.L.C. **Biomassa de cana-de-açúcar: colheita, energia e ambiente.** Piracicaba: Escola Superior de Agricultura "Luiz de Queiroz", 2009. 333p.

RIPOLI, T.C.C.; PARANHOS, S.B. **Máquinas para corte e carregamento de cana.** Piracicaba: CALQ, departamento Editorial. 1990. 46 p.

SALVI, J. V.; MATOS, M. A.; SOUZA, A. B.; M. MILAN, M. A. Desempenho qualitativo de colhedoras de cana-de-açúcar. **XXXV CONGRESSO BRASILEIRO DE ENGENHARIA AGRÍCOLA**, 2006, João Pessoa - PB. Jaboticabal: Associação Brasileira de Engenharia Agrícola, v. 1. p. 1-4, 2006.

TRIVELIN, P.C.O.; RODRIGUÊS, J.C.S.; VICTORIA, R.L.; REICHARDT, K. Utilização por soqueira de cana-de-açúcar de início de safra do nitrogênio da aquamônia-15N e uréia-15N aplicado ao solo em complemento a vinhaça. **Pesquisa Agropecuária Brasileira**, v.31, p.89-99, 1996.

VASCONCELOS, A.C.M. Desenvolvimento do sistema radicular da parte aérea de socas de cana-de-açúcar sob dois sistemas de colheita: crua mecanizada e queimada manual. 2002. 140p. Tese(Doutorado) - Universidade Estadual Paulista, Jaboticabal.

VEIGA FILHO, A. A.et al. **Análise da mecanização do corte da cana-de-açúcar no estado de São Paulo.** Informações Econômicas/SP. V 24, nº 10,1994. Disponível em: <www.iea.sp.gov.br>. Acesso em: 20 jun. 2013.

VOLPATO, C. E. S.; BRAUNBECK, O. A.; OLIVEIRA, C. A. A. Desenvolvimento e avaliação de um protótipo de cortador base para colhedoras de cana-de-açúcar. **Revista Brasileira de Engenharia Agrícola e Ambiental,** Campina Grande, v. 6, n. 2, p. 345-8, 2002.

VOLPATO, J.L.M. Otimização de um cortador de base flutuante para seguimento do perfil de solo em colhedoras de cana-de-açúcar. 2001. 204 p. Tese (Doutorado em engenharia agrícola) — Faculdade de Engenharia Agrícola, Universidade Estadual de Campinas, Campinas 2001.