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Resumo

As equações de movimento são obtidas na cosmologia Newtoniana, com o uso da dinâmica

Newtoniana e da teoria da gravitação de Newton. Mostra-se que estas equações são equiva-

lentes às da relatividade geral, com o fator de escala obedecendo a mesma equação em ambas

as teorias, quando a pressão é desprezível. Discute-se as características da expansão para

universos dominados por radiação, matéria ou vácuo.

A gravitação Newtoniana é formulada na linguagem geométrica. Neste cenário, mostra-se

que para universos homogêneos e isotrópicos, a equação para o desvio geodésico na cosmologia

Newtoniana é exatamente a mesma que é obtida na teoria de Einstein.

Discutimos as possíveis consequências de admitirmos a correção de Yukawa à intera-

ção gravitacional Newtoniana. Mostra-se que esta correção não introduz modi�cações nas

equações cosmológicas.

Apresentamos e discutimos um resultado sobre a evolução de perturbações em modelos

cosmológicos Newtonianos, com criação de matéria, no caso em que a pressão é desprezível.

Comentários adicionais são feitos para um sistema no qual a pressão é considerada.

Investigamos, também, alguns aspectos da cosmologia Newtoniana quântica e construí-

mos uma função de onda para um universo com criação contínua de matéria, no contexto da

mecânica quântica não-relativística.

Palavras-chave: Cosmologia Newtoniana, Cosmologia Newtoniana Quântica, Crescimento

de Inomogeneidades.
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Abstract

The equations of motion are obtained in the framework of Newtonian cosmology using

only the Newtonian dynamics and Newtonian gravity. It is shown that these equations are

in close correspondence with the ones obtained in the framework of general relativity, with

the scale factor satisfying the same equation in both theories, when the pressure is neglected.

The characteristics of the expansion for a universe dominated by radiation, matter or vacuum

are obtained.

The Newtonian gravity is formulated in geometrical language. In this scenario, it is

shown that for homogeneous and isotropic universes, the equation for the geodesic deviation

in Newtonian cosmology is exactly the same as the geodesic equation in Einstein cosmology.

We discuss possible consequences of the assumption of a Yukawa correction to the New-

tonian gravitational interaction. It is shown that this correction does not introduce any

modi�cation in the cosmological equations.

We present and discuss a result obtained concerning the growth of density perturbations

in Newtonian cosmological models with creation of matter, in the case in which the pressure is

neglected. Some addition comments are done for a system in which the pressure is considered.

We also investigate some aspects of quantum Newtonian cosmology and construct a wave

function for a universe with continuous matter creation, in the framework of non-relativistic

quantum mechanics.

Keywords: Newtonian Cosmology, Quantum Newtonian Cosmology, Growth of inhomo-

geneities.
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[...] Ah que ilha inexata quando toca o coração,

eu te toco e tu me tocas

cai nas cordas do violão

e se um dia eu for embora

para bem longe deste chão

eu jamais te esquecerei

São Luís do Maranhão

eu jamais te esquecerei

São Luís do Maranhão

eu jamais te esquecerei

São Luís do Maranhão.

Cesar Nascimento-Ilha Magnética



v

Sumário

1 Introdução 1

2 Cosmologia Newtoniana 5
2.1 Cosmologia Newtoniana: Modelo Discreto . . . . . . . . . . . . . . . . . . . 5
2.2 Cosmologia Newtoniana: Modelo Contínuo . . . . . . . . . . . . . . . . . . . 9
2.3 Obtenção da equação de movimento segundo Milne . . . . . . . . . . . . . . 16
2.4 Considerações adicionais sobre o caso contínuo . . . . . . . . . . . . . . . . . 18

3 Cosmologias Newtoniana e Einsteiniana 21
3.1 Densidade e Pressão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Dependência Temporal do fator de escala . . . . . . . . . . . . . . . . . . . . 26

4 Descrição Geométrica da cosmologia Newtoniana 31

5 Cosmologia Newtoniana para um potencial com correção do tipo Yukawa 37

6 Evolução das perturbações na cosmologia Newtoniana com constante cos-
mológica variável 48
6.1 Equações Diferenciais para � . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Evolução das perturbações no modelo com � variável . . . . . . . . . . . . . 54
6.3 Alguns comentários sobre a equação de evolução das perturbações na cosmolo-

gia Newtoniana com pressão . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Algumas considerações sobre a cosmologia Newtoniana quântica 58
7.1 Abordagem da cosmologia Newtoniana quântica segundo Romero e Zamora . 59
7.2 Cosmologia Newtoniana Quântica, sem o termo de pressão . . . . . . . . . . 60
7.3 Função de Onda no Universo Newtoniano . . . . . . . . . . . . . . . . . . . . 62
7.4 Cosmologia Newtoniana quântica e a função de onda . . . . . . . . . . . . . 64

8 Conclusões 67

Referências Bibliográ�cas 70



1

Capítulo 1

Introdução

A cosmologia moderna, relativística ou Einsteiniana, é descrita com o uso da teoria

da relatividade geral, cuja formulação é geométrica, de modo que as descrições dos efeitos

cosmológicos estão associadas à geometria do espaço-tempo. Esta formulação faz uso do

conceito de espaço-tempo que é compreendido, matematicamente, através do conceito de

variedade diferenciável. Outros temas da matemática moderna, de natureza complexa, tais

como álgebra tensorial, e grupos contínuos também são usados nessa formulação.

Inicialmente, a cosmologia relativística não foi aceita para descrever o universo, constituindo-

se, assim, em apenas mais uma nova teoria cosmológica, diferente das teorias anteriores.

Nos seus primórdios, mais exatamente, no ano de 1917, duas soluções foram encontradas. A

primeira pelo próprio Einstein e a outra, pelo astrônomo holandês, Willen de Sitter. Essas

duas soluções faziam previsões sobre universos completamente distintos. A primeira tratava

de um universo com matéria, enquanto a segunda levava à existência de um universo vazio. A

partir destas soluções, podemos entender porque àquela altura não havia aceitação da "nova

teoria do cosmo", uma vez que as previsões astronômicas não con�rmavam esses cenários.

Outras soluções foram encontradas por Friedmann e Lemaitre, que passaram desperce-

bidas por algum tempo, até que o astrônomo americano Edwin Hubble descobriu o efeito

Döppler ao examinar a luz proveniente de estrelas distantes. A descoberta de Hubble levou

os cosmólogos à conclusão de que o desvio para o vermelho da luz emitida por essas estrelas

poderia estar associado ao fato de que o universo está em expansão.

Durante uma reunião da "British Association for the Advancement of Science", em 1931,

o astrônomo belga Georges Lemaitre apresentou sua teoria, na qual o universo estava em
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expansão. Nascia, nesse momento, a moderna cosmologia, baseada na teoria geral da rela-

tividade, e conhecida como cosmologia relativística ou Einsteiniana.

Nesses primeiros anos da década de 30 do século passado, a cosmologia relativística pas-

sou a ser aceita, com menos restrições, tendo em vista que ela previa uma modelo compatível

com as observações astronômicas. No entanto, em 1934, o astrofísico e matemático britânico

Edward Milne [1] adotou uma abordagem baseada na teoria de Newton, na qual os fenô-

menos gravitacionais não estão associados aos efeitos da curvatura do espaço-tempo. Nesse

contexto, foi mostrado que o comportamento do universo poderia ser entendido com base

na física clássica [1], [2] a qual dispensa a complexidade matemática do estudo do universo

baseado na cosmologia relativística. Isto signi�ca, dentre outras coisas, que é possível, nesse

cenário, reobter os resultados fornecidos por modelos homogêneos e isotrópicos do universo,

de uma maneira bastante simples, do ponto de vista matemático.

Na abordagem de Milne [1] denominada cosmologia Newtoniana, a expansão do Universo

não era algo dinâmico, inerente ao próprio universo. Nesta, o universo é estático. No

entanto, era preciso incorporar as observações de Hubble sobre o universo em expansão.

A solução encontrada foi admitir que a expansão observada está associada ao movimento

das partículas no universo. Portanto, este movimento das partículas no espaço estático

produziria os mesmos fenômenos que os gerados por partículas estacionárias no universo em

expansão. Assim, a expansão era entendida como sendo provocada pelos movimentos das

partículas, e não do espaço, o que permitia preservar a geometria Euclideana, não havendo,

portanto a necessidade de se introduzir o espaço-tempo curvo da abordagem relativística.

A correspondência do ponto de vista algébrico, entre a dinâmica Newtoniana e a teoria

de Einstein, com o fator de escala obedecendo à mesma equação em ambas as teorias, foi

estabelecida por Milne e também pelo astrônomo e matemático britânico William McCrea

[2].

A cosmologia Newtoniana foi formulada, inicialmente, para pressão nula. Algumas dé-

cadas depois, o termo de pressão foi incluído [3], [4]. Desde então, vários estudos foram

realizados no contexto da cosmologia Newtoniana, tais como a sua generalização para �ui-

dos não-homogêneos [5], a formulação para um potencial do tipo Yukawa [6], o que trata do

cenário no qual há criação de matéria [7], dentre outros [8] - [11].

Milne e McCrea [2] mostraram que é possível reobter equações cosmológicas semelhantes

às de Friedmann [12]. Contudo, o termo no qual aparece a energia tem uma interpretação
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diferente daquela do contexto relativístico, no qual o termo correspondente a este está asso-

ciado à curvatura do espaço-tempo. Assim, foi possível obter as equações de Friedmann, com

o uso da física Newtoniana, do Princípio Cosmológico, que equivale a admitir a isotropia e

homogeneidade do universo, e do fato de que a posição de cada partícula que faz parte do

universo, muda com o tempo, de modo que a densidade de matéria também depende do

tempo.

É importante salientar que apesar das equações obtidas na cosmologia Newtoniana serem

semelhantes, algebricamente, às de Friedmann, para pressão nula, existe uma diferença con-

ceitual conforme já salientamos. Na teoria Newtoniana o termo que contém a energia pode

ser relacionado com a velocidade de escape. Neste contexto, os valores � > 0, � = 0 e

� < 0 (ver eq. 2.19) signi�cam que a matéria tem uma velocidade menor, igual ou maior,

respectivamente, do que a velocidade de escape do campo gravitacional. Outro estudo na

mesma linha foi realizado por Bonnor [13], no �nal da década de 50 do século passado.

A descrição de fenômenos da natureza abordados pela cosmologia moderna podem ser

descritos de uma perspectiva puramente clássica, usando-se o espaço Euclideano, estático,

o tempo Newtoniano, a dinâmica e a lei da gravitação de Newton, acrescidos de hipóte-

ses tomadas da cosmologia relativística. Essa descrição evita o uso de complexos conceitos

matemáticos, presentes na teoria da relatividade geral, e fornece os mesmos resultados obti-

dos na cosmologia Einsteiniana, dentro de certas restrições, como por exemplo, a equivalência

entre as duas abordagens no limite de baixas velocidades, e somente do ponto de vista lo-

cal. Outra restrição da cosmologia Newtoniana é que os resultados obtidos não são válidos

em espaços in�nitos. Este e outros fatos têm levado a discussões questionando a possível

validade da cosmologia Newtoniana [14] , bem como à con�rmação de que essa abordagem

descreve muito bem o universo, no qual a pressão é nula ou desprezível [15], [16].

À primeira vista parece curioso que a cosmologia Newtoniana tenha sido descoberta so-

mente depois da cosmologia Einsteiniana, cujo nível de complexidade matemática é bem

maior. No entanto, podemos entender esse fato em virtude do papel que a teoria da

relatividade geral tem na formulação da cosmologia Newtoniana, emprestando-lhe algumas

hipóteses ad hoc, de modo que esta formulação não é baseada puramente nas equações da

hidrodinâmica e na teoria da gravitação de Newton. É importante ressaltar que no caso em

que a pressão é zero, os resultados obtidos no contexto da cosmologia Newtoniana relativos

à expansão do universo e os cálculos de perturbações até primeira ordem, coincidem com os
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da cosmologia Einsteiniana.

A cosmologia Newtoniana é interessante por duas razões. A primeira, é que ela reproduz

as mesmas equações para a expansão do universo que são obtidas no modelo de Friedmann.

Um outro ponto a se considerar é que a de�nição de valores médios em cosmologia não

está bem solucionada no contexto da relatividade geral, enquanto no contexto Newtoniano é

possível resolver parcialmente esse problema. O uso de teoria de perturbação no contexto da

formulação de Cartan da teoria de Newton pode nos fornecer um indicativo de como resolver

os problemas que envolvem a expansão perturbativa em relatividade geral.

Esta dissertação está organizada da seguinte forma: No capítulo 2 apresentamos uma

revisão sobre a cosmologia Newtoniana. No capítulo 3, fazemos uma comparação entre as

formulações Newtoniana e Einsteiniana. No capítulo 4, apresentamos uma descrição geomé-

trica da cosmologia Newtoniana baseada na idéia de Cartan . No capítulo 5, descrevemos

a cosmologia usando um potencial de Yukawa. No capítulo 6, estudamos o crescimento de

densidade em modelos com a constante cosmológica variável. No capítulo 7, fazemos uma

breve inserção nos aspectos quânticos da cosmologia Newtoniana. Finalmente, no capítulo

8, apresentamos as considerações �nais.
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Capítulo 2

Cosmologia Newtoniana

2.1 Cosmologia Newtoniana: Modelo Discreto

Inicialmente, vamos apresentar a cosmologia Newtoniana, através de um modelo simples

[17], admitindo que o universo é formado por um número �nito de partículas que interagem

gravitacionalmente. Vamos considerar que a partícula i possui massa mi e encontra-se na

posição ri(t), em um sistema de coordenadas de origem O. Ao aplicarmos o princípio cos-

mológico, a distribuição das partículas deve ser esfericamente simétrica em torno de O e,

portanto, o movimento destas será radial, com a localização de cada partícula dada por

~ri(t) = ri(t)r̂. (2.1)

A energia cinética desse conjunto de partículas é

T =
1

2

nX
i=1

mi _r
2
i . (2.2)

A energia potencial gravitacional de um par de partículas, com massas mi e mj, é dada

por

Vij = �G
mimj

j~ri � ~rjj
, (2.3)
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e portanto, a energia potencial total é

V = �G
nX

i;j=1
(i<j)

mimj

j~ri � ~rjj
, (2.4)

onde a restrição imposta na soma garante que não teremos dupla contagem.

No cenário que inclui a constante cosmológica, vamos introduzir uma força cosmológica

atuando na partícula i, que pode ser escrita na forma

~Fi =
1

3
�mi~ri, (2.5)

onde � é a constante cosmológica. Associada a essa força, existe uma energia potencial que

é dada por

Vc = �
1

6
�

nX
i=1

mi~r
2
i . (2.6)

Podemos, então, escrever a energia total do sistema, E = T + V + Vc, que é dada pela

seguinte expressão

E =
1

2

nX
i=1

mi _r
2
i �G

nX
i;j=1

mimj

jri � rjj
� 1
6
�

nX
i=1

mir
2
i . (2.7)

Admitindo que em dado instante, t0, conhecemos o movimento e a distribuição das

partículas, o princípio cosmológico exige que o movimento seja radial, isto é, em qualquer

tempo t,

ri (t) = S (t) ri (t0) , (2.8)

onde S (t) é uma função universal do tempo, e portanto, é a mesma para todas as partículas e

é chamada fator de escala. Esta função nos diz como as separações físicas entre duas ou mais

partículas crescem com o tempo, uma vez que as distâncias coordenadas, ri (t0), são �xas.

Em outras palavras, podemos dizer que o tamanho do universo em um tempo t qualquer é

modelado pela variação do fator de escala. Isto signi�ca que a representação do movimento

das partículas por meio do fator de escala é a maneira de mostrar, matematicamente, que os

únicos movimentos compatíveis com a homogeneidade e isotropia são aqueles de expansão

ou de contração uniforme, isto é, um simples aumento ou diminuição associado à variação

do fator de escala com o tempo.
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Usando a equação (2.8), podemos escrever a velocidade radial da partícula i, como sendo

_ri (t) =
_S (t)

S (t)
ri (t) . (2.9)

Vamos de�nir o parâmetro de Hubble H(t) como a relação entre a taxa de variação tem-

poral do fator de escala e este fator, ou seja,

H (t) =
_S

S
. (2.10)

Esta equação nos diz que a taxa de expansão do universo é de�nida em termos da derivada

no tempo do fator de escala. Assim, a equação (2.9) pode ser reescrita como

vi (t) = H (t) ri (t) (2.11)

que é chamada Lei de Hubble. Esta lei expressa o fato de que em um universo em expansão,

a velocidade radial de recessão de uma partícula i, a uma distância ri do ponto O, é propor-

cional a esta distância. O valor do parâmetro de Hubble para a época atual é a constante

de Hubble H0.

Pelo que foi estabelecido, a única grandeza que temos a determinar é o fator de escala

S (t). Portanto, precisamos encontrar a equação satisfeita por esta quantidade. Na cosmolo-

gia Newtoniana isto é feito considerando a energia total de um sistema de partículas.

Para isto, vamos substituir as equações (2.8) e (2.9) em (2.7). Assim, temos a seguinte

expressão para a energia total do sistema

E =
1

2

nX
i=1

mi
_S2(t) [ri (t0)]

2 �G
nX

i;j=1
(i<j)

mimj

jS (t) ri (t0)� rj (t0)j
� 1
6
�

nX
i=1

miS
2 [ri (t0)]

2 . (2.12)

Podemos escrever a equação (2.12) na forma

E =
1

2
A _S2 �GB

S
� �
6
AS2 (2.13)

onde as constantes A e B são de�nidas por

A �
nX
i=1

mi [ri (t0)]
2 , (2.14)
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B �
nX

i;j=1
(i<j)

mimj

jri (t0)� rj (t0)j
. (2.15)

A equação (2.13) é uma equação diferencial cosmológica para o fator de escala S(t).

Vamos analisar o que acontece quando � é igual a zero. Neste caso, não temos o último

termo da equação. Se o universo está se expandindo, o segundo termo do lado direito diminui

e como a energia total permanece constante, então, o primeiro termo também deve diminuir,

o que signi�ca que a expansão deve desacelerar. Com � > 0, todas as partículas, nesse

universo, estão sofrendo uma repulsão cósmica que as empurra para longe da origem. Neste

caso, a constante cosmológica contribui positivamente para a expansão do universo. Se � < 0

ocorre o contrário e todas as partículas vão sofrer uma atração cósmica em direção a origem,

e consequentemente a constante cosmológica age contra a expansão do universo.

Vamos, agora, reescrever a equação (2.13) em uma forma algébrica idêntica à obtida na

cosmologia relativística. Colocando _S2 em evidência na equação (2.13), temos

E = _S2

"
A

2
�G B

S _S2
� �
6
A

�
S
_S

�2#
. (2.16)

Vamos, agora, reescalonar o fator S (t) para obter um novo fator de escala R (t), dado

por

R (t) = �S (t) , (2.17)

onde � é uma constante. Em termos do novo fator de escala, R (t), a equação (2.13) pode

ser escrita como

H2 =

 
_R

R

!2
= � �

R2
+
�

3
+
8�G

3
�, (2.18)

onde � é de�nido por

� = �2E�
2

A
, (2.19)

e ,

� =
�0
R3
, �0 =

3B�3

4�A
. (2.20)
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Se a energia total E do sistema for igual a zero, então, podemos escolher � arbitraria-

mente, e qualquer que seja seu valor, a equação (2.19) nos diz que � também será zero. Se

E 6= 0 podemos escolher � de forma que

�2 =
A

2 jEj . (2.21)

Como a normalização do fator de escala é arbitrária, através do parâmetro �, então, se

E > 0, podemos escolher � de tal modo que temos � = �1, e se E < 0, podemos escolher

� = +1. Pela opção do reescalonamento (2.17), temos que a constante � pode ter os valores

+1, 0, ou -1. Note que o valor de E (energia total) não é importante no que diz respeito ao

comportamento do universo. De fato, é o sinal de E que determina o seu comportamento.

É importante chamar a atenção para o fato de que a equação (2.18) tem a mesma forma

algébrica da equação de Friedmann obtida na cosmologia relativística, e corresponde ao caso

em que � / R�3, ou seja, à matéria sem pressão.

2.2 Cosmologia Newtoniana: Modelo Contínuo

Nesta seção, vamos adotar a abordagem de Ribeiro [17] para obtermos a descrição con-

tínua a partir do modelo discreto. Neste caso, o uso do princípio cosmológico não permite

a�rmar que toda a massa do universo está distribuída de maneira uniforme em cada época

t. Portanto, a densidade de matéria vai depender somente do tempo, ou seja, � = � (t).

Consideremos que nosso modelo de universo é limitado por uma superfície esférica A, cujo

raio é somente função do tempo. O raio da esfera em qualquer tempo t é dado por a (t),

medido em relação à origem do sistema de coordenadas, O, situado no centro da esfera.

Na cosmologia Newtoniana, a equação para o fator de escala é obtida considerando as

forças que atuam sobre diferentes partículas localizadas na superfície da esfera de raio a (t).

Esta esfera é considerada parte do universo, mas é su�cientemente grande para representar

o universo como um todo. É importante chamar a atenção para o fato de que somente a

massa no interior da esfera de raio a (t) produz uma força gravitacional não-nula sobre as

partículas na superfície dessa esfera, de acordo com o teorema de Gauss para a dinâmica

Newtoniana. Assim, a massa distribuída numa esfera de raio ai > a (t), não contribui para

a força.
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Em uma época t0, ou seja, no tempo de referência t0 onde a dinâmica do sistema é

conhecida, a massa contida numa casca esférica de espessura dx é dada por

dm (x) = 4�x2� (t0) dx. (2.22)

Para passarmos da descrição discreta para a contínua devemos considerar que a massa

total na região limitada por uma esfera de raio a (t0) é dada por

Z a(t0)

0

4�x2� (t0) dx. (2.23)

Vamos, agora, supor que f (ri) seja uma função qualquer das n partículas situadas numa

região limitada pela superfície esférica. Para qualquer função f (ri), a soma mif (ri) pode

ser escrita como

nX
i=1

mif (ri))
Z a0

0

4�x2�0f (x) dx, (2.24)

onde, �0 = � (t0). Fazendo as devidas substituições em (2.14), temos

A =

Z a0

0

4�x2�0x
2dx (2.25)

ou seja,

A =
4�

5
�0a

5
0, (2.26)

sendo a0 = a (t0).

Agora vamos de�nir a massa total do sistema, M , que é dada por

M =

Z a0

0

4�x2�0dx, (2.27)

ou

M =
4�

3
�0a

3
0. (2.28)

Combinando as equações (2.26) e (2.28), podemos escrever A da seguinte forma

A =
3M

5
a20. (2.29)
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Considerando o fato de que M é uma constante no tempo, então, �0a30 = �a
3 = cte, ou

seja,

d

dt

�
�a3
�
= 0, (2.30)

para um tempo, t, qualquer.

Para calcular B, vamos supor que i < j, se a partícula j está mais distante do centro O

que a partícula i. Então, o potencial gravitacional experimentado pela partícula j em um

tempo t0, devido às partículas i situadas mais próximas do centro O que j, é

� [~rj (t0)] = �G
j�1X
i=1

mi

j~ri (t0)� ~rj (t0)j
. (2.31)

Podemos, então, escrever (2.15) como:

B =
nX
i=1

nX
j=1

(i<j)

mimj

j~ri (t0)� ~rj (t0)j
, (2.32)

B =
nX
j=1

mj

j�1X
i=1

mi

j~ri (t0)� ~rj (t0)j
,

ou

B =
nX
j=1

mj

G
f�� [~rj (t0)]g . (2.33)

Através da relação (2.24) podemos escrever a equação (2.33) da seguinte forma

B = � 1
G

Z a0

0

4�x2�0� (x; t0) dx (2.34)

em que � (x; t0) é o potencial gravitacional Newtoniano a uma distância x deO em um tempo

t0, devido a todas as massasM (x) que estão situadas dentro da esfera de raio x (x � a0).

De acordo com (2.22), temos, então,

M (x) =

Z x

0

dm (x) =
4

3
��0x

3 (2.35)

e o potencial gravitacional será dado por

� (x; t0) = �
GM (x)

x
= �4

3
�G�0x

2. (2.36)
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Esse potencial gravitacional corresponde apenas à distribuição de massa no interior de

uma esfera de raio x. Portanto, somente a fração M de M contribui para � na equação

(2.36).

Utilizando (2.36) e substituindo em (2.34), temos

B =
16

15
�2�20a

5
0. (2.37)

Usando as equações (2.8) e (2.17), podemos escrever

R (t)

�
=
ri (t)

ri (t0)
, (2.38)

Essa relação pode ser escrita, também, da seguinte forma

R(t)

�
=
a (t)

a (t0)
, (2.39)

pois o fator de escala R (t) é o mesmo para todas as partículas do substrato cosmológico.

Lembrando que �a3 é constante para qualquer tempo t, temos a relação

�0
�
=
R3

�3
. (2.40)

Pode-se pensar no substrato cosmológico com uma grande nuvem gasosa, arbitrariamente

grande, entretanto �nita. A consideração aqui feita do universo ser �nito é devido ao fato de

que a gravitação Newtoniana quando aplicada em um modelo de universo in�nito, encontra

problemas com o cálculo do potencial gravitacional para um sistema homogêneo e esferica-

mente simétrico, que se torna in�nito num determinado ponto em decorrência da quantidade

de matéria do universo. Na superfície esférica A, o potencial gravitacional dado por (2.36)

torna-se

� (a0; t0) = �
4

3
�G�a20, (2.41)

que nos mostra que para um universo in�nito, a0 ! 1, o potencial diverge e a força

gravitacional torna-se in�nita.

Ao admitir que a nuvem gasosa é �nita, entra-se em con�ito com o princípio cosmológico,

pois, sendo �nita, passa a ter um centro de referência. Para solucionar esse problema vamos

considerar que a nuvem gasosa é uniforme até sua borda, isotrópica em torno do seu centro
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e possui tamanho maior do que qualquer distância astronômica que possa ser medida. Por-

tanto, ele é tão grande quanto possamos imaginar, porém, �nito [14], [18]. Para essa nuvem

gasosa, o movimento das partículas é estritamente radial. Portanto,

~r (t) = R(t)~r (t0) , (2.42)

na época t = t0, onde t0 representa o tempo presente. Da eq. (2.42), vemos que R (t0) = 1.

Derivando (2.42), encontramos

~v(r;H) = H (t)~r(t) (2.43)

que é a lei de velocidade-distância, onde H(t) = _R=R.Vamos, agora, impor a lei de conser-

vação da massa à nuvem gasosa. Portanto, à medida que a esfera se expande, a massa é

conservada, e assim, considerando a lei de velocidade-distância e o fato de que � = � (t),

temos

� (t) =
M

4
3
�a3 (t)

= �0

�
R0
R (t)

�3
, (2.44)

onde R0 = R (t0).

Podemos considerar, também, a equação de continuidade,

@�

@t
+r: (�~v) = d�

dt
+ 3�H (t) = 0, (2.45)

ou

d�

dt
= �3� (t)H(t). (2.46)

Note que se o �uido for inicialmente homogêneo, o uso da equação de continuidade nos

leva à conclusão de que a relação velocidade versus distância da lei de Hubble é imprescindível

para garantir a homogeneidade para qualquer tempo.

Substituindo o valor de H(t) e integrando obtemos

Z �(t)

�(t0)

d�

�
= �3

Z R(t)

R(t0)

dR

R
(2.47)

�

� (t0)
=

1

R3(t)
. (2.48)
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Essa equação mostra como a condição de conservação da massa, determina a dependência

da densidade em termos do fator de escala. Vamos obter a equação da dinâmica usando a

equação de Euler. A pressão do gás será dada por p = p(t), pois as grandezas cósmicas só

dependem do tempo, de acordo com o princípio cosmológico. Portanto, a equação de Euler

�ca

d~v

dt
+
1

�
~rp� ~f = 0. (2.49)

onde p é a pressão e ~f é a força experimentada pela partícula, por unidade de massa.

Calculando dv=dt, temos

dv

dt
=
dH

dt
r +H

dr

dt
dv

dt
=
dH

dt
r +H2r =

�
dH

dt
+H2

�
r.

Substituindo dv=dt em (2.49) obtemos a seguinte equação

�
dH(t)

dt
+H2(t)

�
~r � ~f = 0, (2.50)

onde consideramos o fato de que a pressão é nula.

Usando o fato de que a força gravitacional ~f , pode ser escrita ~f = �~r�, e usando a

equação de Poisson,

r2� = 4�G�,

obtemos o seguinte resultado

~r � ~f = �4�G�. (2.51)

A divergência de (2.50) resulta em

3

�
dH(t)

dt
+H2(t)

�
= �4�G�. (2.52)

Usando a de�nição do parâmetro de Hubble dado na equação (2.52), temos,

d

dt

 
_R

R

!
+
_R2

R2
=
�4�G
3

�
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ou

�R = �4�G
3
�R, (2.53)

que é a equação para a aceleração.

As equações (2.46) e (2.53) determinam as evoluções de � (t) e R (t), com o tempo. Estas

equações foram obtidas no contexto da física Newtoniana, porém, elas coincidem exatamente

com as obtidas na teoria da relatividade geral, e são conhecidas como equações de Friedmann.

Examinando a equação (2.53) podemos perceber que para _R = �R = 0, o universo é

estático. Note que estamos considerando a ausência de pressão. O curioso é que neste caso a

única possibilidade seria � = 0 (densidade nula). Este resultado foi um sério problema para

a cosmologia Newtoniana e a forma encontrada para superá-lo foi admitir a existência de

uma força adicional que somente é relevante para grandes distâncias. Uma possibilidade de

resolver esse problema é considerarmos a presença da constante cosmológica. Vamos, agora

admitir que além da força gravitacional Newtoniana sobre uma partícula, devido à matéria

contida na esfera de raio a (t0), existe uma outra de natureza cosmológica.

A força gravitacional é dada por

~f =
�!
�r (t) = � GM

[r (t)]2
r = �4

3
�G� (t)~r. (2.54)

Adicionando a força cosmológica na equação (2.54), temos que a força total experimen-

tada pela partícula é dada por

~f = �4
3
�G� (t)~r+

1

3
�~r. (2.55)

Neste caso, a equação de Poisson �ca

r: ~f = �4�G�+ �. (2.56)

Reescrevendo a equação (2.53) temos,

�R = �4�G
3
�R +

1

3
�R (2.57)

ou
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d

dt

�
_R2 � 8�G�

3R
� �
3
R2
�
= 0. (2.58)

A equação (2.58) resulta em

_R2 =
C

R
+
�

3
R2 � �, (2.59)

onde

C = 8�G�0=3 (2.60)

e � é uma constante de integração.

Uma análise da equação (2.57) nos mostra que se �zermos �R = 0, universo estático, isto

não implica � = 0, mas tão somente que existe um efeito produzido pela força cosmológica

que compensa o efeito gravitacional gerado pela matéria, de tal modo que no �nal, temos

um universo estático.

2.3 Obtenção da equação de movimento segundoMilne

Nesta seção vamos mostrar como o uso da dinâmica Newtoniana e da teoria da gravitação

de Newton permitiram que Milne [1] obtivesse o modelo de Einstein-de-Sitter. Para isto,

foi considerado que partículas que se movem em um espaço estático produzem os mesmos

fenômenos que partículas estacionárias em um espaço em expansão.

Vamos considerar uma esfera de raio r e massa M (r). De acordo com a teoria da

gravitação de Newton, a velocidade de escape de uma partícula é dada pela seguinte relação

1

2
v2 =

GM (r)

r
. (2.61)

Escrevendo a equação (2.61) em termos da densidade, temos

v2 =
8�G

3
r2�. (2.62)

O movimento dessa partícula deve ser tal que a equação de continuidade deve ser satis-

feita. Esta pode ser escrita na forma

@�

@t
+
1

r2
@

@r

�
r2�v

�
= 0, (2.63)
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onde v é uma função de t e r, dada por (2.62).

Substituindo (2.62) em (2.63), obtemos

��3=2
d�

dt
+ 3

�
8�G

3

�1=2
= 0, (2.64)

cuja integral fornece o seguinte resultado

�2��1=2 + (24�G)1=2 t = 0, (2.65)

onde foi feita uma escolha apropriada da origem do tempo. A equação (2.65) nos fornece

� =
1

6�Gt2
. (2.66)

Substituindo a expressão para � (t) dada por (2.66), na equação (2.62), obtemos

v =
2r

3t
. (2.67)

Para testar que essa é a solução do problema, vamos calcular a aceleração, que é dada

por

Dv

dt
=
D

dt

�
2r

3t

�
=
2

3

�v
t
� r

t2

�
= � 2r

9t2
. (2.68)

O resultado dado pela eq. (2.68) é precisamente a aceleração Newtoniana �GM (r) =r2, uma

vez que

�GM (r)

r2
= �4

3
�Gr3�

1

r2
= �4

3
�Gr3

1

6�Gt2
1

r2
= � 2r

9t2
. (2.69)

Para fazer uma comparação com o universo de Einstein-de-Sitter, obtido no contexto da

relatividade geral, vamos considerar as equações que descrevem o universo Newtoniano e são

dadas pelas equações (2.61) e

dv

dt
= �GM (r)

r2
, (2.70)

onde, M (r) = 4
3
��r3.

Diferenciando a equação (2.61) e usando a equação (2.70), encontramos a seguinte equação

d

dt
M (r) = 0. (2.71)
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Fazendo

r = fR (t) , (2.72)

onde f é uma constante, que na realidade, corresponde à posição inicial de cada partícula,

temos que

v = f
dR

dt
(2.73)

e

dv

dt
= f

d2R

dt2
. (2.74)

Substituindo (2.73) em (2.61) e (2.74) em (2.70), obtemos, respectivamente, os seguintes

resultados

1

R2

�
dR

dt

�2
=
1

3
k� (2.75)

e

2

R

d2R

dt2
+
1

R2

�
dR

dt

�2
= 0, (2.76)

onde k = 8�G.

Essas equações são idênticas às equações relativísticas para um universo em expansão,

com geometria da seção espacial plana e pressão zero, conhecido como universo de Einstein-

de-Sitter.

2.4 Considerações adicionais sobre o caso contínuo

As equações de movimento podem ser obtidas a partir da energia do sistema, que é dada

pela soma da energia cinética e da energia potencial. A expansão do universo é observada

através do movimento das galáxias. O universo se expande como um gás de galáxias,

porém cada galáxia, individualmente não se expande. A lei de Hubble nos diz como essa

expansão ocorre. Ela é tal que as galáxias afastam-se com uma velocidade que é proporcional
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à separação entre estas e o observador. Assim, galáxias a uma distância R (t) estão se

afastando com uma velocidade tal que

dR

dt
= HR. (2.77)

Vamos determinar a equação de movimento de uma galáxia. Para isto, considere um

corpo de massa, m, colocado sobre a superfície de uma esfera, a uma distância R (t) da

origem. A única força que atua sobre o corpo é devido a massa M no interior da esfera. A

energia cinética mais a potencial desse corpo (ou galáxia) é

E =
1

2
m

�
dR

dt

�2
� GMm

R
, (2.78)

onde G é a constante gravitacional de Newton, sendo

M =
4

3
�R3� (2.79)

a massa contida na esfera de raio R (t), e � a densidade de massa.

A equação (2.78) representa a conservação da energia, semelhante à de uma pedra que é

lançada para o ar, no campo gravitacional terrestre. Se E > 0, a pedra escapa; se E < 0,

ela retorna.

Substituindo M em (2.78) e utilizando a lei de Hubble, podemos escrever a energia total

como

E =
1

2
mH2R2 � 4

3

Gm

R
��R3 (2.80)

ou

2E

mR2
= H2 � 8

3
�G�. (2.81)

A equação (2.81) nos permite concluir que em um dado instante t, as funções H e �

são constantes, independentemente da galáxia considerada. Assim, se considerarmos uma

segunda galáxia, por exemplo, o lado direito da equação será o mesmo para as duas galáxias,

ou seja, 2E=mR2. Esse raciocínio pode ser generalizado para n galáxias. Para todas elas,

em um dado instante, 2E=mR2 terá o mesmo valor. Na realidade, não só o valor permanece

o mesmo, mas o sinal de E (positivo ou negativo) e o fato de ser nulo. Para E diferente de
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zero podemos rede�nir a energia total em um dado tempo t1, de tal modo que j2E=mR(t1)2j

seja igual a 1. Então, podemos escrever

(dR=dt)2

R2
� 8
3
�G� = ��R (t1)

2

R2
(2.82)

onde � = �2E=mR(t1)2 é 1, 0 ou -1 dependendo do valor de E. A constante R(t1)2 tem

magnitude 2E=m.

Vamos reescrever a equação de conservação da energia, a equação (2.78), na forma

E =
R2H2

2
� 4�G

3

�R3

R
. (2.83)

A equação (2.83) nos diz que o sinal de E depende da razão entre a densidade, � e H2.

Então, podemos de�nir a densidade crítica

�cr =
3H2

8�G
, (2.84)

tal que para � > �cr, temos E < 0 e o universo recolapsa, enquanto que para � < �cr temos

E > 0, e o universo irá se expandir para sempre.

Podemos também de�nir o parâmetro de densidade 
 (t), da seguinte forma:


 (t) =
� (t)

�cr (t)
. (2.85)

É importante chamar a atenção para o fato de que o valor de E ou 
, determina a

curvatura espacial do universo, de acordo com a teoria da relatividade geral. O caso E < 0

(
 > 1) corresponde a um universo fechado, �nito e que recolapsa (espaço parabólico). O

caso E > 0 (
 < 1) representa um universo aberto, o qual se expande para sempre (espaço

hiperbólico). O caso E = 0 (
 = 1) corresponde a um espaço Euclideano in�nito, que se

expande para sempre.

Na equação Newtoniana deduzida, a energia E é uma constante, e portanto � também

é uma constante. A equação obtida, (2.82), corresponde à equação de Friedmann para o

universo Newtoniano. Para comparar a equação cosmológica Newtoniana com a equação de

Friedmann, o termo que contém a energia, naquela equação, deve corresponder ao parâmetro

que de�ne as possíveis geometrias do espaço-tempo.
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Capítulo 3

Cosmologias Newtoniana e

Einsteiniana

Neste capítulo vamos discutir a cosmologia Newtoniana sem a inclusão do termo corres-

pondente à constante cosmológica, ou seja, vamos fazer � = 0, e também apresentar alguns

resultados da cosmologia Einsteiniana, quando incluímos o termo de pressão.

Conforme já estudado, a equação que rege o comportamento de uma dada galáxia, colo-

cada na fronteira do universo, devido à atração gravitacional que este universo exerce, é dada

por

�R = �GM
R2

(3.1)

onde M e R (t) são a massa e o raio do universo, respectivamente.

Multiplicando ambos os membros da equação (3.1) por _R e integrando, obtemos

1

2
_R2 + � =

GM

R
, (3.2)

onde � é uma constante de integração, que pode ser positiva, negativa ou nula, e está

associada à energia total da galáxia.

A equação (3.2) também pode ser escrita na forma

_R2

R2
+
2�

R2
=
2GM

R3
. (3.3)

Usando a de�nição do parâmetro de Hubble e considerando que a densidade de massa

da esfera de raio R (universo) é dada por � = M=4
3
�R3, a equação (3.3) pode ser reescrita
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como

H2 +
2�

R2
=
8

3
�G�. (3.4)

Usando a equação (3.1) e substituindo em (3.3), obtemos a seguinte equação

R �R + 2 _R2 + 2� = 0. (3.5)

Se considerarmos R (t) como sendo o fator de escala e não o raio do universo, é possível

reescaloná-lo. Portanto, se trocarmos R por �R, onde � é um número positivo arbitrário,

a equação (3.5) permanecerá com a mesma forma desde que � seja trocado por ���2. Isto

signi�ca que podemos arbitrar os valores possíveis de �. No entanto, o sinal de � é importante

e não pode ser alterado por uma mudança de escala.

Note que a equação (3.5) para um �uido perfeito pode ser escrita, no contexto da cos-

mologia relativística, na forma [19]

R �R + 2 _R2 + 2�� 4�G (�� p)R2 = 0 (3.6)

A segunda equação dinâmica, nesse caso, é dada por

3 �R + 4�G (�+ 3p)R = 0. (3.7)

Para obtermos a eq. (3.7), vamos supor que o volume V do universo se expande de uma

quantidade dV . Desta forma, a pressão p exerce um trabalho dado por pdV , o que implica

em um decréscimo de energia da mesma quantidade. Considerando-se uma esfera de raio R;

temos

d

�
�
4

3
�R3

�
= �pd(4

3
�R3), (3.8)

ou

R3d�+ 3�R2dR = �3pR2dR, (3.9)

que pode ser escrita como

R3 _�+ 3�R2 _R + 3pR2 _R = 0, (3.10)

onde usamos _R = dR=dt e _� = d�=dt. A equação (3.9) também poderá ser escrita na forma:
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R
d�

dt
+ 3(�+ p)

dR

dt
= 0: (3.11)

Vamos, agora, reescrever a equação (3.4) da seguinte maneira:

�
dR

dt

�2
=
8

3
�G�R2 � 2�. (3.12)

Derivando a equação (3.12) em relação ao tempo, teremos:

2 _R �R =
8

3
�G ( _�)R2 +

8

3
�G�

�
2R _R

�
,

2 _R �R =
8

3
�G ( _�R) :R +

8

3
�G�2R _R,

ou

_R �R =
4

3
�G(�3(�� p) _R):R + 8

3
�G�R _R, (3.13)

onde usamos a relação

d

dt

"�
dR

dt

�2#
= 2

dR

dt

d2R

dt2
= 2 _R �R =

d

dt

��
_R
�2�

. (3.14)

A equação (3.13), pode ser manipulada algebricamente para se obter a equação (3.7),

que é a outra equação dinâmica para um �uido perfeito, obtida no contexto da cosmologia

de Friedmann-Robertson-Walker.

3.1 Densidade e Pressão

A pressão depende somente da natureza da energia, que pode estar associada à matéria,

radiação ou vácuo ou combinações destas grandezas. A densidade de energia de matéria

não produz pressão capaz de interferir na expansão do universo, no caso de um gás não-

relativístico.

A densidade e pressão de radiação são relacionadas por

p
 =
1

3
�
. (3.15)
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O trabalho realizado por cada componente diminui a energia do universo à medida que

acontece a expansão. Então, a equação (3.8) é válida para cada uma dessas componentes

(matéria, radiação ou vácuo) que faz parte do universo, e portanto, podemos escrever

d

dt
�iR

3 = �pi
d

dt
R3, (3.16)

onde i indica uma das componentes, que vamos representar por m, 
 ou �, para matéria,

radiação e vácuo, respectivamente. Para a matéria, a pressão pm , é nula, logo,

d

dt
�mR

3 = 0. (3.17)

Neste caso, a dependência temporal de �m ocorre através de R, da seguinte forma

�m _
1

R3
. (3.18)

Para radiação, as equações (3.15) e (3.16) nos fornecem,

d

dt

�
�
R

4
�
=
d

dt

�
R�
R

3
�

d

dt

�
�
R

4
�
= �
R

3dR

dt
+R

d

dt

�
�
R

3
�

d

dt

�
�
R

4
�
= �
R

3dR

dt
�R3�


dR

dt
= 0, (3.19)

e portanto,

�
 /
1

R4
. (3.20)

O comprimento de onda da radiação, �, é proporcional a R, devido à expansão do uni-

verso, e está relacionada com a velocidade da luz, c, através da relação

�� = c, (3.21)

onde � é a frequência de radiação.

A energia de um fóton é dada por

E = h�, (3.22)
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onde h é a constante de Planck.

A energia média de um fóton de radiação em equilíbrio a uma temperatura T é �E � 2:7kT

[20], onde k é a constante de Boltzmann. Essas relações nos permitem escrever as seguintes

dependências para �, E e T , com o fator de escala:

� _ R (3.23)

E _ � _ 1

R

T _ �E _ 1

R
.

O número de fótons não muda com a expansão. No entanto, o número de fótons por

unidade de volume n
 ou seja, a densidade de fótons diminui com a expansão do volume, de

modo que

n
 _
1

R3
.

A energia por unidade de volume de radiação é dada por

�
 = n
 �E.

Para radiação em equilíbrio a uma temperatura T , a fórmula de Stefan-Boltzmann-Planck

[20] fornece

n
 / T 3

e

�
 _ T 4.

A densidade de energia no vácuo é constante, e portanto,

d

dt

�
��R

3
�
= ��

d

dt
R3, (3.24)

o que implica, com o uso de (3.16), que p� = ���.

Vamos admitir que a densidade de energia, �w e pressão pw , obedecem à seguinte equação

de estado:
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pw = w�w,

onde w é uma constante. A dependência no tempo de �w pode ser determinada a partir da

equação (3.11), que pode ser escrita na forma

R
d�

dt
+ 3(�+ wp)

dR

dt
= 0, (3.25)

ou

1

�
d� = �3 (1 + w) dR

R
. (3.26)

A integração membro a membro da equação (3.26), nos fornece

�w =
�

R3(1+w)
, (3.27)

onde � é uma constante.

Portanto, a dependência temporal de �w está contida no termo R3(1+w).

3.2 Dependência Temporal do fator de escala

Para determinar explicitamente a dependência temporal de R (t), vamos supor que � é

zero. Então, a equação de Friedmann é tal que

�
dR

dt

�2
/ �R2. (3.28)

Vamos considerar o caso em que o universo contém somente uma das componentes. Para

a radiação, temos que da equação (3.20)

dR

dt
/ 1

R
(3.29)

e portanto,

R / t1=2. (3.30)

Para a matéria, temos de (3.18)
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dR

dt
/ 1

R1=2
(3.31)

R / t2=3. (3.32)

Para o vácuo, a equação (3.24) nos fornece o seguinte resultado

dR

dt
/ R, (3.33)

ou

R / exp (Ht) , (3.34)

com H = (dR=dt) =R. A expansão exponencial produzida pela energia de vácuo é chamada

in�ação.

No caso em que todos as componentes estão presentes no universo, a densidade total e a

pressão total são dadas pelas somas seguintes:

� = �
 + �m + �� (3.35)

p = p
 + p�. (3.36)

Podemos determinar também o parâmetro de HubbleH como função do tempo. Primeira-

mente vamos considerar R / t1=2, que corresponde a um universo preenchido por radiação.

Nesse caso, podemos escrever

R = "t1=2. (3.37)

Ou,

_R =
"

2
t�1=2.

Usando a relação que de�ne o parâmetro de Hubble

H =
_R

R
(3.38)
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e substituindo R e _R, temos

H =
1

2
t�1 =

1

2t
. (3.39)

Agora, vamos considerar, o caso em que R / t2=3. Temos, então, que

_R =
2

3
"t�1=3

e portanto,

H =
2

3

"t�1=3

"t2=3

ou

H =
2

3t
. (3.40)

Podemos usar a equação (3.27) para determinar a dependência de R com o tempo. Para

isto, vamos considerar a relação entre � e R, na forma geral, dada por

R(3+3!)� = �, (3.41)

onde � é uma constante.

Derivando ambos os membros, obtemos

(3 + 3!)R3(1+!) _� = 0. (3.42)

Considerando � = �R�3(1+!), a sua derivada será dada pela seguinte expressão

d�

dt
= �c3 (1 + !)R�3(1+!)�1 _R. (3.43)

Considerando a eq. (3.42), temos

(3 + 3!)R�1 _R�+ _� = 0. (3.44)

Substituindo � na equação (3.44), obtemos
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R
d�

dt
= � (3 + 3!) �dR

dt
,

= � (3 + 3!) cR�3(1+!)dR
dt
.

Por outro lado, temos que

�
dR

dt

�2
= R2�,

dR

dt
= �

p
�R�1=2�3=2!

ou
R1=2(1+3!)+1�
1
2
(1 + 3!) + 1

� = �p�t. (3.45)

Portanto, podemos escrever

R = 

2

(3+3!) t
2

3+3! (3.46)

onde 
 = �
p
c. Neste caso, temos, que a proporcionalidade entre R (t) e t é dada por

R / t
2

3+3! . (3.47)

Vamos agora analisar o caso em que � = 0.

Partindo de

R = Aei!t (3.48)

e usando a equação de Friedmann

d2R

dt2
= �4

3
�G (�+ 3p)R,

temos que

A!2 =
4

3
�G (�+ 3p)R. (3.49)

Portanto,

! = �
r
4

3
�G (�+ 3p). (3.50)
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Usando o fato de que ��� = p�, obtemos, ! = �i
q

8
3
�G�� = �2

3
i
p
6�G��.

Logo, a dependência de R com o tempo será dada por

R3=2 = Ae�
p
6�G��t. (3.51)

Do ponto de vista algébrico, as equações cosmológicas nos modelos Newtoniano e Eins-

teiniano são semelhantes. Conceitualmente, as diferenças são expressivas. Enquanto na

cosmologia Newtoniana a obtenção da equação cosmológica é feita a partir da equação de

movimento para uma partícula submetida à força gravitacional, na cosmologia Einsteiniana a

obtenção da equação cosmológica é baseada numa teoria métrica da interação gravitacional,

em que esta é medida pela curvatura do espaço-tempo Riemanniano.

Outra diferença conceitual diz respeito ao fato de que no modelo Newtoniano, o espaço

é in�nito, mas a quantidade de matéria no universo é �nita. No modelo Friedmanniano, se

� = +1, o espaço é elíptico, o seu volume é �nito, e a quantidade de matéria é �nita; se

� = 0 ou � = �1, o volume do espaço é in�nito e, portanto, contém uma quantidade in�nita

de matéria, uma vez que esta é homogênea em todo o espaço.
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Capítulo 4

Descrição Geométrica da cosmologia

Newtoniana

A cosmologia Newtoniana pode ser descrita com o uso da linguagem geométrica, o que não

signi�ca que esta seja equivalente, do ponto de vista conceitual, à cosmologia Einsteiniana.

Esta descrição foi obtida com o uso de uma abordagem geométrica desenvolvida por Cartan

[21], [22]. Nesta abordagem, podemos mostrar que as órbitas de partículas em um campo

gravitacional Newtoniano podem ser vistas como geodésicas de um espaço a�m, e portanto,

neste contexto, a gravitação pode ser considerada como uma manifestação do efeito da

curvatura associada à uma conexão a�m, e não como uma força. A formulação de Cartan da

teoria da gravitação Newtoniana pode ser obtida a partir da equação do desvio geodésico.

Para desenvolver a formulação geométrica da cosmologia Newtoniana [23], vamos deduzir

a equação para o desvio geodésico, que é exatamente igual à equação do desvio geodésico

para observadores normais à hipersuperfície de homogeneidade e isotropia do universo de

Friedmann.

Usando a equação de continuidade, que é a mesma tanto na abordagem Newtoniana

quanto na Einsteniana, a equação para o desvio geodésico pode ser integrada, em ambos os

casos, para se obter a equação cosmológica Newtoniana e a equação de Friedmann.

Neste capítulo vamos fazer uma revisão sobre a descrição geométrica da cosmologia

Newtoniana segundo Tipler [23] e tecer alguns comentários sobre as conclusões ali conti-

das.

A equação de movimento para uma partícula de massa arbitrária colocada em um campo
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gravitacional gerado pelo potencial �, é dada por

d2x

dt2
= �r� (4.1)

que corresponde a 2a lei de Newton, e que pode ser escrita como

d2xi
dt2

+r� = 0 (4.2)

ou

d2xi

dt2
+
@�

@xi
= 0. (4.3)

Vamos fazer uso de um parâmetro a�m � = at + b, de�nido em termos de um tempo

Newtoniano t. Ao tomarmos a segunda derivada de t em relação a �, obtemos:

d2t

d�2
= 0. (4.4)

Em termos do parâmetro �, a equação (4.3) pode ser reescrita da seguinte forma

d2xi

d�2
+
@�

@xi

�
dt

d�

�2
= 0. (4.5)

Consideremos a equação geodésica que é dada por

d2x�

d�2
+ ���


dx�

d�

dx


d�
= 0 (4.6)

onde �, �, 
 = 0, 1, 2, 3. Considerando � = 0, a eq. (4.6) reduz-se a

d2x0

d�2
+ �0�


dx�

d�

dx


d�
= 0 (4.7)

onde x0 = t. Comparando as eqs. (4.7) e (4.4), concluímos que �0�
 = 0, para todos os

valores de � e 
.

Note que a equação (4.6) pode ser escrita para � = i (i = 1; 2; 3), da seguinte forma

d2xi

d�2
+ �i00

dx0

d�

dx0

d�
= 0, (4.8)

onde �zemos � = 
 = 0.

Reescrevendo a eq. (4.5) na forma
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d2xi

d�2
+
@�

@xi
dx0

d�

dx0

d�
= 0, (4.9)

e comparando com (4.8), concluímos que os coe�cientes �i00 são dados em termos do potencial

Newtoniano através da seguinte relação

�i00 =
@�

@xi
, (4.10)

sendo todos os outros coe�cientes nulos.

Vamos considerar a expressão para o tensor de Riemann

Rijkl = @k�
i
jl � @l�ijk + �rjl�irk � �rjk�irl. (4.11)

Levando-se em conta que somente os �i00 são diferentes de zero, então, as únicas compo-

nentes do tensor de Riemann diferentes de zero são

Ri0k0 = @k�
i
00 � @0�i0k + �r00�irk � �r0k�ir0, (4.12)

o que nos leva ao seguinte resultado para as componentes não-nulas

Ri0k0 = �Ri00k =
@2�

@xi@xk
. (4.13)

Nesse caso, a componente do tensor de Ricci diferente de zero é R00 = R�0�0 = R
i
0i0 =

r2�. Assim, a equação de Poisson para o potencial gravitacional pode ser escrita na forma

[23],

R00 = 4�G�. (4.14)

Com a expressão (4.13) para a curvatura, a equação para o desvio geodésico

D2n�

d�2
+R����

dx�

d�
��
dx�

d�
= 0, (4.15)

torna-se [24]

d2n0

dt2
= 0

d2ni

dt2
+Ri0j0n

j = 0. (4.16)
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Considerando todas as quantidades físicas dependentes somente do tempo, a posição

como função do tempo de uma geodésica está relacionada com uma posição �xa, dadas pelas

coordenadas x = (x; y; z) � (x1; x2; x3) = constante, através da seguinte relação

~n (t) = R (t) ~x. (4.17)

Se, inicialmente, temos ~n(t0) = (n1; 0; 0), então, em qualquer tempo t devemos ter ~n (t) =

[R (t)x; 0; 0]. Portanto, para n2 = n3 = 0, em t = t0, a equação do desvio geodésico, eq.

(4.16), resulta em

d2ni

dt2
= �Ri010n1 (4.18)

para i 6= 0. A eq. (4.18) não será compatível com ~n(t) = [R (t)x; 0; 0], a menos que Ri010 = 0

para i 6= 0, para qualquer instante t.

Repetindo esse argumento para ~n(t0) = (0; n2; 0), temos que ~n(t) = (0; R(t)y; 0) e para

~n(t0) = (0; 0; n3), implica que ~n(t) = (0; 0; R (t) z). Portanto, as únicas componentes não-

nulas do tensor de Riemann são Ri0i0 (não existe soma em i).

Repetindo esse argumento para uma direção inicial arbitrária ~n(t) = R(t)~x, temos [23]

R1010 = R
2
020 = R

3
030,

que implica que Ri0i0 = (1=3)R00. Ao combinarmos esse resultado com a eq. (4.14)

mostramos que para um desvio entre duas geodésicas quaisquer, podemos escrever (4.16)

como sendo

d2R

dt2
= �4�G

3
�R. (4.19)

Podemos integrar (4.19), se admitirmos que a densidade de matéria � (depende somente

do tempo t) através do fator de escala R(t). Esta hipótese está baseada no Princípio Cos-

mológico, e resulta na seguinte relação

d

dt

�
� (t)R3 (t)

�
= 0, (4.20)

que é a equação de continuidade usual.

Integrando essa equação obtemos,
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�(t) =
�0R

3
0

R3(t)
. (4.21)

Substituindo (4.21) em (4.19) e multiplicando ambos os membros por dR=dt temos

1

2

d

dt

�
dR

dt

�2
= �4�G

3
�0R

3
0

1

R2
dR

dt

ou

d

�
dR

dt

�2
= �

�
8�G

3
�0R

3
0

�
dR

R2 (t)
. (4.22)

Realizando a integração, obtemos,

1

R2

�
dR2

dt

�
=
8�G

3
�0
R30
R3
+
R20
R2

�
dR

dt

�2�����
t=t0

� R
2
0

R2
8�

3
G�0

R30
R
,

que pode ser escrita na forma

1

R2

�
dR

dt

�2
=
8�G

3
� (t)�

R20

h
8�G�
3
�
�
1
R
dR
dt

�2i���
t=t0

R2 (t)
(4.23)

que é a equação de Friedmann, onde a constante é dada por

k �
"
8�G�

3
�
�
1

R

dR

dt

�2#�����
t=t0

. (4.24)

A constante dada por (4.24) é invariante por mudança de escala R(t)! �R(t), onde � é

uma constante arbitrária. Esta invariância é uma manifestação do fato de que as mudanças

R(t) ! �R(t) e ~x ! �~x não alteram a distância própria entre dois pontos do espaço, e

portanto, não possuem signi�cado físico. Esta mesma invariância está presente na equação

de Friedmann da relatividade geral para o caso plano k = 0, dada por

1

R2

�
dR

dt

�2
=
8�G

3
� (t) . (4.25)

A invariância de (4.25) porR(t)! �R(t) é uma consequência do fato de que as surpefícies

de homogeneidade e isotropia para k = 0, são planas.

Com base nessa formulação geométrica, [23] a�rma que a cosmologia Newtoniana, obtida

desta forma, é tão rigorosa quanto a cosmologia relativística, uma vez que as equações geo-

désicas são as mesmas, em ambas as formulações. Nosso entendimento é que essa a�rmativa
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feita por Tipler [23] não faz sentido, visto que o fato das equações serem as mesmas não

garante, necessariamente, que as duas formulações possuam o mesmo grau de rigor. Caso

houvesse sentido nessa a�rmativa, as deduções feitas por Milne [1] e Milne e McCrea [2],

que conduzem às mesmas equações de movimento do caso relativístico, poderiam ser usa-

das para a�rmar que as duas formulações são igualmente rigorosas, o que não é correto se

considerarmos os diferentes aspectos e as limitações da abordagem Newtoniana.

Assim, no nosso entendimento, a descrição geométrica é antes de tudo uma forma elegante

de se obter as equações de movimento no contexto da cosmologia Newtoniana, mas que

não permite que se estabeleça comparações no que diz respeito ao rigor das cosmologias

Newtoniana e a Einsteiniana, pelo simples fato de haver coincidências entre as equações do

desvio geodésico.
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Capítulo 5

Cosmologia Newtoniana para um

potencial com correção do tipo

Yukawa

O problema referente à possível existência de uma correção ao potencial Newtoniano,

do tipo Yukawa, tem sido objeto de estudo desde os anos 80 do século passado até os dias

atuais [25], [26]. Em meados dos anos 80, essa questão foi amplamente discutida, não sendo

observado nenhum desvio das previsões feitas pela gravitação Newtoniana. Recentemente,

essa questão foi retomada numa perspectiva de se con�rmar se essa correção do tipo Yukawa

existe, e em caso a�rmativo, qual é o intervalo de validade, ou melhor, para que distâncias

existe essa correção.

Neste capítulo, vamos fazer a revisão de um trabalho que se propõe examinar as con-

sequências de uma cosmologia Newtoniana tomando como base o potencial Newtoniano

acrescido de uma correção do tipo Yukawa [6].

Vamos considerar a energia potencial V de duas massas m1 e m2 separadas por uma

distância r, modi�cada com o termo de Yukawa, e que é dada pela expressão

V (r) = �Gm1m2

r

�
1 + �e�r=�

�
; (5.1)

ondeG é a constante gravitacional de Newton, sendo � e � parâmetros relativos à intensidade

da correção e ao intervalo de validade desta, respectivamente. Os valores possíveis de � e �

são estabelecidos através de análise de experimentos, sendo os valores mais recentes dados a
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partir de elementos fornecidos por experiências sobre o efeito Casimir [26].

Admitindo que exista essa nova interação, com um termo de curto alcance, D�Olivo e

Ryan [6] examinaram as implicações, no cenário cosmológico, do termo adicional de Yukawa

dado em (5.1). O método que somos impelidos a usar para tratar o problema é construir uma

cosmologia Newtoniana seguindo o mesmo procedimento de Milne e McCrea. Usando-se o

potencial Newtoniano, as equações de movimento para um universo homogêneo e isotrópico

são as mesmas obtidas no contexto da teoria da relatividade geral, para pressão nula. Para

o potencial dado por (5.1), podemos enumerar alguns possíveis problemas, a saber: (a) não

existe nenhuma garantia que na cosmologia Newtoniana construída, com esse potencial, as

equações de movimento sejam semelhantes às da teoria relativística; e (b) não é evidente que

possa ser construída a cosmologia Newtoniana, uma vez que o método de Milne e McCrea é

fortemente dependente da forma da interação.

Conforme já foi discutido, uma partícula no �uido cosmológico em movimento, tem uma

velocidade que está relacionada com o fator de escala, R (t), através da seguinte expressão

~v=
�
_R=R

�
~r. (5.2)

A equação de Euler e a equação de continuidade para esse �uido de densidade � (t),são

dadas por

~r
h
�R=R

i
� ~F = 0; (5.3)

d�=dt+ 3� _R=R = 0; (5.4)

onde ~F é a força gravitacional por unidade de massa que atua sobre a partícula.

A eq. (5.4) pode ser reescrita na forma,

1

�

d�

dt
= �3

_R

R
; (5.5)

ou

1

�
d� = � 3

R
dR. (5.6)

Integrando a eq. (5.6) obtemos,



39

ln

�
�

�0

�
= �3 ln

�
R

R0

�
(5.7)

o que implica no resultado

� =
�0R

3
0

R3
; (5.8)

onde �0 e R0 são constantes.

Esta equação nos diz que a densidade depende do tempo, t, através do fator de escala,

sendo inversamente proporcional ao cubo desta quantidade, que é um resultado já conhecido.

A força que atua sobre a partícula pode ser calculada a partir do potencial gravitacional

gerado pela casca esférica, admitindo que o potencial fora da esfera vai para zero quando

r !1, no centro da esfera vai para in�nito e é contínuo através da superfície da esfera.

Dentro da esfera, para r < R, onde R é o raio da esfera, a equação de Poisson pode ser

escrita na forma

1

r2
@

@r

�
r2
@�

@r

�
= 4�G�. (5.9)

Integrando a eq. (5.9) entre 0 a R, obtemos,

�
r2
@�

@r

�
= 4�G�

r3

3
(5.10)

Ao integrarmos a expressão acima chegamos ao seguinte resultado para o potencial gravi-

tacional dentro da esfera

�1 (r) =
2

3
�G�r2 + �, (5.11)

onde � é uma constante.

Para r > R, ou seja, fora da esfera, temos:

1

r2
@

@r

�
r2
@�

@r

�
= 0, (5.12)

o que nos permite concluir que r2 @�
@r
é uma constante, que podemos designar, C. Assim,

temos

�2 (r) = �
C

r
+B, B = 0 pois � (1) = 0. (5.13)
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Usando a condição � (r !1)! 0, obtemos

�2 (r) = �
C

r
. (5.14)

Para encontrar o valor da constante �; vamos igualar (5.11) a (5.14) e também as suas

derivadas, ou seja,

�1 (r) = �2 (r) (5.15)

@�1 (r)

@r
=
@�2 (r)

@r
.

De (5.15), obtemos as seguintes relações

2

3
�G�R2 + � = �C

R
, (5.16)

4

3
�G�R =

C

R2
. (5.17)

Manipulando algebricamente as eqs. (5.16) e (5.17), obtemos que a constante � é dada

por � = �2�G�R2.

Vamos considerar a equação satisfeita pelo potencial gravitacional Newtoniano, a equação

de continuidade e a equação de movimento, que são dadas, respectivamente, por

r2� = 4�G�; (5.18)

@�

@t
+ ~r � (�~v) = 0, (5.19)

e

@~v

@t
+
�
~v � ~r

�
� v = �~r�, (5.20)

onde estamos considerando a pressão nula.

Suponhamos que o universo é estático e homogêneo, o que signi�ca dizer que ~v = 0 e

� (t) = �0 é constante no tempo. Consideremos a solução da eq. (5.18) como sendo dada

pela eq. (5.11). As hipóteses feitas sobre ~v e � são compatíveis com a eq. (5.19). No entanto,

a eq. (5.20) não é satisfeita, pois ~r� 6= 0. Assim, a solução encontrada não é válida para
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um universo estático e homogêneo. Ela corresponde a um universo não-estático, no qual a

expansão está associada ao movimento das partículas.

Para encontrar a força gravitacional ~F , vamos considerar, inicialmente, r < R, e usar a

relação entre ~F e �, dada por

~F=� ~r�. (5.21)

Portanto, para r < R, temos o seguinte resultado

~F = �r̂ @
@r

�
2�

3
G�r2

�
,

que pode ser reescrita na forma

~F=� 4�
3
G�~r. (5.22)

Substituindo (5.22) em (5.3) e multiplicando por R3, obtemos:

R2 �R +
4

3
�G�0 = 0. (5.23)

Vamos reescrever (5.23) na forma

�R = �4
3
�G�0

1

R2
(5.24)

ou ainda,

d

dt

�
dR

dt

�
= �4

3
�G�0

1

R2
. (5.25)

Multiplicando a eq. (5.25) por dR=dt, temos

dR

dt

d

dt

�
dR

dt

�
= �4

3
�G�0

1

R2
dR

dt

que pode ser reescrita na forma

1

2

d

dt

�
_R2
�
= �4

3
�G�0

�
� d
dt

�
1

R
+ k

��
, (5.26)

onde k é uma constante. A integração de (5.26) nos fornece a seguinte equação
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_R

R

!2
=
8�G

3
�0

�
R0
R

�3
� k

R2
(5.27)

A constante k, no contexto Newtoniano, é a energia e pode ter os valores +1; 0 ou �1, por

uma escolha conveniente das constantes que aparecem em sua de�nição. A equação (5.27)

corresponde exatamente a equação de Friedmann.

Os resultados obtidos são independentes do valor deR, e portanto podemos fazerR!1.

Neste caso, � ! �1, mas as equações para R e � permanecem as mesmas.

Vamos considerar o potencial modi�cado através de uma contribuição do tipo Yukawa.

Neste caso, podemos escrever

� = �G m

j~r � ~r0j

�
1 + �e�

j~r�~r0j
�

�
. (5.28)

O potencial gerado por uma massa dm é dado por

d� = � Gdm

jr � r0j

�
1 + �e�

j~r�~r0j
�

�
, (5.29)

ou

d� = � G�

jr � r0j

�
1 + �e�

j~r�~r0j
�

�
dv, (5.30)

onde, dm = �dv:

A eq. (5.30), pode ser escrita, na forma integral, como

� = �G
Z

�

jr � r0jdv + �G
Z

�

jr � r0je
� j~r�~r

0j
� dv � �1 + �2 (5.31)

onde �1 = �G
R

�
jr�r0jdv e �2 = �G

R
�

jr�r0je
�j~r�~r0j=�

.

Podemos escrever, então, que,

r2� = r02�1 +r02�2, (5.32)

onde

r02�1 = �G
Z
� (r)r02

�
1

j~r � ~r0j

�
dv,

ou
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r02�1 = �4�G
Z
� (r) � (~r � ~r0) dv,

que pode ser escrita na forma

r02�1 = �4�G� (r0) . (5.33)

O segundo termo em (5.32) é dado por

r02�2 = �G

Z
� (r)r02

0@e�j~r�~r0j�

j~r � ~r0j

1A dv, (5.34)

ou

r02�2 = �G

Z
� (r)

�
r02

�
1

j~r � ~r0j

�
e�

j~r�~r0j
� +

1

j~r � ~r0jr
02
�
e�

j~r�~r0j
�

�
+

+ 2~r0
�

1

j~r � ~r0j

�
~r0
�
e�

j~r�~r0j
�

��
dv

que ainda pode ser escrita como

r02�2 = �G

Z
� (r) 4�� (~r � ~r0) e�

j~r�~r0j
� dv + �G

Z
� (r)

j~r � ~r0jr
02
�
e�

j~r�~r0j
�

�
dv+

+ 2�G

Z
� (r) ~r0

�
1

j~r � ~r0j

�
~r0
�
e�

j~r�~r0j
�

�
dv,

ou

r02�2 = 4��G� (r
0) + �G

Z
� (r)

j~r � ~r0jr
02
�
e�

j~r�~r0j
�

�
dv+

2�G

Z
� (r) ~r0

�
1

j~r � ~r0j

�
~r0
�
e�

j~r�~r0j
�

�
dv, (5.35)

onde, ~r
�

1
j~r�~r0j

�
= (~r�~r0)

j~r�~r0j3 e,

r
�
e�

j~r�~r0j
�

�
= �1

�

�
~r jr � r0j e�

j~r�~r0j
�

�
=
1

�

�
(~r � ~r0)
j~r � ~r0j

�
, (5.36)

e foi usado o fato de que

~r � j~r � ~r0j = �(~r � ~r
0)

j~r � ~r0j .
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Vamos tomar o divergente de (5.36), dado por

~r � ~r
�
e�

j~r�~r0j
�

�
= r

�
1

�

�
(~r � ~r0)
j~r � ~r0j e

�j~r�~r
0j

�

��
,

que pode ser reescrito como

~r � ~r
�
e�

j~r�~r0j
�

�
=
1

�

�
~r �
�
(~r � ~r0)
j~r � ~r0j e

�j~r�~r
0j

� +
(~r � ~r0)
j~r � ~r0j

~r
�
e�

j~r�~r0j
�

���
,

e que resulta em :

~r � ~r
�
e�

j~r�~r0j
�

�
=
1

�

�
� 2

j~r � ~r0je
�j~r�~r

0j
� +

1

�
e�

j~r�~r0j
�

�
.

Fazendo as substituições na equação (5.35) temos,

r02�2 = 4��G� (r
0)+

1

�2

Z
� (r)

jr � r0je
�j~r�~r

0j
� dv| {z }

�2

+
2�G

�

Z
� (r)

jr � r0j2
e�

j~r�~r0j
� dv�2�G

�

Z
� (r)

jr � r0j2
e�

j~r�~r0j
� dv;

que pode ser escrito na forma

r02�2 �
1

�2
�2 = 4��G� (r

0) . (5.37)

Vamos considerar o potencial (5.28) que é soma de dois potenciais que obedecem às

equações

r2�1 = 0, (5.38)

r2�2 = �
1

�2
�2 = 0, (5.39)

onde estamos considerando as soluções na ausência de matéria. Para soluções no vazio

(dentro e fora da casca esférica) temos que,

1

r2
d

dr

�
r2
d�2
dr

�
=
1

�2
�2

que nos leva a

�2 (r) =
Aer=�

r
+
Be�r=�

r
. (5.40)
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A solução da eq. (5.38) é dada por

�1 (r) = �
C

r
+D. (5.41)

Dentro da esfera temos que �1 e �2 são �nitos, e fora da esfera, quando r !1, as duas

soluções vão para zero. O potencial total dentro e fora da esfera é dado por � = �1 + �2.

Considerando a eq. (5.41) para r !1; concluímos que

�1 (r) = �
C

r
. (5.42)

Por outro lado, nesse mesmo limite, a eq. (5.40) implica que A = 0, e portanto,

�2 (r) =
Be�r=�

r
. (5.43)

Para as soluções interiores, temos que

�1;int = �
Ci
r
+Di (5.44)

e

�2;int =
Aie

r=�

r
+
Bie

�r=�

r
. (5.45)

Considerando as condições de contorno na origem, r = 0, temos que

�1;int = Di (5.46)

e

�2;int = 2Ai sinh
� r
�

�
.

Portanto, o potencial no interior da esfera é dado por

�int = 2Ai sinh
� r
�

�
+Di. (5.47)

O potencial externo é dado por

�ext =
Aext
r
e�r=� � Cext

r
. (5.48)
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Para �xar as constantes Ai e Di, vamos admitir que o potencial no centro da esfera é a

soma de todas as contribuições de cada camada in�nitesimal da esfera, tratada como uma

massa puntiforme que dá uma contribuição igual ao potencial (5.1). Podemos encontrar

o potencial fora da esfera usando a condição do potencial ser contínuo através da camada

esférica. O potencial total dentro e fora da camada esférica (com densidade � e espessura

da) é dado por

�int = �4�G�Y �a�dae�a=� [sinh (r=�)] =r � 4�G�ada, (5.49)

�ext = �4�G�Y �a� sinh(a=�)dae�r=�=r � 4�G�a2da, (5.50)

onde � é a densidade de matéria e �Y é a densidade de matéria que gera o termo de Yukawa.

O potencial dentro da esfera sólida de raio R e densidade constante é

Z r

0

�ext (a) da+

Z R

0

�int (a) da

= �4�G�Y ��2 +
2

3
�G�r2 � 2�G�R2 + 4�G�Y ��

2 f[sinh (r=�)] = (r=�)g (R=�+ 1) e�R=�.

(5.51)

Ao tomarmos R indo para o in�nito, o último termo vai para zero e o potencial se reduz

ao potencial Newtoniano,

� (r) = �4�G�Y ��2 +
2

3
�G�r2 � 2�G�R2. (5.52)

Da equação (5.52) temos a força sobre uma partícula do �uido é igual a força Newtoniana.

As equações para � (t) e R (t) são dadas por (5.8), (5.23) e (5.27), e portanto o universo é o

mesmo do modelo de Friedmann-Robertson-Walker.

O potencial dado por (5.52) está associado à mesma expressão para a força dada por

(5.22). Portanto, a equação de movimento, neste caso, é dada pela eq. (5.27), que é a mesma

obtida no caso do potencial Newtoniano. Logo, neste contexto, a correção ao potencial

Newtoniano, dada pelo termo de Yukawa, não tem nenhuma in�uência na dinâmica do

universo. Este resultado está coerente, apesar de não ser consequência direta, com o fato de

que até mesmo a distância micrométricas, a correção de Yukawa não ter nenhuma in�uência

na interação gravitacional Newtoniana.
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Assim, o estudo de modelos do universo que são compatíveis com o potencial dado pela

eq. (5.1), qualquer que seja o modelo cosmológico considerado, deve levar a um resultado que

preserva a equação cosmológica. Este resultado é compatível com o fato de que a interação

gravitacional Newtoniana não é sensível à correção de Yukawa, e portanto, as equações de

movimento devem ser as mesmas, quer consideremos ou não a correção, pelo menos no con-

texto cosmológico. Caso fossem diferentes, e matematicamente, isto seria possível, teríamos

uma incompatibilidade com o fato observacional que a interação gravitacional Newtoniana

não sofre nenhuma modi�cação, pelo menos, até distâncias micrométricas entre os corpos.
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Capítulo 6

Evolução das perturbações na

cosmologia Newtoniana com

constante cosmológica variável

A constante cosmológica � foi introduzida na teoria da relatividade geral, para resolver

os con�itos entre a teoria e os dados observacionais disponíveis no início do século passado.

Então, para se obter um modelo estático era preciso introduzir um termo extra, contendo

a constante cosmológica, de modo a evitar o colapso em virtude da ação gravitacional da

matéria. Atualmente, a inclusão da constante cosmológica também é uma imposição dos

dados observacionais que indicam que o universo está expandindo-se de maneira acelerada,

o que pode ser obtido em modelos com constante cosmológica, dentre outros [27].

Uma pergunta que podemos fazer relacionada com a constante cosmológica é a seguinte:

Quais são as possíveis implicações de uma constante cosmológica que varia com o tempo?

Algumas implicações foram estudadas considerando que � depende do tempo através de

R�2, ou seja, � = �R�2, onde � é uma constante [28], ou através de uma combinação que

envolve também o parâmetro de Hubble, que pode ser escrita na forma � = 3�
�
_R
R

�2
+�R�2,

onde � é uma constante [29].

O trabalho de Arcuri e Waga [9] investiga o problema relacionado com a evolução de

perturbações, no contexto da cosmologia Newtoniana, também em um cenário onde � varia

com o tempo através do parâmetro de Hubble.

O papel da constante cosmológica tem sido objeto de discussões, tendo tomado ímpeto
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com o cenário de um universo acelerado, no qual essa constante pode ser responsável pela

repulsão cósmica necessária para acelerá-lo. Uma revisão acerca dos vários momentos dessa

constante pode ser vista em [30], [31].

Neste capítulo, vamos fazer uma revisão do trabalho de Arcuri e Waga [9] no qual eles in-

vestigam o crescimento das perturbações em modelos cosmológicos Newtonianos com criação

de matéria, nos quais esse processo ocorre através da dependência da constante cosmológica

com o tempo, por intermédio do parâmetro de Hubble. Iremos adicionar alguns comentários

aos resultados obtidos e fazer uma extensão parcial desse trabalho, com a introdução de um

termo de pressão nas equações cosmológicas.

6.1 Equações Diferenciais para �

As equações fundamentais da hidrodinâmica que descrevem o movimento do �uido cós-

mico são:

�
@~u

@t

�
r

+
�
~u�~rr

�
~u= �~rr� (6.1)

�
@�

@t

�
r

+ ~rr � (�~u) = 	, (6.2)

e

r2
r� = 4�G�� �. (6.3)

As equações (6.1) - (6.3) correspondem a equação de conservação de momento, a equação

da continuidade, e a equação de Poisson, respectivamente, sendo ~u a velocidade de um

elemento do volume do �uido, � a densidade de massa, � o potencial gravitacional, e � a

constante cosmológica que é considerada como uma função do tempo Newtoniano absoluto t.

Vamos considerar a pressão do �uido desprezível. Para considerar modelos cosmológicos com

criação de matéria, será incluído na equação da continuidade, o termo fonte, que denotaremos

por 	 [32].

Esse novo termo de fonte modi�ca a equação de Euler, que passa a ser escrita na forma

[32]
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�
@~u

@t

�
r

+
�
~u�~rr

�
~u= �~rr� +

	

�
(c� ~u) . (6.4)

Note que na equação acima, foi admitido que a criação de partículas não afeta a velocidade

das partículas existentes, e além disto, as partículas criadas, também possuem esta mesma

velocidade.

Vamos introduzir a coordenada comóvel ~x, relacionada a coordenada ~r, por [33], [34]

~x =
r

R
(6.5)

onde R = R (t) é o fator de escala. A velocidade do �uido e a densidade em termos dessa

nova coordenada são dadas por

~u= _R~x+R
�!
_x= _R~x+~v (~x;t) (6.6)

e

� = �0 (t) [1 + � (~x; t)] , (6.7)

onde ~v e � são perturbações de primeira ordem da velocidade _R~x e da densidade �0, respecti-

vamente. Vamos admitir, como é usual, que essas quantidades são pequenas, isto é, � � 1 e

v � u.

Em termos das novas coordenadas (~x; t), podemos estabelecer as seguintes relações entre

operadores

~rx � ~r � R~rr (6.8)

e

�
@

@t

�
x

� @

@t
=

�
@

@t

�
r

+
_R

R
~x�~rx. (6.9)

Usando esses novos operadores, podemos reescrever as equações (6.1) - (6.3). Inicial-

mente, vamos considerar a equação (6.1), que passa a ser reescrita como,

�
@~u

@t

�
x

�
_R

R
(x � rx) ~u+

(~u�rx)

R
~u= �~rx�, (6.10)

ou
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@

@t

�
_R~x+~v

�
�
 
_R

R
~x�rx

!�
_R~x+~v

�
+
1

R

n�
_R~x+~v

�
rx

o�
_R~x+~v

�
= �

~rx

R
�. (6.11)

Podemos transformar a equação (6.11) em

�R~x+
@~v

@t
�
_R

R
(~x�rx)~v+

_R

R
(~x�rx)~v+

_R

R
(~v�rx) (~x) = �

rx

R
�, (6.12)

a qual resulta em

�R~x+
@~v

@t
+
_R

R
~v= � 1

R
r�. (6.13)

A equação (6.2), pode ser escrita na forma

�
@�

@t

�
r

+ (rr�) � ~u+ � � (rr~u) = 	, (6.14)

ou

�
@�

@t

�
x

�
_R

R
~x�rx�+

1

R
(r� �) � ~u+ �

R
r� ~u = 	: (6.15)

Substituindo � e ~u na equação (6.15), temos,

�
@

@t
�0 (1 + � (~x; t))

�
x

�
_R

R
~x�rx (�0 [1 + � (~x; t)])+

1

R
frx (�0 [1 + � (~x; t)])g�( _R~x+~v (~x; t))+

+
�0
R
[1 + � (~x; t)]rx

��
_R~x+~v

�
(~x; t)

�
= 	 (6.16)

ou ainda

_�0 (1 + � (~x; t)) + �0 _� (~x; t)�
_R

R
�0~x�rx (� (~x; t)) +

�0
R
[rx� (~x; t)] �

�
_R~x+~v

�
+

+
�0
R
(1 + �)

n
_Rrx~x+rx~v

o
= 	; (6.17)

que pode ser reescrita como

_�0 + _�0� + �0 _� +
�0
R
_R (rx�) � ~v + 3

_R

R
�0 + �03

_R

R
� +

�0
R
(r� ~v) + �0�

R
r� ~v = 	: (6.18)

Usando a equação (6.2) para �0, que é dada por
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_�0 + 3
_R

R
�0 = 	 (6.19)

e substituindo na equação (6.18), obtemos o seguinte resultado

R	

�
�

�0

�
+R _� + _R (rx�) � ~v+(rx � ~v) + � (r� ~v) = 0: (6.20)

Como o valor de � e � são muito pequenos, podemos desprezar os termos que contém

produtos envolvendo � e �, o que nos permite obter o seguinte resultado

r � ~v = �R
�
@�

@t
+
	�

�0

�
. (6.21)

A equação (6.3) toma a seguinte forma

1

R2
r2� = 4�G�0 (1 + �)� �. (6.22)

Escrevendo � como [32]

� = � (~x; t) +
2

3
�G�0R

2x2 � 1
6
�R2x2 (6.23)

e a equação (2.57), na aproximação de ordem zero ou seja, em termos de �0, temos

3
�R

R
= �4�G�0 + �. (6.24)

Substituindo � dado por (6.23) em (6.13), temos

�R~x+
@~v

@t
+
_R

R
~v= �r�

R
� 2
3
�G�0R

2
�
rx2

�
+
�

6
R
�
rx2

�
. (6.25)

Usando a relação r (x2) = 2~x, e substituindo na equação (6.25), temos

�R~x+
@~v

@t
+
_R

R
~v= �r�

R
� 4
3
�G�0R

2~x+
�

3
R~x. (6.26)

Reescrevendo (6.24) na forma

�R = �4
3
�G�0R +

�R

3
, (6.27)

e substituindo em (6.26), obtemos:
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@v

@t
+
_R

R
v = �r�

R
. (6.28)

Agora, vamos substituir �, dado por (6.23) em (6.22). Assim procedendo, obtemos

1

R2
r2�+

2

3
�
G

R2
�0R

2r2
�
x2
�
= 4�G�0 (1 + �)� �; (6.29)

o que resulta em

r2� = 4�GR2�0�, (6.30)

ao usarmos a relação r2 j~xj2 = ~r � ~r j~xj2 = 6.

Tomando a divergência em (6.28), obtemos,

@

@t
(r � ~v) +

_R

R
(r � ~v) = �r � (r�)

R
. (6.31)

Substituindo (6.21) na equação (6.31), obtemos o seguinte resultado

@

@t

�
�R

�
@�

@t
+
	�

�0

��
+
_R

R

�
�R

�
@�

@t
+
	�

�0

��
= �r

2�

R
. (6.32)

Substituindo r2� pela expressão dada em (6.30), obtemos

� _R
�
_� +

	�

�0

�
�R

�
�� + _	

�

�0
+
	

�0
_�

�
� _R

�
@�

@t
+
	�

�0

�
= �4�GR�0�, (6.33)

que após manipulação algébrica se reduz a

2
_R

R
_� + 2

_R

R

	�

�0
+ �� + _	

�

�0
+
	

�0
_� � 4�GR�0� = 0, (6.34)

que pode ser reescrita na forma

@2�

@t2
+

"
2
_R

R
+
	

�0

#
@�

@t
�
"
4�GR�0 � 2

_R

R

�
	

�0

�
� @

@t

�
	

�0

�#
� = 0. (6.35)

É importante chamar a atenção para o fato de que se considerarmos 	 = 0, vamos obter

exatamente a equação que rege o comportamento e evolução das perturbações, no contexto

da cosmologia Newtoniana, na ausência do termo de pressão.
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6.2 Evolução das perturbações no modelo com � va-

riável

Nesta seção será feita um revisão da seção III do trabalho de Arcuri e Waga [9]. Portanto,

vamos considerar a equação de evolução para as perturbações, no contexto da cosmologia

Newtoniana, num cenário em que a constante cosmológica está presente, e cuja variação com

o tempo dá origem a um processo de criação de matéria.

A relação entre � e a constante de Hubble, será admitida como tendo a forma [32]

� = 3�H2. (6.36)

O termo de fonte responsável pela criação de matéria e a constante cosmológica estão

relacionados por [32]

	 = � 1

8�G

@�

@t
. (6.37)

A solução da eq. (6.35) pode ser obtida através de uma mudança da variável t para R.

Fazendo esta mudança, obtemos a seguinte equação [9]

R2
@2�

@R2
+
3

2
R (1 + 3�)

@�

@R
� 3
2
(1 + �) (1� 3�) � = 0. (6.38)

Na obtenção da eq. (6.38), usamos as seguintes relações:

3

2
(1� �)

_R2

R2
= 4�G�0; (6.39)

�R = �1
2
R (1� 3�)

_R2

R2
(6.40)

e

	

�0
= 3

_R

R
: (6.41)

A integração da eq. (6.38) fornece a seguinte solução [9]

� = AR�3(1+�)=2 +BR1�3�, (6.42)

onde A e B são constantes.
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A eq. (6.42) pode ser reescrita na forma

� = A�� (R) +B�+ (R) , (6.43)

onde �� e �+ são os modos decrescente e crescente, respectivamente. É importante salientar

que a partir da análise de (6.42), concluímos que não é possível ter modo crescente se � � 1=3.

Nesse contexto, a dependência temporal do fator de escala é dado por [32], [35]

R(t) = Ra

�
3

2
Ha (1� �) t

� 2
3
(1��)

, (6.44)

onde Ra e Ha são os valores atuais do fator de escala e do parâmetro de Hubble, respectiva-

mente.

Substituindo (6.44) em (6.43) e rede�nindo as constantes, podemos escrever a seguinte

expressão

� = �� (t0)

�
t

t0

��(1+�=1��)
+ �+ (t0)

�
t

t0

�2(1�3�)=3(1��)
, (6.45)

onde �+ (t0) e �� (t0) indicam as amplitudes dos modos crescente e decrescente em um dado

tempo inicial, t0, respectivamente.

Considerando � = 0, ou seja, na ausência de criação de matéria, e para um �uido sem

pressão, reobtemos os resultados conhecidos, que são

�+ = �+ (t0)

�
t

t0

�2=3
(6.46)

e

�� = �� (t0)

�
t

t0

��1
. (6.47)

Conforme já salientamos, para � < 1=3, temos o modo crescente, e portanto, podemos ter,

em princípio, formação de estruturas, tais como galáxias, através de um processo chamado

de instabilidade gravitacional que se origina a partir de uma pequena inomogeneidade ou

pequena variação na densidade de matéria, que dá origem a uma atração da matéria da

vizinhança, num processo crescente, que agrega, cada vez mais, matéria. Este processo pode

ser compreendido a partir do comportamento da �utuação, �, que acabamos de determinar.

É importante chamar a atenção para o fato de que no modelo investigado por Arcuri e
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Waga [9] existe uma forte correlação entre a possibilidade de ocorrência da instabilidade

gravitacional, e portanto, de formação de estruturas, e o valor do parâmetro �. Também

devemos enfatizar que os resultados obtidos são os mesmos que seriam obtidos no contexto

da relatividade geral.

6.3 Alguns comentários sobre a equação de evolução

das perturbações na cosmologia Newtoniana com

pressão

A descrição da cosmologia Newtoniana, incluindo o termo de pressão, foi feita por McCrea

[36], e posteriormente, sem o uso de conceitos advindos da relatividade geral, por Harrison

[3]. Na formulação adotada por McCrea [36] foi necessária a adoção de conceitos físicos das

teorias da relatividade especial e geral, como por exemplo, preservar a equivalência entre

massa e energia e a distinção entre massa inercial e gravitacional.

As equações hidrodinâmicas, nas quais é feita essa extensão para incluir a pressão, são

dadas por:

@�

@t
+ ~r �

h�
�+

p

c2

�
~u
i
= 0, (6.48)

@~u

@t
+ ~u � r~u = �~r��

�
�+

p

c2

��1
~rp, (6.49)

e

r2� = 4�G

�
�+

3p

c2

�
, (6.50)

que correspondem as equações de continuidade, de Euler e de Poisson, respectivamente. É

importante chamar a atenção para o fato de que o tratamento perturbativo das eqs. (6.48)-

(6.50) não fornecem o mesmo resultado [37] que é obtido na relatividade geral, no gauge

síncrono.

Essa discrepância entre os resultados obtidos nos dois contextos mencionados anterior-

mente, foram resolvidos por Lima e colaboradores [5], que propuseram uma modi�cação na

equação de continuidade, que passou a ser escrita na forma
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@�

@t
+r � (�~u) + p

c2
~r � ~u = 0. (6.51)

Nesse novo cenário, se considerarmos o processo de criação de matéria à semelhança do

que foi feito na seção anterior, a equação para a perturbação da densidade será dada por

@2�

@t2
+

"
2
_R

R
+
	

�0

#
@�

@t
�
"
4�GR�0 (1 + �) (1 + 3�)� 2

_R

R

�
	

�0

�
� @

@t

�
	

�0

�#
� =

v2s
R2
r2�,

(6.52)

onde estamos considerando a equação de estado do gás como sendo dada por p = ��, e

v2s = @p=@�.

Da equação (6.52) concluímos que os modos crescente e decrescentes dependem, agora, da

pressão exercida pelo �uido, não somente através da modi�cação do coe�ciente do termoG�0,

mas também pelo termo extra v2s
R2
r2�. Dessa forma, introduzimos no contexto Newtoniano, o

papel da pressão na dinâmica do universo, o que acontece de maneira natural quando estamos

tratando desse problema, na teoria da relatividade geral. Nesse contexto, qual seja, o da

cosmologia Newtoniana, com o termo de pressão e com a modi�cação apropriada da equação

da continuidade, obtemos os mesmos resultados da teoria da relatividade geral, porém, com

uma vantagem, que é tratar de maneira mais simples, do ponto de vista matemático, o

problema que acabamos de considerar.
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Capítulo 7

Algumas considerações sobre a

cosmologia Newtoniana quântica

As leis da física que governam o universo, nos dizem como o estado inicial evolui com

o passar do tempo. Na física clássica, uma vez especi�cado o estado inicial, os estados

subsequentes poderão ser conhecidos com precisão. Na física quântica, dado o estado inicial,

também podemos conhecer a evolução do sistema, e determinar a probabilidade do sistema

se encontrar em um certo estado, em um dado instante.

A cosmologia quântica tem como objetivo descrever o universo, usando as leis da física

quântica. Mas, a aplicação destas leis, nos remete a um problema que consiste em conhecer

o estado inicial do universo.

Uma forma de resolver este problema é usar os dados observacionais e a teoria que é

consistente com os mesmos, para entender como era o universo nos instantes iniciais de

sua história. Esta abordagem nos remete ao problema das condições iniciais, que pode ser

resolvido no contexto da cosmologia quântica, que é fundamentada na aplicação da teoria

quântica a todo o universo.

Neste capítulo, vamos considerar alguns resultados obtidos por Romero e Zamora [38] e

por Freedman e colaboradores [39], e tecer alguns comentários.
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7.1 Abordagem da cosmologia Newtoniana quântica

segundo Romero e Zamora

Nesta seção e nas duas próximas, faremos uma breve revisão do trabalho feito por Romero

e Zamora [38] e um breve comentário sobre os resultados obtidos.

Vamos considerar a eq. (2.8) que é a expressão da energia total dada por

E =
1

2
A _S2 �GB

S
� �
6
AS2 (7.1)

onde A =
nP
i

mir
2
i (t0) e B =

nP
i>j

mimj

jri(t0)�rj(t0)j . Introduzindo um novo fator de escala R = �S

com � constante, a eq. (7.1), tal como �zemos na seção 2.1, pode ser reescrita na forma

H2 =

 
_R

R

!2
= � �

R2
+
�

3
+
8�G

3
� (7.2)

com

� = �2E�
2

A
, � =

�0
R3
, e �0 =

3B�3

4�A
. (7.3)

Vamos expressar a eq. (7.2) em termos de variáveis canônicas. A lagrangiana do sistema

é dada por

L = 1

2
A _S2 +G

B

S
+
�

6
AS2 (7.4)

L = A

2�2
_R2 +G

�B

R
+
�A

6�2
R2.

De (7.4) podemos construir dois espaços de fase, o primeiro de�nido como (S; PS) onde

PS = A _S e o segundo como (R;PR) onde

PR =
A

�2
_R. (7.5)

Em termos das variáveis (S; PS), a Hamiltoniana é dada por

H = E =
P 2S
2A

� GB
S
� �AS

2

6
; (7.6)

e em termos de (R;PR) é dada por
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H =
�2P 2R
2A

� G�B
R

� �
6

AR2

�2
: (7.7)

Podemos ainda escrever a equação de Friedmann (7.2) em termos das variáveis canônicas

(R;PR) como

P 2R
R2

+

�
A

�2

�2�
�

R2
� �
3
� 8�G

3
�

�
= 0. (7.8)

A quantização do sistema é obtida a partir das equações de onda

Ĥ	(S) =

 
P̂ 2S
2A

� GB
S
� �AS

2

6

!
	(S) = E	(S) (7.9)

e,

Ĥ	(R) =

 
�2

2A
P̂ 2R �

G�B

R
� �
6

A _R2

�2

!
	(R) = E	(R) ; (7.10)

com P̂R = �i~ @
@R
.

Ao resolvermos as eqs. (7.9) e (7.10), estaremos determinando os estados do universo,

no contexto da cosmologia Newtoniana quântica.

7.2 Cosmologia Newtoniana Quântica, sem o termo de

pressão

Vamos tomar como ponto de partida, a seguinte equação cosmológica

�3
_R2

R2
+ �+ 8�� =

3�

R2
(7.11)

ou

� = � _R2 + �R
2

3
+
8

3
��R2. (7.12)

Vamos multiplicar (7.12) por �=2 onde � é um parâmetro. Assim, temos

�

2
� = ��

_R2

2
+
��R2

6
+
4

3
���R2 (7.13)

que podemos escrever como uma Lagrangiana
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L
�
_R;R

�
= ��

_R2

2
+
��R2

6
+
4

3
���R2, (7.14)

onde o termo cinético é dado por

EC = �
� _R

2
. (7.15)

O momento é de�nido por

PR =
@L
@ _R

= �� _R. (7.16)

Vamos reescrever (7.11) da seguinte forma

3 _R2

R2
+
3�

R2
� �� 8�� = 0,

sendo _R = �PR=�. Portanto, temos

3
PR
R2

+ �2
�
3�

R2
� �� 8��

�
= 0. (7.17)

A função de onda do universo, 	(R), é encontrada quando resolvemos a equação

"
3P̂ 2R
R2

+ �2
�
3�

R2
� �� 8��

�#
	(R) = 0: (7.18)

Para matéria sem pressão temos � / R�3, que mostra que a matéria está dominando o

universo, tanto no nível clássico quanto no nível quântico.

Podemos escrever a eq. (7.13) como

H	 = E	, (7.19)

ou

�k̂

2
	 =

�k

2
	. (7.20)

Portanto, temos que

H = �P
2

2�
+

�
��

6
+
4

3
���

�
R2, (7.21)

pode ser escrita como
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H = �P
2

2�
+
1

2
wR2 (7.22)

onde w =
�
��
3
+ 8

3
���
�
R2.

Considerando

P̂ = �ic @
@R

(7.23)

e substituindo (7.22), e (7.23) em (7.19), temos que

c2

2�

@2

@R2
	+

1

2
wR2	 = E	 (7.24)

onde a energia E é dada por

E =

�
n+

1

2

�
w, (7.25)

e de acordo com (7.20) podemos inferir que

� =
2

�

�
n+

1

2

�
w

com � de�nido em termos da energia, cujos possíveis valores podem ser tomados como iguais

a �1; 0; 1.

7.3 Função de Onda no Universo Newtoniano

Vamos obter a função de onda do universo, no contexto da cosmologia Newtoniana.

Como S e R são positivas, a equação de onda é de�nida somente no eixo positivo. Portanto,

utilizaremos condições de contorno em 	(1) = 0 e 	(0) = 0.

Para o caso em que o universo é dominado por uma constante cosmológica negativa,

temos que, � = � j�j e � � 0. Neste caso, a eq. (7.9) torna-se [38]

Ĥ	(S) =

�
�~2
2A

@2

@S2
+
A j�j
6
S2
�
	(S) = E	(S) . (7.26)

Vamos introduzir a variável z,

z =

 
A

~

r
j�j
3

!1=2
S. (7.27)
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Fazendo as devidas substituições temos,

"
�~2
2A

 
A

~

r
j�j
3

@2

@z2

!
+
A j�j
6

 
~
A

s
3

j�j

!
z2

#
	(z) = E	(z) (7.28)

ou

24 @2
@z2

+

0@ 2E

~
q

j�j
3

� z2
1A35	(z) = 0, (7.29)

que tem como solução �sicamente aceitável [38]

	n (z) = H2n+1 (z) e
�z2=2; n = 0; 1; ::: (7.30)

onde HN (z) é o polinômio de Hermite de ordem N . O espectro da energia é dado por

En = ~
r
j�j
3

�
2n+

3

2

�
. (7.31)

A análise da expressão para a energia, dada por (7.31), nos mostra que esta só depende

do valor da constante cosmológica.

Agora vamos analisar o caso de poeira, ou seja, � = �0=R3 e � = 0. Neste caso a equação

de onda é dada por [38]

�
� ~

2

2A

@2

@S2
� GB

S
� E

�
	(S) = 0 (7.32)

ou ainda,

�
@2

@S2
+

�
2EA

~2
+
2ABG

~2
1

S

��
	(S) = 0: (7.33)

Introduzindo a variável z,

z =

 r
�8EA
~2

!
S (7.34)

e substituindo em (7.33) temos,

24�8EA
~2

�
@

@z

�2
+

0@2EA
~2

+
2ABG

~2
1q

�8EA
~2 z

1A35	(z) = 0 (7.35)

que fornece,
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�
z2
@2

@z2
+
�

 � z

4

��
	(z) = 0 (7.36)

onde 
 = 2ABG
~2

q
� ~2
8EA

.

As soluções que da eq. (7.36), que se anulam na origem e no in�nito são dadas por [38]

	n (z) = e
�z=2zL1n (z) , (7.37)

onde L1n (z) é associado ao polinômio de Laguerre de ordem n. Neste caso, a energia é dada

por [38]

En (z) = �
AB2G2

2~2(n+ 1)2
. (7.38)

Para os dois casos analisados encontramos soluções exatas da função de onda da cosmolo-

gia Newtoniana. No contexto da cosmologia relativística, os casos correspondentes aos dois

tratados nesta seção, as soluções exatas não são conhecidas.

É importante chamar a atenção para a observação feita por Romero e Zamora [38] no

sentido de que na presença da constante cosmológica e para pressão nula, o sistema clássico

tratado no contexto da cosmologia Newtoniana e no da cosmologia Einsteiniana fornecem os

mesmos resultados. Na realidade, essa equivalência é esperada de alguma forma, haja vista

que a dinâmica clássica na abordagem Newtoniana e na Einsteiniana, são completamente

equivalentes, sendo descritas, do ponto de vista algébrico, pelas mesmas equações. Por

outro lado, no regime quântico, eles são completamente diferentes, o que signi�ca que os

resultados obtidos não são os mesmos quando estamos no contexto da abordagem quântica

dessas teorias.

7.4 Cosmologia Newtoniana quântica e a função de

onda

Vamos considerar a equação que permite a obtenção da função de onda do universo,

na cosmologia Newtoniana, no contexto da mecânica quântica não-relativística. Para isto,

usaremos a equação de Schrödinger para muitas partículas, dada por
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i~
@	

@t
=
X
i

�
� ~2

2mi

r2
i	

�
+ V	, (7.39)

onde 	 = 	(~ri), r2
i =

@
@r2i

e

V = �
X
i

X
j

G
mimj

j~ri � ~rjj
. (7.40)

Suporemos que todas as massas são iguais, ou seja, mi = m, e que a função de onda, 	,

pode ser escrita na forma

	(~ri) /
Y
i

	0 (~ri) , (7.41)

onde 	0 (~ri) satisfaz a seguinte equação

i~
@	0

@t
= � ~

2

2m
r2	0 +mU	0 (7.42)

com 	0 = 	0 (~r; t), r2 = @2

@r2
e

r2U = 4�Gm j	0j2 , (7.43)

sendo U o potencial por unidade de massa.

As equações (7.42) e (7.43) correspondem à equação de Schrödinger dependente do tempo

e à equação de Poisson, que é satisfeita pelo potencial que aparece na equação de Schrödinger.

Note que essas duas equações estão acopladas.

Vamos admitir que [39]

U = F (t) r2 (7.44)

e

	0 = A (t) eiS=~. (7.45)

Substituindo as eqs. (7.44) e (7.45) em (7.43), encontramos o seguinte resultado

A2 =
3F

2�Gm
. (7.46)
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Usando a solução dada pela eq. (7.45) e substituindo na equação de Schrödinger, con-

cluímos que

S = B (t) r2, (7.47)

com

�3B
m
=

_A

A
. (7.48)

Suponhamos que A = R�3=2[39]. Então, S (t) será dado por

S =
1

2
m
_R

R
r2, (7.49)

e a função de onda estará relacionada com o fator de escala por meio da seguinte expressão

	0 / 1

R3=2
exp

 
i

2~
m
_R

R
r2

!
. (7.50)

Vamos considerar a solução para o fator de escala encontrado por Arcuri e Waga [9] dado

por

R (t) / t 23 (1��). (7.51)

Neste caso, a função de onda guardará a seguinte proporcionalidade

	0 / exp
�
i

3~
(1� �)mr2t�(1�

4
3
�)
�
. (7.52)

Note que se �zermos t = �i� e considerarmos � < 1=3 que é a condição para que

tenhamos modos crescentes, então, a função de onda dada coincide, de fato, com a solução

para a equação de difusão. Neste caso, a função de onda é normalizável com respeito às

integrações nas coordenadas espaciais.
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Capítulo 8

Conclusões

Tomamos como base a literatura existente sobre a cosmologia Newtoniana, para reobter a

relação entre as características de universos investigados no contexto da cosmologia relativís-

tica e aqueles construídos usando, somente, a dinâmica Newtoniana, a teoria da gravitação

de Newton e as transformações de Galileu. Mostramos que as equações obtidas são idênticas

na forma algébrica, nos dois casos, e portanto, localmente, os resultados obtidos nas duas

teorias são insdistinguíveis. Assim, os resultados obtidos no contexto da relatividade geral,

na segunda década do século XX, podem ser deduzidos da hidrodinâmica Newtoniana do

século XVIII. Naturalmente, existe uma diferença do ponto de vista conceitual, pois en-

quanto na cosmologia Einsteiniana, nos modelos de Friedmann-Robertson-Walker, k > 0,

k = 0 e k < 0 correspondem a diferentes geometrias do espaço-tempo; no contexto da

cosmologia Newtoniana, essas situações correspondem aos casos em que a matéria se move

com velocidade menor, igual ou maior do que a velocidade de escape do seu próprio campo

gravitacional, respectivamente.

A formulação da cosmologia Newtoniana, em linguagem geométrica é uma forma elegante

de descrevê-la, no entanto, essa formulação não signi�ca que as duas cosmologias, a Newto-

niana e a Einsteiniana, sejam igualmente rigorosas [16]. Na realidade, essa análise do ponto

de vista do rigor não faz sentido, a não ser se compararmos de maneira muito subsidiária,

os métodos utilizados. O fato de que nessa formualação geométrica a equação geodésica ser

a mesma da obtida na relatividade geral também não fundamenta essa pretensa igualdade

no rigor na obtenção da cosmologia Newtoniana, se comparada a Einsteiniana.

O fato de que um universo homogêneo e isotrópico, com seção espacial não-compacta,
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pode expandir-se e recolapsar eternamente, não signi�ca, conforme a�rma Tipler [16], que

a cosmologia Newtoniana, formulada geometricamente, seja mais geral do que a cosmologia

de Friedmann.

As consequências de um termo de correção ao potencial Newtoniano, do tipo Yukawa,

não existem na cosmologia Newtoniana, de forma que as equações que descrevem a dinâmica

do universo, nesse contexto, são exatamente as mesmas que as obtidas sem a correção. Este

resultado teórico, na realidade, está em acordo com os dados observacionais que con�rmam

a validade da interação gravitacional Newtoniana, até distâncias micrométricas.

A evolução de perturbações em um universo onde existe uma fonte que cria matéria

continuamente, depende do coe�ciente de proporcionalidade entre a constante cosmológica

e o quadrado da constante de Hubble. Vimos que somente existirão modos crescentes, e

portanto, a formação de estruturas pelo processo de instabilidade gravitacional, somente para

valores dessa constante menores do que a unidade. No caso em que a pressão é diferente de

zero, esses modos dependem não somente dessa constante de proporcionalidade, mas também

do parâmetro que relaciona a pressão e a densidade, na equação de estado.

Na cosmologia Newtoniana quântica reexaminamos as diferenças entre as duas aborda-

gens, Newtoniana e Einsteiniana, em (2+1) e (3+1) dimensões, exibimos a função de onda

do universo, no qual ocorre a criação contínua de matéria. Neste cenário, a função de onda é

normalizável. Ela foi obtida como solução da equação de Schrödinger para muitas partículas.

No caso em que a pressão é desprezível, os resultados da cosmologia Newtoniana coinci-

dem, exatamente, com os obtidos no contexto relativístico.

É importante salientar que os resultados obtidos no que é conhecida como cosmologia

Newtoniana, são baseados, puramente, na teoria de Newton, mas eles são fundamentados,

também, em hipóteses ad hoc tomadas da relatividade geral. Neste contexto, um sistema

com pressão zero e constante cosmológica descreve o estágio atual do nosso universo e nas

estruturas em grande escala, de modo extremamente satisfatório.

No caso em que a pressão está presente, de�nindo-se de modo apropriado a equação de

continuidade, as equações para as perturbações relativísticas e Newtonianas, são idênticas

para grandes comprimentos de onda. Portanto, temos uma forma mais simples, do ponto de

vista matemático, para obter esses resultados, com o uso da cosmologia Newtoniana.

Investigamos o formalismo Newtoniano, que é baseado nas equações hidrodinâmicas, para

formular a cosmologia Newtoniana, que descreve o comportamento de �uidos cósmicos que
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permeiam o universo.

Neste contexto foram examinados diferentes aspectos, tais como a formulação geométrica,

a introdução de uma correção de Yukawa no potencial Newtoniano e suas consequências, o

comportamento das perturbações num universo Newtoniano com variação de matéria, e

aspectos da formulação quântica dessa teoria.
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