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Resumo

As equagoes de movimento sao obtidas na cosmologia Newtoniana, com o uso da dindmica
Newtoniana e da teoria da gravitacao de Newton. Mostra-se que estas equacoes sao equiva-
lentes as da relatividade geral, com o fator de escala obedecendo a mesma equagao em ambas
as teorias, quando a pressao é desprezivel. Discute-se as caracteristicas da expansao para
universos dominados por radiacao, matéria ou vacuo.

A gravitagao Newtoniana é formulada na linguagem geométrica. Neste cendrio, mostra-se
que para universos homogéneos e isotropicos, a equacao para o desvio geodésico na cosmologia
Newtoniana é exatamente a mesma que é obtida na teoria de Einstein.

Discutimos as possiveis consequéncias de admitirmos a correcao de Yukawa & intera-
¢ao gravitacional Newtoniana. Mostra-se que esta correcao nao introduz modificacoes nas
equagoes cosmoldgicas.

Apresentamos e discutimos um resultado sobre a evolugao de perturbacoes em modelos
cosmolégicos Newtonianos, com criacao de matéria, no caso em que a pressao é desprezivel.
Comentérios adicionais sao feitos para um sistema no qual a pressao é considerada.

Investigamos, também, alguns aspectos da cosmologia Newtoniana quéntica e construi-
mos uma funcao de onda para um universo com criacao continua de matéria, no contexto da

mecanica quantica nao-relativistica.

Palavras-chave: Cosmologia Newtoniana, Cosmologia Newtoniana Quéantica, Crescimento

de Inomogeneidades.



Abstract

The equations of motion are obtained in the framework of Newtonian cosmology using
only the Newtonian dynamics and Newtonian gravity. It is shown that these equations are
in close correspondence with the ones obtained in the framework of general relativity, with
the scale factor satisfying the same equation in both theories, when the pressure is neglected.
The characteristics of the expansion for a universe dominated by radiation, matter or vacuum
are obtained.

The Newtonian gravity is formulated in geometrical language. In this scenario, it is
shown that for homogeneous and isotropic universes, the equation for the geodesic deviation
in Newtonian cosmology is exactly the same as the geodesic equation in Einstein cosmology.

We discuss possible consequences of the assumption of a Yukawa correction to the New-
tonian gravitational interaction. It is shown that this correction does not introduce any
modification in the cosmological equations.

We present and discuss a result obtained concerning the growth of density perturbations
in Newtonian cosmological models with creation of matter, in the case in which the pressure is
neglected. Some addition comments are done for a system in which the pressure is considered.

We also investigate some aspects of quantum Newtonian cosmology and construct a wave
function for a universe with continuous matter creation, in the framework of non-relativistic

quantum mechanics.

Keywords: Newtonian Cosmology, Quantum Newtonian Cosmology, Growth of inhomo-

geneities.
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Capitulo 1

Introducao

A cosmologia moderna, relativistica ou Einsteiniana, é descrita com o uso da teoria
da relatividade geral, cuja formulacao é geométrica, de modo que as descricoes dos efeitos

N

cosmoldgicos estao associadas a geometria do espago-tempo. Esta formulacao faz uso do
conceito de espago-tempo que é compreendido, matematicamente, através do conceito de
variedade diferencidvel. Outros temas da matemadtica moderna, de natureza complexa, tais
como &dlgebra tensorial, e grupos continuos também sao usados nessa formulacao.

Inicialmente, a cosmologia relativistica nao foi aceita para descrever o universo, constituindo-
se, assim, em apenas mais uma nova teoria cosmoldgica, diferente das teorias anteriores.
Nos seus primordios, mais exatamente, no ano de 1917, duas solucoes foram encontradas. A
primeira pelo préprio Einstein e a outra, pelo astréonomo holandés, Willen de Sitter. Essas
duas solucoes faziam previsoes sobre universos completamente distintos. A primeira tratava
de um universo com matéria, enquanto a segunda levava a existéncia de um universo vazio. A
partir destas solucoes, podemos entender porque aquela altura nao havia aceitacao da "nova
teoria do cosmo", uma vez que as previsoes astrondmicas nao confirmavam esses cendrios.

Outras solugoes foram encontradas por Friedmann e Lemaitre, que passaram desperce-
bidas por algum tempo, até que o astréonomo americano Edwin Hubble descobriu o efeito
Ddéppler ao examinar a luz proveniente de estrelas distantes. A descoberta de Hubble levou
os cosmologos & conclusao de que o desvio para o vermelho da luz emitida por essas estrelas
poderia estar associado ao fato de que o universo estd em expansao.

Durante uma reuniao da " British Association for the Advancement of Science", em 1931,

o astronomo belga Georges Lemaitre apresentou sua teoria, na qual o universo estava em



expansao. Nascia, nesse momento, a moderna cosmologia, baseada na teoria geral da rela-
tividade, e conhecida como cosmologia relativistica ou Finsteiniana.

Nesses primeiros anos da década de 30 do século passado, a cosmologia relativistica pas-
sou a ser aceita, com menos restri¢oes, tendo em vista que ela previa uma modelo compativel
com as observagoes astrondmicas. No entanto, em 1934, o astrofisico e matemaético britanico
Edward Milne [1] adotou uma abordagem baseada na teoria de Newton, na qual os feno-
menos gravitacionais nao estao associados aos efeitos da curvatura do espaco-tempo. Nesse
contexto, foi mostrado que o comportamento do universo poderia ser entendido com base
na fisica cldssica [1], [2] a qual dispensa a complexidade matemética do estudo do universo
baseado na cosmologia relativistica. Isto significa, dentre outras coisas, que é possivel, nesse
cendrio, reobter os resultados fornecidos por modelos homogéneos e isotrépicos do universo,
de uma maneira bastante simples, do ponto de vista matematico.

Na abordagem de Milne [1] denominada cosmologia Newtoniana, a expansao do Universo
nao era algo dinidmico, inerente ao proprio universo. Nesta, o universo é estdtico. No
entanto, era preciso incorporar as observacoes de Hubble sobre o universo em expansao.
A solucao encontrada foi admitir que a expansao observada estd associada ao movimento
das particulas no universo. Portanto, este movimento das particulas no espaco estdtico
produziria os mesmos fendmenos que os gerados por particulas estaciondrias no universo em
expansao. Assim, a expansao era entendida como sendo provocada pelos movimentos das
particulas, e nao do espaco, o que permitia preservar a geometria Euclideana, nao havendo,
portanto a necessidade de se introduzir o espago-tempo curvo da abordagem relativistica.

A correspondéncia do ponto de vista algébrico, entre a dinaAmica Newtoniana e a teoria
de Einstein, com o fator de escala obedecendo & mesma equagao em ambas as teorias, foi
estabelecida por Milne e também pelo astréonomo e matemédtico britdnico William McCrea
[2].

A cosmologia Newtoniana foi formulada, inicialmente, para pressao nula. Algumas dé-
cadas depois, o termo de pressao foi incluido [3], [4]. Desde entao, vérios estudos foram
realizados no contexto da cosmologia Newtoniana, tais como a sua generalizacao para flui-
dos ndo-homogéneos [5], a formulagdo para um potencial do tipo Yukawa [6], o que trata do
cendrio no qual hd criagdo de matéria [7], dentre outros [8] - [11].

Milne e McCrea [2] mostraram que é possivel reobter equagdes cosmoldgicas semelhantes

as de Friedmann [12]. Contudo, o termo no qual aparece a energia tem uma interpretagao



diferente daquela do contexto relativistico, no qual o termo correspondente a este estd asso-
ciado a curvatura do espago-tempo. Assim, foi possivel obter as equagoes de Friedmann, com
o uso da fisica Newtoniana, do Principio Cosmolégico, que equivale a admitir a isotropia e
homogeneidade do universo, e do fato de que a posicao de cada particula que faz parte do
universo, muda com o tempo, de modo que a densidade de matéria também depende do
tempo.

E importante salientar que apesar das equacdes obtidas na cosmologia Newtoniana serem
semelhantes, algebricamente, as de Friedmann, para pressao nula, existe uma diferenca con-
ceitual conforme j4 salientamos. Na teoria Newtoniana o termo que contém a energia pode
ser relacionado com a velocidade de escape. Neste contexto, os valores k > 0, Kk = 0 e
Kk < 0 (ver eq. 2.19) significam que a matéria tem uma velocidade menor, igual ou maior,
respectivamente, do que a velocidade de escape do campo gravitacional. Outro estudo na
mesma linha foi realizado por Bonnor [13], no final da década de 50 do século passado.

A descricao de fendbmenos da natureza abordados pela cosmologia moderna podem ser
descritos de uma perspectiva puramente clédssica, usando-se o espago Euclideano, estéatico,
o tempo Newtoniano, a dinamica e a lei da gravitacao de Newton, acrescidos de hipdte-
ses tomadas da cosmologia relativistica. Essa descricao evita o uso de complexos conceitos
matemadticos, presentes na teoria da relatividade geral, e fornece os mesmos resultados obti-
dos na cosmologia Einsteiniana, dentro de certas restrigoes, como por exemplo, a equivaléncia
entre as duas abordagens no limite de baixas velocidades, e somente do ponto de vista lo-
cal. Outra restricao da cosmologia Newtoniana é que os resultados obtidos nao sao validos
em espacos infinitos. Este e outros fatos tém levado a discussoes questionando a possivel
validade da cosmologia Newtoniana [14] , bem como & confirmacao de que essa abordagem
descreve muito bem o universo, no qual a pressao é nula ou desprezivel [15], [16].

A primeira vista parece curioso que a cosmologia Newtoniana tenha sido descoberta so-
mente depois da cosmologia Einsteiniana, cujo nivel de complexidade matemaética ¢ bem
maior. No entanto, podemos entender esse fato em virtude do papel que a teoria da
relatividade geral tem na formulacao da cosmologia Newtoniana, emprestando-lhe algumas
hipéteses ad hoc, de modo que esta formulagao nao é baseada puramente nas equagcoes da
hidrodinamica e na teoria da gravitacido de Newton. E importante ressaltar que no caso em
que a pressao € zero, os resultados obtidos no contexto da cosmologia Newtoniana relativos

a expansao do universo e os cdlculos de perturbacoes até primeira ordem, coincidem com os



da cosmologia Finsteiniana.

A cosmologia Newtoniana é interessante por duas razoes. A primeira, é que ela reproduz
as mesmas equagoes para a expansao do universo que sao obtidas no modelo de Friedmann.
Um outro ponto a se considerar é que a definicao de valores médios em cosmologia nao
estd bem solucionada no contexto da relatividade geral, enquanto no contexto Newtoniano é
possivel resolver parcialmente esse problema. O uso de teoria de perturbacao no contexto da
formulagao de Cartan da teoria de Newton pode nos fornecer um indicativo de como resolver
os problemas que envolvem a expansao perturbativa em relatividade geral.

Esta dissertacao estd organizada da seguinte forma: No capitulo 2 apresentamos uma
revisao sobre a cosmologia Newtoniana. No capitulo 3, fazemos uma comparacao entre as
formulacoes Newtoniana e Einsteiniana. No capitulo 4, apresentamos uma descricao geomé-
trica da cosmologia Newtoniana baseada na idéia de Cartan . No capitulo 5, descrevemos
a cosmologia usando um potencial de Yukawa. No capitulo 6, estudamos o crescimento de
densidade em modelos com a constante cosmolégica varidvel. No capitulo 7, fazemos uma
breve insercao nos aspectos quanticos da cosmologia Newtoniana. Finalmente, no capitulo

8, apresentamos as consideracoes finais.



Capitulo 2

Cosmologia Newtoniana

2.1 Cosmologia Newtoniana: Modelo Discreto

Inicialmente, vamos apresentar a cosmologia Newtoniana, através de um modelo simples
[17], admitindo que o universo é formado por um nimero finito de particulas que interagem
gravitacionalmente. Vamos considerar que a particula ¢ possui massa m; e encontra-se na
posigao 7;(t), em um sistema de coordenadas de origem O. Ao aplicarmos o principio cos-
molégico, a distribuicao das particulas deve ser esfericamente simétrica em torno de O e,

portanto, o movimento destas serd radial, com a localizagao de cada particula dada por

Fi(t) = (D)7, (2.1)

A energia cinética desse conjunto de particulas é

I~

A energia potencial gravitacional de um par de particulas, com massas m; e m;, é dada
por
m;m;

|~» ‘0‘7

7"1'—7"]'

Vi, = -G (2.3)



e portanto, a energia potencial total é

—G Z My (2.4)

onde a restricao imposta na soma garante que nao teremos dupla contagem.
No cendrio que inclui a constante cosmolégica, vamos introduzir uma forca cosmolégica
atuando na particula ¢, que pode ser escrita na forma
-1

onde A é a constante cosmolégica. Associada a essa forca, existe uma energia potencial que

é dada por

1,
V. = —gAizlmiri‘ (2.6)

Podemos, entao, escrever a energia total do sistema, £ =T + V + V., que é dada pela

seguinte expressao

1 n ‘ . 1 n
=5 ;mir Z ’;n_nZI - EA;mirf. (2.7)

t,j=1

Admitindo que em dado instante, ¢y, conhecemos o movimento e a distribuicao das
particulas, o principio cosmolégico exige que o movimento seja radial, isto é, em qualquer

tempo ¢,

ri(t) = S (t)ri (to) | (2.8)

onde S (t) é uma funcdo universal do tempo, e portanto, ¢ a mesma para todas as particulas e
é chamada fator de escala. Esta funcao nos diz como as separacoes fisicas entre duas ou mais
particulas crescem com o tempo, uma vez que as distancias coordenadas, ; (ty), sdo fixas.
Em outras palavras, podemos dizer que o tamanho do universo em um tempo ¢ qualquer é
modelado pela variacao do fator de escala. Isto significa que a representacao do movimento
das particulas por meio do fator de escala é a maneira de mostrar, matematicamente, que os
uinicos movimentos compativeis com a homogeneidade e isotropia sao aqueles de expansao
ou de contracao uniforme, isto é, um simples aumento ou diminui¢ao associado & variacao

do fator de escala com o tempo.



Usando a equagao (2.8), podemos escrever a velocidade radial da particula i, como sendo

(1) = ——27; (). 2.9
A (8) = S (29)
Vamos definir o pardmetro de Hubble H(t) como a relacdo entre a taxa de variagdo tem-

poral do fator de escala e este fator, ou seja,

H(t)="=2. (2.10)

Esta equacao nos diz que a taxa de expansao do universo ¢é definida em termos da derivada

no tempo do fator de escala. Assim, a equagao (2.9) pode ser reescrita como

v (t) = H (1) ri (1 (2.11)

que é chamada Lei de Hubble. Esta lei expressa o fato de que em um universo em expansao,
a velocidade radial de recessao de uma particula ¢, a uma distancia r; do ponto O, é propor-
cional a esta distancia. O valor do pardmetro de Hubble para a época atual é a constante
de Hubble H,.

Pelo que foi estabelecido, a tnica grandeza que temos a determinar é o fator de escala
S (t). Portanto, precisamos encontrar a equagao satisfeita por esta quantidade. Na cosmolo-
gia Newtoniana isto é feito considerando a energia total de um sistema de particulas.

Para isto, vamos substituir as equagoes (2.8) e (2.9) em (2.7). Assim, temos a seguinte
expressao para a energia total do sistema

_Q;mzs () [r2 (t0))? GZ T 6A;mzs s (F)? . (2.12)

INES 1
(1<3)

Podemos escrever a equacao (2.12) na forma

1 . B A
E=-A58%-G= — —AS? 2.1
25 GS 65 (2.13)

onde as constantes A e B sao definidas por

A= Z m; [ri (o)) (2.14)



m;m;
B = E S 2.15
=1 |Tz to —TJ to)’ ( )

(i<34)

A equacdo (2.13) é uma equagao diferencial cosmolégica para o fator de escala S(t).
Vamos analisar o que acontece quando A é igual a zero. Neste caso, nao temos o tltimo
termo da equagao. Se o universo estd se expandindo, o segundo termo do lado direito diminui
e como a energia total permanece constante, entao, o primeiro termo também deve diminuir,
o que significa que a expansao deve desacelerar. Com A > 0, todas as particulas, nesse
universo, estao sofrendo uma repulsao césmica que as empurra para longe da origem. Neste
caso, a constante cosmolégica contribui positivamente para a expansao do universo. Se A < 0
ocorre o contrério e todas as particulas vao sofrer uma atracao césmica em direcao a origem,
e consequentemente a constante cosmolégica age contra a expansao do universo.

Vamos, agora, reescrever a equagao (2.13) em uma forma algébrica idéntica & obtida na

cosmologia relativistica. Colocando $? em evidéncia na equacio (2.13), temos

A_gB Ay (éﬂ. (216)

E =52
127 %e s

Vamos, agora, reescalonar o fator S () para obter um novo fator de escala R (t), dado

por

R(t) = uS (¢), (2.17)

onde p ¢ uma constante. Em termos do novo fator de escala, R (t), a equagao (2.13) pode

ser escrita como

N\ 2
R kAN 8nG
H=|Z| =— +>+— 2.18
( R) T3 TP (2.18)
onde x é definido por
2E 12
- _ 2.1
€ )
3Bu3
Po o (2.20)



Se a energia total E do sistema for igual a zero, entao, podemos escolher ;1 arbitraria-
mente, e qualquer que seja seu valor, a equagao (2.19) nos diz que k também serd zero. Se

E # 0 podemos escolher i de forma que

9 A

=315 (2.21)

1

Como a normalizagao do fator de escala é arbitraria, através do parametro u, entao, se
E > 0, podemos escolher i de tal modo que temos Kk = —1, e se ¥ < 0, podemos escolher
k = +1. Pela opcao do reescalonamento (2.17), temos que a constante x pode ter os valores
+1, 0, ou -1. Note que o valor de E (energia total) nao é importante no que diz respeito ao
comportamento do universo. De fato, é o sinal de E que determina o seu comportamento.
E importante chamar a atencio para o fato de que a equagio (2.18) tem a mesma forma
algébrica da equacao de Friedmann obtida na cosmologia relativistica, e corresponde ao caso

em que p o< R73, ou seja, & matéria sem pressao.

2.2 Cosmologia Newtoniana: Modelo Continuo

Nesta se¢ao, vamos adotar a abordagem de Ribeiro [17] para obtermos a descri¢ado con-
tinua a partir do modelo discreto. Neste caso, o uso do principio cosmolégico nao permite
afirmar que toda a massa do universo estd distribuida de maneira uniforme em cada época
t. Portanto, a densidade de matéria vai depender somente do tempo, ou seja, p = p(t).
Consideremos que nosso modelo de universo é limitado por uma superficie esférica A, cujo
raio é somente fungdo do tempo. O raio da esfera em qualquer tempo t é dado por a (t),
medido em relacao & origem do sistema de coordenadas, O, situado no centro da esfera.

Na cosmologia Newtoniana, a equacao para o fator de escala é obtida considerando as
forgas que atuam sobre diferentes particulas localizadas na superficie da esfera de raio a ().
Esta esfera é considerada parte do universo, mas é suficientemente grande para representar
o0 universo como um todo. E importante chamar a atencao para o fato de que somente a
massa no interior da esfera de raio a (t) produz uma forga gravitacional nao-nula sobre as
particulas na superficie dessa esfera, de acordo com o teorema de Gauss para a dinidmica
Newtoniana. Assim, a massa distribuida numa esfera de raio a; > a (t), nao contribui para

a forca.
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Em uma época ty, ou seja, no tempo de referéncia t; onde a dindmica do sistema é

conhecida, a massa contida numa casca esférica de espessura dz é dada por

dm (z) = 4n?p (to) d.

(2.22)

Para passarmos da descricao discreta para a continua devemos considerar que a massa

total na regiao limitada por uma esfera de raio a (ty) é dada por

a(t())
/ 4ra?p (to) d.
0

(2.23)

Vamos, agora, supor que f (r;) seja uma fungao qualquer das n particulas situadas numa

regiao limitada pela superficie esférica. Para qualquer funcao f (r;), a soma m;f (r;) pode

ser escrita como

Zmif (r;) = /an 4ra?pof (x) de,

onde, po = p(to). Fazendo as devidas substitui¢oes em (2.14), temos

ag
A:/ dra® poa’da
0

ou seja,

A= _poa’(B)v

sendo ag = a (tg).

Agora vamos definir a massa total do sistema, M, que é dada por

ao
M:/ dra? pode,
0

ou

4m
M = ?poag.

Combinando as equagoes (2.26) e (2.28), podemos escrever A da seguinte forma

3M
A = ?ag

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)
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Considerando o fato de que M ¢é uma constante no tempo, entao, poag = pa® = cte, ou

seja,

y (pa®) =0, (2.30)
para um tempo, ¢, qualquer.

Para calcular B, vamos supor que 7 < j, se a particula j estd mais distante do centro O
que a particula ¢. Entao, o potencial gravitacional experimentado pela particula j em um
tempo ty, devido as particulas 7 situadas mais proximas do centro O que j, é

j—1

D[ (t0)] = G Y g

— I7i (to) = 7 (to)| (2.31)

Podemos, entdo, escrever (2.15) como:

m;m;
B= e 2.32
S 2

=1 j=1
(i<3)

7= ijzzm (to) = 7 (to) |’

ou

B=3 G -0l (). (2.33)

Através da relagao (2.24) podemos escrever a equagao (2.33) da seguinte forma

1 [
B:——/ 4P pe® (7,t0) do (2.34)
G Jo
em que ¢ (z,ty) é o potencial gravitacional Newtoniano a uma distancia  de @ em um tempo

to, devido a todas as massas M (z) que estao situadas dentro da esfera de raio z (z < ay).

De acordo com (2.22), temos, entao,

M(x) = /090 dm (z) = %lwpgx?’ (2.35)

e o potencial gravitacional serd dado por

O (z,t9) = —%@) = —%WGpoxz. (2.36)
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Esse potencial gravitacional corresponde apenas a distribuicao de massa no interior de
uma esfera de raio x. Portanto, somente a fracao M de M contribui para ® na equacao
(2.36).

Utilizando (2.36) e substituindo em (2.34), temos

16
= 1—57T2p8a8. (2.37)

Usando as equagoes (2.8) e (2.17), podemos escrever

B

t (T
—R( ) SLIAA ®) , (2.38)
It ri (to)
Essa relacao pode ser escrita, também, da seguinte forma
t t
BlY) _alt) (2.39)
poa(to)

pois o fator de escala R (t) é o mesmo para todas as particulas do substrato cosmolégico.

Lembrando que pa® é constante para qualquer tempo ¢, temos a relacao
Po R’
poopd

Pode-se pensar no substrato cosmolégico com uma grande nuvem gasosa, arbitrariamente

(2.40)

grande, entretanto finita. A consideracao aqui feita do universo ser finito é devido ao fato de
que a gravitagao Newtoniana quando aplicada em um modelo de universo infinito, encontra
problemas com o cédlculo do potencial gravitacional para um sistema homogéneo e esferica-
mente simétrico, que se torna infinito num determinado ponto em decorréncia da quantidade
de matéria do universo. Na superficie esférica A, o potencial gravitacional dado por (2.36)

torna-se

4
® (ag, tg) = —gﬂGpag, (2.41)

que nos mostra que para um universo infinito, ay — 00, o potencial diverge e a forca
gravitacional torna-se infinita.

Ao admitir que a nuvem gasosa ¢ finita, entra-se em conflito com o principio cosmolégico,
pois, sendo finita, passa a ter um centro de referéncia. Para solucionar esse problema vamos

considerar que a nuvem gasosa ¢ uniforme até sua borda, isotrépica em torno do seu centro
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e possui tamanho maior do que qualquer distdncia astronémica que possa ser medida. Por-
tanto, ele é tdo grande quanto possamos imaginar, porém, finito [14], [18]. Para essa nuvem

gasosa, o movimento das particulas é estritamente radial. Portanto,

7(t) = R(t)T (to) , (2.42)

na época t = tg, onde t, representa o tempo presente. Da eq. (2.42), vemos que R (ty) = 1.

Derivando (2.42), encontramos

o(r, H) = H () 7(t) (2.43)

que ¢é a lei de velocidade-distancia, onde H(t) = R/R.Vamos, agora, impor a lei de conser-
vacao da massa a nuvem gasosa. Portanto, & medida que a esfera se expande, a massa é
conservada, e assim, considerando a lei de velocidade-distancia e o fato de que p = p(t),

temos

403

M Ry \*
o= sy = (R (t>) , (2.44)

onde Ry = R (to).

Podemos considerar, também, a equacao de continuidade,

% + V. (pv) = % + 3pH (t) =0, (2.45)
9 _ 3 () H(1). (2.46)

dt
Note que se o fluido for inicialmente homogéneo, o uso da equacao de continuidade nos
leva & conclusao de que a relagao velocidade versus distancia da lei de Hubble é imprescindivel
para garantir a homogeneidade para qualquer tempo.

Substituindo o valor de H(t) e integrando obtemos

r(t) g R(®) g4
/ w_ / ar (2.47)
plto) P R(to) R

p__1 (2.48)




14

Essa equagao mostra como a condicao de conservagao da massa, determina a dependéncia
da densidade em termos do fator de escala. Vamos obter a equacao da dindmica usando a
equagao de Euler. A pressao do gds sera dada por p = p(t), pois as grandezas césmicas s6
dependem do tempo, de acordo com o principio cosmoldgico. Portanto, a equacao de Euler
fica
v 1= -

24z — f=0. 2.4
dt+pr f=0 (2.49)

onde p é a pressao e f é a forca experimentada pela particula, por unidade de massa.

Calculando dv/dt, temos

dv dH 7 dr

- ! Ty

dv dH o (dH 9
a_ET—FHT_(%—FH)T

Substituindo dv/dt em (2.49) obtemos a seguinte equagao

{%t(t) + H%t)] P—f=0, (2.50)

onde consideramos o fato de que a pressao é nula.
Usando o fato de que a forca gravitacional f, pode ser escrita f = —ﬁ@, e usando a

equacao de Poisson,

V2P = 4nGp,

obtemos o seguinte resultado

—

V. f=—4nGp. (2.51)

A divergéncia de (2.50) resulta em

3 [%t(t) + Hz(t)} = —47Gp. (2.52)

Usando a defini¢ao do parametro de Hubble dado na equagao (2.52), temos,

i () e i
a\r) TReT 3 °
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ou

R= ——5 PR, (2.53)

que ¢é a equacao para a aceleracao.

As equagoes (2.46) e (2.53) determinam as evolugoes de p (t) e R (t), com o tempo. Estas
equagoes foram obtidas no contexto da fisica Newtoniana, porém, elas coincidem exatamente
com as obtidas na teoria da relatividade geral, e sao conhecidas como equacoes de Friedmann.

Examinando a equacdo (2.53) podemos perceber que para R=R= 0, o universo é
estatico. Note que estamos considerando a auséncia de pressao. O curioso é que neste caso a
tnica possibilidade seria p = 0 (densidade nula). Este resultado foi um sério problema para
a cosmologia Newtoniana e a forma encontrada para superd-lo foi admitir a existéncia de
uma forga adicional que somente é relevante para grandes distancias. Uma possibilidade de
resolver esse problema é considerarmos a presenca da constante cosmolégica. Vamos, agora
admitir que além da forca gravitacional Newtoniana sobre uma particula, devido & matéria
contida na esfera de raio a (tg), existe uma outra de natureza cosmolégica.

A forga gravitacional é dada por

—Wr = —§7TGp (t) 7. (2.54)

Adicionando a forga cosmoldgica na equacao (2.54), temos que a forga total experimen-

tada pela particula é dada por

- 4 1
J'= —37Gp (1) P+ AT (2.55)

Neste caso, a equacao de Poisson fica

V.f=—4rGp+ A. (2.56)

Reescrevendo a equagao (2.53) temos,

. 4nG 1
i= —”TpR AR (2.57)

ou
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d (. 8tGp A
— [ R? - ——R?| =0. 2.
dt ( 3R 3 ) (2.58)
A equagcao (2.58) resulta em
C A
2 2
— L TR 9.
R 7 3R R, (2.59)
onde
C =8rGpy/3 (2.60)

e K ¢ uma constante de integracao.

Uma andlise da equagao (2.57) nos mostra que se fizermos R= 0, universo estatico, isto
nao implica p = 0, mas tao somente que existe um efeito produzido pela forca cosmolégica
que compensa o efeito gravitacional gerado pela matéria, de tal modo que no final, temos

um universo estatico.

2.3 Obtencao da equacao de movimento segundo Milne

Nesta secao vamos mostrar como o uso da dindmica Newtoniana e da teoria da gravitacao
de Newton permitiram que Milne [1] obtivesse o modelo de Einstein-de-Sitter. Para isto,
foi considerado que particulas que se movem em um espaco estédtico produzem os mesmos
fendmenos que particulas estaciondrias em um espago em expansao.

Vamos considerar uma esfera de raio r e massa M (r). De acordo com a teoria da

gravitacao de Newton, a velocidade de escape de uma particula é dada pela seguinte relagao

202 = _ (2.61)

Escrevendo a equacao (2.61) em termos da densidade, temos

02 87
3

O movimento dessa particula deve ser tal que a equacao de continuidade deve ser satis-

r2p. (2.62)

feita. Esta pode ser escrita na forma

dp 10 ,,
£y -2 = 2.
5 + i (r*pv) =0, (2.63)
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onde v é uma fungao de t e r, dada por (2.62).

Substituindo (2.62) em (2.63), obtemos

dp 87G\
SR L3 =] =0 2.64
p o2y ( : ) | (2.64)
cuja integral fornece o seguinte resultado
—2p7 2 + (247G) "t = 0, (2.65)

onde foi feita uma escolha apropriada da origem do tempo. A equagao (2.65) nos fornece

_ (2.66)
P~ 6nCt2 '
Substituindo a expressao para p (t) dada por (2.66), na equacao (2.62), obtemos
2r
= —. 2.67
T (2:67)

Para testar que essa ¢ a solugao do problema, vamos calcular a aceleracao, que ¢ dada

por

Dv D [ 2r 2 /v T 2r
e Py S L 2.68
dt dt (3t) 3 (t t2> 9¢2 ( )

O resultado dado pela eq. (2.68) é precisamente a aceleragao Newtoniana —GM (r) /r?, uma
vez que
GM (r) 4 1 1 1 2r

4
_ I S S S A L 2.69
2 3P T 3T G T o (2.69)

Para fazer uma comparacao com o universo de Einstein-de-Sitter, obtido no contexto da

relatividade geral, vamos considerar as equagoes que descrevem o universo Newtoniano e sao
dadas pelas equagdes (2.61) e
dv GM (r)

—_— = 2.70
dt rz (2.70)

onde, M (r) = gmwpr3.

Diferenciando a equagao (2.61) e usando a equagao (2.70), encontramos a seguinte equagao

d
M (1) = 0. (2.71)
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Fazendo

r=fR(), (2.72)

onde f é uma constante, que na realidade, corresponde a posicao inicial de cada particula,

temos que
dR
== 9.
v = (2.73)
e
dv d’R
— = f—. 2.74
dt dt? (274)
Substituindo (2.73) em (2.61) e (2.74) em (2.70), obtemos, respectivamente, os seguintes
resultados
1 (dR\* 1 " (2.75)
r\at) ~ 37 '
e
2d°R 1 (dR\?
—_— — —_— e 2.
Rdt2+R2<dt) 0 (2.76)
onde k = 87G.

Essas equagoes sao idénticas as equacoes relativisticas para um universo em expansao,
com geometria da se¢ao espacial plana e pressao zero, conhecido como universo de Einstein-

de-Sitter.

2.4 Consideracoes adicionais sobre o caso continuo

As equagoes de movimento podem ser obtidas a partir da energia do sistema, que é dada
pela soma da energia cinética e da energia potencial. A expansao do universo é observada
através do movimento das galdxias. O universo se expande como um géds de galdxias,
porém cada galdxia, individualmente nao se expande. A lei de Hubble nos diz como essa

expansao ocorre. Ela é tal que as galdxias afastam-se com uma velocidade que é proporcional
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a separacdo entre estas e o observador. Assim, galdxias a uma distancia R (t) estao se
afastando com uma velocidade tal que

dR
— = HR. 2.77
o (2.77)
Vamos determinar a equacao de movimento de uma galdxia. Para isto, considere um
corpo de massa, m, colocado sobre a superficie de uma esfera, a uma distancia R (¢) da

origem. A tnica for¢a que atua sobre o corpo é devido a massa M no interior da esfera. A

energia cinética mais a potencial desse corpo (ou galdxia) é

1 (dR\®> GMm
E=-= — ) - — 2.78
2" ( dt ) R (2.78)
onde G é a constante gravitacional de Newton, sendo
4 3
M= -7R°p (2.79)

3

a massa contida na esfera de raio R (t), e p a densidade de massa.

A equagao (2.78) representa a conservagao da energia, semelhante & de uma pedra que é
lancada para o ar, no campo gravitacional terrestre. Se E > 0, a pedra escapa; se £ < 0,
ela retorna.

Substituindo M em (2.78) e utilizando a lei de Hubble, podemos escrever a energia total

Ccomo
1 4 Gm
E=-mH*R?> - ———7pR3 2.80
2" 3 R (2.80)
ou
2F 8
= H? — —7Gp. 2.81
mR2 37r P ( )

A equagao (2.81) nos permite concluir que em um dado instante ¢, as fungoes H e p
sao constantes, independentemente da galdxia considerada. Assim, se considerarmos uma
segunda galdxia, por exemplo, o lado direito da equacao serd o mesmo para as duas galdxias,
ou seja, 2FE/mR?%. Esse raciocinio pode ser generalizado para n galdxias. Para todas elas,
em um dado instante, 2E /mR? terd o mesmo valor. Na realidade, nao sé o valor permanece

o mesmo, mas o sinal de F (positivo ou negativo) e o fato de ser nulo. Para E diferente de
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zero podemos redefinir a energia total em um dado tempo ¢;, de tal modo que |2E/mR(t;)?|

seja igual a 1. Entao, podemos escrever

(dR/dt)? KR (1)
R R
onde K = —2E/mR(t;)? é 1, 0 ou -1 dependendo do valor de E. A constante R(t;)? tem

- §7TGp = (2.82)

magnitude 2F /m.

Vamos reescrever a equagao de conservagao da energia, a equagao (2.78), na forma

_ R*H? 4G R
2 3 R’

A equacao (2.83) nos diz que o sinal de E depende da razdo entre a densidade, p e H2.

E

(2.83)

Entao, podemos definir a densidade critica

(2.84)

tal que para p > p.., temos E < 0 e o universo recolapsa, enquanto que para p < p.. temos
E > 0, e o universo ird se expandir para sempre.

Podemos também definir o parametro de densidade €2 (¢), da seguinte forma:

@ f) = pifZ)'

E importante chamar a atencio para o fato de que o valor de E ou Q, determina a

(2.85)

curvatura espacial do universo, de acordo com a teoria da relatividade geral. O caso F < 0
(€ > 1) corresponde a um universo fechado, finito e que recolapsa (espago parabdlico). O
caso £ > 0 (2 < 1) representa um universo aberto, o qual se expande para sempre (espago
hiperbdlico). O caso E = 0 (2 =1) corresponde a um espaco Euclideano infinito, que se
expande para sempre.

Na equacao Newtoniana deduzida, a energia F é uma constante, e portanto x também
¢ uma constante. A equagao obtida, (2.82), corresponde a equacdo de Friedmann para o
universo Newtoniano. Para comparar a equagao cosmolégica Newtoniana com a equacao de
Friedmann, o termo que contém a energia, naquela equagao, deve corresponder ao parametro

que define as possiveis geometrias do espago-tempo.



21

Capitulo 3

Cosmologias Newtoniana e

Einsteiniana

Neste capitulo vamos discutir a cosmologia Newtoniana sem a inclusao do termo corres-
pondente & constante cosmoldgica, ou seja, vamos fazer A = 0, e também apresentar alguns
resultados da cosmologia Einsteiniana, quando incluimos o termo de pressao.

Conforme ja estudado, a equagao que rege o comportamento de uma dada galdxia, colo-
cada na fronteira do universo, devido & atracao gravitacional que este universo exerce, é dada

por

. GM
R=— 7 (3.1)
onde M e R (t) sdo a massa e o raio do universo, respectivamente.
Multiplicando ambos os membros da equagao (3.1) por Re integrando, obtemos
1. GM
SRt k= 3.2
S+ R= (32)

onde k é uma constante de integracao, que pode ser positiva, negativa ou nula, e estd
associada a energia total da galéxia.
A equagao (3.2) também pode ser escrita na forma
R* 2k  2GM

E_'_ﬁ: e (3.3)

Usando a definicao do parametro de Hubble e considerando que a densidade de massa

da esfera de raio R (universo) ¢ dada por p = M/37R?, a equagao (3.3) pode ser reescrita
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Ccomo

% 8
H? + E’Z = =7Gp. (3.4)

Usando a equagao (3.1) e substituindo em (3.3), obtemos a seguinte equagao

RR+2R* 4 2k = 0. (3.5)

Se considerarmos R (t) como sendo o fator de escala e ndo o raio do universo, é possivel
reescalond-lo. Portanto, se trocarmos R por AR, onde A é um numero positivo arbitrario,
a equagao (3.5) permanecerd com a mesma forma desde que k seja trocado por kKA72. Isto
significa que podemos arbitrar os valores possiveis de x. No entanto, o sinal de x é importante
e nao pode ser alterado por uma mudanca de escala.

Note que a equagao (3.5) para um fluido perfeito pode ser escrita, no contexto da cos-

mologia relativistica, na forma [19]

RR+2R?+ 2k —47G (p—p) R* =0 (3.6)

A segunda equacao dindmica, nesse caso, é dada por

3R+ 47G (p+ 3p) R = 0. (3.7)

Para obtermos a eq. (3.7), vamos supor que o volume V' do universo se expande de uma
quantidade dV. Desta forma, a pressao p exerce um trabalho dado por pdV', o que implica

em um decréscimo de energia da mesma quantidade. Considerando-se uma esfera de raio R,

temos
4 3 4 3
ou
R3dp + 3pR*dR = —3pR*dR, (3.9)
que pode ser escrita como
R3)p+ 3pR*R + 3pR?’R = 0, (3.10)

onde usamos R = dR/dt e p = dp/dt. A equacio (3.9) também poders ser escrita na forma:
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d dR
RL 4 3(p+p)

alv 11
dt a Y (3.11)

Vamos, agora, reescrever a equagao (3.4) da seguinte maneira:

2
(%) = ngpR2 — 2k. (3.12)

Derivando a equagao (3.12) em rela¢ao ao tempo, teremos:

oo 8 oy 8 )
2RR = §7TG (p) R* + §7er (2RR> ,
2RR = ng (pR) .R + §7TG,02RR,

ou

.4 . .
RR = §7TG(—3(,0 —p)R).R+ gﬂGpRR, (3.13)

onde usamos a relagao
dRd’R

=2 = 2Ri = % {(Rﬂ . (3.14)

d

dt

(%)

A equagao (3.13), pode ser manipulada algebricamente para se obter a equacao (3.7),

que é a outra equacao dindmica para um fluido perfeito, obtida no contexto da cosmologia

de Friedmann-Robertson-Walker.

3.1 Densidade e Pressao

A pressao depende somente da natureza da energia, que pode estar associada & matéria,
radiacdo ou vdcuo ou combinagoes destas grandezas. A densidade de energia de matéria
nao produz pressao capaz de interferir na expansao do universo, no caso de um gds nao-
relativistico.

A densidade e pressao de radiacao sao relacionadas por

1

Py = 5p (3.15)
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O trabalho realizado por cada componente diminui a energia do universo & medida que
acontece a expansao. Entdo, a equagao (3.8) é vilida para cada uma dessas componentes
(matéria, radiagdo ou vécuo) que faz parte do universo, e portanto, podemos escrever

d d

— R} = —p,— R® 3.16
s pig B, (3.16)

onde 7 indica uma das componentes, que vamos representar por m, 7y ou v, para matéria,

radiacao e vicuo, respectivamente. Para a matéria, a pressao p,, , € nula, logo,

d 3

Neste caso, a dependéncia temporal de p,, ocorre através de R, da seguinte forma

1
Para radiacao, as equagoes (3.15) e (3.16) nos fornecem,
d N 3
2 (o) = L (R, )
d dR d
7 (P BY) = py P+ R (py 1)
d dR dR
i (P7R4) = P7R3E - R3Pw% =0, (3.19)
e portanto,
1
Py X 7 (3.20)

O comprimento de onda da radiacao, A, é proporcional a R, devido a expansao do uni-

verso, e estd relacionada com a velocidade da luz, ¢, através da relagao
VA =c, (3.21)

onde v é a frequéncia de radiagao.

A energia de um féton é dada por

E = hv, (3.22)
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onde h é a constante de Planck.
A energia média de um féton de radiacao em equilibrio a uma temperatura 7 é £ ~ 2.7kT
[20], onde k ¢ a constante de Boltzmann. Essas relagdes nos permitem escrever as seguintes

dependéncias para A\, E e T, com o fator de escala:

Ax R (3.23)
EFovoa—
R
T ox E !
7
O ntmero de fétons nao muda com a expansao. No entanto, o nimero de fétons por

unidade de volume 7., ou seja, a densidade de fétons diminui com a expansao do volume, de

modo que

1

TL,YO(ﬁ.

A energia por unidade de volume de radiagao é dada por

Py = Ny B

Para radiacao em equilibrio a uma temperatura 7', a férmula de Stefan-Boltzmann-Planck

[20] fornece

3
Ny o< T’

Py X T,

A densidade de energia no vacuo é constante, e portanto,

d d
E (pvRS) = pUER?” (324)
o que implica, com o uso de (3.16), que p, = —p,.

Vamos admitir que a densidade de energia, p,, e pressao p,, , obedecem a seguinte equacao

de estado:
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Pw = WPy,

onde w é uma constante. A dependéncia no tempo de p,, pode ser determinada a partir da

equagao (3.11), que pode ser escrita na forma

dp dR
R% +3(p+ wp)% =0, (3.25)

ou

dR

1
—dp=-3(1 —. 3.26
Sp=-3(1+w) G (3.26)
A integragdo membro a membro da equagao (3.26), nos fornece
«

onde « é uma constante.

Portanto, a dependéncia temporal de p,, estd contida no termo R3(1*%),

3.2 Dependéncia Temporal do fator de escala

Para determinar explicitamente a dependéncia temporal de R (t), vamos supor que k é

zero. Entao, a equacao de Friedmann é tal que

<%)2 x pR?. (3.28)

Vamos considerar o caso em que o universo contém somente uma das componentes. Para

a radiacao, temos que da equacao (3.20)

(3.29)

e portanto,

R o t1/2, (3.30)

Para a matéria, temos de (3.18)



dR 1
at < RI2
R o t2/3,

Para o vdcuo, a equagao (3.24) nos fornece o seguinte resultado

dR
%O(R,

ou

R x exp (Ht),

27

(3.31)

(3.32)

(3.33)

(3.34)

com H = (dR/dt) /R. A expansao exponencial produzida pela energia de vicuo ¢ chamada

inflacao.

No caso em que todos as componentes estao presentes no universo, a densidade total e a

pressao total sao dadas pelas somas seguintes:

P = Pyt Pm+ pPo

P =Dy + Do

(3.35)

(3.36)

Podemos determinar também o pardmetro de Hubble H como fun¢ao do tempo. Primeira-

mente vamos considerar R o t'/2, que corresponde a um universo preenchido por radiacdo.

Nesse caso, podemos escrever

R=et'?
Ou,
_—
R=_t"12
2

Usando a relagao que define o parametro de Hubble

R
H=2=
R

(3.37)

(3.38)



e substituindo R e R, temos

1 1
H=-t1=_—.
2 ot

Agora, vamos considerar, o caso em que R o< t?/3. Temos, entdo, que

. 2
R=Zgt1/3
3
e portanto,
2et1/3
T3 23
ou
2
H=—.
3t
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(3.39)

(3.40)

Podemos usar a equagao (3.27) para determinar a dependéncia de R com o tempo. Para

isto, vamos considerar a relagao entre p e R, na forma geral, dada por

R(3+3w)p =,

onde « é uma constante.

Derivando ambos os membros, obtemos

(3 4 3w) R3H) ) = 0.

Considerando p = aR~3(%) a sua derivada serd dada pela seguinte expressao

d .
d_i = —c3(1+w) R3HI)-IR,

Considerando a eq. (3.42), temos

(34+3w)R'Rp+p=0.

Substituindo p na equagao (3.44), obtemos

(3.41)

(3.42)

(3.43)

(3.44)



- _—_(34+3 -
R (3 +3w)p—r,

d
= —(3+3w) cR-30+0)

Por outro lado, temos que

drR\?>
dR

S L SR8/
dt va

ou
R1/2(1+3w)+1

(2 (1+3w)+1)

= ++/at.

Portanto, podemos escrever

2 2
R = y B+3w) $3+30

onde v = +4/c. Neste caso, temos, que a proporcionalidade entre R (t) e t é dada por

2
R o t3+3%,

Vamos agora analisar o caso em que x = 0.

Partindo de

R = Ae™"
e usando a equacao de Friedmann
PR iR
temos que
, 4
Aw? = §7TG (p+3p) R.
Portanto,

4
w= iwgﬂG(p—I—?)p).

dt -
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(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)
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Usando o fato de que —p,, = p,,, obtemos, w = +i4/ §7TG,OU = j:%z\/67rG,0v.

Logo, a dependéncia de R com o tempo serd dada por

R3/? = AetVortpet, (3.51)

Do ponto de vista algébrico, as equacoes cosmoldgicas nos modelos Newtoniano e Eins-
teiniano sao semelhantes. Conceitualmente, as diferencas sao expressivas. Enquanto na
cosmologia Newtoniana a obtencao da equacao cosmoldgica é feita a partir da equacao de
movimento para uma particula submetida a forca gravitacional, na cosmologia Einsteiniana a
obtengao da equacao cosmolégica é baseada numa teoria métrica da interagao gravitacional,
em que esta é medida pela curvatura do espago-tempo Riemanniano.

Outra diferenca conceitual diz respeito ao fato de que no modelo Newtoniano, o espago
é infinito, mas a quantidade de matéria no universo é finita. No modelo Friedmanniano, se
k = +1, o espaco é eliptico, o seu volume é finito, e a quantidade de matéria é finita; se
k =0 ou k = —1, o volume do espaco ¢ infinito e, portanto, contém uma quantidade infinita

de matéria, uma vez que esta ¢ homogénea em todo o espago.
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Capitulo 4

Descricao Geomeétrica da cosmologia

Newtoniana

A cosmologia Newtoniana pode ser descrita com o uso da linguagem geométrica, o que nao
significa que esta seja equivalente, do ponto de vista conceitual, & cosmologia Einsteiniana.
Esta descricao foi obtida com o uso de uma abordagem geométrica desenvolvida por Cartan
[21], [22]. Nesta abordagem, podemos mostrar que as 6rbitas de particulas em um campo
gravitacional Newtoniano podem ser vistas como geodésicas de um espago afim, e portanto,
neste contexto, a gravitacao pode ser considerada como uma manifestacao do efeito da
curvatura associada & uma conexao afim, e nao como uma forca. A formulacao de Cartan da
teoria da gravitacao Newtoniana pode ser obtida a partir da equagao do desvio geodésico.

Para desenvolver a formulacao geométrica da cosmologia Newtoniana [23], vamos deduzir
a equacao para o desvio geodésico, que é exatamente igual & equacao do desvio geodésico
para observadores normais & hipersuperficie de homogeneidade e isotropia do universo de
Friedmann.

Usando a equacao de continuidade, que é a mesma tanto na abordagem Newtoniana
quanto na Finsteniana, a equagao para o desvio geodésico pode ser integrada, em ambos os
casos, para se obter a equagao cosmoldgica Newtoniana e a equacao de Friedmann.

Neste capitulo vamos fazer uma revisao sobre a descricao geométrica da cosmologia
Newtoniana segundo Tipler [23] e tecer alguns comentérios sobre as conclusoes ali conti-
das.

A equagao de movimento para uma particula de massa arbitréria colocada em um campo
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gravitacional gerado pelo potencial @, é dada por

d’z

que corresponde a 2% lei de Newton, e que pode ser escrita como

d?x;
— b = 4.2
7 Ve =0 (4.2)
ou
R n 0P 0 (4.3)
dt? ort '

Vamos fazer uso de um parametro afim A\ = at + b, definido em termos de um tempo

Newtoniano t. Ao tomarmos a segunda derivada de t em relagao a A, obtemos:

d*t
— =0. 4.4
d\? 0 (44)
Em termos do parametro A, a equagao (4.3) pode ser reescrita da seguinte forma
P 90 [(dt\?
. =0. 4.5
e or (dA) (4:5)

Consideremos a equacao geodésica que é dada por

d*x® da” dx”
e | 4.6
X2 P d\ dh (4.6)
onde a, 3,7 =0, 1, 2, 3. Considerando a = 0, a eq. (4.6) reduz-se a

Pa® o dafdxr

o Ty T (4.7)

onde z° = t. Comparando as eqs. (4.7) e (4.4), concluimos que F%W = 0, para todos os
valores de (3 e 7.

Note que a equagao (4.6) pode ser escrita para o =i (i = 1,2, 3), da seguinte forma

d*z ; dz°dz?

ar_ar- 4.
A2 0 g\ d\ ’ (4.8)
onde fizemos § =y = 0.

Reescrevendo a eq. (4.5) na forma
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d*zt 0 dz° da®
——— =0 4.9

2 fridx dx (4.9)

e comparando com (4.8), concluimos que os coeficientes '}, sio dados em termos do potencial

Newtoniano através da seguinte relacao

. 0
Top = Ort (4.10)

sendo todos os outros coeficientes nulos.

Vamos considerar a expressao para o tensor de Riemann

i 7 7 r i r TV
Levando-se em conta que somente os '), sao diferentes de zero, entao, as tnicas compo-

nentes do tensor de Riemann diferentes de zero sao

tko = OkLho — Tty + Toolir — TorThos (4.12)

o que nos leva ao seguinte resultado para as componentes nao-nulas

, : 0*®
ok0 = —Loor = 575 % (4.13)
Nesse caso, a componente do tensor de Ricci diferente de zero é Rog = Ri.o = Rbig =

V2®. Assim, a equacao de Poisson para o potencial gravitacional pode ser escrita na forma

[23],

ROO = 471'Gp (414)

Com a expressao (4.13) para a curvatura, a equagao para o desvio geodésico

D?n~ dz?* ,dx”
a 7 o8 =0 4.1
ez ey = (4.15)
torna-se [24]
d*n?
=0
dt?
d2 7 ) ‘
LR =0 (4.16)

dt?
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Considerando todas as quantidades fisicas dependentes somente do tempo, a posicao
como fung¢ao do tempo de uma geodésica estd relacionada com uma posigao fixa, dadas pelas

coordenadas x = (z,y, 2) = (x!, 22, 2%) = constante, através da seguinte relagao

7(t)=R(1)7. (4.17)

Se, inicialmente, temos 7i(ty) = (n', 0, 0), entao, em qualquer tempo ¢ devemos ter 7 (t) =
[R(t)x,0,0]. Portanto, para n? = n® = 0, em ¢t = t3, a equagao do desvio geodésico, eq.

(4.16), resulta em

2,
C;TZ = —Rion' (4.18)
para i # 0. A eq. (4.18) ndo serd compativel com 7i(t) = [R () z,0, 0], a menos que R}y, = 0
para i # 0, para qualquer instante t.

Repetindo esse argumento para 7i(ty) = (0,72, 0), temos que 7(t) = (0, R(t)y,0) e para
7i(to) = (0,0,n?), implica que 7i(t) = (0,0, R (t) z). Portanto, as tinicas componentes nao-

nulas do tensor de Riemann sao R}, (nao existe soma em 7).

Repetindo esse argumento para uma diregao inicial arbitraria 7i(t) = R(t)Z, temos [23]

1 _ p2 _ p3
ROlO - ROQO - R0307

que implica que Ri, = (1/3) Rop. Ao combinarmos esse resultado com a eq. (4.14)
mostramos que para um desvio entre duas geodésicas quaisquer, podemos escrever (4.16)
como sendo

d’R e

alv 2l e 4.1
I 5 PR (4.19)

Podemos integrar (4.19), se admitirmos que a densidade de matéria p (depende somente
do tempo t) através do fator de escala R(t). Esta hipétese estd baseada no Principio Cos-

moldgico, e resulta na seguinte relacao

d

S(om ) =0, (4.20)

que ¢é a equacao de continuidade usual.

Integrando essa equagao obtemos,
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_ poR}

Substituindo (4.21) em (4.19) e multiplicando ambos os membros por dR/dt temos

(4.21)

3 MO ar

1d (dR\*  4rG g3 L AR
2dt \ dt

ou

dR\” 87G  ,\ dR
Realizando a integracao, obtemos,
1 (dR?\ 81G R} R2 (dR\’ R28t ., R}
S\ | = 5 Pt | — 55 o GPO s
R? \ dt 3 R3  R?2 \ dt — R? 3 R
=to
que pode ser escrita na forma
) R2 |87Ge _ (;d_R)z
1 (dR\" 87rG (1) — 0] 3 R dt t—to (4.23)
r\a) = 37 R2 (1) ‘
que ¢é a equacao de Friedmann, onde a constante é dada por
8tGp 1 dR\>
t=to

A constante dada por (4.24) ¢é invariante por mudanga de escala R(t) — SR(t), onde [ é
uma constante arbitraria. Esta invariancia é uma manifestagao do fato de que as mudancas
R(t) — BR(t) e ¥ — PZ nao alteram a distancia prépria entre dois pontos do espago, e
portanto, nao possuem significado fisico. Esta mesma invaridncia estd presente na equacao

de Friedmann da relatividade geral para o caso plano k£ = 0, dada por

= (%) =), (4.25)

A invariancia de (4.25) por R(t) — SR(t) é uma consequéncia do fato de que as surpeficies
de homogeneidade e isotropia para k£ = 0, sao planas.

Com base nessa formulagao geométrica, [23] afirma que a cosmologia Newtoniana, obtida
desta forma, é tao rigorosa quanto a cosmologia relativistica, uma vez que as equacoes geo-

désicas sao as mesmas, em ambas as formulagoes. Nosso entendimento é que essa afirmativa
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feita por Tipler [23] ndo faz sentido, visto que o fato das equagdes serem as mesmas nao
garante, necessariamente, que as duas formulacées possuam o mesmo grau de rigor. Caso
houvesse sentido nessa afirmativa, as dedugoes feitas por Milne [1] e Milne e McCrea [2],
que conduzem as mesmas equacoes de movimento do caso relativistico, poderiam ser usa-
das para afirmar que as duas formulacoes sao igualmente rigorosas, o que nao é correto se
considerarmos os diferentes aspectos e as limitagoes da abordagem Newtoniana.

Assim, no nosso entendimento, a descricao geométrica é antes de tudo uma forma elegante
de se obter as equagoes de movimento no contexto da cosmologia Newtoniana, mas que
nao permite que se estabeleca comparagoes no que diz respeito ao rigor das cosmologias
Newtoniana e a Einsteiniana, pelo simples fato de haver coincidéncias entre as equacoes do

desvio geodésico.
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Capitulo 5

Cosmologia Newtoniana para um

potencial com correcao do tipo

Yukawa

O problema referente & possivel existéncia de uma corre¢ao ao potencial Newtoniano,
do tipo Yukawa, tem sido objeto de estudo desde os anos 80 do século passado até os dias
atuais [25], [26]. Em meados dos anos 80, essa questao foi amplamente discutida, ndo sendo
observado nenhum desvio das previsoes feitas pela gravitagao Newtoniana. Recentemente,
essa questao foi retomada numa perspectiva de se confirmar se essa corre¢ao do tipo Yukawa
existe, e em caso afirmativo, qual é o intervalo de validade, ou melhor, para que distancias
existe essa corregao.

Neste capitulo, vamos fazer a revisao de um trabalho que se propoe examinar as con-
sequéncias de uma cosmologia Newtoniana tomando como base o potencial Newtoniano
acrescido de uma corregao do tipo Yukawa [6].

Vamos considerar a energia potencial V' de duas massas m; e my separadas por uma

distancia r, modificada com o termo de Yukawa, e que é dada pela expressao

mims

V(r)=-G (14 ae ), (5.1)

onde G é a constante gravitacional de Newton, sendo a e A pardmetros relativos a intensidade
da correcao e ao intervalo de validade desta, respectivamente. Os valores possiveis de a e A

sao estabelecidos através de andlise de experimentos, sendo os valores mais recentes dados a
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partir de elementos fornecidos por experiéncias sobre o efeito Casimir [26].

Admitindo que exista essa nova interacao, com um termo de curto alcance, D’ Olivo e
Ryan [6] examinaram as implicagoes, no cendrio cosmolégico, do termo adicional de Yukawa
dado em (5.1). O método que somos impelidos a usar para tratar o problema é construir uma
cosmologia Newtoniana seguindo o mesmo procedimento de Milne e McCrea. Usando-se o
potencial Newtoniano, as equagoes de movimento para um universo homogéneo e isotrépico
sao as mesmas obtidas no contexto da teoria da relatividade geral, para pressao nula. Para
o potencial dado por (5.1), podemos enumerar alguns possiveis problemas, a saber: (a) nao
existe nenhuma garantia que na cosmologia Newtoniana construida, com esse potencial, as
equagoes de movimento sejam semelhantes as da teoria relativistica; e (b) ndo é evidente que
possa ser construida a cosmologia Newtoniana, uma vez que o método de Milne e McCrea é
fortemente dependente da forma da interacao.

Conforme j4 foi discutido, uma particula no fluido cosmolégico em movimento, tem uma

velocidade que estd relacionada com o fator de escala, R (t), através da seguinte expressao

7= (R/R) 7. (5.2)
A equacao de Euler e a equagao de continuidade para esse fluido de densidade p (t),s80

dadas por

7 [R/R} _F=o, (5.3)

dp/dt + 3pR/R = 0, (5.4)

onde F é a forga gravitacional por unidade de massa que atua sobre a particula.
A eq. (5.4) pode ser reescrita na forma,
ldp 3R

i (5.5)

ou

1

5| w

Integrando a eq. (5.6) obtemos,
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In (ﬁ) — 3In (}%) (5.7)

_ poRRg
=

o que implica no resultado

(5.8)

onde pg e Ry sao constantes.
Esta equacao nos diz que a densidade depende do tempo, ¢, através do fator de escala,
sendo inversamente proporcional ao cubo desta quantidade, que é um resultado ja conhecido.
A forca que atua sobre a particula pode ser calculada a partir do potencial gravitacional
gerado pela casca esférica, admitindo que o potencial fora da esfera vai para zero quando
r — 00, no centro da esfera vai para infinito e é continuo através da superficie da esfera.
Dentro da esfera, para r < R, onde R é o raio da esfera, a equacao de Poisson pode ser

escrita na forma

19 (7‘2%) = 4nGp. (5.9)

Integrando a eq. (5.9) entre 0 a R, obtemos,

0o rs

2

r°— | =4rGp— 5.10
(#50) =16 (5.10)
Ao integrarmos a expressao acima chegamos ao seguinte resultado para o potencial gravi-

tacional dentro da esfera

2
o1 (r) = g?TGpTQ + o, (5.11)

onde o é uma constante.

Para r > R, ou seja, fora da esfera, temos:

10 (,00\

0 que nos permite concluir que 7,22_¢ é uma constante, que podemos designar, C'. Assim,
T

temos

0% (r):—g—i-B, B =0 pois ¢ (o) = 0. (5.13)
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Usando a condigao ¢ (r — oo0) — 0, obtemos

G2 (1) = —

g. (5.14)

Para encontrar o valor da constante o, vamos igualar (5.11) a (5.14) e também as suas

derivadas, ou seja,

¢1(r) = ¢2 (1) (5.15)
061 (r) _ 06, (1)
or or

De (5.15), obtemos as seguintes relagoes

2 C
gWGpRz +o0= —E, (516)

4 C

Manipulando algebricamente as eqgs. (5.16) e (5.17), obtemos que a constante o é dada
por 0 = —27GpR2.
Vamos considerar a equagao satisfeita pelo potencial gravitacional Newtoniano, a equacao

de continuidade e a equacao de movimento, que sao dadas, respectivamente, por

V3¢ = 4G, (5.18)
dp = o
% + V- (pt) =0, (5.19)
e
aﬁ+(* 6) S v (5.20)
a1 U - = o, .

onde estamos considerando a pressao nula.

Suponhamos que o universo é estdtico e homogéneo, o que significa dizer que v = 0 e
p(t) = po é constante no tempo. Consideremos a solucao da eq. (5.18) como sendo dada
pela eq. (5.11). As hipéteses feitas sobre ¥ e p sdo compativeis com a eq. (5.19). No entanto,

a eq. (5.20) nao é satisfeita, pois ﬁgzﬁ # 0. Assim, a solugao encontrada nao é vilida para
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um universo estatico e homogeéneo. Ela corresponde a um universo nao-estético, no qual a

expansao estd associada ao movimento das particulas.

Para encontrar a forca gravitacional F', vamos considerar, inicialmente, r < R, e usar a

relacao entre Fe ¢, dada por

F=—V¢.

Portanto, para r < R, temos o seguinte resultado
que pode ser reescrita na forma

Substituindo (5.22) em (5.3) e multiplicando por R*, obtemos:

. 4
RQR + g?TGpU = 0.

Vamos reescrever (5.23) na forma

. 4 1
R = —gﬂ'Gpoﬁ

ou ainda,

d(dry 4 . 1
a\ar ) T 3T PR

Multiplicando a eq. (5.25) por dR/dt, temos

3P

dRd (dR\ 4 1 dR
dt dt \ dt |

que pode ser reescrita na forma

1d (.5\ 4 d (1
2 () = —37Gm (—@ (E * ’f)) !

onde k é uma constante. A integracao de (5.26) nos fornece a seguinte equagao

(5.21)

(5.22)

(5.23)

(5.24)

(5.25)

(5.26)
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. 2
R 87G (Ro\® k
(ﬁ)'—ir%(§> “m (5:27)

A constante k, no contexto Newtoniano, é a energia e pode ter os valores +1,0 ou —1, por
uma escolha conveniente das constantes que aparecem em sua defini¢do. A equagao (5.27)
corresponde exatamente a equacao de Friedmann.

Os resultados obtidos sao independentes do valor de R, e portanto podemos fazer R — oo.
Neste caso, 0 — —o0, mas as equagoes para R e p permanecem as mesmas.

Vamos considerar o potencial modificado através de uma contribui¢ao do tipo Yukawa.

Neste caso, podemos escrever

[

m |

O potencial gerado por uma massa dm é dado por

o — — GIm (4 e , (5.29)
r— /|
ou
o — — P (14 g5 dv, (5.30)
r— /|

onde, dm = pdv.

A eq. (5.30), pode ser escrita, na forma integral, como

|7—]

o= /LdHaG/Le o= @, + By (5.31)
g g

—|P=]/x

ondeq)l:—GfﬁdvefbgzaGf Le

=

Podemos escrever, entao, que,

V20 = V2, + V?d,, (5.32)

onde

ou
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V28, — —4nG / P (1) (7 — ) do,

que pode ser escrita na forma

V20, = —4nGp (1) . (5.33)

O segundo termo em (5.32) é dado por

V20, = aG/p(r) V2 dv, (5.34)

ou

que ainda pode ser escrita como

|

V20, = al / p(r)4ms (F— ) e 3 dv + aG / _p(r)_gn (ei > dv-+

ou

} , (5.36)

e foi usado o fato de que




Vamos tomar o divergente de (5.36), dado por

7

v.v (

que pode ser reescrito como

=

e que resulta em :

Fazendo as substitui¢oes na equagao (5.35) temos,

1 [ p(r) _I=1, 2aG [ p(r) _l="
2 _
V>0, —47T04GP(7”I)+§/ |r—r’|e vt A / |7’—r’|26 '

o)

N

que pode ser escrito na forma

1
V20, — Fq)g = 4raGp (r').

44

2aG p(r) _
dv— e
A / r —r|?

(5.37)

Vamos considerar o potencial (5.28) que é soma de dois potenciais que obedecem as

equacoes

V2CI)1 == 0,

1
qu)g - —pq)g - O,

(5.38)

(5.39)

onde estamos considerando as solucoes na auséncia de matéria. Para solugdes no vazio

(dentro e fora da casca esférica) temos que,

1 d [ ,dd, 1

- 272 o

r2dr (r dr ) A2 2
que nos leva a

Aer/)\ Be—r/k
= + _

CI)Z (T) r r

(5.40)

7|

dv,




45
A solugao da eq. (5.38) é dada por

¢dm=—§+D- (5.41)

Dentro da esfera temos que ®; e @5 sao finitos, e fora da esfera, quando r — oo, as duas
solugoes vao para zero. O potencial total dentro e fora da esfera é dado por ® = &, + .

Considerando a eq. (5.41) para r — oo, concluimos que

Oy (r) = ——. (5.42)

Por outro lado, nesse mesmo limite, a eq. (5.40) implica que A = 0, e portanto,

B —r/\
Oy (r) = 20— (5.43)
r
Para as solugoes interiores, temos que
C
Dyt = ——+D; (5.44)
r
e
AieT/)‘ B,-e*’"/’\
Pg int = + — (5.45)
Considerando as condigoes de contorno na origem, r = 0, temos que
q)l,int - Dl (546)
e
) r
(1)2,1'7115 = 2141 sinh (X) .
Portanto, o potencial no interior da esfera é dado por
By = 2A; sinh (%) + D, (5.47)

O potencial externo é dado por

Aewt _ Coo
By = —thomr/A _ Zet, (5.48)
r T
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Para fixar as constantes A; e D;, vamos admitir que o potencial no centro da esfera é a
soma de todas as contribuigoes de cada camada infinitesimal da esfera, tratada como uma
massa puntiforme que dd uma contribuicao igual ao potencial (5.1). Podemos encontrar
o potencial fora da esfera usando a condicao do potencial ser continuo através da camada
esférica. O potencial total dentro e fora da camada esférica (com densidade p e espessura

da) é dado por

By = —4nGpyaaddae* [sinh (/)] /r — 4xGpada, (5.49)

Doy = —4nGpyaadsinh(a/N)dae "/ /r — 4wG pa’da, (5.50)

onde p é a densidade de matéria e py é a densidade de matéria que gera o termo de Yukawa.

O potencial dentro da esfera sélida de raio R e densidade constante é

r R
/ By (a) da + / By (a) da
0 0

2
= —4nGpya)® + 57er7°2 — 21GpR? + 4nGpyar? {[sinh (r/N)] / (r/N)} (R/X +1) e R/,
(5.51)
Ao tomarmos R indo para o infinito, o ltimo termo vai para zero e o potencial se reduz

ao potencial Newtoniano,

2
® (r) = —4rGpyar’ + g?TG,OT2 — 2nGpR2. (5.52)

Da equagao (5.52) temos a forga sobre uma particula do fluido é igual a forga Newtoniana.
As equagdes para p (t) e R (t) sao dadas por (5.8), (5.23) e (5.27), e portanto o universo ¢ o
mesmo do modelo de Friedmann-Robertson-Walker.

O potencial dado por (5.52) estd associado & mesma expressao para a for¢a dada por
(5.22). Portanto, a equagao de movimento, neste caso, é dada pela eq. (5.27), que ¢ a mesma
obtida no caso do potencial Newtoniano. Logo, neste contexto, a correcao ao potencial
Newtoniano, dada pelo termo de Yukawa, nao tem nenhuma influéncia na dinadmica do
universo. Este resultado estd coerente, apesar de nao ser consequéncia direta, com o fato de
que até mesmo a distancia micrométricas, a correcao de Yukawa nao ter nenhuma influéncia

na interagao gravitacional Newtoniana.
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Assim, o estudo de modelos do universo que sdo compativeis com o potencial dado pela
eq. (5.1), qualquer que seja o modelo cosmoldgico considerado, deve levar a um resultado que
preserva a equacao cosmoldgica. Este resultado é compativel com o fato de que a interacao
gravitacional Newtoniana nao é sensivel a correcao de Yukawa, e portanto, as equacoes de
movimento devem ser as mesmas, quer consideremos ou nao a corre¢ao, pelo menos no con-
texto cosmoldgico. Caso fossem diferentes, e matematicamente, isto seria possivel, terfamos
uma incompatibilidade com o fato observacional que a interacao gravitacional Newtoniana

nao sofre nenhuma modificacao, pelo menos, até distancias micrométricas entre os corpos.
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Capitulo 6

Evolucao das perturbacoes na
cosmologia Newtoniana com

constante cosmolégica variavel

A constante cosmolégica A foi introduzida na teoria da relatividade geral, para resolver
os conflitos entre a teoria e os dados observacionais disponiveis no inicio do século passado.
Entao, para se obter um modelo estdtico era preciso introduzir um termo extra, contendo
a constante cosmoldgica, de modo a evitar o colapso em virtude da acao gravitacional da
matéria. Atualmente, a inclusao da constante cosmolégica também é uma imposicao dos
dados observacionais que indicam que o universo estd expandindo-se de maneira acelerada,
o que pode ser obtido em modelos com constante cosmoldgica, dentre outros [27].

Uma pergunta que podemos fazer relacionada com a constante cosmoldgica é a seguinte:
Quais sao as possiveis implicagoes de uma constante cosmoldgica que varia com o tempo?

Algumas implicagoes foram estudadas considerando que A depende do tempo através de
R™2, ou seja, A = aR™2, onde a é uma constante [28], ou através de uma combinagao que

\ 2
envolve também o parametro de Hubble, que pode ser escrita na forma A = 353 (%) +aR72,
onde /5 é uma constante [29].

O trabalho de Arcuri e Waga [9] investiga o problema relacionado com a evolugao de
perturbagoes, no contexto da cosmologia Newtoniana, também em um cendrio onde A varia
com o tempo através do pardmetro de Hubble.

O papel da constante cosmolégica tem sido objeto de discussoes, tendo tomado impeto
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com o cendrio de um universo acelerado, no qual essa constante pode ser responsavel pela
repulsao césmica necessdria para acelerd-lo. Uma revisao acerca dos varios momentos dessa
constante pode ser vista em [30], [31].

Neste capitulo, vamos fazer uma revisao do trabalho de Arcuri e Waga [9] no qual eles in-
vestigam o crescimento das perturbagoes em modelos cosmolégicos Newtonianos com criacao
de matéria, nos quais esse processo ocorre através da dependéncia da constante cosmolégica
com o tempo, por intermédio do pardmetro de Hubble. Iremos adicionar alguns comentdrios
aos resultados obtidos e fazer uma extensao parcial desse trabalho, com a introdugao de um

termo de pressao nas equagoes cosmolégicas.

6.1 Equacoes Diferenciais para J

As equagoes fundamentais da hidrodindmica que descrevem o movimento do fluido cés-

mico sao:
ou + (@V,) i= -V, (6.1)
ot ). U-Vy | u= r .
dp =
hutd pil) = T 2
(a)ﬁvr (pil) = 0, (62
e
V2® = 47Gp — A. (6.3)

As equagoes (6.1) - (6.3) correspondem a equagao de conservacao de momento, a equagao
da continuidade, e a equacao de Poisson, respectivamente, sendo u a velocidade de um
elemento do volume do fluido, p a densidade de massa, ® o potencial gravitacional, e A a
constante cosmolégica que é considerada como uma funcao do tempo Newtoniano absoluto ¢.
Vamos considerar a pressao do fluido desprezivel. Para considerar modelos cosmolégicos com
criacao de matéria, serd incluido na equacao da continuidade, o termo fonte, que denotaremos
por ¥ [32].

Esse novo termo de fonte modifica a equacao de Euler, que passa a ser escrita na forma

32]
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ou U N v .
<E)7« + (u.VT) u= -V, ® + ; (c— ). (6.4)

Note que na equagao acima, foi admitido que a criacao de particulas nao afeta a velocidade
das particulas existentes, e além disto, as particulas criadas, também possuem esta mesma
velocidade.

Vamos introduzir a coordenada comével Z, relacionada a coordenada 7, por [33], [34]

r
r=— 6.5
I= (6.5)

onde R = R (t) é o fator de escala. A velocidade do fluido e a densidade em termos dessa

nova coordenada sao dadas por

. — .
i=RI+R & =Ri+5 (Z.t) (6.6)

P = Po (t) [1 +4 (f7 t)] ) (6'7)

onde ¥ e § sdo perturbagdes de primeira ordem da velocidade RZ e da densidade Po, respecti-
vamente. Vamos admitir, como é usual, que essas quantidades sao pequenas, isto é, 6 < 1 e
V<L U.

Em termos das novas coordenadas (¥, t), podemos estabelecer as seguintes relagoes entre

operadores

V,=V =RV, (6.8)

) ) ) R_ -
(a)x a - (&)T + El’vm (6.9)

Usando esses novos operadores, podemos reescrever as equagoes (6.1) - (6.3). Inicial-

mente, vamos considerar a equagao (6.1), que passa a ser reescrita como,

(@) _ i (z-V,)d+ (“'Vx)ﬁ: ~V,®, (6.10)

ou
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% (wa) - (%f-vx) (wa) + % {(wa) vx} (wa) - —%@. (6.11)

Podemos transformar a equacao (6.11) em

. 97 R R R v
B+l (VL) G (B, T2 (5V,) (T) = — 2, _
x—l—at R(xV)v+R(:cV)U+R(UV)(x) RQJ (6.12)
a qual resulta em
. 07 R 1
A equagao (6.2), pode ser escrita na forma
dp ﬁ ﬁ
a5 + (Vyp)-u+p- (Vi) =0, (6.14)
ou
dp R . 1 ) L
(E)w—Em-vxp—l—E(VXp)-u%—EVXU—\I/. (6.15)

Substituindo p e 4 na equagao (6.15), temos,

I (143 (7 t))] BV (o [+ 6 @)+ (Ve (o [L 8 (7 1)} (BT (1)

T

+ p_]_g [1+6 (1) Vs ((Rmﬁ) (7, t)) — U (6.16)

ou ainda

o (14 (F,0)) + pod (,) = 50T (6(7,6)) + 50 19,8 (7, 1)] - (R7+7) +

)

0 - — e
+ 52 1+0) {vaﬁvw} — U, (6.17)

que pode ser reescrita como

L : : LR R . S
fo + pod + pod + %R(vm 3500+ po3 50 + % (V x &) + ‘%v X T=U. (6.18)

Usando a equagao (6.2) para pg, que é dada por
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. LR

e substituindo na equagao (6.18), obtemos o seguinte resultado

RV (pi) + R6+ R(V0) - 7+ (Vy - 0) + 6 (V x 7) = 0. (6.20)
0

Como o valor de § e v sao muito pequenos, podemos desprezar os termos que contém

produtos envolvendo ¢ e v, 0 que nos permite obter o seguinte resultado

90 o
V-i=—-R|—+—|. 6.21
‘ L‘% i Po} ( :
A equacao (6.3) toma a seguinte forma
75V = 4nGpo (1+) = A. (6.22)
Escrevendo ® como [32]
- 2 2.2 1,9 o
S =¢(2,t)+ ngpoR T — EAR x (6.23)
e a equacao (2.57), na aproximagao de ordem zero ou seja, em termos de pg, temos
R
3§ = —4nGpo + A. (6.24)
Substituindo ® dado por (6.23) em (6.13), temos
.0 R, V¢ 2 A
Rit o + 5= =0 = ngpO}# (Va?) + o (Va?). (6.25)
Usando a relagao V (2?) = 27, e substituindo na equagao (6.25), temos
. 97 R, V¢ 4 N
AL S & ey 2
Ri+ T + 7Y 7 37TGp0R T+ 3 R% (6.26)
Reescrevendo (6.24) na forma
. 4 AR
R = —§7TG,O[)R + ?, (627)

e substituindo em (6.26), obtemos:
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a "R TR
Agora, vamos substituir ®, dado por (6.23) em (6.22). Assim procedendo, obtemos

ov R _ Vé (6.28)

2 G

1 2

72 oR?*V? (1) = 4nGpo (1 +6) — A, (6.29)

o que resulta em

V2p = 4rGR?py6, (6.30)

ao usarmos a relagao V2 |Z]° = V - V |#]* = 6.

Tomando a divergéncia em (6.28), obtemos,
(V)= -V’ (6.31)

Substituindo (6.21) na equagao (6.31), obtemos o seguinte resultado

0 95 WS R 95 WS\ V¢
a(alm ) mCelarw)) 5 .

Substituindo V?¢ pela expressao dada em (6.30), obtemos

A7) . .85 U. . (95 WS
—R (5 + —) -R (6 +U—+ —5> - R (@— + —) = —47GRpy9, (6.33)
Po Po Po ot po

que apés manipulagao algébrica se reduz a
R. _RUS . .4§ V.
2—04+25—+0+V—+ —0 —47GRpyd = 0, (6.34)
R R po Po  Po

que pode ser reescrita na forma

R (U o (U
4rGRpo— 22 () - 2 (2
T R(Po) ot (p0>

E importante chamar a atencao para o fato de que se considerarmos ¥ = 0, vamos obter

5 ]

+_
R po

& |
a2

0

5 §=0. (6.35)

exatamente a equacao que rege o comportamento e evolucao das perturbagoes, no contexto

da cosmologia Newtoniana, na auséncia do termo de pressao.
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6.2 Evolucao das perturbacoes no modelo com A va-
riavel

Nesta secao serd feita um revisao da se¢ao III do trabalho de Arcuri e Waga [9]. Portanto,
vamos considerar a equacao de evolucao para as perturbacoes, no contexto da cosmologia
Newtoniana, num cendrio em que a constante cosmolégica estd presente, e cuja variacao com
o tempo d4 origem a um processo de criacao de matéria.

A relacao entre A e a constante de Hubble, serd admitida como tendo a forma [32]

A = 38H2. (6.36)

O termo de fonte responsdvel pela criacao de matéria e a constante cosmoldgica estao
relacionados por [32]
1 0A

A solugao da eq. (6.35) pode ser obtida através de uma mudanga da varidvel ¢ para R.
Fazendo esta mudanga, obtemos a seguinte equagao [9]
9?6 3 g6 3

R2@+§R(1+35)@—5(1+ﬁ)(1—36)6:0. (6.38)

Na obtengao da eq. (6.38), usamos as seguintes relagoes:

3 R
5 (1= 8) 55 = 4G, (6.39)
J'%——l}z(l—w)E (6.40)
2 R? ‘
(§
v R
— =3=. 6.41
Py (6.41)

A integracao da eq. (6.38) fornece a seguinte solugao [9]

6 = AR30+2)/2 L pR1=35, (6.42)

onde A e B sao constantes.
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A eq. (6.42) pode ser reescrita na forma

§ = AS_ (R) + Bo. (R), (6.43)

onde ¢_ e d, sao os modos decrescente e crescente, respectivamente. E importante salientar
que a partir da anélise de (6.42), concluimos que nao é possivel ter modo crescente se 8 > 1/3.

Nesse contexto, a dependéncia temporal do fator de escala é dado por [32], [35]

R(t) = R, EH (1-5) t] , (6.44)

onde R, e H, sao os valores atuais do fator de escala e do parametro de Hubble, respectiva-
mente.
Substituindo (6.44) em (6.43) e redefinindo as constantes, podemos escrever a seguinte

expressao

t —(14+8/1-p)
) , (6.45)

5= 5_(t) (—

£\ 2(1-38)/3(1-P)
; )

+ 04 (to) (_

to

onde d; (t9) e d_ (tp) indicam as amplitudes dos modos crescente e decrescente em um dado
tempo inicial, tg, respectivamente.

Considerando 8 = 0, ou seja, na auséncia de criacao de matéria, e para um fluido sem

pressao, reobtemos os resultados conhecidos, que sao

5y = 8. (o) <3)2/3 (6.46)

t

5_ = d_ (to) <—> B . (6.47)

to
Conforme j4 salientamos, para 5 < 1/3, temos o modo crescente, e portanto, podemos ter,
em principio, formacao de estruturas, tais como galdxias, através de um processo chamado
de instabilidade gravitacional que se origina a partir de uma pequena inomogeneidade ou
pequena variacao na densidade de matéria, que dé origem a uma atracao da matéria da
vizinhanga, num processo crescente, que agrega, cada vez mais, matéria. Este processo pode
ser compreendido a partir do comportamento da flutuacao, ¢, que acabamos de determinar.

E importante chamar a atencdo para o fato de que no modelo investigado por Arcuri e
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Waga [9] existe uma forte correlacdo entre a possibilidade de ocorréncia da instabilidade
gravitacional, e portanto, de formacao de estruturas, e o valor do parametro . Também
devemos enfatizar que os resultados obtidos sao os mesmos que seriam obtidos no contexto

da relatividade geral.

6.3 Alguns comentarios sobre a equacao de evolucao
das perturbacoes na cosmologia Newtoniana com
pressao

A descricao da cosmologia Newtoniana, incluindo o termo de pressao, foi feita por McCrea
[36], e posteriormente, sem o uso de conceitos advindos da relatividade geral, por Harrison
[3]. Na formulacao adotada por McCrea [36] foi necessédria a adocdo de conceitos fisicos das
teorias da relatividade especial e geral, como por exemplo, preservar a equivaléncia entre
massa e energia e a distingao entre massa inercial e gravitacional.

As equacoOes hidrodinamicas, nas quais ¢é feita essa extensao para incluir a pressao, sao

dadas por:
oI | & AN
SV [<p+§> i =o, (6.48)
% g v*——%—( +£)_1€ (6.49)
ar VYT P by '
€
V20 = 47G (,0 + i—f) : (6.50)

que correspondem as equacoes de continuidade, de Euler e de Poisson, respectivamente. E
importante chamar a atencao para o fato de que o tratamento perturbativo das eqs. (6.48)-
(6.50) nao fornecem o mesmo resultado [37] que é obtido na relatividade geral, no gauge
sincrono.

Essa discrepéancia entre os resultados obtidos nos dois contextos mencionados anterior-
mente, foram resolvidos por Lima e colaboradores [5], que propuseram uma modificagdo na

equacao de continuidade, que passou a ser escrita na forma
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dp L Pe L
E+V~(/)u)+gv‘u—0. (6.51)

Nesse novo cendrio, se considerarmos o processo de criacao de matéria a semelhanca do
que foi feito na secao anterior, a equacao para a perturbacao da densidade serd dada por
R U

2— + —
R po

0?0 00

ot

2
P

= V7.

R/ 9 (Vv
4 1 1 2%\ ) " a o,
7GRpo (1 +v)(1+3v) R <p0> ot (Po)

(6.52)
onde estamos considerando a equagao de estado do gdas como sendo dada por p = vp, e
v2 = Op/dp.

Da equagao (6.52) concluimos que os modos crescente e decrescentes dependem, agora, da
pressao exercida pelo fluido, nao somente através da modificacao do coeficiente do termo Gpy,
mas também pelo termo extra ;—%V% . Dessa forma, introduzimos no contexto Newtoniano, o
papel da pressao na dindmica do universo, o que acontece de maneira natural quando estamos
tratando desse problema, na teoria da relatividade geral. Nesse contexto, qual seja, o da
cosmologia Newtoniana, com o termo de pressao e com a modificagao apropriada da equacao
da continuidade, obtemos os mesmos resultados da teoria da relatividade geral, porém, com
uma vantagem, que é tratar de maneira mais simples, do ponto de vista matemadtico, o

problema que acabamos de considerar.
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Capitulo 7

Algumas consideracoes sobre a

cosmologia Newtoniana quintica

As leis da fisica que governam o universo, nos dizem como o estado inicial evolui com
o passar do tempo. Na fisica cldssica, uma vez especificado o estado inicial, os estados
subsequentes poderao ser conhecidos com precisao. Na fisica quantica, dado o estado inicial,
também podemos conhecer a evolucao do sistema, e determinar a probabilidade do sistema
se encontrar em um certo estado, em um dado instante.

A cosmologia quantica tem como objetivo descrever o universo, usando as leis da fisica
quantica. Mas, a aplicacao destas leis, nos remete a um problema que consiste em conhecer
o estado inicial do universo.

Uma forma de resolver este problema é usar os dados observacionais e a teoria que é
consistente com os mesmos, para entender como era o universo nos instantes iniciais de
sua historia. Esta abordagem nos remete ao problema das condigoes iniciais, que pode ser
resolvido no contexto da cosmologia quéantica, que é fundamentada na aplicacao da teoria
quantica a todo o universo.

Neste capitulo, vamos considerar alguns resultados obtidos por Romero e Zamora [38] e

por Freedman e colaboradores [39], e tecer alguns comentarios.
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7.1 Abordagem da cosmologia Newtoniana quéantica
segundo Romero e Zamora

Nesta secao e nas duas proximas, faremos uma breve revisao do trabalho feito por Romero
e Zamora [38] e um breve comentdrio sobre os resultados obtidos.

Vamos considerar a eq. (2.8) que ¢ a expressao da energia total dada por

E = lAsﬂ Gg - éAS2 (7.1)

onde A = Z mr? (tg) e B = Z % Introduzindo um novo fator de escala R = uS

com /i constante aeq. (7.1), tal como fizemos na secao 2.1, pode ser reescrita na forma

. 2
R kA 871G
=) =5 2 2
<R> rtyt 3’ (7:2)
com
2B Po _3By°
A= P R e (73)

Vamos expressar a eq. (7.2) em termos de varidveis canonicas. A lagrangiana do sistema

é dada por

1 . B A
L= 5AS2 i gAS2 (7.4)
A B AA
G“ LR

A p
Lol

De (7.4) podemos construir dois espagos de fase, o primeiro definido como (S, Ps) onde

Pg = AS e o segundo como (R, Pg) onde

A .
Pr= 51t (7.5)

Em termos das varidveis (.S, Ps), a Hamiltoniana é dada por
P} GB AAS?

H=B=ol~g "5 =

e em termos de (R, Pg) ¢ dada por
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- u?P3 _ GuB éAR2
2A R 6 u?
Podemos ainda escrever a equagao de Friedmann (7.2) em termos das varidveis canonicas

(R, Pr) como

(7.7)

Py (AN’(x A 871G\
R—+(,7> (ﬁ‘??ﬂ)—' (7.8)

A quantizacao do sistema é obtida a partir das equagoes de onda

- (P2 GB AAS? B
HU (S) = (ﬂ — 5~ T) U (S)=FEV(S5) (7.9)
e,
2 52
. [ s GuB  AAR B
HV (R) = <2APR I 6 2 U (R)=EV(R), (7.10)
com ﬁR = —iha%.

Ao resolvermos as egs. (7.9) e (7.10), estaremos determinando os estados do universo,

no contexto da cosmologia Newtoniana quantica.

7.2 Cosmologia Newtoniana Quéantica, sem o termo de
pressao

Vamos tomar como ponto de partida, a seguinte equacao cosmoldgica

52

3K
_?+A+8ﬂp:ﬁ (7.11)
ou
. AR* 8
k=—R*+ + —mpR2. (7.12)
3 3
Vamos multiplicar (7.12) por /2 onde £ é um parametro. Assim, temos
3 ER? EAR? 4,
D= 2 — 1
5h 5 + 5 + 3§7rpR (7.13)

que podemos escrever como uma Lagrangiana
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: _ER? AR 4 )
c (R,R) = -S4 SR, (7.14)
onde o termo cinético é dado por
Ec = —@. (7.15)
2
O momento é definido por
oL .
— 2= — _¢R. 7.16
R=om =t (7.16)

Vamos reescrever (7.11) da seguinte forma

3R> 3k
ﬁ+ﬁ_A_8ﬂ-p:O7

sendo R = — Py /€. Portanto, temos

P 3K
31 4 g2 (ﬁ —A— 87Tp) = 0. (7.17)

A funcao de onda do universo, ¥ (R), é encontrada quando resolvemos a equagao

P2
’ By g <3—I{—A—87Tp)

= = ¥ (R) = 0. (7.18)

Para matéria sem pressao temos p oc R~3, que mostra que a matéria estd dominando o
universo, tanto no nivel cldssico quanto no nivel quantico.

Podemos escrever a eq. (7.13) como

HU = BV, (7.19)
ou
¢k &k
—U ===V, 2
) ) (7.20)
Portanto, temos que
P2 [N 4
H=—"—+(>+- 2 21
2£+<6+3£m)R, (7.21)

pode ser escrita como
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P 1

H=—"—+-wR? 22
o + 2wR (7.22)
onde w = (4 + 8¢7p) R2.
Considerando
. 0
P=—ic— 7.23
icop (7.23)

e substituindo (7.22), e (7.23) em (7.19), temos que

2 0?

1
i@\l} + §wR2\II = BV (7.24)

onde a energia E é dada por

E = <n + %) w, (7.25)

e de acordo com (7.20) podemos inferir que

2 1
“‘5(”*5)“’

com k definido em termos da energia, cujos possiveis valores podem ser tomados como iguais

a—1,0,1.

7.3 Funcao de Onda no Universo Newtoniano

Vamos obter a funcao de onda do universo, no contexto da cosmologia Newtoniana.
Como S e R sao positivas, a equacao de onda é definida somente no eixo positivo. Portanto,
utilizaremos condigoes de contorno em ¥ (oc0) =0e ¥ (0) = 0.

Para o caso em que o universo é dominado por uma constante cosmoldgica negativa,

temos que, A = — |A| e p = 0. Neste caso, a eq. (7.9) torna-se [3§]
~ R 07 AJA| B
H‘I/(S)—{zA 852+ 5 S}\I/(S)—E\I/(S). (7.26)

Vamos introduzir a varidvel z,

1/2
_ (AN
z_<%\/;> S. (7.27)
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Fazendo as devidas substituicoes temos,

—n? (A [IA| 07 AN (R |3 :
— | =\ === — | == U(z)=FEV 2
24 <hV 502) 5 \a\yp )7 | Y™ (2) (7.28)
ou
- + 22 _ U(2)=0 (7.29)
022 fo /1Al - '
3
que tem como solucao fisicamente aceitédvel [38]
U, (2) = Hopyy (2) e %72, n=0,1,... (7.30)

onde Hy (2) é o polinomio de Hermite de ordem N. O espectro da energia é dado por

Al 3
E,=H/ = (2n+2). 31
w=h g (20 (7.31)

A andlise da expressao para a energia, dada por (7.31), nos mostra que esta s6 depende
do valor da constante cosmolégica.

Agora vamos analisar o caso de poeira, ou seja, p = po/R* e A = 0. Neste caso a equagao

de onda é dada por [38]

h* 92 GB
ou ainda,
0? 2FEA  2ABG 1
{052 + ( =t EH U (S) =0. (7.33)

Introduzindo a varidvel z,

—8EA
z= ( T) S (7.34)

e substituindo em (7.33) temos,

—8EA(8)2 2FA 2ABG 1
+ +

h2 \0z h2 h? [spa,
h2

U (2) =0 (7.35)

que fornece,
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{%aa—; +(v- Z)} W(z)=0 (7.36)

_ 2ABG |_ 2
onde 7 = =53 —353

As solugdes que da eq. (7.36), que se anulam na origem e no infinito sdo dadas por [38]

U, (2) = e 2L} (2), (7.37)

onde L (z) é associado ao polinomio de Laguerre de ordem n. Neste caso, a energia ¢ dada

por [38]

B AB%*G?
2h%(n +1)%

Para os dois casos analisados encontramos solucoes exatas da fungao de onda da cosmolo-

E,(z) = (7.38)

gia Newtoniana. No contexto da cosmologia relativistica, os casos correspondentes aos dois
tratados nesta segao, as solugoes exatas nao sao conhecidas.

E importante chamar a atengdo para a observagao feita por Romero e Zamora [38] no
sentido de que na presenca da constante cosmolégica e para pressao nula, o sistema classico
tratado no contexto da cosmologia Newtoniana e no da cosmologia Einsteiniana fornecem os
mesmos resultados. Na realidade, essa equivaléncia é esperada de alguma forma, haja vista
que a dindmica cldssica na abordagem Newtoniana e na Einsteiniana, sao completamente
equivalentes, sendo descritas, do ponto de vista algébrico, pelas mesmas equagoes. Por
outro lado, no regime quéntico, eles sao completamente diferentes, o que significa que os
resultados obtidos nao sao os mesmos quando estamos no contexto da abordagem quéntica

dessas teorias.

7.4 Cosmologia Newtoniana quantica e a funcao de
onda

Vamos considerar a equagao que permite a obtengao da funcao de onda do universo,
na cosmologia Newtoniana, no contexto da mecanica quantica nao-relativistica. Para isto,

usaremos a equagao de Schrodinger para muitas particulas, dada por
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L OU R,
ihs = Z (— o \% w) + VU, (7.39)

onde\If:\I/(f}),V?:a%ge

m;m;
V=- G—2L-. 7.40

22— (A0

Suporemos que todas as massas sao iguais, ou seja, m; = m, e que a funcao de onda, ¥,

pode ser escrita na forma

U (7)) o H\If’ (7) (7.41)

onde V' (7;) satisfaz a seguinte equagao

ov’ h?
h—— = —— VU 4 42
ih—, 2mV +mU (7.42)
com W' = V' (7, t), V? = g—; e
V2U = 4xGm |¥'[, (7.43)

sendo U o potencial por unidade de massa.

As equagoes (7.42) e (7.43) correspondem a equagao de Schrédinger dependente do tempo
e a equacao de Poisson, que é satisfeita pelo potencial que aparece na equagao de Schrodinger.
Note que essas duas equagoes estao acopladas.

Vamos admitir que [39]

U=F(t)r? (7.44)

U = A(t) e, (7.45)

Substituindo as eqs. (7.44) e (7.45) em (7.43), encontramos o seguinte resultado

5 3F
- 2rGm’

(7.46)
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Usando a solugao dada pela eq. (7.45) e substituindo na equagao de Schrodinger, con-

cluimos que

S = B(t)r? (7.47)
com
3B A
—— = (7.48)

Suponhamos que A = R~3/2[39]. Entdo, S (t) serd dado por

1 R
S = §m}—%7“2, (7.49)

e a funcao de onda estara relacionada com o fator de escala por meio da seguinte expressao

1 i R
U’ o T &P <Lm—r2> : (7.50)

Vamos considerar a solugao para o fator de escala encontrado por Arcuri e Waga [9] dado

por

R(t) oc 3076, (7.51)

Neste caso, a funcao de onda guardara a seguinte proporcionalidade

U’ o exp (%i(l - B)mTQt(lgﬁ)) . (7.52)
Note que se fizermos ¢ = —i7 e considerarmos [ < 1/3 que é a condi¢do para que

tenhamos modos crescentes, entao, a funcao de onda dada coincide, de fato, com a solucao
para a equacao de difusao. Neste caso, a funcao de onda é normalizdvel com respeito as

integracoes nas coordenadas espaciais.
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Capitulo 8

Conclusoes

Tomamos como base a literatura existente sobre a cosmologia Newtoniana, para reobter a
relacao entre as caracterfsticas de universos investigados no contexto da cosmologia relativis-
tica e aqueles construidos usando, somente, a dindmica Newtoniana, a teoria da gravitacao
de Newton e as transformacoes de Galileu. Mostramos que as equacoes obtidas sao idénticas
na forma algébrica, nos dois casos, e portanto, localmente, os resultados obtidos nas duas
teorias sao insdistinguiveis. Assim, os resultados obtidos no contexto da relatividade geral,
na segunda década do século XX, podem ser deduzidos da hidrodinamica Newtoniana do
século XVIII. Naturalmente, existe uma diferenca do ponto de vista conceitual, pois en-
quanto na cosmologia Einsteiniana, nos modelos de Friedmann-Robertson-Walker, £ > 0,
k = 0 e k < 0 correspondem a diferentes geometrias do espaco-tempo; no contexto da
cosmologia Newtoniana, essas situacoes correspondem aos casos em que a matéria se move
com velocidade menor, igual ou maior do que a velocidade de escape do seu préprio campo
gravitacional, respectivamente.

A formulagao da cosmologia Newtoniana, em linguagem geométrica é uma forma elegante
de descrevé-la, no entanto, essa formulacao nao significa que as duas cosmologias, a Newto-
niana e a Einsteiniana, sejam igualmente rigorosas [16]. Na realidade, essa andlise do ponto
de vista do rigor nao faz sentido, a nao ser se compararmos de maneira muito subsididria,
os métodos utilizados. O fato de que nessa formualagao geométrica a equagao geodésica ser
a mesma da obtida na relatividade geral também nao fundamenta essa pretensa igualdade
no rigor na obtencao da cosmologia Newtoniana, se comparada a Einsteiniana.

O fato de que um universo homogéneo e isotrépico, com secao espacial nao-compacta,



68

pode expandir-se e recolapsar eternamente, ndo significa, conforme afirma Tipler [16], que
a cosmologia Newtoniana, formulada geometricamente, seja mais geral do que a cosmologia
de Friedmann.

As consequéncias de um termo de correcao ao potencial Newtoniano, do tipo Yukawa,
nao existem na cosmologia Newtoniana, de forma que as equacoes que descrevem a dindmica
do universo, nesse contexto, sao exatamente as mesmas que as obtidas sem a correcao. Este
resultado tedrico, na realidade, estd em acordo com os dados observacionais que confirmam
a validade da interacao gravitacional Newtoniana, até distdncias micrométricas.

A evolugao de perturbacoes em um universo onde existe uma fonte que cria matéria
continuamente, depende do coeficiente de proporcionalidade entre a constante cosmolégica
e o quadrado da constante de Hubble. Vimos que somente existirao modos crescentes, e
portanto, a formagao de estruturas pelo processo de instabilidade gravitacional, somente para
valores dessa constante menores do que a unidade. No caso em que a pressao é diferente de
zero, esses modos dependem nao somente dessa constante de proporcionalidade, mas também
do parametro que relaciona a pressao e a densidade, na equagao de estado.

Na cosmologia Newtoniana quantica reexaminamos as diferencas entre as duas aborda-
gens, Newtoniana e Einsteiniana, em (2+1) e (3+1) dimensoes, exibimos a fungao de onda
do universo, no qual ocorre a criagao continua de matéria. Neste cendrio, a funcao de onda é
normalizdvel. Ela foi obtida como solucao da equacao de Schrédinger para muitas particulas.

No caso em que a pressao é desprezivel, os resultados da cosmologia Newtoniana coinci-
dem, exatamente, com os obtidos no contexto relativistico.

E importante salientar que os resultados obtidos no que é conhecida como cosmologia
Newtoniana, sao baseados, puramente, na teoria de Newton, mas eles sao fundamentados,
também, em hipdteses ad hoc tomadas da relatividade geral. Neste contexto, um sistema
com pressao zero e constante cosmolégica descreve o estdgio atual do nosso universo e nas
estruturas em grande escala, de modo extremamente satisfatorio.

No caso em que a pressao estd presente, definindo-se de modo apropriado a equacao de
continuidade, as equacoes para as perturbacoes relativisticas e Newtonianas, sao idénticas
para grandes comprimentos de onda. Portanto, temos uma forma mais simples, do ponto de
vista matemaético, para obter esses resultados, com o uso da cosmologia Newtoniana.

Investigamos o formalismo Newtoniano, que é baseado nas equagoes hidrodinamicas, para

formular a cosmologia Newtoniana, que descreve o comportamento de fluidos césmicos que
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permeiam o universo.

Neste contexto foram examinados diferentes aspectos, tais como a formulagao geométrica,
a introdugao de uma correcao de Yukawa no potencial Newtoniano e suas consequéncias, o
comportamento das perturbagoes num universo Newtoniano com variacao de matéria, e

aspectos da formulagao quantica dessa teoria.
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