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Resumo

Modelos cosmolégicos envolvendo campos escalares permitem a descricao de uma fase
de expansao cosmica acelerada e, portanto, se apresentam como uma alternativa promissora
no estudo da inflacao coésmica e da energia escura. Estamos aqui interessados em analisar
esses modelos cosmologicos; em especial, vamos explorar solugoes cosmologicas baseadas
no formalismo de primeira ordem. A inclusao desse método favorece a busca por solucoes
analiticas na cosmologia com campos escalares e isso é particularmente interessante no caso em
que consideramos o componente de matéria nao relativistica (poeira) na presenga da energia
escura, afim de construir um modelo cosmoldgico capaz de explicar, em bom acordo com os
dados observacionais, a atual fase de aceleragao césmica. Considerando um regime de violagao
de Lorentz, a utilizacao desse método nos permitiu verificar que novas consideracoes devem
ser implementadas, para que o regime inflacionario possa resolver o problema das condicoes
iniciais. Outra questao de interesse, que pode ser analisada com auxilio do formalismo de
primeira ordem, leva em conta a possibilidade da equagao de estado da energia escura ser
um constante qualquer diferente de —1 e, nesse caso, obtemos que uma grande quantidade de
ajuste fino é necessaria, o que deve ser interpretado como uma forte evidéncia em favor de um
modelo dinamico de energia escura. Também introduzimos o chamado método de deformacao
a modelos inflacionarios sob o regime de rolagem lenta e exploramos essa ferramenta em

aplicacoes de corrente interesse na literatura.

Palavras-Chave: Cosmologia, Inflagao, Energia Escura, Campos Escalares



Abstract

Cosmological models involving scalar fields allow the description of a phase of accelerated
cosmic expansion and thus appear as a promising alternative for the study of the cosmic
inflation and dark energy. We are interested here in analyzing these cosmological models.
In particular, we will explore cosmological solutions based on the first order formalism.
The inclusion of this method favors the search for analytic solutions with scalar fields in
cosmology, and this is particularly important when we consider the component of non-
relativistic matter (dust) in the presence of dark energy, in order to construct a cosmological
model capable of explaining, in good agreement with observational data, the current phase
of cosmic acceleration. Considering a regime of Lorentz violation, the use of this method
allowed us to verify that new considerations must be implemented so that the inflationary
regime can now solve the problem of initial conditions. Another question of interest, which
can be addressed with the aid of the first order formalism, takes into account the possibility
of the dark energy equation of state parameter to be a constant other than —1 and in this
case we get that a lot of fine-tuning is needed, which should be interpreted as strong evidence
in favor of a dynamic model of dark energy. We also introduce the so-called deformation
method on the slow-roll inflationary models, and we explore this framework in applications

of current interest to this branch of research.

Keywords: Cosmology, Inflation, Dark Energy, Scalar Fields
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Introducao

O modelo de Universo em melhor acordo com os mais recentes dados observacionais
considera a presenca de duas fases de expansao cosmica acelerada, que sao associadas a teoria
da inflagao cosmica e a recente descoberta da energia escura [1, 2|. A teoria da inflagao cosmica
propoe uma fase de expansao acelerada para os estégios iniciais do Universo primitivo afim
de resolver o assim chamado problema das condicoes iniciais. Essa teoria precisa também
ser capaz de gerar inomogeneidades no Universo, o que permite explicar o mecanismo de
formacao de estruturas; mecanismo esse que deve ocorrer durante uma fase de expansao
cosmica desacelerada, em que o Universo passa a ser dominado pelo conteiido de matéria
nao relativistica (poeira). Em 1998, duas equipes independentes, estudando um tipo muito
peculiar de objetos astrofisicos, as Supernovas tipo IA, trouxeram surpresa a comunidade
cientifica ao anunciar que o Universo esta atravessando uma fase de expansao acelerada [3];
o objeto inicial das observagoes seria medir a esperada taxa de desaceleracao do Universo,
uma vez que a atracao gravitacional é puramente atrativa, o que provocaria a recessao no
movimento de expansao das galaxias. Uma conseqiiéncia imediata dessa observagao, dentro
do contexto da Relatividade Geral, é a descoberta de uma nova forma de energia que nao
interage com a luz, por isso denominada “energia escura”, e que representa aproximadamente

3/4 do contetido do Universo atual.

Podemos construir um modelo de expansao césmica acelerada com a inclusao de uma

simples constante cosmoldgica, A, porém essa nao é uma boa alternativa no ambito da
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teoria da inflagdo cosmica, entre outros motivos porque nao é possivel reverter o processo
de aceleragao cosmica e conduzir o modelo ao fim do regime inflacionario; uma constante
cosmolégica também nao consegue explicar as inomogeneidades necessarias para formacao de
estruturas. Por outro lado, o modelo conhecido como A-CDM [4] propoe que a energia escura
do Universo seja resultado da presenca dessa tal constante cosmolégica; nesse modelo, CDM
sao as iniciais da expressao Cold Dark Matter, uma forma de matéria escura nao relativistica,
ou melhor, como na tradugao da expressao, uma matéria escura fria. Esse modelo tem logrado
éxito em descrever varias propriedades observacionais da atual fase de aceleragao do Universo.
No entanto, problemas envolvendo A precisam também ser resolvidos nesse contexto; um
exemplo é o chamado problema da coincidéncia cosmica [5] (muito mais filoséfico do que fisico):
se existe essa tal constante, ela deve ser a mesma desde a origem do Universo e, portanto ter
atravessado todas as fases da evolugao coésmica, a ponto de ser dominante apenas na fase atual.
Outro problema que precisa ser resolvido é a enorme diferenca entre as previsoes tedricas do
Modelo Padrao da Fisica de Particulas e o valor observado para a constante cosmologica; na
melhor das hipoteses, quando consideramos a existéncia de supercampos, essa diferenca é algo

em torno de 60 ordens de grandeza [6].

A realizacao de uma fase de expansao cosmica acelerada pode também ser estudada a partir
da inclusao de um campo escalar, ¢, espalhado homogéneo e isotropicamente no Universo.
Considerando o regime inflacionario, a presenca desse campo escalar, conhecido como inflaton,
permite a construcao de um modelo capaz de responder os principais conflitos apresentados na
teoria padrao e, embora nao exista consenso na literatura sobre a real necessidade de uma fase
inflacionéria, o bom acordo com os dados observacionais torna a tarefa de obter um modelo
alternativo bastante complexa. A inclusao de um campo escalar nos permite também elaborar
um modelo ¢-CDM, onde o campo escalar ¢ responde pelo contetido de energia escura do
Universo |7]. Para esse modelo, a aceleragao cosmica na fase atual é conseqiiéncia da dinamica

associada ao campo escalar, em que, diferentemente da constante cosmoldgica, podemos ter
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uma equagao de estado, w,, variavel. De fato, podemos mostrar que uma equagao de estado
constante apenas é consistente para w, = —1; mesmo que os dados observacionais parecam ser
consistentes com uma equagao de estado constante diferente de —1, uma grande quantidade
de fine-tuning (ajuste fino) deve ser adicionada ao modelo, o que deve ser interpretado como

uma forte evidéncia em favor de um modelo dindmico de energia escura [8].

Durante esse trabalho de tese, estamos interessados em explorar o método de reducao de
ordem de equagoes diferenciais em Cosmologia, preconizado por Bazeia et al. [9], o assim
chamado formalismo de primeira ordem. Inicialmente, no Cap. 1, faremos uma breve revisao
da Relatividade Geral, apresentando os principais resultados para elaboracao do Modelo
Cosmologico Padrao (MCP). Ainda neste capitulo, elencamos as dificuldades desse modelo
em resolver os problemas que culminaram na teoria da inflacao césmica e também discutimos
como incluir no MCP um componente de energia escura, responsavel pela atual aceleragao
do Universo. No Cap. 2 apresentamos o formalismo de primeira ordem: A utilizagdo desse
método facilita a busca por solugoes analiticas em Cosmologia; nesse capitulo aplicamos essa
ferramenta teorica a um modelo de energia escura incluindo um termo de poeira (matéria
escura -+ matéria baridnica). Voltamos o nosso interesse ao estudo da inflagdo cosmica no
Cap. 3, em que consideramos um regime de violagao da simetria local de Lorentz, na presenca
do Einstein-sether; a aplicacao do formalismo de primeira ordem, nesse caso, nos permite
revisitar o problema das condigoes iniciais e novas consideracgoes precisam ser implementadas
afim de garantir o sucesso do regime inflacionario. A possibilidade de construir um modelo
de constante cosmolégica que admita uma equagao de estado diferente de —1 é explorada
no Cap. 4, onde mostramos que uma grande quantidade de ajuste fino deve ser adicionada
ao modelo, o que torna a solugao bastante nao natural. Também introduzimos, no Cap. 5,
o método de deformacao em modelos inflacionédrios sob um regime de rolagem lenta; em
especial, mostramos que os potenciais dos modelos considerados apresentam uma relacao de

deformacao explicita. As consideracoes finais e delimitacao de perspectivas concluem o nosso
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trabalho.

No decorrer dos nossos célculos consideramos um sistema de unidades em que 477G = ¢ =
Hy =1, onde G é a constante gravitacional newtoniana, ¢ é a velocidade da luz no vacuo e
H é o parametro de Hubble. Salvo mencao contréaria, o indice ‘0’ é usado para indicar que a

medida da grandeza deve ser realizada no tempo fisico presente.



Capitulo 1

Relatividade Geral e o MCP

Como ponto de partida para nosso estudo, faremos aqui uma dedugao menorizada das
equagoes de campo da Relatividade Geral, apresentada originalmente por D. Hilbert em 1915
[10], com o simples objetivo de introduzir o ferramental matematico explorado em parte do
texto e familiarizar o leitor com os conceitos utilizados em capitulos subseqiientes. Uma
vez obtidas as equacoes de campo, vamos deduzir a solucao de Friedmann, que descreve
matematicamente o principio cosmologico e, por sua vez, fundamenta o MCP, levando
a elaboracao da teoria do Big-Bang. Ainda neste capitulo, elencamos os problemas que
culminaram na teoria inflacionéria e também mostramos como incluir o contetido de energia
escura no contexto do MCP, de modo a compatibilizar a teoria com o fato observacional da

aceleracao cosmica atual.

1.1 Equacgoes de Campo

Dentre as alternativas de dedugao das equagoes de campo da Relatividade Geral,
descreveremos aquela baseada no principio fundamental de minima acao. Consideramos a

acao de Einstein-Hilbert, definida como [10, 11|
1
S = / d'r /=g (_ZR+£M) , (1.1)

5
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Na agao, R é o escalar de curvatura e L, é a densidade de Lagrangeana associada aos
campos de matéria do Universo. O termo multiplicativo y/—g, onde g é o determinante do
tensor métrico (¢ = |g,.|), é apropriadamente escolhido [11, 12]; de fato, conhecemos do

calculo sobre R™ que:

oxH
d"s' = d"x, 1.2
D (1.2)
wnl
onde nessa relacao, S é o Jacobiano da transformacao. O elemento de volume transforma-
x

se como uma densidade tensorial, sendo necessaria a presenga do termo /—g¢g, para que a a¢ao

seja invariante por uma transformagao geral de coordenadas.

Variando a agao (1.1), vem:

55::/&%{®VC5)(—2R+L¢O—+¢i§6(—iR+L@O} (1.3)

1 1 .. . . .
e, como 04/—g = ————0dg, € preciso diferenciar determinantes de matrizes. Para um tensor

2v-g
A", temos que:
4A = eO‘BW‘SeMVJpA*;A”BAUWA%, (1.4)

onde A ¢é o determinante da matriz definida por A", e €219 & o simbolo de Levi-Civita. Desse

modo,

BIA% A = €*¢,,5, A AT AT (1.5)

Por outro lado, a relagao (1.4) também permite escrever
AdA = €P7€,,5, 4 (A", ) A3 A% A% (1.6)
e substituindo (1.5) em (1.6) chegamos a
dA = AASdA", . (1.7)
Podemos agora usar (1.7) para calcular o diferencial do tensor métrico, de maneira que

dg = 99" dgu, .

6
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1
Logo, 0/—g = ———_ = ——v 9 G 09" .

De posse desses resultados, (1.3) resume-se a

1 1 1
0S = /d4:p\/—g [_Z (RW — qu,,R + QQWEM) ogh — ZQWCSRW + 0L

e desde que g""0R,, pode ser escrito como a derivada de um vetor, o teorema de Gauss faz
aparecer um termo de superficie na integral acima, que pode ser suprimido!, uma vez que as

condic¢oes de contorno impoem que os campos sejam nulos no infinito; de onde chegamos a

1 1 1 oL
0S = /d4:p\/—g [_Z (RW — —gWR) + 3 (Q—M — gu,,EM)} ogh” . (1.8)

2 gt

Considerando a agao decomposta em seus termos de curvatura e matéria S = S + Si,,
sendo a acao de curvatura Sp = [d*z\/—g(—R/4) e a acdo dos campos de matéria

Sy = [ d*x\/=g L, podemos definir o tensor energia-momento, que deve satisfazer a relacao

0Sm /d4x\/ w 0gM;

um resultado direto dessa formulagao é obtido quando fazemos §.5,, = 0. Nesse caso, é possivel
mostrar que a derivada covariante do tensor energia-momento é nula, ou seja, 17, = 0;0que
representa uma condigao de conservacao (vide [14]), importante no contexto da Relatividade

Geral.

Reescrevendo a variagao da agao (1.1), levando em consideracao a defini¢ao de 7}, temos

iz

agora:

1 1 1
08 = /d4x\/—g [—Z (RW — agWR> + 3 TW] ogh” (1.9)

e entdo comparando os resultados (1.8) e (1.9) podemos identificar

T :28£M

pnv aguy

lisso pode néo ser verdadeiro se considerarmos a existéncia de fronteiras - vide [13].
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Como conseqiiéncia do principio variacional 6S = 0 e a relagao (1.9) nos permite obter as

equacoes de campo da Relatividade Geral:

1
Ruy — igMVR = QTMV .

Baseada no principio de equivaléncia, como postulado nos trabalhos originais de Einstein
em 1916, a proposta da teoria da Relatividade Geral estabelece uma relagao entre o contetido

de geometria e de matéria do Universo, segundo as equacoes de campo da gravitagao

1
R, — 5 9w = KT, , (1.11)

sendo o lado esquerdo dessa expressao o tensor geométrico de Einstein G,,, que traz
informagoes sobre os efeitos de curvatura do espago-tempo, enquanto o lado direito é

relacionado ao contetdo de matéria, onde 7}, é o ja definido tensor energia-momento.

De fato, o principio da equivaléncia exige um tensor de segunda ordem, cuja derivada
covariante leva & conservacao do tensor energia-momento 7),,., = 0 - vide [15], e foi esse o guia
usado por Einstein para escrever o seu tensor geométrico nas equacoes de movimento; uma vez
que essa combinagao respeita a identidade de Bianchi e como conseqiiéncia G .., = 0. Usando
o principio da equivaléncia, é possivel também determinar a constante de proporcionalidade,

k = 81G/c* que, de acordo com as nossas convengoes, reduz-se a k = 2.

Uma vez apresentadas as equagoes de campo da gravitagao podemos nos voltar para
a constru¢do de uma solugao cosmolégica (global) das equagbes de Einstein, que respeite as
condigoes de homogeneidade e isotropia em um Universo em expansao, e um passo importante
nesse caminho é definir o tensor métrico. Essa seqiiéncia vai nos permitir construir o MCP e

delimitar as bases para o entendimento das corregoes impostas a esse modelo.
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1.2 Modelo Cosmolégico Padrao

Logo depois de publicados os trabalhos de Einstein, duas solu¢oes foram apresentadas,
a solucao de Minkowski, como uma generalizacao do espaco-tempo euclidiano plano, e a
solugao de Karl Schwarzschild, para o espaco-tempo esfericamente simétrico e vazio, que
reduz as equacoes de campo a G, = R, — %gWR = 0, ou apenas R, = 0. Pouco mais
de um ano depois, em 1917, Einstein apresenta o primeiro modelo cosmologico relativista.
A comunidade cientifica na época acreditava ser o Universo estatico, porém as equacoes de
campo da gravitagao sao dinamicas; para obter um Universo estacionério, Einstein é levado
a modificar as equacoes originais da Relatividade Geral, introduzindo um termo repulsivo,
afim de contrabalancear o efeito atrativo da gravitagao, denominado constante cosmolégica,

tal que
1
R, — §gu,,R + g\ = kT, ,

onde A representa a constante cosmoldgica; uma solucao justificada por Einstein para
reproduzir a baixa velocidade das estrelas, o que estaria de acordo com o principio de Mach -
para um estudo detalhado vide, por exemplo, [11|. Poucos meses depois, o astronomo holandés
Willem de Sitter conseguiu obter outra solu¢ao das equagoes de campo, para um Universo

vazio?

, com constante cosmolégica. Porém, o Universo apresentado por de Sitter estd em
expansao e agora a velocidade de afastamento de particulas testes, espalhadas aleatoriamente
no Universo, aumenta com a distancia, resultado que explicava o desvio espectral observado em
nebulosas espirais pelo astréonomo americano Vesto M. Slipher, alguns anos antes. O proprio
de Sitter nao acreditava que a sua solucao pudesse descrever um Universo em expansao.

Segundo ele, uma boa escolha do sistema de coordenadas poderia eliminar esses “efeitos

espurios” da teoria.

2ja se sabia que a densidade de energia no Universo é baixa e a solucdo de de Sitter era considerada como
uma aproximagao de densidade nula [11].
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Apenas em 1922, o cosmoélogo e matematico russo Alexander Friedmann aponta a
possibilidade tedrica de um Universo em expansao. Em um primeiro trabalho, Friedmann
estuda espagos com curvatura constante e positiva; os espacos com curvatura constante
negativa foram apresentados em um segundo trabalho, no mesmo periodico, em 1924 [16]. A
solucao explorada por Friedmann, considera que o Universo ¢ homogéneo e isotrépico. Pouco
estudado pela comunidade cientifica, esse trabalho foi revisado pelo fisico e astronomo belga
George Lamaitre, em 1927, que encontra de maneira independente, os mesmos resultados
obtidos por Friedmann. Dois anos mais tarde, é anunciada a descoberta, realizada pelo
astronomo Edwin P. Hubble, de que as galaxias estao se afastando com uma velocidade
proporcional a sua distancia, o que concretiza a expansao espago-temporal do Universo e faz
Einstein desconsiderar a constante cosmologica. Finalmente em 1930, H. P. Robertson e A. G.
Walker estabelecem uma aproximacao cinemética que permite obter a métrica de Friedmann-
Robertson-Walker (FRW), o que abre caminho para estabelecer matematicamente o principio

cosmologico que fundamenta o Modelo Cosmolégico Padrao.

1.2.1 O Principio Cosmolégico e a Métrica FRW

O principio cosmologico assume que o Universo é homogéneo e isotropico em largas
escalas®. Baseado inicialmente nas observacoes de Hubble, esse principio foi confirmado com
a acidental descoberta da radiagdo cosmica de fundo [18|, por Arno Penzias e Robert Wilson,

em 1965.

A representagao geométrica mais simples a ser considerada, que incorpore as condigoes de
homogeneidade e isotropia, é uma generalizacao do espaco euclidiano, escrito em coordenadas

esféricas e corrigido por um fator de escala. Medimos distancia no espago-tempo, para essa

3em Cosmologia, algo maior do que 102Mpc [17].

10
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representacao, com o elemento de linha*
ds* = dt? — a(t)?[dr® + r?(d6? + sin® 0dp?)] .

Usando os argumentos do principio cosmologico, esse resultado pode ser estendido ao caso nao
euclidiano - para mais detalhes, vide [19]. Isotropia implica em simetria esférica (de rotagao),

de modo que podemos reescrever o elemento de linha como
ds* = dt* — a(t)*[N*(r)dr? + r*(d6? + sin? 0dp?)]

desde que qualquer variacao na parte angular r?dQ2? nao altera a isotropia do espaco-tempo.
Uma maneira de determinar a fungao A(r), considerada ao quadrado apenas por conveniéncia,
é calcular o escalar de curvatura para o espago-tridimensional, induzido pelo elemento de linha

acima, o que implica na relagao

3 d 1
SR=_—"__"|r2(1= )
2a2r3 dr [T ( )\2(7“)>]

Porém o espago-tempo é considerado homogéneo e isso faz com que todas as propriedades

geométricas sejam independentes de r, logo 3R deve ser constante e obtemos

1 4
7"2 (1— AQ(T)> :Clr +CQ,

onde C e (5 sao constantes arbitrarias. A fim de evitar qualquer singularidade, devemos

fazer Cy = 0.

Podemos entao determinar

1 1
\(r) = =

de modo que C é diferente de zero e com isso o elemento de linha para um Universo homogéneo

e isotropico, que define a métrica FRW, é descrito por

dr?

1 —kr?

ds® = dt* — a(t)? + 72(d6* + sin® O d¢?) | .

4assumimos a assinatura (+, —, —, —).

11
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Nessa relacao k ¢ a curvatura da hipersuperficie de simultaneidade e define trés geometrias®:

Geometria Plana (k = 0)

Baseada nos axiomas da geometria euclidiana, sua linha geodésica é uma reta. O Universo
descrito nessa geometria deve ter volume infinito e é por vezes denominado Universo PLANO.
Veremos adiante que existem fortes indicagoes de que essa geometria seja a que mais se

aproxima da geometria do Universo atual.

Geometria Esférica (k = 1)

Esse tipo de geometria viola os postulados de Euclides e descreve um Universo FECHADO,
onde os angulos internos de um triangulo somam mais que 180° e o perimetro de uma
circunferéncia é menor do que 27r. Partindo do equador, linhas paralelas se cruzam nos

polos e, embora de volume finito, esse tipo de Universo nao tem limites ou barreiras.

Geometria Hiperbolica (k = —1)

Quando a geometria do Universo é hiperbolica, que também é nao-euclidiana, as linhas
paralelas sempre se distanciam umas das outras, caracterizando um Universo ABERTO e de
volume infinito, onde a soma dos angulos internos de um triangulo é menor do que 180° e o

perimetro de uma circunferéncia mede mais do que 27r.

1.2.2 Solucao das Equagoes de Einstein na Métrica FRW

Uma vez conhecido o elemento de linha que define a métrica para um espago-tempo

homogéneo e isotrépico em expansao, podemos agora resolver as equagoes de campo da

Sque podem ser ainda identificadas a partir do jacobiano associado a transformagcao [11].

12
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gravitagao,
1
RHV — ig’“'R = 2T/J,l/ .

Considerando a métrica FRW,

dr?

2 2 2
ds® = dt° — a(t) 1_7]{:702

+ r(d6? + sin® O dp*) |

¢ possivel escrever a matriz do tensor métrico, g,,,, como

1 0 0 0
B 0 —a?/(1—kr?) 0 0
I = {9 0 —a?r? 0 ’
0 0 0 —a’*r?sin?0

que permite determinar as componentes do tensor de Ricci, desde que seja valido o teorema

de Levi-Civita [12], e temos

Ry = =3,

a
ad + 2a* + 2k
=" e

Roy = (ad + 24 + 2k)r?,

Rsz = (ad + 24 + 2k)r?sin® 0 ;

sendo o escalar de curvatura

.. -2 k
R=R" :—6<9+a—+—).

H a a? a?

De acordo com o principio cosmolégico, o conteiido de matéria do Universo se comporta
como um fluido perfeito, em largas escalas, de modo que o tensor energia-momento é dado
por [11]

TH — (p _'_p)uuuu _ pguu’

13
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onde u* &€ o vetor da 4-velocidade normalizado, u*u, = —1. Nessa relacao p é a densidade
de energia e p a pressao do fluido cosmoldgico. Podemos assim escrever a matriz do tensor

energia-momento, como |11, 20]

p 0 0 0
o = 0 o0
Tw=1"9 0 —p o0
0 0 0 —p

Com base nos resultados acima, as equacoes de campo ficam reduzidas a

1 AN
ROO—QR:QTOO — (9> _ L,

a 3 a?

1 a 1
R, ——R=2T! — —=_-= 3p) .
1 5 1 4 3(P+ P)

As componentes R%, — (1/2)R = 2T% e R3 — (1/2)R = 2T?, apresentam o mesmo resultado
da expressao anterior; uma consideravel simplificacao, decorrente das simetrias associadas a

métrica FRW.

A lei de Hubble afirma ser a velocidade de afastamento das galaxias v proporcional &

distancia r de um observador em um ponto qualquer do Universo:

A

v=|ift = v=_—r

z . / ’ ., .
Escrevendo r em termos das coordenadas coméveis, r = a(t)r , onde a(t) é o ja definido fator

de escala, temos

e podemos identificar H = a/a como o parametro de Hubble. A célebre descoberta de Hubble
teve um profundo impacto na Cosmologia da época, principalmente por sua analise sobre

a origem do Universo. Perceba que H tem dimensao de inverso do tempo; isso permite

14
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avaliar a idade do Universo, um dado bastante controverso, que se estima ser da ordem de
13,7 bilhoes de anos, tempo decorrido desde uma fase em que o Universo era muito quente e
denso, denominada Big Bang quente. Por essa razao, ¢ comum encontrar-se textos que versam

sobre o MCP como o modelo de Big Bang quente.

A partir dessas identificacbes reescrevemos as solucoes das equacoes de campo da

gravitagao como,

2 k
H?>=Z)p— — 1.12
3 a? ( )
(]
a_ % + 3p) (1.13)
a_ 3p p’ .

denominadas, respectivamente, a equacao de Friedmann e a equacao da aceleracao®.

A equagao de Friedmann relaciona a taxa de crescimento do fator de escala a(t) com a

densidade de energia total e a geometria do Universo

3 k
P 2( +a2>’

no caso k = 0, essa relagao conduz a densidade de energia critica p. = (3/2) H?, que representa
a densidade de energia total associada a um Universo plano. Outro parametro de relevancia na
analise de modelos cosmolégicos é o parametro de densidade 2 = p/p., que permite reescrever
a equacao de Friedmann como

k

Q-1=—0s. (1.14)

Dessa relagao podemos verificar que €2 € uma medida indireta da geometria do Universo: para
um Universo esférico, ou seja, com k = 1, > 1; para um Universo hiperbdlico, ou seja, com
k= —1, Q) < 1. Mais adiante, veremos que dados observacionais tém mostrado que o Universo

¢ aproximadamente plano, k = 0, o que torna Q ~ 1 - vide [21].

6algumas vezes vamos nos dirigir a esse conjunto de equacdes com o termo equacées de Friedmann.
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Por outro lado, a equagao da aceleragao, (1.13), nos permite estimar a variacao da taxa
de expansao do Universo. Isso pode ser feito levando em consideragao a chamada condicao de
energia forte p+ 3p > 0: dentro do seu regime de validade, a igualdade p+ 3p = 0 implica em
uma evolucao cosmolégica estacionaria, a = 0, enquanto p+3p > 0 é associada & desaceleracao
cosmica, @ < 0. Nesse sentido, o Universo apresenta um regime de expansao acelerada, a > 0,

apenas quando a condigao de energia forte é violada, sendo neste caso p + 3p < 0.

Embora @ seja uma boa estimativa da aceleracao do Universo, é mais comum na literatura
utilizar a definigao do parametro de desaceleracao césmica. Consideremos uma expansao em

série de Taylor do fator de escala em torno de ty:
) 1 2.
a(t) = ag + (t — to)a(to) + i(t — tO) a(to) + ...

reescreveinos essa 1"61&@210 como

a(t 1
alt) _ 1— (to—t)Ho — =qo(to — t)*H3 + ...
Qo 2

onde ty, ag e Hy, medem o tempo fisico, fator de escala e o parametro de Hubble’,

respectivamente, para o instante presente. Definimos o parametro de desaceleragao césmica

COImao:

aa
q=——"5
a2

Y

um parametro adimensional que permite classificar a evolugao do Universo como desacelerada
(g > 0), estatica (¢ = 0) ou acelerada (¢ < 0). Embora o sinal na expressao acima parega nao
natural, ele reflete a expectativa da comunidade cientifica & época anterior a descoberta da
aceleracao cosmica, em 1998; desde que em um Universo dominado por matéria os efeitos

gravitacionais, sempre atrativos, teriam como conseqiiéncia a desaceleracao da expansao

cosmica.

a(to)
aon ’

7H() =

16
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Manipulando as equagoes de Friedmann (1.12) e (1.13), obtemos

. a k
H=-—-H"=— — 1.15
- (ptp)+ 3, (1.15)

0 que permite reescrever o parametro de desaceleracao coésmica em termos do parametro de

Hubble e de sua taxa de variacao como

H

Uma vez assumido um modelo de Universo em expansao adiabética, cujo contetido material
é representado por um fluido perfeito espalhado homogéneo e isotropicamente, podemos
também definir para esse fluido uma equagao de estado w = p/p. A analise desse parametro
permite avaliar tanto caracteristicas do fluido, quanto da propria evolugao cosmologica; de

fato, manipulando as equagoes (1.12) e (1.15) temos

Essa relacao mostra que para a solucao estacionaria o parametro de desaceleracao ¢ = 0
corresponde & equagao de estado w = —1/3; podemos verificar também que para um
espago plano (k = 0), ou esférico (k > 0), o parametro de desacelera¢do cosmica ¢ =2 0 é
correspondente as condi¢oes w =2 —1/3. No caso hiperbolico (k < 0), entretanto, podemos
ter duas situagoes: 1. a?H? > 1 e obtemos ¢ =2 0 — w = —1/3; 2. 0 < a*H? < leo
parametro de desacelera¢ao cosmica g = 0 corresponde as condigoes w < —1/3, sendo agora
a desaceleragao cosmica associada a violagao da condi¢ao de energia forte sobre o fluido, o
que viola o principio de conservagao de energia. Devemos portanto descartar a situacao 2. e

vincular um Universo hiperboélico em expansao a condicao adicional aH > 1.

Combinando ainda a equagao (1.15) com a equagao de Friedmann (1.12), podemos escrever

uma equacao da continuidade para o fluido cosmologico

p+3H(p+p)=0; (1.16)
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obtida de uma maneira mais rigorosa a partir da conservacao do tensor energia-momento,
1%,, = 0, ou mesmo, a partir do principio de conservagao de energia, na forma da
primeira lei da termodinamica dE = pdV — d(pa®) = pd(a®), desde que admitimos ser o

Universo em expansao adiabética, preenchido com um fluido perfeito espalhado homogéneo e

isotropicamente.

Resolvendo (1.16) para a densidade de energia, chegamos a
p = poexp (—/ 3(1+w(a)) dln(a)) ,
ao

sendo py e ag a densidade de energia hoje e o fator de escala hoje, respectivamente.

De acordo com a teoria do Big Bang, o Universo atravessa em sua evolucao fases
cosmolbgicas em que a equacgao de estado é bem definida, wa = w, e a expressao acima

fica reduzida a

ag 3(14w)
P = Po <—>
a

Dois exemplos de interesse sdo a fase dominada por radiagao (fase relativistica) e a fase
dominada por matéria (fase nao relativistica). Para a fase dominada por radiacao, o fato do
comprimento de onda ser proporcional ao fator de escala implica em p o< a~* e devemos ter
w = 1/3. Ja para a fase dominada por matéria, desde que é um fluido de pressao nula, a
equacao da continuidade implica que a densidade de energia é p oc a™3 e, da relacao acima,
podemos identificar a equacao de estado para matéria como w = 0. Podemos assim reescrever
a equagao de Friedmann considerando que a densidade de energia ¢ composta de ambas as
matérias, relativistica e nao relativistica, de modo que obtemos

2= 13 (20 (%) 0 (%) 000 (%)) (1.17)

a a a

onde o subscrito ‘0’ representa medidas para o tempo fisico presente e definimos 2y =

—k/(a2HP), sujeito ao vinculo Qg 4+ Qo + Qo = 1.
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A observagao de Hubble da expansao cosmica, aliada as definigbes do principio
cosmolégico, nos leva a conclusao do resfriamento térmico do Universo. Admitindo uma
reversao temporal, essas observagoes sugerem entao que o Universo tenha sido mais quente e
denso no inicio da expansao®. Temos entao uma transicao da fase relativistica, seguida de uma
expansao com resfriamento a uma fase nao relativistica. Isso pode ser visto diretamente da
relagao (1.17); a contribuigao da radiagao €2, se torna mais relevante, nos estagios iniciais do
Universo, quando a é pequeno, caracterizando a fase relativistica. A medida que o Universo
expande, o termo de poeira passa a ser mais relevante e (2,0 passa a ser predominante,

caracterizando a fase nao relativistica. Vejamos alguns detalhes dessas fases separadamente:
Radiacgao

Para essa fase cosmologica p = po,(ag/a)?* e resolvendo (1.17), quando o termo de radiagao
¢ dominante, temos a o v/t. Uma estimativa da aceleracio do fator de escala é dada por
i o< —t=3/2, ou melhor, gy = —ai/a> = 1, de modo que um Universo dominado por matéria
relativistica apresenta desaceleracao cosmica; de fato, a equacao de estado para radiacao é

positiva e portando superior a —1/3.

A idade do Universo e o parametro de Hubble sao relacionados nessa fase por

1

to=——
0 2H07

3
sendo a evolugao da densidade de energia com o tempo fisico p = 3 t=2.
Matéria

A medida que o Universo expande e arrefece, sao estabelecidas as condi¢Oes necessérias

para a formacao de estruturas [20]; a evolu¢do cosmica passa a ser dominada por um fluido

8desconsideramos a inflagdo césmica, mencionada a seguir.
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de pressao nula. Nesse caso p = pom(ap/a)?® e, resolvendo (1.17) para o termo de matéria
dominante, obtemos a o t¥? — ¢y = 1 /2, o que caracteriza uma fase de expansao cosmica

desacelerada; como esperado, devido aos efeitos gravitacionais, sempre atrativos.

Diferentemente da fase dominada por radiacao, a idade do Universo e o parametro de

Hubble s@o agora relacionados por [20]

2
to =+ =6,52x 10°h~"
°T3H, w

e a evolucao temporal da densidade de energia varia com o tempo fisico de acordo com
2

=242
P=3

Por muito tempo, essa descricao da fase nao relativistica foi o modelo cosmologico mais
aceito pela comunidade cientifica. Porém, a estimativa da idade do Universo, da ordem
da idade dos sistemas estelares, se apresentava, dentre outras dificuldades, como uma clara

indicagao da necessidade de modificagoes no modelo padrao da Cosmologia.

1.3 Modificacoes no MCP - Inflacao Césmica

A proposta do Big-Bang quente se mostrou bastante eficiente em determinar a abundancia
dos elementos leves, assim como na estimativa da temperatura da radiagao céosmica de fundo,
realizada inicialmente por G. Gamow e R. Alpher (5 K) em 1948 e medida na ordem de
3,5 K por A. Penzias e R. Wilson em 1965. No entanto, o modelo apresentava problemas;
em especial, no inicio de 1970, E. R. Harrison, P. J. E. Peebles e J. T. Yu, e Ya. B.
Zel’dovich sugeriram, independentemente, que a radiagao cosmica de fundo deveria apresentar
inomogeneidades da ordem de 107 ou 107°, o que seria necessario, entre outros requisitos,
para a construcao de um modelo capaz de descrever a formagao de estruturas no Universo.
Além de nao conseguir justificar a presenca dessa inomogeneidade fundamental na radiagao

cosmica de fundo (apenas observada anos mais tarde, pelo satélite observacional COBE),
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a teoria também nao conseguia resolver o, assim chamado, problema das condig¢oes iniciais
do Universo, que inclui o problema da planura, o problema do horizonte e a abundancia de
reliquias cosmologicas, como os monopolos magnéticos, os gravitinos, dentre outras particulas
supermassivas. Também pesava sobre o modelo a dificuldade em apresentar uma melhor
estimativa da propria idade do Universo [22, 23, 24]. Foi esse contexto que levou Alan Guth
[25], Andrei Linde [26], Andreas Albrecht e Paul Steinhardt [27], no inicio da década de 80,
a propor modificagoes no MCP, de modo a incluir uma fase de inflagao cdésmica na evolugao

do Universo.

Problema da planura

Podemos analisar o problema da planura a partir da relagao (1.14),

k
Q-1=—0s. (1.18)

Para o tempo fisico presente, essa relagao é reescrita como

k
Q—1=—= 1.19
’ a3H? (1.19)
e, eliminando o parametro k£ em (1.18) e (1.19), obtemos
2772
_ apHy
Q-1=(Q-1)=3-%. (1.20)

Dados observacionais impoem o vinculo |29 — 1| < 0,02 |20, 28|, de modo que o Universo é
muito proximo da planura hoje. Por outro lado, a relagao anterior exige que o Universo tenha
sido cada vez mais plano & medida que consideramos fases mais remotas, o que configura o

chamado problema da planura: Por que o Universo primordial foi assim tao plano?

Considerando o Universo dominado por radiacao e poeira, como proposto pelo MCP

H 2 QT‘O + QmO

HZ ot a’
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e combinando essa relagao com (1.20) chegamos a

2 2
aga

Q-l=-lg—="g6"

(1.21)

Esse resultado mostra que €2 desvia da unidade no periodo de dominacao matéria-radiacao,
sendo portanto necessario ajustar o valor de {2 para que ele esteja ainda mais préximo
da unidade nessa fase, afim de que esse desvio nao comprometa o vinculo observacional
para ). Isso fica evidente quando consideramos cada uma das fases da evolugao cosmica

separadamente:
Na era da radiagao, a relagao (1.21) fica reduzida a
Q—1], xa* xt,
e ainda, para a fase dominada por matéria
1Q — 1| o a o< t¥3.

Assuma, em acordo com os dados observacionais, Q2,0 = 8,3 x 107 e Q,,0 = 0,27 [28]°.
Sabemos que €y deve se aproximar da unidade no presente, tal que |Qy — 1| < 1073, Isso
nos permite estimar o desvio (1.21) extrapolando os resultados acima. A época da igualdade
matéria-radiacao, por exemplo, a,, ~ 2,8 x 107*, o parametro de densidade §2,,, desvia da

unidade dentro da estimativa
Qo — 1] <1076,

Considerando & época da nucleossintese primordial dy,,. ~ 3,6 x 10~8 devemos obter
| Qe — 1] S 1071,

de modo que esse desvio é realmente muito sensivel. Variacoes acima desse limite teriam como

conseqiiéncia um Universo fora da planura no presente, ou em uma situagao mais dréstica,

9como veremos adiante, a energia escura é estimada em Q.o = 0, 73.
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poderiam responder por uma rapida contragao espago-temporal, o que levaria o Universo ao
que chamamos de Big-Crunch; existe também a possibilidade de uma muito rapida expansao
do Universo, diluindo o seu contetido de matéria a um regime de muito baixa densidade,

cenario esse denominado Big-Chill.

Devemos salientar que nao existe nada de nao natural nesses resultados, o Universo pode
simplesmente ter sido muito proximo da planura no passado. O que a resolucao do problema
da planura se propoe é exatamente justificar o porqué de o Universo primordial ter sido tao

plano no passado.
Problema do horizonte

O problema do horizonte questiona a homogeneidade e isotropia do Universo em larga
escala. Essas suposi¢coes foram fundamentais para a constru¢ao do MCP e simplificam
enormemente a estrutura matemética relacionada a teoria do Big-Bang. Por que entao
consideramos a homogeneidade e isotropia do Universo um problema? Para um melhor
entendimento dessa questao, precisamos definir dois parametros cosmolégicos: a distancia
propria e o horizonte de particula. Aqui entenda o termo “horizonte” como a superficie

esférica centrada no observador.

A distancia propria é definida como

to gt
d,(tg) = —
p(o) ao/t a

e
onde ty é o tempo fisico presente e t, é o tempo de emissao do sinal da particula. Para um

Universo descrito pelas equacoes de Friedmann, definimos o horizonte de particula como

b qt

dpor(to) = ao/o P

que pode ser interpretado como a distancia propria da particula no limite ¢, — 0.
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A homogeneidade e isotropia do Universo sao identificadas especialmente na radiacao
cosmica de fundo e desde que a tdltima superficie de espalhamento, impressa no fundo césmico,
ocorreu muito antes do tempo fisico presente t,, < tgy, a distAncia propria e o horizonte de
particula sao resultados bastante aproximados. Considere entao dois pontos, diametralmente
opostos sobre a tultima superficie de espalhamento, cuja distancia ao observador é, por
definigao, igual ao horizonte de particula dj,.(tg); a separagdo entre esses dois pontos
¢ equivalente a uma distancia propria d,(tp) = 2dpor(to) €, portanto, esses pontos nao
podem se comunicar no Universo, ou ainda, nao podem entrar em equilibrio térmico. As
observagoes, entretanto, revelam que esses dois pontos da tltima superficie de espalhamento

tém aproximadamente as mesmas propriedades; como isso é possivel?

Desde que as inomogeneidades nao podem ser dissolvidas durante a expansao cosmica,
o Universo homogéneo e isotropico no presente deve ser conseqiiéncia de uma regiao de

homogeneidade e isotropia inicial, de modo que o comprimento fisico

[(t) = dpor(t) = a(t)/ dt :

0 a

para um instante inicial ¢t = ¢;, pode ser escrito como [29|

Q;
li ~ to— ,
Qo

uma vez que para o Universo primordial ly = tg &~ dj,-(fg). Podemos agora comparar esse

resultado com o comprimento fisico causal l. = t; & dj,(t;) como segue

LIPORU (1.22)
le  tiag

Para fazer uma estimativa desse resultado vamos considerar condigoes iniciais associadas &
) ~ 1032 ~ 1043 ~
escala de Planck: temperatura T, ~ 10°* K, tempo ¢, ~ 10 s. Sendo a;/ap = Ty /T,

10732 e para a idade do Universo estimada em t, ~ 10'7s, chegamos a

l;

2 ~10%
l, ’
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logo o tamanho do Universo é inicialmente muito maior que o tamanho da regiao causal.
Assumindo ainda que o fator de escala do Universo evolua como alguma poténcia do tempo
fisico, a aproximacao a & a/t é vélida e reescrevemos a rela¢ao (1.22) na forma

li  a

l. dp’
porém a teoria do Big-Bang quente afirma que a expansao do Universo primordial é
desacelerada, decorrente da gravidade ser sempre atrativa, e por conseqiiéncia a regiao causal

é sempre maior que o Universo observavel, o que impede o equilibrio térmico do Universo e

sumariza o problema do horizonte.

Problema dos monopolos magnéticos

Diferentemente do problema da planura e do horizonte, o problema da abundancia
de reliquias cosmologicas nao é relacionado diretamente as condi¢oes iniciais do Universo
primordial, mas a uma combinacao dos resultados da teoria do Big-Bang quente com os
resultados das Teorias de Grande Unificacao da fisica de particulas. De acordo com essas
teorias o Universo primordial apresenta uma transicao de fase, quando a temperatura
atravessa a barreira Trgy ~ 10%® K, em que ocorre uma quebra espontanea de simetria,
associada a um campo escalar [24]. Como conseqiiéncia dessa quebra espontanea de simetria,
surgem defeitos topoldgicos que permeiam o Universo primordial, dentre tais os monopolos
magnéticos. Em acordo com a teoria do Big-Bang quente os monopolos magnéticos deveriam
ocorrer em uma abundancia relativa de um monopolo por barion, o que nao é evidenciado e

caracteriza o problema dos monopolos magnéticos.

1.3.1 A Teoria da Inflacao Césmica

Uma alternativa de solugao para esses problemas é apresentada a partir da teoria da

inflacao cosmica, que propoe a inclusao de uma fase de expansao acelerada a evolucao do
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Universo primordial. Assumindo que a dindmica do Universo é governada pelas equagoes de

Friedmann, a equagao da aceleragao (1.13)

a 1
_ = —— 3
- 3(p+ D) ,

mostra que, para um regime inflacionéario, w < —1/3. Descartada por Einstein depois da
descoberta de Hubble da expansao césmica, uma constante cosmologica com sinal contrério
A,., poderia ser responsavel pela aceleracao cosmica primordial, uma vez que wy,, = —1.
Admitindo a presenca de uma constante cosmolégica, as equagoes de Friedmann precisam ser

rescritas [24],

2 kA
H?> = Zp——+=; 1.2
37723 (1.23a)
1 A
- = —Z(p+3p)+= 1.23b
" (P +3p)+ 5, (1.23b)

e sendo a inflagao cosmica um regime em que a constante cosmologica A;. é dominante, essas

equacoes sao reduzidas a

C 3 )

a Aic

- = >0
a 3 ’

de modo que o fator de escala evolui exponencialmente com o tempo fisico a x exp(H;.t).
Considerando que a inflagdo ocorre durante a fase da radiacao, tendo seu inicio no instante

t; e término do instante t;, podemos escrever a evolucao do fator de escala como
a=a;exp(H;.(t —1t;)),

sendo t; < t < t;. Com isso ar/a; = eV, onde N = H,;.(t; — t;) é o nimero de e-foldings,
um parametro adimensional usado como medida de duracao da inflacao cosmica. Considere,
como um possivel modelo, que a inflacao tem inicio em torno do instante em que ocorre a
unificacao das forcas fundamentais t; ~ trqy ~ 1073% e que o periodo inflacionério transcorra

o equivalente a N = 100 e-foldings. Nesse caso
ay =~ a; el ~ 104
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e, portanto, o fator de escala foi inflado em 10%® vezes o seu tamanho original sob acdo da

constante cosmologica A;..

Vejamos como esse modelo resolve o problema da planura. A evolucao do parametro de

densidade é dada por

k
a’H?

Q—-1=

e sendo o Universo dominado por uma constante cosmolégica, o que implica em a oc effict,

obtemos

1Q — 1| oc e 2Hiet |

ou seja, o parametro de densidade se aproxima da unidade exponencialmente. Esse resultado
pode ser mensurado para t = ¢;, no inicio da inflacao, e para t = t¢, no fim da inflacao, tal

que
|2 — 1] = 7| - 1],

onde usamos a definicdo N = H,.(t; —t;). Desse modo, mesmo que o Universo esteja fora da
planura no inicio do regime inflacionario, |€2; — 1| ~ 1, por exemplo, decorridos um nimero
de 100 e-foldings para a duragao da inflagdo |y — 1| &~ e ~ 107" e o Universo no fim da
inflacao é muito préoximo da planura. Para que a inclusao de um regime inflacionério consiga
resolver o problema da planura, o nimero de e-foldings reconhecido na literatura é da ordem
75; porém esse nuimero pode ser maior, desde que os dados observacionais sao consistentes

com um parametro de densidade muito proximo da unidade hoje, [y — 1] < 1.

Analisamos agora o problema do horizonte. Para um tempo fisico arbitrario, calculamos
o horizonte de particula como

g

oa.

dpor(t) = a(t)
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Em nosso modelo a inflagao transcorre durante a fase dominada por radiacao, nesse caso

beoodt
dpor(t;) = a; — =2t
hOT( Z) a”t\/ov al(t/tz)1/2 (2

e para o fim do regime inflacionério

Boodt vooodt
_ . N o IE—
dhor(tf) = a;€ (A ai(t/ti)l/Q + /tz a; eHic(t_ti)) ’

onde usamos a; = q;e’. Calculando as integrais acima, levando em consideragao um grande

numero de e-foldings, chegamos a
dhor(tf) = €N(2ti + szl) .

Se assumirmos t; ~ 10735, o parametro de Hubble durante o regime inflacionario é dado por
Hi. o< t;1 =~ 10%s71 e obtemos'® dj,,.(t;) = 6 x 1072®m, de modo que decorrido um ntimero

de 100 e-foldings
dpor(ts) = € (3t;) ~ 0,8 pc.

Com o fim do periodo inflacionério o horizonte de particula volta a crescer linearmente com

o tempo fisico; como esperado para a fase de dominacgao da radiacao.

A inclusao da fase inflacionaria tem o efeito de corrigir o horizonte de particula por um
fator eV. Seja, por exemplo, o horizonte de particula para a tltima superficie de espalhamento,
em acordo com o modelo do Big-Bang quente dj,,(ts.) =~ 0,4 Mpc; decorridos 100 e-foldings
no regime inflacionario terfamos agora uma regidao na ordem de 10 Mpc, suficiente para

tornar a ultima superficie de espalhamento em contato causal.

Podemos também comparar a distancia propria e o horizonte de particula no inicio do
regime inflacionario. A distancia propria da ultima superficie de espalhamento é hoje dada por

dy(t,) &~ 1,4 x 10* Mpc, tal que no fim da inflagao, quando t; ~ 107" s e ay = 2 x 1072" Mpc

dy(ts) = asdy(t,) =~ 3 x 107% Mpc ~ 0,9 m,

0lembre-se que nossa escolha de unidades faz ¢ = 1, explicitamente dp,o.(t;) = 2ct;.
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e admitindo uma duragao de 100 e-foldings para o regime inflacionario
dy(t;) = e Nd,(t;) 3 x 107" m

uma quantidade 16 ordens de grandeza menor que o tamanho do horizonte de particula no
inicio da inflagio dp,.(t;) = 6 x 1072® m, garantindo um alcance causal para a parte do

Universo que observamos hoje.

Esse modelo também permite resolver o problema da abundancia de reliquias cosmologicas.
Se essas reliquias foram criadas antes, ou mesmo durante, o regime inflacionario, entao a
densidade de numero dessas reliquias seria reduzida a uma quantidade nao detectavel. No caso
dos monopolos, por exemplo, a densidade de ntimero decresce com a terceira potencia do fator

—3Hict - de modo que na época da grande unificagao ny,en (trgy) = 1032 m=3 e

de escala, n,,,, x e
decorridos 100 e-foldings de inflagao npmon(tr) = €M nmon (trar) & 107% m™3, 0 que permite

estimar a medida para o tempo fisico presente Mo, (ty) =~ 10761 Mpc ™2, sendo portanto a

possibilidade observacional dos monopolos magnéticos muito reduzida [24].

1.3.2 Inflaton

Ainda que o modelo de inflagao guiado por uma constante cosmoldgica tenha resolvido
os problemas apresentados acima no contexto da teoria do Big-Bang quente, somos levados
a descartar esse modelo em fungao de um modelo dindmico de inflagao. Um dos problemas
que nos leva a essa modificacao é a dificuldade de compatibilizar a constante cosmologica
necessaria para guiar o regime inflacionério, py, =~ 10'® Tevm ™, com o valor observavel

atualmente, da ordem de py, ~ 4 x 107> Tevm™*

; comparando esses resultados temos uma
diferenga em torno de 107 ordens de magnitude [6, 20|, resultado conhecido na literatura como
problema da constante cosmologica. Além desse resultado bastante desfavoravel contra a

constante cosmologica, também precisamos explicar a presenca da curvatura local, observada

na radiacao coésmica de fundo; uma variacao na ordem de um por 10°, em ralacdo a uma
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temperatura de fundo de aproximadamente 2,73 K | que teria sido responsavel por gerar as

inomogeneidades e anisotropias necessarias para a formagao de estruturas no Universo [30].

Apresentado inicialmente por A. Guth, vamos explorar aqui um modelo de Universo
inflacionario em que um campo escalar, associado a uma transicao de fase em Teorias de
Grande Unificacao, responde pela pressao negativa que acelera a expansao césmica primordial,
o inflaton. A dindmica do Universo primordial é descrita pela acao de Einstein-Hilbert,

assumindo que o inflaton é minimamente acoplado a gravidade

S = / d*r /=g (—i R+ L(¢, am)) : (1.24)
onde L(¢,0,¢) é a Lagrangeana do inflaton ¢. Perceba que nao consideramos a presenca de
uma Lagrangeana de matéria; como no modelo de constante cosmoldgica, vamos considerar
que o campo escalar domina a densidade de energia do Universo primordial. A Lagrangeana

do inflaton é assumida aqui como a Lagrangeana padrao de campos escalares'!
1 w
L= 5@@8 o—V (1.25)
onde V = V(¢) é o potencial associado ao inflaton.

Desde que seja valida a relagao (1.10), podemos escrever o tensor energia-momento, nesse

€aso, como
Ty = 0,006 — g | 5 9000050 — V()| (1.26)

sendo a densidade de energia e pressao do Universo primordial dadas por
p@-c:T%:%éerV, pic:—T11:%Q52—V. (1.27)

TY = T?% = T%, desde que consideramos uma métrica FRW. A equagdo de estado total é

agora dada por
1

_.2_
_ QQ5 v
W=

19

2¢ +V

Hessa condigdo pode ser relaxada e permite variagoes na descrigao do inflaton [23].
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limitada ao intervalo [—1, 1], incluindo a condigao inflacionaria w < —1/3.

Nesse caso as equagoes de Friedmann sao

2(1, k
H? = 3 (5& +V) - (1.28a)
) . Lk
H = —¢2+?. (1.28b)

combinando essas relacoes, podemos escrever a equacao de movimento do inflaton como
¢+3H)+V, =0, (1.29)

onde o indice ‘¢’ representa derivada em relacao ao campo.
Aproximacao de Rolagem Lenta

Durante o regime inflacionario podemos assumir que o inflaton varia lentamente em um

potencial V' (¢), tal que

%g'ﬁ <V
e a densidade de energia pode entao ser associada ao termo potencial p;. = V', o que nos leva a
Pic = —Pic, ou melhor, w;. = —1. Nesse caso, o inflaton passa a desempenhar o papel de uma
constante cosmologica, gerando uma rapida expansao do Universo primitivo, o que permite

resolver o problema das condigoes iniciais do Universo, que passam agora a ser determinadas

pelo inflaton. Isto permite fazer £ = 0 na equacao de Friedmann e podemos escrever

H? ~ 3 V. (1.30)

Por outro lado, o requisito de rolagem lenta sobre a equagao de movimento do inflaton nos
leva a descartar o termo de aceleracio ¢ frente a derivada do potencial Vg, sendo o termo de
resisténcia 3H ¢, que lentifica a rolagem do campo em direcdo ao minimo do potencial, dado
por

3Hp~ —V,. (1.31)
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Parametros de Rolagem Lenta

E muito comum na literatura definir parametros que estabelecem condi¢oes de validade

da aproximagcao de rolagem lenta [30]. Da definigdo de aceleragao cosmica, obtemos

H
a>0 = _ﬁ<1’

combinando esse resultado com as relagdes (1.30) e (1.31) podemos escrever a condigao

V,\?
-2 1.
(v) <

Similarmente, para que ¢ < Vi, seja vélida, as relagoes (1.30) e (1.31) exigem que

n(¢)=l@<<1-

2V
Embora as condigoes €(¢) < 1 e n(¢) < 1 sejam necessarias, elas ndo sdo suficientes para
a validade do procedimento, sendo também exigido que ¢ se aproxime de uma solucao atrator,

descrita por 3H¢ ~ —V, - vide [20].

Em um regime inflacionario, a rapida expansao do Universo primordial nos leva a
uma condicao de superresfriamento e, portanto, a inflacdo deve incluir um processo de
reaquecimento que precede a nucleossintese e a formacao de estruturas. Diferentes formas
de gerar um processo de reaquecimento foram apresentadas na literatura. No modelo original
de A. Guth, conhecido como velha inflagao, esse processo é decorrente de uma transigao de fase
em Teorias de Grande Unificacao, em que atingida a temperatura critica Trgy, uma quebra
espontanea de simetria geraria bolhas inflacionérias que eventualmente colidem e reaquecem
o Universo a partir da conversao da energia cinética das paredes das bolhas em energia
térmica. Guth nao leva em consideracao que a regiao entre as bolhas também infla e impede
a percolacao. O modelo de nova inflagdo, preconizado por Linde, propoe que a inflacao

apenas ocorre ap0s a transicao de fase e, portanto, temos um tnica bolha em que o processo
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de reaquecimento é agora associado a criacao de pares de particulas, a partir da oscilagao do
inflaton em torno do minimo de potencial. No entanto a condi¢ao da transi¢ao de fase inicial do
Universo primitivo pode ser relaxada e abre espago para a elaboracao do modelo de inflagao
cadtica, onde o inflaton é escolhido para assumir qualquer condi¢ao inicial, em especial o
modelo de inflacao cadtica para potencial quadratico é compativel com o dados observacionais
[28]. Outros modelos inflacionarios de interesse como a inflagao eterna, a inflacdo natural, a
inflacao hilltop sao bastante exploradas na literatura e apresentam diferentes alternativas no

estudo da inflagao césmica.

1.4 Modificacoes no MCP - Energia Escura

Apos o grande avanco na pesquisa observacional, conseguido com o satélite observacional
COBE, favorecendo os resultados preditos pela teoria inflacionaria, um forte estimulo para
uma determinagao mais precisa de parametros cosmologicos foi iniciado em meados da década
de 90. Em especial, dois projetos, envolvendo o estudo de um objeto astrofisico muito peculiar,
as Supernovas tipo IA (SN IA), surpreenderam a comunidade cientifica com seus resultados
[31, 32|. As observagoes divulgadas pelo High-z Supernova Search Team, em 1998 [33], liderado
por A.G. Riess, e pelo Supernova Cosmology Project, em 1999 [34], liderado por S. Perlmutter,
indicaram que as SN TA, com redshift z = —1 + 1/a 2 0,3 apresentavam um desvio positivo
do modulo de distancia em relacao a previsao do MCP. Desde que a estimativa do médulo de

distancia é realizada a partir de'2.

Hy
70 km s~ 'Mpc™

M(z)zm—M%43,17—510g10( 1>+510g102+ )(1—610)2,

5
21n(10
sendo u(z) o modulo de distancia, m a magnitude aparente e M a magnitude absoluta do

objeto observado, podemos associar esse desvio a um valor de ¢y negativo, de onde se conclui

que o Universo esté atravessando uma fase de expansao cosmica acelerada.

2para uma deducio detalhada desse resultado vide, por exemplo, Cap. 7 de [20].
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Essa observacao tem implicacoes de grande relevancia para a Cosmologia; pode ser
essa, por exemplo, uma indicacao de que a Relatividade Geral nao é uma teoria vélida
para descrever a dinamica do Universo em largas escalas, sendo portanto necessario sua
modificagdo, ou mesmo, substituigao. Assumindo, por outro lado, que a Relatividade Geral é
uma teoria valida em largas escalas, precisamos considerar uma nova forma de energia, com
pressao suficientemente negativa para estar de acordo com os dados observacionais citados

acima, a assim chamada energia escura.

Esses resultados foram confirmados por uma série de outras observagoes [35], incluindo os
resultados do satélite espacial WMAP (Wilkinson Microwave Anisotropy Probe). Lancado
em 2001, sob a lideranga de Charles L. Bennett, esse experimento deu continuidade as analises
iniciadas pelo COBE e seus resultados permitiram avaliar precisamente muitos parametros
cosmologicos [36, 37, 38]. Segundo a andlise mais recente, que inclui sete anos de operagao'?,
o WMAPT [39], o pardmetro de Hubble é estimado em 70,4 km/s/Mpc e a composigao atual
do Universo inclui aproximadamente: 4,6% de energia na forma de matéria barionica e um
colossal setor escuro, dividido em 22,7% de matéria escura e 72,8% de energia escura. Nesse
sentido, precisamos elaborar uma nova modificacao ao MCP, afim de compatibilizar a teoria

com os dados observacionais.

Até o presente momento, a natureza do setor escuro e a origem da aceleragao cosmica
sao questoes ainda em aberto na Cosmologia; mesmo assim, algumas propriedades desses
componentes em largas escalas podem ser determinadas. O setor de matéria (baridnica +
escura) deve responder por uma equacao de estado nula (w, = 0), uma vez que a pressao
associada a esse fluido cosmico é nula, e desse modo a equacgao da continuidade exige que

3

pm X a~”. Por outro lado, a energia escura deve apresentar uma pressao negativa que, em

acordo com os dados observacionais, deve ser vinculada a uma equacao de estado w, ~ —1; essa

13 Alguns dados ainda estdo sendo analisados nessa plataforma, que deverdo ser complementados pelo satélite
espacial PLANCK; em atividade desde fevereiro de 2010.
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condicao favorece uma gama de alternativas para descrever a energia escura e por seqiiéncia

levar o Universo a sua atual fase de aceleracao cosmica.

1.4.1 A-CDM

A constante cosmologica € um candidato natural a energia escura, uma vez que sua equagao

de estado wy = —1, estd em acordo com os principais resultados observacionais [35, 39|. Uma
bl bl

possivel extensao do MCP que inclui uma constante cosmologica é conhecida na literatura

como A-CDM!. Para esse modelo, as equacoes de Friedmann sao dadas por

2 (P Pm E A
0 = —(— —)—— 2. 1.32
3 \a* + a3 a? + 3’ (1.322)
a L/ pr  pPm A
a _ Lyl _> = 1.32b
a 3 ( at + a? + 3 ( )
e podemos observar que, quando A > 2 p_z + p—?, o Universo atravessa uma fase de aceleragao
a a

cHsmica.

A evolugao do parametro de Hubble pode ainda ser reescrita como

2= 13 (90 (%) 4 2 ()4 0 (2) 4 20) (1.33)

a

uma extensao da relagao (1.17), onde definimos Q59 = A/(3HE), tal que (1.33) reproduz a
equacdo de Friedmann na presenga de uma constante cosmologica (1.32a). Esta escolha esta
em acordo com os dados observacionais para Q,9 ~ 8,24 x 107°, Q,,0 ~ 0,27, Qo ~ 0,73 ¢

Quo ~ —0.02, vide [37, 39].

A parte do sucesso observacional preconizado pelo A-CDM, a existéncia de uma constante
cosmologica é bastante questionada na literatura, em especial pelo conhecido “problema
da constante cosmoldgica”, ja discutido no caso inflacionario e também pelo “problema da

coincidéncia cosmica”’ que questiona o tamanho preciso que devemos assumir para que a

14CDM sio as iniciais da expressao “Cold Dark Matter”; para uma revisao sobre matéria escura vide [40].
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constante cosmologica seja responséavel pela aceleragao cosmica apenas em um periodo muito
recente da historia evolutiva do Universo, nao afetando o processo de formacao de estruturas,

como as galaxias, por exemplo [24, 30].

1.4.2 ¢-CDM

Uma alternativa a problemética constante cosmolégica é a escolha de um modelo dinamico
para energia escura, em que um campo escalar homogéneo e isotréopico responde pela atual
aceleragao cosmica do Universo. Essa alternativa é considerada no modelo ¢-CDM, segundo

a acao de Einstein-Hilbert

S = / d*z /=g (—iR+£M+£e(¢,0H¢)) , (1.34)

onde L e L.(¢,0,¢) sdo, respectivamente, a Lagrangeana dos campos de matéria e a

Lagrangeana do campo escalar.

Variando (1.34), as equagdes de campo da gravitagao para a métrica FRW sao dadas por

2 k

H? = 3P 5 (1.35a)
a 1

onde assumimos que o fluido coésmico se comporta como um fluido perfeito T#, =
(p,—p, —p, —p). Essas equagoes sdo as ja definidas equagbes de Friedmann, porém agora
a densidade de energia p = p, + pp, + py € a pressao p = p, + py, + Py, onde py € py sao a

densidade e pressao do campo escalar, respectivamente.

Reescrevendo a equagao da aceleragao (1.35b) em termos dos componentes do fluido

cOsmico, obtemos

a o Pro Pmo
a = —— (2¥+?+p¢(1+3w¢))
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e desde que, por definicao, pgs ¢ uma quantidade positiva, a equagao de estado w, deve ser

suficientemente negativa, afim de que @ > 0.

No caso especial em que o campo escalar ¢ admite uma dinamica padrao, conhecido como

modelo de quintesséncia, a Lagrangeana na agao (1.34) é dada por

L= 20,006~ V(0)

e podemos determinar a densidade de energia e pressao do campo escalar, a partir de (1.26),

como

po= 3P HVO),  po=5H V().
Neste caso a equacao de estado wy = p,/py € dada por
S0~ V(9)
%é"' +V(9)

que pode variar no intervalo [—1, 1], incluindo o vinculo observacional w, &~ —1. Uma escolha

W¢:

)

apropriada da dindmica do campo também permite uma transi¢cao entre uma fase desacelerada
a uma fase acelerada do Universo, o que vincula o problema da “coincidéncia césmica” a

solugao do campo escalar.

Por outro lado, o campo escalar associado a energia escura nao precisa necessariamente
estar ligado a uma dindmica padrao; outras possibilidades de interesse sao abordadas na
literatura - vide, por exemplo, [7, 41]. O caso em que a dinamica do campo escalar segue uma

dinamica taquionica, segundo a Lagrangeana

L= —V(6)\/1— 0,000.

também pode ser considerada como alternativa & constante cosmolégica. Substituindo £; em

(1.10) obtemos

V($)0,$0,¢
T, = + gV 1 — g8, 0056 .
N g (¢)\/ G°P 00903
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Relatividade Geral e o MCP

A densidade de energia e a pressao do campo escalar sao nesse caso'®

Pt = T = M € Pt = —T11 =-V(9) \V 1 - nga (1.36)

0= ,71_&

de modo que a equagao de estado é dada por,
_ (2
We = -1+ Q§ ,
limitada agora ao intervalo [—1, 0] - vide [42].

Apesar de reproduzir com bastante precisao os dados observacionais, a natureza dos
campos escalares nunca foi confirmada experimentalmente. Além disso, a liberdade oferecida
pelos dados para a escolha da dindmica do campo escalar limita uma resposta mais eficiente
para o problema da coincidéncia cosmica e torna o estudo da energia escura ainda mais

instigante e desafiador.

Bcomo antes T = T2, = T3;.
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Capitulo 2

Formalismo de Primeira Ordem

Neste capitulo, apresentamos um procedimento que auxilia a procura e analise de modelos
cosmologicos em que a energia escura do Universo é descrita por um campo escalar. A
proposta é baseada na reducao de ordem das equagoes de movimento e tem relevancia no
estudo de solugoes analiticas em Cosmologia. Em um primeiro momento, vamos explorar um
Universo dominado por essa energia escura; inicialmente para o caso em que o campo escalar
segue uma dinamica padrao e entao estendemos o procedimento para o caso de uma dinamica
taquidnica. A presenca de um componente de matéria escura como poeira também é estudada

neste capitulo, que segue os resultados apresentados em [8, 9].

2.1 Formalismo de Primeira Ordem e Energia Escura

A inclusao de um campo escalar representando o contetido de energia escura no MCP
(¢-CDM) nos permite explorar solugbes cosmologicas baseadas nas equagdes de movimento
associadas & dinamica desse campo escalar, o que de um modo geral se resume a resolver um
conjunto de equacgoes diferenciais de segunda ordem acopladas. Uma possivel simplificagao

na obtencao dessas solucoes pode ser conseguida realizando uma redugao de ordem dessas
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Formalismo de Primeira Ordem

equacoes de movimento; uma técnica ja conhecida na literatura! e introduzida em modelos

de energia escura por Bazeia et al. na Ref. [9].

Nessa referéncia, Bazeia et al. consideram um modelo em que a densidade de energia do
Universo é dominada por um conteido de energia escura, descrita por um campo escalar real,

segundo a acao de Einstein-Hilbert

1
5= [ atev=g (-1 r+£0.00), 21)
sendo L(¢,0,¢) a Lagrangeana dos campos escalares. Assumimos que o Universo se comporta

como um fluido perfeito em um espago homogéneo e isotrépico, descrito pela métrica FRW

dr?
1 —Ekr?

ds* = dt* — a*(t) ( + rdez) ,

onde (2 identifica a parte angular, para o qual T#, = (p, —p, —p, —p), € com isso as equagoes

de campo da gravitagao ficam reduzidas as conhecidas equagoes de Friedmann

2 k
2 .
. k

Considerando um modelo de quintesséncia, em que o campo escalar admite uma dindmica

padrao, a Lagrangeana na agao (2.1) é dada por

L= 20,600~ V(0) (2.3)

que permite determinar a densidade de energia e pressao do campo escalar como

1.
* V.

1.
p¢:§¢2+va pqS:é

Nesse caso, a equacao de estado total w = p/p, onde p e p sdo a densidade de energia e
pressao totais, é equivalente a equacao de estado do campo escalar w = wy, dada por
1.,
—¢p* =V
59

1., ’
SO +V

lespecialmente no estudo de defeitos topologicos [43, 44].
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sendo limitada ao intervalo [—1, 1], incluindo a condigdo w < —1/3 de um Universo acelerado
e dominado por uma energia escura. Essa descricao nao é rigorosa no sentido de que sabemos
que a evolugao cosmoldgica é mais complexa; nao estamos considerando, por exemplo, a
presenca de matéria, escura ou baridnica; mesmo assim essa proposta se justifica - da mesma
maneira que se justifica definir uma fase dominada por matéria ou por radiacao para o
Universo primordial - propondo um estudo em primeira anélise do problema. Mais a frente,
implementaremos o nosso modelo de Universo incluindo um termo de poeira que respondera

pelo contetdo de matéria (barionica + escura).

Sendo p = ps e p = py podemos agora reescrever as equagoes de Friedmann como

2 /1, k
H? = Z|(=¢? - 2.4
3<2¢ +V) ek (2.4a)
. . k
_ 2
H = —¢"+—. (2.4b)

Combinando essas relagoes obtemos o potencial associado & evolugao cosmologica,

3 1.k
Via)=-H?>+ -H + —: 2.5
(a) = SH? +SH + (2.5)

uma fungao explicita do fator de escala, desde que H = H(a).
Equacao de movimento

Uma deducao mais formal da equagao de movimento do campo escalar, governado pela
Lagrangeana (2.3), pode ser realizada considerando que a dinamica desse campo escalar é

vinculada ainda as equagoes de Euler-Lagrange,

oL oL
“0@,0) 00

de modo que
0,00 +Vy =004V, =0.
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O indice ¢ representa derivada com relagao ao campo. Da definicao de conexao afim,
podemos mostrar que? I, = 0,(Iny/=g), logo a derivada covariante de um vetor, Ar

fica determinada por

y 1
AMW = aMAM + FUVO.A — AM;H = \/—__gﬁu(\/ —g AM) .

Se considerarmos A" como o gradiente do nosso campo escalar, entao A"  representa o
laplaciano covariante de ¢ e obtemos

1
-y

O¢ Ou(V=9 9" 0u0) - (2.6)

ﬁ

de modo que podemos escrever

1

_gau(\/_g 9" 0,9) + Vs =0.

ﬁ

Uma vez que consideramos a métrica FRW, chegamos & equagao de movimento do campo

escalar, na forma

O+3Hp+V,=0. (2.7)

Diferentemente da relagao (2.5), aqui o potencial é visto como uma func¢ao explicita do
campo escalar. Dessa relagao emerge uma equagao da continuidade, que pode ser vista

como conseqiiéncia da conservagao do tensor energia-momento, ja definido como T#, =

(p,—p, —p, —p). De fato,
T, =0T + T T% =T, T"\ =0 = p+3H(p+p)=0. (2.8)

Essa expressao também pode ser encontrada diretamente das equagoes de Friedmann, como

vimos no capitulo 2.

2vide [19], para mais detalhes dos célculos subseqiientes.
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Formalismo de primeira ordem - O método

O sistema de equacoes que precisamos resolver para obtencao de solugoes nesse modelo é
formado pelas equagoes de Friedmann (2.2) e pela equa¢do de movimento (2.7). Essa nao é
uma tarefa simples, mesmo considerando um tnico fluido dominando o conteiido de energia
do Universo, mas que pode ser minimizada com a introducao do método de reducao de ordem

das equagoes de movimento.

O ponto de partida na construcao do formalismo de primeira ordem é assumir que o
parametro de Hubble pode ser escrito como uma fun¢ao do campo escalar

H(a)=W(9). (2.9)

Essa suposicao é razoédvel, uma vez que o potencial pode ser obtido como uma fung¢ao do fator

de escala V'(a), o que nos permite escrever V(¢) = V(¢(a)), sendo ¢(a) uma fungao inversivel.

Com o interesse de melhor explorar as conseqiiéncias da defini¢ao (2.9) vamos analisar a

seguir uma solugao de espaco plano em nosso modelo.

2.1.1 Solugao de Espago Plano

Fazendo k = 0 nas relagoes (2.4a) e (2.4b)
H* = -¢*+V; 2.10
20+ 3V (2.10a)
H = —¢? (2.10b)
e desde que H = W (¢) = H = W¢¢, podemos escrever
b= W, (2.11)

uma equacao diferencial de primeira ordem, assim como (2.9). Desse modo, conhecido W(¢),
precisamos agora resolver duas equagoes diferenciais de primeira ordem, o que fundamenta o

formalismo.
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O potencial que descreve a evolugao cosmica, nesse caso, é obtido a partir das relagoes

(2.10) e (2.11) como segue?,

1., 2 3 1
2 _ — 2 = _ v 2 - 2
H = 43V = V=W, (2.12)

Essa formulagao tem importantes implicacoes na presenca de inomogeneidades no espacgo-
tempo, porém aqui apresentamos sua versao homogénea aplicada & Cosmologia do espaco

plano - vide [22].

De agora em diante preferimos definir o pardmetro de aceleragao coésmica ¢, ao invés do

parametro de desaceleragao cosmica, relacionados por ¢ = —¢, tal que [46]
_aa H
qzﬁzl—i—ﬁ. (2.13)

Substituindo as relagdes (2.9) e (2.11) esse parametro é, nesse caso
W,\2
g=1—{— . 2.14
q ( W > ( )

Para a escolha do potencial dado por (2.12), as solugdes do conjunto de equagoes (2.9) e
(2.11) também resolvem as equagdes de Friedmann no caso plano (2.10). Isso introduz um
novo procedimento em que a evolucao do parametro de Hubble pode ser avaliada resolvendo
o conjunto de equagoes acima para um determinado W, o que veremos em detalhe em alguns
exemplos. O potencial independe do sinal de W (W = —W — V(W) = V(=W)), de modo
que podemos fazer a escolha inicial H = —W, e obtemos ¢ = W, que resulta em outra forma
de construir o formalismo. Escolher uma dessas formas nao resulta em qualquer perda de

generalidade; por conveniéncia manteremos a escolha H = W.

3esse resultado é equivalente a formulacdo de Hamilton-Jacobi, como estudado inicialmente por D.S.

Salopek e J.R. Bond, em modelos de inflagdo cosmica [45].
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Universo oscilante

Para ilustrar a aplicacao do formalismo de primeira ordem, vamos apresentar como
exemplo uma solugao de Universo oscilante, em que uma fase de desaceleracao é seguida

por uma fase de aceleragao, sendo esse ciclo repetido perpetuamente. Uma vez validas as

condigoes H = W e gb = —W,, o parametro de aceleracdo cosmica (2.13) pode ser reescrito
como
dp\?
g=1-a*(—] . 2.15
q a ( da) (2.15)

e desde que, para o caso plano, o parametro de aceleragao coésmica é relacionado a equacao

de estado w por
_ 1
q= —5(1 + 3w) ,

segue que ¢ deve respeitar os limites correspondentes ao intervalo —1 < w < 1 e devemos
ter —2 < ¢ <1, onde § = 1 corresponde ao limite w = —1 e § = —2 corresponde ao limite
w = 1. Desse modo, como ¢ nao pode variar arbitrariamente para o nosso modelo, ¢(a) deve

respeitar essas condicoes apropriadamente.
Uma possivel solugao para ¢(a) é dada por ¢ = v/3 cos(In(a)), o que nos leva a
g =1—3sin*(In(a))
e a partir desse resultado, a evolucao da equagao do estado com o fator de escala é
w = —1+ 2sin*(In(a)).

A evolucao do parametro de aceleracao cosmica e da equacao de estado com o fator de escala
sao mostrados nas Figs. 2.1 e 2.2, respectivamente, sendo ¢(a = 1) = —w(a = 1) = 1,
como favorecido pelos dados observacionais; em especial as figuras exibem o comportamento
exigido para a solucao de um modelo de quintesséncia, quando devemos ter —1 < w <1

(—2<qg<1).
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[
1

o

Figura 2.1: Evolugao do parametro de aceleracao coésmica com o fator de escala a, perceba

que gla=1) = 1.
0,59
3 0\ /\

T 1
5 10

-0,5

-1

Figura 2.2: Evolugao da equagao de estado com o fator de escala a, perceba que w(a = 1) =
—1.
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O parametro de Hubble, nesse caso, é descrito por

3
H=a"3?exp (Z sin(2 ln(a))) :

onde a constante de integragao foi escolhida de modo que Hy = 1. Combinando esse resultado

com o inverso de ¢(a) encontramos

1 3 3
W = exp 5\/3—¢2¢—§ar0c05 g¢ ,

o que nos leva ao potencial da solugao

1
V= §¢2exp /3 — ¢? ¢ — 3arccos ?qﬁ

Esse exemplo ilustra a simplicidade do método, considerando um modelo de Universo plano
dominado por quintesséncia; nesse caso a dinamica do Universo é determinada a partir da
solugao escolhida para o campo escalar ¢, o que nos permite manipular facilmente uma solucao
de Universo oscilante. Entretanto, a busca por solugoes analiticas se torna mais complexa
quando incrementamos o nosso modelo de Universo; considerando outros componentes além
da quintesséncia (energia escura), novos vinculos devem ser obedecidos pela solugao. Isso pode
ser ilustrado, por exemplo, quando consideramos a presenca de curvatura em um Universo

dominado por quintesséncia, como fazemos a seguir.

2.1.2 Solucgao de Espago Curvo

Reconstruimos agora o formalismo de primeira ordem considerando a presenca de
curvatura. Mesmo desfavorecido pelos dados observacionais para a presente época do
Universo, a curvatura cosmica ainda nao pode ser descartada®. Podemos incorporar um

termo de curvatura como um componente extra do fluido coésmico que altera a estrutura do

4a presenca de curvatura é importante para descrever fases iniciais do Universo, especialmente no estudo
de perturbagoes no fim da inflagao [30], bem como em alguns modelos alternativos a inflagdo cosmica [47].
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formalismo, em maneira similar ao que sera apresentado quando considerarmos a presenca de

matéria (barionica-+escura).

No caso geral em que o espaco-tempo pode ser curvo, o sistema de equacoes que devemos

resolver é agora composto pela equacao de movimento
¢+3Hp+V,=0

e pelas equagoes de Friedmann, incluindo o termo de curvatura,

1., 2 k
H? = §¢2 +3V -5 (2.16a)
) ) Lk
H = —¢2+¥. (2.16b)

Como ponto de partida para obtencao do formalismo de primeira ordem no espaco curvo,
assim como fizemos no caso plano, definimos o parametro de Hubble como uma funcao do
campo escalar H = W, porém agora (2.16b) nao nos leva diretamente a relagao ¢ = —Ws.
Por outro lado, sendo ¢(a) uma fungao inversivel, podemos ainda definir é como uma funcio

do campo escalar, ou seja [48|,

b=172, (2.17)

uma equagao diferencial de primeira ordem para o campo, como no caso plano. Aqui Z = Z(¢)
é uma funcao, a priori arbitréria, porém com restrigoes determinadas pelo formalismo. Essa

definicao tem como conseqiiéncia imediata a expressao

k

?:Z(qu—i—Z). (2.18)
Desse resultado vemos que Z = —W implica em k = 0 e (2.17) fica reduzido & solucao de
espago plano gb = —Wj; nesse sentido solugoes de espaco curvo devem ser tais que Z # —Wj.

A expressao (2.18) permite reescrever

3 1. k
V=-H*+_-H+—
2 +2 +a2
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e desde que sejam validas as relagoes H = W e ¢ = Z, obtemos a forma geral para o potencial,
na presenca de curvatura, dada por

3

V=3

W2+ WyZ) + Z2. (2.19)

Similarmente ao caso plano, as escolhas H = W e ¢ = Z resolvem as equacdes de
Friedmann para o potencial (2.19). Entretanto para resolver a equagao de movimento (2.7) é
necessario considerar a presenca do termo de curvatura no calculo. Prosseguindo a derivacao

que conduz a cada termo dessa equacao, obtemos a condicao de consisténcia
QWWy+ ZZy) +WeoZ + Wy +2WZ =0, (2.20)

condigao essa que reduz a arbitrariedade de Z(¢) e W(¢); em especial Z = —W, é uma solugao
geral de (2.20), o que elimina o vinculo para o caso plano. Esse resultado pode também ser

obtido diretamente a partir da definicao do parametro de Hubble

H:—lim<i), (2.21)

n dt an
desde que seja vélida a expressdo ja estabelecida, k/a®> = Z(W, + Z). O parametro de
aceleragao cosmica, definido em (2.13), é agora

W,Z
w2

g=1+ (2.22)

Energia escura dominante + curvatura

Afim de ilustrar o procedimento, apresentamos aqui uma solu¢ao em que o Universo é
preenchido por uma quintesséncia, representando a energia escura dominante, considerando
a presenca de curvatura. No caso curvo é necessario que uma soluc¢ao, envolvendo as fungoes
W (¢) e Z(¢), resolva o vinculo (2.20). Inicialmente fazemos a escolha Z = A — W, de modo
que o vinculo fica reduzido a

Wy — 2W =0, (2.23)
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em que W = Acosh(ﬂqﬁ) é uma solucao da equacao diferencial, sendo A um parametro
positivo. Podemos entao resolver a equacao diferencial qﬁ = Z = A — W, e obtemos a
evolugao do campo escalar com o fator de escala

V2 V2 k
o= 53 arcsinh [7 (1 — A2a2>

(2.24)

O potencial associado a esta solug¢ao é dado por
AQ
V= [sinh(\/?qb)(sinh(\/iqs) —V2)+ 5} (2.25)

e pode ser estudado como uma extensao daquele analisado em [49, 50|, para o caso em que o

termo de curvatura é considerado.

Combinando o inverso de (2.24) com a solucdo W = A cosh(v/2¢) chegamos a

S

de modo que para k£ = 0 o parametro de Hubble é uma constante e temos ¢ = 1; para uma

> : (2.26)

escolha geral de k, entretanto, o parametro de aceleragao césmica tem a forma

k k E\?
253 (1— A2a2)/ 2+ (1— A2a2) ] , (2.27)

o que determina a evolucao da equagao de estado, uma vez que sabemos ser

]
I
—_

1 H? _
sendo nesse caso
4 k2
W=l s i e (229)

Na Fig. 2.3 mostramos o comportamento de ¢ e w para alguns valores especificos de A. A
aceleracao e a equacao de estado mudam de sinal, indicando que a evolucao césmica segue de
uma fase desacelerada para uma fase acelerada. Para o caso k = 1, o parametro de aceleracao

apresenta um setor em que ¢ > 1, um efeito que apenas é possivel devido a presenca de
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0,5

-0,54

0,5

-0,5

0,5

Figura 2.3: Comportamento da aceleragao cosmica (2.27) para k =1 (a.), k = —1 (b.), e da
equagao de estado (2.29) (c.); uma linha solida, tracejada ou solido-tracejada indica o redshift
de aceleracao zgee = 0,5, Zgee = 1 OU Z4ee = 1,5, respectivamente.
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curvatura®; nesta solucao, a geometria esférica. Para o caso hiperbolico, —1 < ¢ < 1. Observe
ainda que a evolucdo da equacao de estado ¢ uma funcao de k% e nao muda com a escolha da

geometria.

O redshift de aceleracao, que mede o redshift da transigao da fase desacelerada para a fase

acelerada, é escrito como
3144
Vi

onde temos zg.. = —1 + 31/414/\/% para a geometria esférica e z,.. = —1 +1 31/414/\/% para a

Zace = —1 4 (1,4) (2.30)

geometria hiperbolica. Desse modo é possivel fitar o parametro A, como foi feito na Fig. 2.3

- vide [52, 53, 54].

2.2 Dinamica Taquidnica

A proposta de descrever a energia escura como um campo escalar homogéneo e isotropico
que permeia todo o Universo como um fluido perfeito, essencialmente nao exige que esse
campo escalar admita uma dindmica padrao, como apresentada por (2.3). Levantamos essa
possibilidade considerando que o campo escalar ¢ possa admitir uma dindmica taquidnica,

sendo a Lagrangeana associada [55]

Lo =—V($)\/1 = 0,000 . (2.31)

A proposta da Lagrangeana acima advém do estudo de cordas cosmicas, quando A. Sen
[56] sugeriu a presenga de condensados taquionicos, no decaimento de D-branas, com as
caracteristicas de um gas sem pressao, com densidade de energia finita, como uma poeira
classica. Campos taquionicos também tém despertado o interesse da comunidade cientifica
em estudos de unificagdo de matéria e energia escura; de acordo com esses modelos, todo o

setor escuro ¢ descrito por um tnico fluido, associado a dindmica do campo escalar - vide [57].

Sessa ndo ¢ uma evidéncia de uma fase Quintom do Universo [51], desde que a equagao de estado descrevendo

a energia escura continua limitada ao intervalo [—1, 1], ndo extrapolando, portanto, o limite w, = —1.
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Como sabemos, a densidade de energia e a pressao para campos taquionicos, (1.36), sao

_VO L e
Pt—ﬂ p V(¢) 1—¢

sendo a equacao de estado,

wy = =14 ¢?, (2.32)

limitada ao intervalo —1 < w; < 0 [42]. Desse modo, as equagoes de Friedmann (2.2) resumem-

se agora a
2V k
H? = T (2.33a)
Vi—¢2 @
12
. k
- -2 vy - (2.33Db)
\/1— @2 “
e essas relagoes permitem verificar que o potencial taquidnico tem a forma
1—¢%)2 (3 1.k
yoU=d) (—H2 +oH+ —) . (2.34)
1— %¢2 2 2 a?

Uma expansao em primeira ordem com relagdo ao termo cinético na Lagrangeana para
taquions (2.31) leva imediatamente a Lagrangeana padrao (2.3), essa correspondéncia é
refletida no céalculo do potencial taquiénico que se reduz ao potencial padrao (2.5), quando

realizamos essa expansao.

Aplicando as equagoes de Euler-Lagrange a (2.31) e considerando que o d’alembertiano
covariante tem a forma dada em (2.6), podemos mostrar que a equagao de movimento para
um campo escalar taquidnico é dada por

b+ (1— %) <3H§b + %) =0; (2.35)

essa equacao é equivalente a uma equagao da continuidade e pode ser obtida diretamente de
(2.8); uma conseqiiéncia da definigdo do campo escalar taquidnico, como um fluido perfeito

globalmente isotropico, que permeia o Universo, porém sob entropia constante.
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2.2.1 Solucao de Espaco Plano para Campos Taquidénicos

Assim como no caso padrao, vamos analisar inicialmente a proposta mais simples, em que
a densidade de energia do Universo ¢ dominada por um campo escalar seguindo uma dinamica

taquionica.

Considerando k = 0, as equacoes de Friedmann ficam reduzidas a

V.
3 /1_Q'52’
H :-——fl—v. (2.36b)

\/1— ¢

Eliminando o potencial nessas expressoes podemos obter,

H® = (2.36a)

. 2 H
2
_ s 2.
) 3 12 (2.37)

Com o objetivo de construir um formalismo de primeira ordem para o caso taquionico

plano, vamos novamente considerar a escolha H = W — H = Wd,é; o que implica em

. 2 W,
=2 2.
0=—3 773 (2.38)

uma equacgao diferencial de primeira ordem, completamente determinada se conhecemos a

fungao W(g).

Substituindo esses resultados em (2.34), determinamos o potencial taquidnico para o caso

plano

1
4 212
Vg [“5(%] | 23

sendo agora o parametro de aceleragao césmica, definido em (2.13), dado por
_ 2 (Wy\°
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Para W = const. # 0 temos ¢ = —w = 1. Nesse caso, ¢ = 0 e o potencial V = (3/2)W? ¢
equivalente a densidade de energia de uma constante cosmologica; considerando, entretanto,
V =0 segue w =0 — @ = —1/2, o que representa a equagao de estado, e o correspondente
parametro de aceleracio, de um gas de poeira®. Esses resultados podem ser também obtidos
considerando gb = C, oumelhor, p—¢g = In(a/ag)”; em especial, para C' = \/%, o parametro

de aceleragao é nulo ¢ =0 — w = —1/3.

A escolha do potencial (2.39) resolve a equagao de movimento (2.35), desde que H = W e
b= —2W,/(3W?) sejam validas. Também no caso taquidnico o potencial nao é alterado por

um sinal na definicdo H = W e podemos ter equivalentemente H = —W — ¢ = 2W,/(3W3).

Energia escura taquionica dominante

Como no caso plano nao existe uma condicao de consisténcia a ser estabelecida’, podemos
escolher livremente uma forma especifica para W. Para explorar o formalismo neste caso

vamos considerar, por exemplo, a solugao
¢(a) = arccsch(Ba) ,

tal que a evolucao da equagao de estado é descrita por

=—-1+ ! (2.41)
Y= 1+ B2a?’ '
sendo o parametro de aceleragao cosmica
3 1
j=1—-———. 2.42
1 2 (1+ B2a) (242)

Para essa solugao

W = cosh(¢)?/?

bcondigao necesséria aos modelos de unificagdo de matéria e energia escura [57].
"lembre-se que a equacdo de movimento é resolvida para as escolhas consideradas.
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e o potencial associado tem a forma

V= g cosh®(¢) \/1 — tanh?(¢)sech®(¢) .

Nesse caso, o parametro de Hubble evolui de acordo com a relagao

H = (1 + B%?*)?%*,

q 0,549

-0,5-%

Figura 2.4: Comportamento da acelera¢ao cosmica (2.42).

0 . . . )
-021
-041
0,6 \-

\

-0.84 \"‘.

—~

—rarar oy

Figura 2.5: Comportamento da equagao de estado (2.41).

Nas Figs. 2.4 e 2.5 apresentamos o comportamento da equagao de estado e do parametro

de aceleracao coésmica com o fator de escala. Em especial, observamos que o parametro de
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aceleracao cosmica muda de sinal, indicando a transicao de uma fase desacelerada para uma

fase acelerada.

Assim como no caso plano para uma energia escura dominante guiada por um campo
escalar padrao, também é possivel apresentar uma solucao de Universo oscilante quando
o campo segue uma dindmica taquionica; considerando, por exemplo, a solu¢do ¢(a) =
sin(In(a)). Os calculos que seguem essa dedugao sao bastante similares aqueles apresentados

anteriormente e podem ser verificados facilmente.

2.2.2 Solucao de Espaco Curvo para Campos Taquidnicos

Seguindo as mesmas motivagoes que levaram a considerar a presenca de curvatura no caso
em que o campo escalar segue uma dindmica padrao, vamos agora estender o formalismo de
primeira ordem ao caso em que a energia escura ¢ descrita por uma dinamica taquidnica na

presenca de curvatura. Consideramos, como antes
H=W, ¢=2. (2.43)

Combinando as equagoes de Friedmann (2.36), de modo a eliminar o potencial, as escolhas

(2.43) nos permite escrever

ko WyZ +(3/2)2*W?
@ 1-(3/2)z2 (244

De acordo com essa relacdo Z = —(2/3)W,/W?, sendo ainda Z # (2/3)/2, implica em k = 0
e as escolhas (2.43) reduzem-se ao formalismo de primeira ordem para o caso plano [9]. Nesse

sentido, solugdes para o espago curvo devem ser obtidas, de modo que Z # —(2/3)W,/W?2.

Substituindo (2.43) e (2.44) na expressao geral do potencial taquidnico (2.34), chegamos

3

WoZ + = W?Z?
3 g
V=s(- 7\ w2+ 2 , (2.45)
152
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e agora podemos determinar a condi¢ao de consisténcia, a partir da equagao de movimento

(2.35)

3 3 9
Z (1 — 522) (Wee + 3W?) + (1 + 522) ZyWy+ 2 (1 — 124) WWy +3ZZ,W?=0.

(2.46)
Uma solugdo geral dessa equagdo diferencial é dada por Z = —(2/3)W,/W?, com Z #
(2/ 3)1/ 2 0 que esta de acordo com a auséncia do vinculo para o caso plano.
Para esse modelo, o parametro de aceleragao cosmica é dado por
_ W2

Energia escura taquionica dominante 4 curvatura

Afim de ilustrar a presenga de curvatura neste cenario, vamos analisar alguns exemplos.

Inicialmente, considerando Z = const. = C, podemos verificar que

1
- Ap+ B

(2.48)

resolve a condi¢ao de consisténcia (2.46), para C' = 1/A. Neste caso, o potencial taquidnico

(2.45) é identicamente nulo, V' = 0, e o campo escalar evolui de acordo com

_ —Bta/v-k

¢ A

(2.49)

A partir desse resultado obtemos o parametro de Hubble H = v/—k/a, que implica em um

Universo estacionério ¢ = 0, sendo a equagao de estado total w = —1 + 1/A2.

Mantendo a escolha Z = C, podemos ainda obter uma solugao de interesse, desde que

W= (% v ﬁqs) B : (2.50)
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também resolve a condigio de consisténcia, segundo as escolhas C' = v/3/3 e B = /3/2. A

evolugao temporal do campo taquionico segue ¢ = (\/§ /3)t e o potencial é agora dado por®

V2

O parametro de Hubble associado a evolucao cosmica, pode ser determinado como
1/2
a 2

P YA B s

0 que nos permite escrever o parametro de aceleracao coésmica, na forma

vapk+a/2
a VaBk+a

Para essa solucao, a relagdo (2.28), ou (2.41), implica em uma equagao de estado total

g=1 (2.53)

constante, w = —2/3.

0,57

o1
AY

Figura 2.6: Comportamento da acelera¢do cosmica (2.53) para a = —0.1 (linha solida),
a = —0.2 (linha tracejada) e & = —0.3 (linha solido-tracejada).

O comportamento da aceleracao cosmica ¢ é mostrado na Fig. 2.6 e podemos observar que

no limite a > 1 o parametro de aceleragao tende assintoticamente a 1/2.

8esse potencial é conhecido na literatura e aparece de maneira recorrente em varios estudos envolvendo

campos taquionicos - vide, por exemplo, [58].
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2.3 Formalismo de Primeira Ordem para Energia Escura
e Matéria

Exploramos agora um modelo de Universo mais realistico, em que consideramos, além
de energia escura, também o contetiido de matéria nao relativistica, incluindo tanto matéria
bari6énica quanto matéria escura. A proposta de uma matéria escura nao relativistica (poeira),
em largas escalas, é uma aproximacao razoavel, uma vez que o processo de formacao de
galaxias e aglomerados de galaxias é mais bem representado em um cenario de matéria escura
fria |30, 59]. Assumindo ainda que a energia escura do Universo é descrita por um campo
escalar, compondo o fluido césmico espalhado homogéneo e isotropicamente no Universo,
podemos identificar esse modelo ao conhecido ¢-CDM e passamos & questao de interesse de

aplicar a esse modelo o formalismo de primeira ordem, desenvolvido nas se¢oes anteriores.

Em nossa analise, vamos descartar a presenca dos termos de curvatura e radiagao, tanto em
razao da pequena contribuicao em relagao a totalidade da densidade de energia do Universo
(o £ 1073, Q,0 ~ 107°), como pela propria dificuldade em obter solugoes analiticas em um
Universo multifluido com mais de dois componentes. Desse modo, a densidade de energia
total do Universo pode ser escrita como p = p. + pm,, onde os indices e e m sao relativos ao
conteido de energia escura e matéria, respectivamente. Nessa relacao p,,(a) = p/a®, onde p é
uma constante real positiva, descrevendo a densidade de energia da matéria nao relativistica
hoje (a = 1). Também temos p = p., desde que p,, = 0; matéria nao relativistica’ apresenta

pressao nula. As equagoes de Friedmann sao agora

2 25
H?> = = L 2.54
i 1 1p
- = —=(p.+3p.) — -2 2.54b

9durante o nosso texto, entenda “matéria nao relativistica = poeira”; de fato, para um gés ideal com pressao
nula, no limite nao relativistico wy,, = 2/3.
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Inicialmente vamos escolher uma dinamica padrao para o campo escalar, tal que

1. 1.
Pe = §¢2 +V, p.= 5452 -V, (2.55)

A equacao de movimento tem a conhecida forma

¢+3Hp+V,=0. (2.56)

Substituindo a densidade de energia e pressao do campo nas Egs. (2.54) chegamos a

1., 2 25

H? = §¢2+§V+§£; (2.57a)

H = -p-L (2.57b)
a

Assim, o conjunto de Eqgs. (2.56) e (2.57) constitue o sistema que precisamos resolver no caso

em que o campo escalar admite uma dinadmica padrao.

Seguindo as escolhas feitas nas secoes anteriores escrevemos H = W e ¢ = Z. No
entanto, para fazer com que os resultados apresentados estejam em acordo com [8] vamos

aqui considerar que W e Z tém formas especificas e escolhemos

H = W+ oapZ; (2.58a)
= —Ws—PBpZy, (2.58b)
onde W = W(¢) e Z = Z(¢) sao em principio fungoes arbitréarias de ¢; « e [ sdo constantes e

consideramos o # 3. Rigorosamente, deveriamos escrever W = W +apZ e Z = —VT/¢ — Bﬁ2¢;

vamos omitir essa notac¢do e continuamos a escrever como em (2.58).

As equagoes de Friedmann (2.57) combinadas com a escolha (2.58) nos permite obter o

potencial associado a evolucao césmica, na forma

V= SOV +apZ)? — S(W, + 5pZ,) W + (20— 5)pZ). (2.59)

1
2
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A presenca de um termo de matéria faz aparecer novas interacoes, descritas pelas funcoes
W (), Z(¢) e suas derivadas, emergindo agora um novo vinculo entre essas fung¢oes, de modo

que a equacao de consisténcia
W¢Z¢¢ + W¢¢Z¢ + 25ﬁZ¢Z¢¢ — 3aﬁZZ¢ - 3WZ¢ =0 (260)

deve ser obedecida para uma solucao qualquer do modelo. Nesse sentido, as solucoes obtidas a
partir do formalismo de primeira ordem dependem da maneira com que o conteiido de energia
escura e de matéria interagem entre si. Na auséncia do termo de matéria, o potencial acima
se torna V' = (3/2)W? — (1/2)W2, e o formalismo fica reduzido ao caso mais simples, de

quintesséncia dominante |9, 60].

A partir da definicdo do parametro de aceleracio cosmica § = 1+ H /H? podemos também

obter
1 W +apZy)(Ws + BpZy)
(W +apZ)? '

q= (2.61)

Antes de explorar solugoes para o formalismo incluindo poeira, vamos voltar a nossa
atencao para o caso em que o campo escalar segue uma dinamica taquionica. Neste caso, a

densidade de energia e pressao para o campo escalar sao

po=V/\ 1= py=-Vy/1-¢?2, (2.62)

sendo a equacao de movimento do campo taquidnico

é+u—&)GHd+%): : (2.63)

Considerando um termo de matéria, as Egs. (2.57) sdo agora

o2 V. 2P (2.64a)
3 : 3 a3
1= g2

: ¢* p

0=V (2.64b)

\/1— 2
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A presenca da raiz quadrada torna o algebrismo um pouco mais intrincado e se insistimos
em obter um formalismo de primeira ordem no caso taquidnico, a escolha anterior H =
W+4apZ janao permite escrever uma representacao razoavel. Entretanto, seguindo a proposta

da referéncia [8], uma solugao é possivel se agora escolhemos

2
H=\|W2+ gaﬁZz. (2.65)

Como antes, a é uma constante e Z = Z(¢). Neste caso, temos

. 2 %%
$=—= 2 (2.66)
3W{/W?2+(2/3) apz?
e o potencial é dado por
3 4 W2/W2 1/2
V=2"w2(1-- 0 2.67
2 ( 9 W2—|—(2/3)apZ2) (2.67)
As fungoes W e Z agora obedecem a seguinte condi¢ao de consisténcia:
3 2 _ s 4
W°Z + 3P Wz — 9 WyZy =0. (2.68)

A equagao de estado para energia escura segundo o campo taquioénico é, como ja tinhamos
obtido, w, = —1 + ¢2. Dados observacionais [61] impéem o vinculo w € [—1.10,—0.98],
mostrando que ¢ deve ser proximo de zero. Se considerarmos qﬁ pequeno em relagao ao
termo potencial, podemos recorrer a aproximacgao de rolagem-lenta [30, 45, 62| e como foi
mostrado na Ref. [63], nesse regime a dinamica taquidnica é aproximadamente a dinamica
padrao, no espaco plano. Isso permanece valido na presenca de um termo de poeira: para o
densidade taquionica (4.13) podemos escrever [64, 65] =V (¢)(1—¢2)/2 ~ V(¢)2/2—V (¢) =
x%/2—V(x), onde usamos a redefinicio x = f(¢). Nesse sentido, observagoes tornam o estudo
de solugoes para o formalismo de primeira ordem em que o campo segue uma dinamica
taquionica pouco interessante para descrever energia escura, quando consideramos a presenga
de matéria escura como poeira. Por outro lado, em modelos de unificagdo de matéria e

energia escura, o campo escalar taquidnico representa uma alternativa de interesse na descricao
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do setor escuro do Universo; campos escalares seguindo uma dindmica padrao apresentam
dificuldades, neste contexto, relativas a velocidade quadratica do som c¢? no processo de

formacao de estruturas - vide [57].
Energia escura + poeira

Retornamos agora a nossa atencao para uma solucao especifica do modelo de campo
escalar seguindo uma dindmica padrao, na presenca de matéria. Como mencionado antes,
trabalhamos no contexto de um Universo plano, de modo que a densidade de energia total é
dada pela densidade critica p.. Em nosso modelo é possivel manter o e 8 arbitréarios, com as
fungdes W e Z consistentemente obedecendo ao vinculo (2.60), vamos entao explorar, como
exemplo, as escolhas a« = 0 e Z = W, por simplicidade. Neste caso, o vinculo (2.60) fica
reduzido a 2(1 + 5p)Wys — 3W = 0, que pode ser resolvido para W = Acosh(B¢), onde A
e B sao constantes, sendo B = j:\/m . O potencial associado a essa solucao é dado
por

V= ZA2 ((1+ Bp) cosh®(Bg) + (1 — Bp)) - (2.69)

A partir de (2.58b), determinamos a evolugao do campo escalar em fungao do tempo fisico

o0~ L1 oo (1)) e

tal que o fator de escala pode ser escrito como

a(t) = (—ﬁ sinh® (g At))l/g : (2.71)

Nesse caso, o parametro de Hubble é dado por
1 (3
H(t) = Atanh 5 At (2.72)

e a densidade de energia total admite a forma

Y f(a) i
pla) == g7 (1 1+(1—f(a>>1/2> ’ 27
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onde f(a) = 38A%3. As constantes A e § sao fixadas, de modo que p(a =1) =p, =1e

Na Fig. 2.7 mostramos a evolugao de Q.(a) =1 — Q,,(a) = pe/(pe + pm) € Qn(a) com o
fator de escala a no intervalo 0 < a < 2, sendo a = 1 hoje. Os graficos foram plotados para os
valores de A = 0,70, 5 = —3,83, ¢ p = 0,26. Por construgao temos €2, = 0,74 e Q,, = 0,26
hoje, apresentando a mesma proporcao no passado, para a = 0, 70.

Qy(a)

0.4

Figura 2.7: Evolugao de €, (linha solida) e €2, (linha tracejada) em relagao ao fator de escala
a, no intervalo 0 < a < 2, com a = 1 hoje.

q(a)

0.5

-0.5 7

11 T oya)

Figura 2.8: Evoluc¢ao do parametro de acelera¢ao cosmica ¢ (linha solida) e da equagao de
estado para quintesséncia w, (linha tracejada), ambas em fung¢ao do fator de escala a, no
intervalo 0 < a < 2, com a = 1 hoje.

O parametro de aceleragao, neste modelo, é dado por

_ 3 1
qla) =1— 21— f(a) (2.74)

e a evolugao da equacao de estado para o componente de energia escura ¢ obtida a partir de
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We = De/pe, que para a solugdo apresentada pode ser escrito como

we(a) = 4/(a) . (2.75)

(14 67) (1+ 0~ F@)?) + 2097

Na Fig. 2.8 mostramos como o parametro de aceleragao se comporta como uma fungao
do fator de escala, para os mesmos valores de parametros usados anteriormente. Para
a > 1 o parametro de aceleracao ¢ tende a unidade, mudando de sinal, no passado, quando
a = 0,56 = 24 = 0,8. Neste redshift, 2. = 0,34 e ; = 0,66. A mesma figura apresenta
também como a equagao de estado w,(a) varia com o fator de escala, a. Em a = 0, 70, onde

Q. = (),,,, o parametro de aceleracao e a equagao de estado sao ¢ = 0,24 e w, =~ —1.

Os resultados do solucao apresentada estao em acordo com os dados observacionais. Em
particular, a transi¢ao da fase desacelerada (“dominada” por matéria) para a fase acelerada
(“dominada” por energia escura) ocorre em a = 0,56, dentro das estimativas baseadas nos
dados [38]. Este modelo ilustra bem a aplicagao do formalismo de primeira ordem, limitado a
evolugao césmica proxima da época presente, onde radiagao nao apresenta uma contribuicao

significante, mostrando que a inclusao de matéria torna a analise mais interessante e realistica.
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Capitulo 3

Implicacoes da Violacao de Lorentz em
Teorias de Inflacao

A inclusao do mecanismo de Higgs no modelo eletrofraco sugere uma quebra de
simetria conduzida por um campo escalar assumindo um valor esperado no vicuo nao-nulo
espontaneamente, o que seria responsavel pela geracao de massa das particulas fundamentais
[66]. Como essa quebra de simetria envolve um campo escalar homogéneo e isotropicamente
espalhado no Universo, nao ocorre, neste caso, a escolha de uma diregao preferencial no
espaco, de modo que preservamos a simetria de Lorentz localmente. Esse nao é o caso
quando consideramos, por exemplo, a presenca de um campo vetorial dindmico; desde que
o valor esperado do campo vetorial no vacuo seja nao-nulo espontaneamente, temos uma
direcao preferencial no espaco e assim uma violacao da simetria de Lorentz localmente
|67, 68, 69]. Nesse sentido, a possibilidade de violagao da simetria de Lorentz abre caminho
para investigacoes em fisica de altas energia e justifica a busca por sinais dessa violagao como

uma heranca de uma fase do Universo inacessivel experimentalmente.

De inicio, a motivagao apresentada para a violagao da simetria de Lorentz foi voltada ao
estudo da teoria dos Parametros Pos-Newtonianos (PPN) por C.M. Will e K. Nordtvedt na

década de 1970 |67, 68]. Em seguida, M. Gasparini e G. Veneziano |70] sugeriram que essa
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violagao poderia eliminar as singularidades cosmologicas devidas a geodésicas tipo-tempo no
modelo padrao. De acordo com essa teoria, a presenca de um campo escalar violando a
condicao de energia forte pode ser associada a um sistema preferencial de referéncia, de modo

que o campo escalar é associado ao classico aether [71].

Baseados nas idéias de Will e Nordtvedt [67, 68], T. Jacobson e D. Mattingly [72]
propuseram a versao mais bem difundida sobre o estudo da violacao da simetria de Lorentz
em teorias de gravitagao, a teoria do Einstein-sether, em que o sether é um campo vetorial
acoplado nao minimamente ao tensor métrico, ocupando no maximo derivadas de segunda
ordem [71]. De um modo geral, é assumido que a norma do sether tem um valor esperado

nao-nulo espontaneamente - para mais detalhes vide [72, 73, 74].

O espaco de parametros da teoria, até o presente momento, é severamente restrito a
vinculos sobre PPN [75], bem como por dados observacionais de pulsares [76]. Alguns vinculos
cosmoldgicos sobre a violagao da simetria de Lorentz, no contexto da teoria do Einstein-zether,
tem sido investigados por varios autores que mostram ser a teoria consistente com dados
observacionais e experimentais dentro do seu espaco de parametros. Em pequenas escalas,
o campo vetorial do Einstein-sether permite a renormalizacao da constante de Newton local
[77], enquanto sobre largas escalas poderia ser identificado em observacgoes do espectro de

galaxias, ou mesmo no espectro de potencias do CMB [78, 79, 80| (veja também [81, 82]).

Neste capitulo investigamos uma simples extensao da teoria do Einstein-sether no contexto
da inflagdo cosmica, inicialmente estudada S. Kanno e J. Soda [83], incluindo um campo
escalar nao minimamente acoplado a gravidade como um ingrediente extra. Assumiremos
que esse campo escalar é um campo inflaton, guiando um periodo de expansao acelerada no
Universo primordial. No decorrer dos nossos calculos, escolhemos a assinatura [—, +, +, +],

afim de que os resultados encontrados estejam em acordo com a Ref. [84].
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3.1 A Teoria do Einstein-sther

A teoria do Einstein-aether é descrita pela acao [83]
4 R
S= [ dzv/—g Z+£ , (3.1)

onde R é o escalar de Ricci, £L = L,, + Ly, sendo L,, a Lagrangeana padrao dos campos
de matéria e Ly a Lagrangeana que responde pelo setor de violagao da simetria de Lotentz,

compondo no maximo termos derivativos de segunda ordem, tal que
Ly = K" gV, AV, AP £ \(AFA, + 1), (3.2)
com
K" 5 = —c19" gap — 025555 - cgégég —cs A AY gop .

Nessas expressoes g'” representa as componentes do tensor métrico, A é um multiplicador
de Lagrange e A" é o campo vetorial fundamental da teoria do Einstein-sether. Sendo esse
campo vetorial adimensional, os pardmetros ¢; (i = 1,2, 3,4) devem ter dimensao de massa ao
quadrado, de modo que cada ,/¢; indica a escala de massa da quebra de simetria [83]; de agora
em diante, vamos nos referir a esse campo vetorial apenas como “Einstein-sether”. Perceba

que fazendo ¢; = ¢y = ¢35 = ¢4 = 0, voltamos ao caso padrao descrito pela Relatividade Geral

81,

Posto que a agao (3.1) é invariante por uma transformacao de Lorentz, assumiremos
que a invariancia de Lorentz é espontaneamente quebrada, com a norma do Einstein-sether
adquirindo um valor esperado nao nulo no vacuo, A,A* = —1; o que define uma diregao
preferencial no espaco para uma solucao particular na teoria. A condigao A,A* = —1 em Ly
assegura que o Einstein-aether é um campo vetorial tipo-tempo, sendo essa condicao necessaria

para garantir a estabilidade da teoria, como discutido em |73, 85].
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Nosso interesse é voltado ao estudo do cenario inflacionario, na presenca do Einstein-
sether, de modo que vamos aqui considerar uma teoria mais geral - vide [83] - em que
L = L, + Ly + Ly, conhecida como teoria Escalar-Vetor-Tensorial. Para essa teoria os
coeficientes ¢; sao agora considerados fungoes do campo escalar real ¢, que segue uma dinamica

padrao descrita por
1 p
Lo= =36V 6= V(9).

onde V(¢) é o potencial do campo escalar.

3.2 Equacoes de Movimento

Aplicando o principio variacional & ac¢ao (3.1), obtemos as conhecidas equagoes de campo
1
RHV — ig‘“’R = 2T/”’7

onde T, = T,Ef,n) +T,Ef) +T,Ef) ¢ o tensor de energia-momento total, sendo T,Ef,n), T,Ef) e Tﬁf) 0S
tensores de energia-momento dos campos de matéria, do Einstein-aether e do campo escalar,

respectivamente, segundo

. OLH) ;
T/E,ll) = _2 aguy _'_ gMV‘E( )7 R = m7 A7 ¢ . (33)

Assumindo que o Universo é homogéneo e isotrépico, sendo o elemento de linha do tipo
Friedmann-Robertson-Walker, o Einstein-gether deve ser escrito como A* = (1,0,0,0). Em
nosso estudo, estamos interessados em analisar uma fase inflacionéaria do Universo primordial
e consideramos L,, = 0. Nesse caso, os componentes temporal e espacial do tensor energia

momento sao dados por
T% = —pa—ps, Ty =pa+ps,
ou melhor,
T = 36H? — (%q’? + v) , T, =3BH*+2BH +28H + %gé? -V
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onde obtemos py = —38H? e py = 38H?* + 28H + 28H resolvendo (3.3) para a Lagrangeana

(3.2) e escrevemos [3(¢) = ¢1(P) + 3ca(¢) + c3(9).

Aplicando esses resultados as equagoes de campo, a dindmica do Universo passa a ser

entao inteiramente descrita pelas equagoes de movimento

(1+2B8)H* = % (%éﬁ? + V) - %s (3.4)
(1+2B8)H = —¢* — 28,H¢ + R (3.5)

Note que a contribuigdo do termo de curvatura no lado direito de Eq. (3.4) nao

necessariamente decresce durante inflacao. A densidade critica é dada por
3 2
pe = 5(1+28)H?, (3.6)

de modo que consideramos o coeficiente 1+ 25 > 0, e podemos reescrever a equagao (3.4)

como
3k k
2a2p,  a2(1+2B)H?’

0—1= (3.7)

onde Q = p/p,.

No regime inflacionario, |2 — 1| deve ser uma func¢ao decrescente em relagao ao tempo

fisico e, nesse caso, (3.7) exige que

d(H?a2(1 + 28))

p >0, (3.8)

ao invés da condicao inflacionaria padrao na auséncia da violagao da simetria de Lorentz
d(H?a?)/dt > 0. Esse resultado nos leva a uma releitura nas condigoes necessérias para
descrever o regime inflacionario. Por exemplo, sabemos que o parametro de aceleragao cosmica
¢ dado por,

a 1 d

= Sa (a*H?) . (3.9)

q
Se ¢ < 0 temos uma fase desacelerada e conseqiientemente Ha decresce com o tempo cHsmico,

t. Por outro lado ¢ > 0 implica que o Universo esta acelerando (inflando) e, neste caso, Ha
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é uma funcgao crescente de t. Para ¢ = 1 o parametro de Hubble é constante e a expansao
é exponencial, como ja tinhamos discutido anteriormente. Se ¢ > 1 o parametro de Hubble

cresce com t e temos um regime de superinflacao.

Também podemos definir o parametro analogo

1
~ 2H3a2(1 4 2)

T % (a*H?*(1+28)) , (3.10)

que é maior (menor) do que zero, dependendo se 2 = 1 é um atrator (repulsor) — note que
Ggr = q se [ é uma constante, mas em geral ¢y # ¢. Portanto, podemos ter um regime
inflacionario que resolve o problema da homogeneidade, mas nao o problema da planura do
Universo. A partir de agora assumiremos que o Universo é aproximadamente plano durante
a maior parte do regime inflacionario. Conseqiientemente, fazemos k£ = 0 na determinacao da

evolugao de a e ¢ com o tempo fisico.

O parametro g pode também ser escrito como

1d
G = 0+ o (n(1428)) (311

e vemos que Gy > ¢ ou ¢ < ¢ dependendo se df/dt é maior ou menor do que zero,

respectivamente.

Em nosso estudo, negligenciamos o contetido de radiagao e poeira no regime inflacionario.
Se inflagao resolve o problema da planura do Universo, isto é de fato uma aproximacao razoavel
durante boa parte do regime inflacionario, uma vez que a razao entre a densidade de energia

do campo escalar
1.
po = 5+ V(). (312)

e a densidade de energia de poeira e radiagao deve crescer consideravelmente durante inflagao.

A equacao de movimento para o campo escalar, ¢, pode ser obtida combinando as relagoes
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4) e (3.9), ou mesmo, explicitamente da equacgao de Euler-Lagrange, de modo que
3.4) e (3.5 lici d io de Euler-L de mod
G+3Hp+3H?By+V,=0. (3.13)

Fazendo = 0 retornamos a equagao de movimento para a dinamica padrao, como esperado.
A presenca do termo 3H?j3; em (3.13) age como um termo de fric¢ao adicional na dinamica do
campo e, portanto, permite modelos em que o Einstein-sether ocorre de maneira a lentificar

a evolugao do Universo, como investigado nas Refs. |78, 79, 80].

3.3 Formalismo de Primeira Ordem

Para investigar solugoes analiticas dentro do contexto de violagao de Lorentz, vamos
utilizar o formalismo de primeira ordem introduzido no capitulo anterior. Como antes,
assumimos que ¢ é uma fungao inversivel do campo escalar e podemos escrever ¢ = Z(¢). No

entanto, seguindo a notagao da Ref. [84], consideramos

¢ =—W, (3.14)
€ nesse caso, segue que
é do
t—to=— [ —, (3.15)
@0 W¢

sendo W(¢) uma fungdo arbitraria de ¢. Como antes, note que (3.14) é uma equagao

diferencial de primeira ordem, enquanto (3.13) é de segunda ordem.

Substituindo a Eq. (3.14) na Eq. (3.5), obtém-se (fazendo k = 0)

dH
(1+ 25)% =W, —28,H, (3.16)
ou, equivalentemente,
_ W)
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onde escolhemos uma constante de integracao nula'. Aqui existe uma familia de solucoes
para H(¢) (e W(¢)) que corresponde ao mesmo [(¢) e ao mesmo potencial do campo escalar,
V(). Isso é resultado da liberdade para fixar a energia cinética do campo escalar em um
dado tempo inicial. Estamos também implicitamente assumindo que existe apenas um valor
de H correspondendo a cada valor de ¢. Essa suposicao é vilida em muitas situacoes de
interesse na Cosmologia, mas pode nao ser valida em algumas situagoes, por exemplo, quando
¢ esta oscilando em torno de um minimo de potencial. Em nosso estudo, analisamos a fase
inflacionaria em que o inflaton rola sobre o potencial e, portanto, essa suposicao ¢ mantida

valida.

A evolucao do fator de escala em relacao ao campo escalar pode ser computada usando as

Egs. (3.14) e (3.17)

— [P W _dé_
a(@) = age "0 Vo I (3.18)

onde o indice ‘0’ denota que as quantidades fisicas sao avaliadas em algum tempo inicial .

A partir desse resultado podemos calcular o nimero de e-foldings da inflagdo, N, entre ¢, e

Pe

- W dp . (a(de)
N=— A mH%_ln( p” ) (3.19)

sendo o indice ‘e’ referido ao fim da inflacao césmica.

O parametro de aceleragao césmica ¢ é dado por

7 a —H+1— d (LY, _
T = mTmT T T aw\n B

d (1428
_ d_¢( = )W¢+1, (3.20)

e deve ser maior que zero durante a inflacao coésmica. Podemos assim determinar o valor

de ¢ no fim do regime inflacionério (¢.) resolvendo a equagdo q(¢) = 0. Para as escolhas

1alt_ernativamente poderfamos definir inicialmente H = W, como procedido em resultados anteriores, e
obter ¢ = —(26,W + (1 +28)Wy).
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realizadas, o parametro g ¢ agora dado por

W,
G = G — % . (3.21)

Usando a Eq. (3.4) podemos também obter o potencial associado ao campo escalar

3 wW?

1
V() = 91+23 §W$, (3.22)

que representa uma extensao para [ # 0 do resultado padrao analisado anteriormente

[9, 45, 60].

No caso especial em que o inflaton segue um estagio de rolagem lenta, satisfazendo P <V,

a Eq. (3.17) nos permite escrever o potencial associado, na forma

3wz
21+28"

Vi(g) ~ (3.23)

3.4 Solucgoes Analiticas

Passamos agora a aplicar o formalismo de primeira ordem descrito na se¢ao anterior para
obter novas solucoes analiticas no contexto da violagdo de Lorentz em teorias de inflacao. A
escolha inicial mais simples que podemos considerar é fazer S uma constante, mas isto nos
leva a solucao trivial g, = ¢, de modo que outras possibilidades mais interessante sao obtidas

se # tem uma dependéncia explicita com o campo escalar, 5 = ().

3.4.1 Expansao Exponencial (§ = 1)

Para o caso particular em que o Universo primordial segue uma expansao exponencial,
podemos considerar o parametro de Hubble, H, constante (§ = 1); neste caso o fator de
escala, a, cresce exponencialmente com o tempo fisico a o« exp(Ht). Na auséncia da violagao

de Lorentz, fazendo 8 = 0, temos H = W = const. e (b = —W, = 0, de modo que o potencial
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¢ dado por V = 3H?/2 = const. Por outro lado, considerando H = const., em um regime de

violagao de Lorentz, 5 # 0, temos
3.0 2 92
V= §H (1+28) —2H"33, (3.24)

sendo agora o potencial associado a evolugao exponencial uma fungao que varia com o campo

escalar. De acordo com o formalismo ¢ = —W, = —2H j34, tal que
*d
/ 9 _ 9t t,).
o) 6¢

Podemos verificar que a expansao exponencial ocorre mesmo para a solucao de potencial nulo,
V' =0, e nesse caso, (3.24) nos permite obter
1 2
1+28= 1 <\/§(¢ — ¢o) +2(1 + 250)1/2) :
Note que, f — —1/2 quando ¢ — ¢ — 2v/3(1 + 2,)"/2/3. Logo, esta solucdo pode ser
valida apenas no periodo de violacao de Lorentz da inflacao e nao tem relevincia na transigao
ao estagio de rolagem lenta padrao, com |3| < 1. Iremos discutir essa transigdo quando

considerarmos uma solugao polinomial para W e (.

A evolugao de ¢ com o tempo fisico é dada por

¢ — o = 2—\3/5(1 +269)"/? (e @/DHC0) 1) (3.25)

3.4.2 Solucgao de Potencial Nulo

Podemos ainda construir uma solucao inflacionaria em que o potencial associado ao

inflaton é nulo (V' = 0), uma vez que sob essa condigao

W2 3
¢

2
W2 1+283 (3.26)

e agora a dinamica do campo escalar é inteiramente associada ao termo cinético.
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Da equagao diferencial (3.26) obtém-se
W(g) = Woe"3 oo 1+271/2d6. (3.27)

Para esta solucao, o parametro de Hubble é H = W; /(3W) e conseqiientemente, usando a

~1/3
a = ag (%) . (3.28)

Por simplicidade vamos considerar a solucao

Eq. (3.18), temos

W(g) = W (%)n , (3.29)

comn > 0e Wy > 0. A evolugao de ¢ com o tempo fisico é encontrada resolvendo a Eq.

(3.15), sendo

_ 1/(2-n)
¢ = ¢o (H(HT?WO@ —t) + 1) , n#2, (3.30a)

¢ = Goe Molt)/eh =9 (3.30b)

Note que se n > 2 entao ¢ — 0, quando t — 400; enquanto se n < 2 entao ¢ — 0, quando

t = &5/ (n(2 = n)Wh).

As Egs. (3.26) e (3.29) implicam em

302

1428 =" (3.31)
e neste caso pOdemOS escrever
3¢5 \ o ’ ’
—n/3
a = a (ﬂ) : (3.33)
o)

sendo a evolucao de ¢ com o tempo fisico, para as escolhas especificas de n, descrita em termos

das Egs. (3.30a) e (3.30b).
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Como sabemos, inflacao é definida como a época da evolucao coésmica que satisfaz a

condicao a > 0 ou, equivalentemente, como
a=aH o ¢*/*72, (3.34)

uma vez que a seja uma func¢ao crescente com o tempo fisico, o que é esperado para n < 3.
Se n = 2 entao H é uma constante e o fator de escala cresce exponencialmente com o tempo
fisico, a = ag exp[H (t —ty)]. Para a condi¢ao n < 2, H também ¢é uma funcao crescente com o
tempo fisico, porém agora correspondendo a um regime de superinflagao (7 > 1). Nesse caso,

a — oo, quando t — to + @3/ (n(2 — n)Wy).

Como discutido na sec¢ao anterior, a condicao inflacionaria nao é suficiente para garantir
que o termo de curvatura na Eq. (3.4) torne-se menos importante & medida que o Universo
expande aceleradamente. A condig@o, necessaria para que o modelo possa resolver o problema

da planura do Universo, requer que a Eq. (3.13) seja também satisfeita, ou melhor, que
a?H*(1 + 26) o< p*/372 (3.35)

seja uma fungao crescente com o tempo fisico. Essa condigdo é estabelecida para n < 3/2
e portanto, para 3/2 < n < 3 o regime inflacionario ocorre, mas nao resolve o problema da
planura, independentemente de sua duragao. Esse resultado pode também ser visto calculando

qd e gk, usando as Egs. (3.20) e (3.21), respectivamente

i = 3(2; "o (3.36a)
sosiom (3.36b)

n

= q—

Se ¢ < 0 (n > 3) temos desaceleragao, enquanto ¢ > 0 (n < 3) implica que o Universo
estd acelerando (inflando). Para ¢ = 1 (n = 2) o parametro de Hubble é uma constante e
a expansao é exponencial. Se ¢ > 1 (n < 2) o parametro de Hubble é também uma fungao

crescente com o tempo fisico, porém agora temos um regime de superinflacao. Para que
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inflacao resolva o problema da planura a condicao g, > 0 deve ser satisfeita, o que ocorre
para n < 3/2. Neste sentido, para este modelo, a solu¢do do problema da planura requer um

regime de superinflagao.
3.4.3 Solucao Polinomial

Vamos considerar agora que a solugdo para W (¢) seja uma fungao polinomial, como feito
na Eq. (3.29). O potencial correspondente ¢ [84]

V(p) = %Wﬁ (%)% (%M - Z—z) (3.37)

e a evolugao de ¢ com o tempo fisico fica determinada pelas Egs. (3.30a) e (3.30b). Se

escolhermos [3(¢) como uma fungao quadrética do campo escalar, na forma

B(¢) = o (%)2 , (3.38)

entao a evolucao do campo escalar é descrita como

2\ —¢3/(4nfo)
a(¢) = ag (1 +12i)(2¢ﬁ/0¢0) ) . (3.39)

Neste caso, § — 0 quando ¢ — 0 o que significa que esta solugao continua vélida para
a transicao a uma fase onde o acoplamento com o setor de violacao de Lorentz pode ser

desprezado.

Os parametros ¢ e g sao

n?  2n(2 —n)Bo

g = —— 1 3.40
A (340
~ _ 2np n?  2n(1—n)pBy

- g0 _ _° 4= .9 3.41

e o valor de ¢ no fim da inflacdo, satisfazendo G(¢.) = 0, é dada por

B\
Pe =1 <2n(2 - n)? + 1) . (3.42)

0
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Aqui temos assumido implicitamente que ¢ > 0; e para que seja estabelecido um regime
inflacionario, devemos ter 2n(2 — n)By/¢2 + 1 > 0. Por outro lado, a condigao gx(¢) = 0 é

satisfeita para

Bo N\
P =mn (Qn(l - n)? + 1) (3.43)

0

e devemos ter 2n(1 —n)By/d3 + 1 > 0. Observamos que se By < 0, entdo a condi¢do @, > ¢,
é atingida em um tempo fisico t. < t.; entretanto, se 5y > 0, entao ¢. < ¢. € alcancado agora
para t. > t.. Conseqiientemente, se By > 0 entao {2 desvia da unidade no ultimo estagio do
periodo inflacionéario (para ¢. < ¢ < ¢.). Por outro lado, €2 pode aproximar-se da unidade,

mesmo sem inflacao, se fy < 0.

Para essa solugao, o ntiimero de e-foldings é calculado a partir de

% ( ¢ + 4nfo )
N =— In ) 3.44
4n o (1 +280)(¢5 — 2n(n — 2)5) (3.44)
Podemos também escolher alternativamente a forma mais geral
14200 = (120 (2 ) (3.45)

com 1+25; > 0em >0 (note que a contribui¢ao para a violagdo de Lorentz desaparece para
Bo =m =0). Se By # 0 ou m # 0 entdao  nao desaparece no fim da inflagdo (5 — —1/2
quando ¢ — 0). Neste cenario o acoplamento com o setor de viola¢ao de Lorentz nao pode ser
desprezado no fim do periodo inflacionario e conseqiientemente pode nao ser vélido durante
toda a evolugdo do campo escalar no regime inflacionario. A evolucao de 5(¢) dada pela Eq.
(3.45) nos permite incrementar a complexidade do nosso modelo, adicionando um parametro
extra, entretanto mantendo a possibilidade de encontrar solucoes analiticas para a dinamica

do Universo.

A partir da escolha acima para [(¢) podemos obter a evolugao do fator de escala com o
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campo escalar como

= agex % (2 o
o p<n<2—m><1+2ﬁo> <1 (%) )) 340

no caso particular em que m = 2, entretanto, devemos escrever

2

___%0
a = ag (%) S . (3.47)

Note que a tende para uma constante ou para co dependendo se m é menor ou maior do que

zero, respectivamente. Os parametros ¢ e g, sao dados por

m—2
_ n(m— n;él +26) ( % ) 1 (3.48)
L mnlL428) (6"
. = g 2¢% bo ’
m—2
_ n(m-— 2;2%1 +2f0) (%) ey (3.49)

Vemos que se m > n ou m > 2, entdo a inflagdo césmica nunca termina (se ¢ > 0 em ¢ = t,
entdo ¢ nunca se torna negativo para t > to). Em particular, se m = 2, entdao ambos g e gy
sao constantes. Por outro lado, para m = n temos ¢ = 1, levando o Universo a uma expansao
exponencial. Podemos ainda verificar que, para n < 2 e m > n, o estagio inflacionario

também nunca termina, apesar do fator de escala, a, se aproximar de uma constante quando

t— 3/ (n(2 —n)Wy).

Portanto, as solucoes de interesse, que apresentam uma transicao de uma fase acelerada
para uma fase desacelerada, tém m < n e m < 2. Neste caso, no fim da inflacdo cosmica,

para ¢(¢.) = 0, temos,

¢g 1/(m—2)
Pe = Po (n(n—m)(1+2ﬁo)) : (3.50)
e a condi¢do Gx(¢p.) = 0 nos leva a
- 262 1/(m—2)
Pe = G0 (n(Qn (T 260)) : (3.51)
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com ¢, < ¢.. Novamente vemos que {2 pode desviar da unidade durante o iltimo estagio da

inflacao.

As solugoes apresentadas mostram que, na presenca do Einstein-sether, novas condigoes
sao impostas para resolver os problemas das condigoes iniciais no periodo inflacionéario; em
especial, na auséncia de um termo de potencial para o inflaton, uma fase de superinflacao é
necessaria. Embora nosso trabalho tenha se limitado ao estudo das modificagoes presentes
em um modelo inflacionério, a presenca do Einstein-sether pode ainda ser estudada em uma
versao vetorial da energia escura [86], além de ser explorada em teorias de mundo brana [87];
outra linha de estudo propoe uma relacao direta entre a violagao de Lorentz e a Bariogénese
[88]. Por outro lado, a dificuldade em estabelecer novos vinculos sobre os PPNs e a possivel
ampliacao do espaco de parametros da teoria colocam o estudo da violagao de Lorentz ainda

em estado de consolidagao.
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Capitulo 4

Modelos de Energia Escura com uma
Equacao de Estado Constante

Os dados observacionais parecem ser consistentes com uma densidade de energia escura
constante [35, 89| associada a uma equagao de estado bem definida, w, = —1, a conhecida
constante cosmologica. Entretanto, um modelo dindmico de energia escura é provavelmente
uma alternativa mais razoavel na descri¢ao da aceleracao da expansao do Universo observavel,
se levarmos em conta a enorme discrepancia entre a densidade de energia do vacuo inferida

pelas observagoes em relacao as expectativas tedricas.

A dificuldade em estabelecer novos vinculos, que permitam explorar essa possivel dinamica
da energia escura, deve ser bastante reduzida a partir dos resultados apresentados pelos
proximos consoércios observacionais, que devem elevar a precisdo sobre w, a ordem de 1072,
nos proximos anos. Esses resultados sao amplamente aguardados pela comunidade cientifica,
especialmente porque eles podem descartar a possibilidade de uma constante cosmologica
com equacao de estado w, = —1, o que, em primeira analise, nao impede que esses resultados
sejam consistentes com outra equacao de estado constante w, # —1 e passamos entao a
questionar: E plausivel descrever o conteiido de energia escura a partir de um modelo de

constante cosmologica com uma equacao de estado constante diferente de —17 Analisamos
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essa questao na Ref. [90], estudada inicialmente por P.P. Avelino, A.M.M. Trindade e P.T.P.
Viana em [91], onde foi mostrado que uma significativa quantidade de ajuste fino é exigida
ao potencial do campo escalar, representando quintesséncia, afim de obter uma constante
w, # —1. Indicando que se futuras evidéncias excluirem a constante cosmologica como um
candidato a energia escura, isto deve ser interpretado como uma fortissima evidéncia em favor
de uma teoria de energia escura dinamica, mesmo que os dados paregam consistentes com uma

quantidade qualquer, independente do tempo, para w,.

Neste capitulo vamos explorar este problema em um contexto mais amplo. Estendemos
a correspondéncia entre modelos de campos escalares e modelos de campos taquidnicos
[63, 92, 93, 94, 95] ao caso de uma equagao de estado constante, w,; inicialmente considerando
um modelo de energia escura (padrao e taquionica), na presenca do contetido de matéria. Em
seguida aplicamos esse método para analisar um modelo de energia escura unificada [96, 97,
onde o campo escalar segue uma dinadmica taquidnica; podemos entao avaliar a quantidade
de ajuste fino, no potencial do campo escalar, necessaria para tornar a equacao de estado

constante w, # 1 em torno do tempo presente, em cada caso.

4.1 Dinamica Generalizada de Quintesséncia e Poeira em
um Universo FRW

O nosso modelo de Universo, considera, como antes, a presenca de um componente de
matéria tipo poeira e de um componente de energia escura descrito por um campo escalar
real, x, minimamente acoplado & gravidade. A agao que descreve a dindmica desse Universo
¢ dada por

S:/d4x\/—_g (—iR+£m+£e(x,X)>, (4.1)

onde L,, é a Lagrangeana de matéria e introduzimos a Lagrangeana generalizada do campo

escalar L.(x, X), sendo X = d,x0"x/2.
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O tensor energia-momento do campo escalar real pode ser escrito como o tensor energia-

momento de um fluido perfeito,
TYY = (pe + p)ute” = peg™ (4.2)

a partir das seguintes identificagoes [29, 98]

9, x oL,
Uy \/ﬁ ) Pe 0X Ee y  Pe Ee( ) X) ( 3)

Na Eq. (4.2), u* é o campo vetorial de 4-velocidade descrevendo o movimento do fluido
(para 0,x tipo-tempo), enquanto p. e p. sao a densidade de energia e pressdo proprias,

respectivamente. A equagao de estado, w, é igual a

we=leo Lo (4.4)

o0 9.
2X 55~ L.

e a velocidade quadratica do som, definida em [98], é dada por

Ipe L.

2 _ 09X _ 0X

Cs[e} = ape = aﬁe aQEe . (45)
X ox ¥

Os componentes do tensor energia-momento dos campos de matéria (poeira) sao

T = pporv” (4.6)

[m]

onde v* é o campo vetorial de 4-velocidade da matéria e p,, é sua densidade de energia propria.
A pressao propria para poeira, p,,, € igual a zero, de modo que tanto a equagao de estado

como a velocidade quadratica do som desaparecem (w,, = pm/pm = 0 € C?[m] =0).

Consideramos o Universo plano em nossos calculos, de modo que podemos escrever o

elemento de linha de Friedmann-Robertson-Walker

ds* = dt* — a®(t) (do® + dy® + d=?) (4.7)
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sendo t o tempo fisico e x, y e z as coordenadas espaciais comodveis. As equagoes de Einstein

nos permitem escrever

H? = 3P (4.8a)

H = —(p+p), (4.8D)

onde p = p,, + p. € a densidade de energia total, p = p. é a pressao total. A conservacao do

tensor energia-momento para ambos os componentes, poeira e energia escura, nos leva a

Pm = —3Hpy ; (4.9a)

pe = —3H (1 + we)pe , (4.9b)

o que implica em pp, = Prmoa >, pe = peoa 310 (assumindo uma equagao de estado constante

w,). De modo que a Eq.(4.8a) pode também ser escrita como
fv{2 = Qeoa_3(1+we) + Qm()a,_3 s (410)
onde QmO = 2pm0/3 e QeO = 2p60/3 =1- QmO'

Revisado esses conceitos basicos, podemos agora escrever o formalismo de primeira ordem
explicitamente; seguimos a notagao apresentada na referéncia [90] e consideramos uma classe

de solucoes satisfazendo

= H(: (4.11a)

X=2(x), (4.11b)

sendo H(x) e Z(x), em principio, fungdes arbitrarias do campo escalar, x. A equacdo de

estado total pode ser determinada e neste caso temos

dH
J% w 2 d Z
e X
_ Y _ ——-1-Z= 4.12
v p 14+ Aagdwe 3 H? ( )

onde A = Q0/Qe0-
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Durante nossa discussao vamos identificar o campo escalar seguindo uma dindmica padrao
ou taquidnica por diferentes letras gregas (¢ e 1, respectivamente). O potencial associado a
dindmica padrao sera escrito como V' = V(¢), enquanto para a dindmica taquidnica preferimos
escrever U = U(v). Também usaremos a notagao Z = é e Z = 1) afim de distinguir a derivada

temporal do campo escalar seguindo uma dinamica padrao ou taquionica.

4.2 Campo Escalar Padrao e w, Constante

Investigamos inicialmente uma familia de modelos de campos escalares descritos pela

Lagrangeana padrao
1
L= 50,60"6 — V(0), (4.13)

onde V' é o potencial do campo escalar. A densidade de energia e pressao correspondentes

sao, como sabemos
1 1
pe:§Z2+Va pe:§Z2_Va (414)
de modo que

_2?)2-V(9)

Y= V) (4.15)

As Egs. (4.8a) e (4.8b) podem agora ser escritas como

1 2 2
H?>=_-7°4+-V +2Y: 4.16

327+ gV Y (4.16a)

H,Z =-7*>-Y, (4.16b)

onde Y = p,, = 3Q0a73/2 e o indice ¢ representa derivada em relagao ao campo. O potencial

do campo escalar é dado por

3 1
V= 5H2 + HyZ + 5Z2 : (4.17)

e a Eq. (4.9a) nos permite escrever a condigao de consisténcia

ZY,+3HY =0, (4.18)
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sendo

Y = —Z(Hy+ 7). (4.19)

Se pmo = 0 entao Z = —Hy. Nesse limite obtemos o formalismo de primeira ordem estudado

no Cap. 2, quando desconsideramos a presenga de matéria, e introduzido em [9].

4.2.1 w, Constante

Nosso interesse é voltado para uma equacao de estado constante w.; no caso em que o

campo escalar segue uma dindmica padrao, a Eq. (4.15) implica em

1 . 1/2
+w) . (4.20)

1—w,

Z:i(QV

No que segue omitiremos o sinal 4 e consideraremos apenas a solucao com Z > (. Entretanto,
essa suposicao pode ser relaxada, desde que o modelo é invariante por uma transformacao

¢ — —o¢, V() = V(—¢). A partir das Eqgs. (4.16a), (4.16b) e (4.20), obtém-se

2 %
2 ¢
H 9(1 —w?) V (421

Multiplicando ambos os lados da Eq. (4.21) por Z% = $? e usando a Eq. (4.20) encontramos

a evolugao do potencial em funcao do fator de escala

V =V a=30Fwe) (4.22)

A partir das Eqgs. (4.10), (4.20) e (4.22), levando em conta que A = Q,,0/Q0 €

peo = 2Vo/(1 — we), tal que Vo = 3Qe0(1 — we)/4, podemos mostrar que

dp 7 [ 3(1+w)/2 \'* 193
da ~ aH A q2H3we 4 2 ) ( )

cuja solucao é dada por

adve/2(1 + \/H—A)> ’ (4.24)

=2rl
¢ rn( 14+ V14 Aadwe
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onde r = 1/3(1 + we)/2/(3w,) e a constante de integracao foi escolhida de modo que ¢y = 0.

Invertendo a Eq. (4.24) determinamos o fator de escala como uma fun¢do do campo

2(1 4+ 1+ A) /) 2/(3we)
a = (2(1+\/1—|——A)+A(1_€¢/,~)) ;

(4.25)

e agora usando a Eq. (4.24) obtemos o potencial associado a solu¢do de equagao de estado

constante - vide [90, 99|

21+ VI T A) et/ e/
V=W ( > )
21+ vV1+A)+ Al —e?/7)

(4.26)

Analisando o comportamento assintotico; na era em que a energia escura € dominante

(a >> 1), a evolugao de ¢ com o fator de escala sera dada por

3
¢:¢e*+ 5(1+we) lnaa

onde ¢, € uma constante arbitraria. Usando a Eq. (4.22) obtemos o potencial

V o e” V6UFwe)o (4.27)

véalido em algum instante ¢, bem dentro da fase de dominagao da energia escura.

Por outro lado, na era em que o contetido de matéria é dominante (a << 1) chegamos a

2
¢ = Gbm* — 3?1 /3(1 + we)A—l a[*BU)e/Q :

e

onde ¢, € também uma constante arbitraria, e agora usando a Eq. (4.22) obtemos
V o (¢ — @) 2T e (4.28)
que é valido em um instante ¢,, bem dentro da fase de dominacao do conteiido de matéria.

A rapida mudanca na forma do potencial em torno da época presente é devida ao fato de
que, embora a fun¢do V(a) tenha a mesma forma nas eras de dominagao da energia escura

ou do conteudo de matéria, a dindmica da quintesséncia, ¢(a), é significativamente afetada
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pela mudanca na dindmica do Universo em volta da época presente. Como conseqiiéncia,
tendo em vista que w, = const # —1, a forma do potencial do campo escalar, V' (¢), precisa
ser compensada por esta mudanca, o que exige uma significante quantidade de ajuste finol,
tornando o modelo pouco natural em sua representacao. Em geral, consideragoes sobre o
fine-tuning podem ser justificadas envolvendo, por exemplo, o principio antrépico [6], o que

levaria a interpretacoes filosoficas nao completamente aceitas pela comunidade.

4.3 Campo Escalar Taquionico e w, Constante

Examinamos agora uma familia de modelos de campos escalares descritos pela

Lagrangeana taquionica
L= ~UW)/T— 8,00, (4.29)

onde U é o potencial para o campo escalar real, ). A densidade de energia e pressao sao

1
=U—, =-UV1- 22, 4.30
=V P (430)
o que implica em w, = —1 + Z2, e as Eqgs. (4.8a) e (4.8b) podem ser reescritas como
2 U 2
H=-——__ +2Y; 4.31
3 /1 — 22 + 3 Y ( a‘)
ZQ

HyZ=-——2U-Y, (4.31b)

V1— 22

como antes, o indice v indica derivada em relacao ao campo. Nesse caso, o potencial é dado

por
3H? +2H,Z
i i 4.32
21— 22 ( )
com o vinculo dado pela Eq.(4.9a)
ZY, +3HY =0, (4.33)

lvide também as Refs. [91, 99].
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onde
Z(2H, + 3H?Z)
Y = — 4.34
2(1 — 2?) (4.34)
Se pmo = 0, entao £ = —2H,/(3H?); reproduzindo o formalismo de primeira ordem para

campos taquionicos (desprezando os campos de matéria), no espago plano, como estudado no

Cap. 2.

4.3.1 w, Constante

Se agora assumimos que w, € uma constante, entao

Z=9¢=+V1+w.. (4.35)

De agora em diante omitiremos o sinal £ e consideraremos apenas a solu¢ao com Z > 0.
Novamente, esta suposicao pode ser relaxada, desde que o modelo é invariante por uma
transformagao ¢ — —, U(y)) — U(—). Manipulando as Egs. (4.31a), (4.31b) e (4.35),
chegamos a

1
e (4.36)

3VI4+w, U’

que implica em

U = Uy a30+we) | (4.37)

como no caso em que o campo escalar segue uma dinamica padrio (veja a Eq.(4.22)). E

possivel também mostrar que

@ . Z QmO QeO )1/2 (4 38)

== —/Ttw, =
da aH T ( a +a1+3“’e

e obtemos a evolucao do campo taquidénico em relagao ao fator de escala como

2 [T+w. 1 1 1 a—3we 1 1 1 1
Y= 3 Tmo [a3/22F1 <§7_%71 - %3_T> — o[ <§,—m,1 - m§—z>} )

onde a constante de integracao foi escolhida, de modo que ¢y = 0.
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A dualidade entre os campos escalares padrao e taquidnico, considerando uma equacao de

estado constante w,, pode ser escrita como

¢=x/1+we/%. (4.39)

Analiticamente, a relagao entre os dois campos escalares nao é inversivel. Entretanto, usando
a Eq. (4.39), podemos encontrar uma correspondéncia nos limites assintoticos. Na era

dominada por energia escura (a > 1)

1) — Yoy X EXP (Mgﬁ) , (4.40)

onde 1., é uma constante arbitraria. A partir da Eq.(4.27) é entdo possivel encontrar o

potencial taquidnico associado & era dominada por energia escura

U o (¢ — ther) 2. (4.41)

Para a era dominada por poeira (a < 1), a rela¢ao (4.39) nos permite escrever

¢ (8 (w - ¢m*)_we ) (442)

onde 1,,, ¢ também uma constante arbitraria, e o potencial taquionico correspondente é agora
dado por
U o (1) — ) ~20Fw) (4.43)

A Fig. 4.1 mostra o comportamento da solugao U(v), assumindo w, = —0.97 durante a
evolucdo cosmica total (linha solida), bem como o comportamento das solugoes analiticas,
computadas usando as Eqs. (4.43) ou (4.41), validas para a era dominada por poeira (linha
tracejada) e para a era dominada por energia escura (linha pontilhada), respectivamente. As
condigoes iniciais para a solugao de w, constante foram escolhidas de modo que ¥y = 0 e
as constantes 1, € Uy, foram determinadas para que as solugoes analiticas, (4.43) ou (4.41)

estivessem em acordo com os resultados para w, constante, obtidos para as eras dominadas
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0.2

0.1

R e ~0.2 )
/l/}
Figura 4.1: Solucao para U(%)) assumindo wg = —0.97 em toda evolugao (linha solida), tao

bem como solugoes analiticas para o potencial taquionico, calculado usando as Eqs. (4.43)
e (4.41), valida na era dominada por poeira (linha tracejada) e por energia escura (linha
pontilhada) respectivamente. O valor de 1) no tempo presente é 1)y = 0.

-0.92-

© -0.96-] ~o

~o

ES TS A . o100

—0.57

s 0.5 i 5 0
Figura 4.2: Evolucao da equacao de estado calculada com uma constante w, para um
potencial da quintesséncia seguindo uma dinamica padrao ou taquidnica, na era dominada
por poeira, dadas pelas Eqs. (4.28) e (4.43) (linhas tracejadas) ou com uma constante
w, para um potencial seguindo uma dindmica padrao ou taquionica, na era dominada por
energia escura, dadas pelas Egs. (4.27) e (4.41) (linhas pontilhadas). Significantes diferengas
entre os resultados obtidos para os campos padrao ou taquionico somente aparecem para w,

significativamente maiores do que —1.
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por poeira ou por energia escura, respectivamente. Temos também considerado €, = 0.27
e Q. = 0.73 como favorecido pelos resultados de sete anos do WMAP [39, 89]. A Fig. 4.1
mostra que, para termos w, = const, a forma do potencial deve sofrer um ajuste fino em volta
de 1) = 1y = 0, de modo a ser consistente com o comportamento assintético da solugao?, o
que novamente faz o modelo bastante nao natural e, portanto, a indicacao observacional de
uma equacao de estado w, = const # —1 deve ser entendida como uma forte evidéncia em

favor de um modelo dinamico para w..

Isso é também mostrado na Fig. 4.2, onde apresentamos o comportamento da evolugao da
equagao de estado, sendo os potenciais V' e U propostos para obter uma equacao de estado
constante w, nas eras dominadas por poeira e energia escura (linhas tracejadas e pontilhadas,
respectivamente). Como esperado, a figura mostra que w, é rigorosamente constante nas fases
dominadas por poeira (linha tracejada) ou energia escura (linha pontilhada), mas aqui temos
uma rapida variagdo em w, na transigao entre essas fases, com |wqo —we(z = 1)|/|weo+ 1] 2 1
(onde z = 1/a — 1 é o redshift). De fato, a evolu¢ao da equagao de estado calculada com a
constante w. # —1 para o potencial da quintesséncia na era dominada por energia escura,
nao é consistente com as observagoes, desde que o campo escalar dominaria completamente a
densidade de energia do Universo em moderados redshifts, quando w, torna-se muito préximo
da unidade. Isso nao é necessariamente verdadeiro para campos taquidnicos desde que, neste
caso, a equacao de estado nao pode ser maior do que zero. Por outro lado, a evolugao da
equacao de estado calculada com uma constante w, = —0.97 para potenciais de campos padrao
ou taquidnico, na era dominada por poeira, estd em acordo com os dados observacionais (o

parametro da equacdo de estado da energia escura é sempre menor do que —0.95).

A Cosmologia obtida considerando um modelo taquiénico para energia escura é equivalente

a Cosmologia de um modelo de quintesséncia padrao até primeira ordem em Z/V (ou

2de outro modo, a equacdo de estado mudaria rapidamente em volta da época presente.
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equivalentemente Z). Portanto, para campos escalares em um regime de rolagem lenta,
com w, ~ —1, temos uma simples correspondéncia entre a evolucao do Universo predita em
ambos os modelos, mesmo se w, ndo é uma constante, correspondendo a V =U e ¢ = p/U.
Esta é a razao da similaridade entre os resultados apresentados na Fig. 4.2 para os modelos
taquidnico (+ poeira) e de quintesséncia, com w, = —1 (veja o grafico destacado na Fig. 4.2).
De fato, um resultado similar é esperado, no regime de rolagem lenta, para o caso de uma

Lagrangeana genérica, admitindo uma expansao da forma
L=-V()+f)X+g0)X*+ ..., (4.44)

onde f e g sao fungoes do campo escalar y [98]. Diferencas significativas entre os modelos
de energia escura para quintesséncia e para a dinamica taquidnica somente aparecem para
valores de w, suficientemente maiores do que —1. Em particular, a equacao de estado para
o campo taquidnico nunca pode ser maior do que zero, enquanto a equacao de estado da

quintesséncia seguindo uma dindmica padrao pode variar no intervalo [—1, 1].

4.3.2 Enmergia Escura Unificada

Os taquions sao também propostos em modelos que consideram a matéria e a energia
escura como um unico fluido césmico (o fluido escuro), cuja dindmica pode ser associada a
um tnico campo escalar; os assim chamados, modelos de energia escura unificada [57]. De
fato, é possivel mostrar que existe uma dualidade entre um modelo taquiénico, em que um
campo escalar ¢ é responsével pelo contetido do setor escuro, e modelos de quintesséncia, na
presenca de matéria escura, em que a energia escura é descrita pelo campo escalar ¢. Nesse

caso, a correspondéncia entre os campos escalares taquidnicos e de quintesséncia é obtida

95

como



Modelos de Energia Escura com uma Equagao de Estado Constante

Em seguida omitimos o sinal + e vamos considerar apenas a solugao com Z > 0. O potencial

taquidnico correspondente pode ser escrito como

3 2 ZH,\'?
U:2H (1+g HQ) . (4.46)

A evolugao de 1 com o fator de escala é dado por

A 3we 1 . 1/2
Y(a) = \/_/ ¢ Zgwe :[;U ) al+3we)/2 g (4.47)
e, nesse caso
3
Ua) = 5v/~weleo (Quoa™ ") + Quoa—OHwe) 2 (4.48)
Se w, = —1, entao a Eq. (4.47) permite obter
9 3
v —, = Nom arctan az : (4.49)
com v, = —2arctan(A/2)/(3y/Qe). Isso implica em
3 QeO
U = 4.50
() = S (4.50)

onde 6 = 3(¢ — 1,)v/Qe/2. Como § — 7/2 (quando a — o0), o potencial taquiénico U
tende a constante 3€)./2. Por outro lado, para a < 1 (para § ~ 0 e 1) ~ 1,) o potencial
taquiodnico, U, é rigorosamente proporcional a (1) — 1,)~ 1. Portanto, se o campo taquionico
representa tanto o conteido de matéria escura como o de energia escura, entao a forma do

potencial taquidnico, U, tem que sofrer um ajuste fino (mesmo assumindo que w, = —1).
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Capitulo 5

Solucoes Inflacionarias e o Método de
Deformacao

O Universo primordial apresenta uma gama de problemas que continuam a preencher as
mesas de muitos fisicos teoricos. Alguns desses problemas podem ser analisados no contexto
da teoria da inflacdo cosmica [25, 100, 101, 102, 103|, onde um campo escalar, o inflaton,
pode ser assumido para responder pela evolugao do Universo primitivo. Particularmente
desafiadora ¢é a escolha da dinamica do inflaton, desde que um grande ntimero de parametros
deve ser ajustado para assegurar o sucesso do modelo e levar o Universo & “saida graciosa”’

[104, 105, 106].

Neste capitulo introduzimos um mecanismo, baseado no método de deformagao [107, 108],
que permite implementar uma correlagao direta entre duas solu¢oes quaisquer para o inflaton;
considerando, em detalhe, um regime de rolagem lenta [109, 110, 111], onde os parametros da

inflagdo cosmica podem ser determinados a partir do potencial que dirige a solugao [112].

5.1 Meétodo de Deformacao

Como resultado do avango nas pesquisas em fisica de altas energias, uma inumerével

quantidade de modelos envolvendo campos escalares tem sido proposta. Muitos desses
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modelos nao admitem uma descricao analitica do sistema estudado, dificuldade essa que
limita um completo entendimento do problema relacionado. E portanto necessario construir
métodos que possam gerar potenciais com solugoes analiticas e de interesse fisico. Um método
bastante efetivo nesse sentido é o assim chamado método de deformagao, proposto por Bazeia
et al. [107], que consiste em gerar novas solugoes a partir de um potencial, ou solugao,

conhecidos, com a adicao de uma funcao de deformacao escolhida apropriadamente.

Inicialmente o método de deformacao foi aplicado ao estudo de solugoes estacionérias
em modelos de defeitos topologicos e nao-topologicos - para uma revisao mais detalhada
vide [108]; algumas aplicagoes de interesse foram estudadas nas Refs. [113, 114, 115, 116].
Considerando solugoes estacionarias de modelos de um tnico campo escalar, seguindo uma
dinamica padrao!, a relagao entre o potencial do modelo de origem, V (), e o potencial do

modelo deformado, V' (¢), é dada por [107, 108]

- Vix— f(9)
Vi(g) = TG (5.1)

onde f(¢) é a fungdo de deformagao. Nesse caso, se x(x) é uma solugao estatica do modelo
inicial, entao

o(x) = [~ (x(x)) (5.2)
é uma solug¢ao do modelo deformado. Podemos ainda obter, para solu¢oes topologicas, que
um defeito deformado ¢(z) conecta os minimos correspondentes da solu¢ao y(z) do modelo

de origem, tal que v; = f~(v;),i=1,2,3,...,n.
5.2 Modelo de Origem

Novamente consideramos um modelo em que a dindmica do Universo primordial é descrita

pela acao de Einstein-Hilbert, sendo o campo escalar y minimamente acoplado a gravidade,

ladmitindo um espago-tempo bidimensional (1,1), sob uma métrica (+,—), de modo que a Eq. de
movimento ¢ d?x/dz? = V,.
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ie.

S= / B (—i R+ L(x. X)> ; (5.3)
aqui R é o escalar de curvatura, L£(x,X) é a Lagrangeana do campo escalar, com X =
0, x0"x /2, e desprezamos os demais campos de matéria. De agora em diante assumimos que

x desempenha o papel do inflaton.

A meétrica espaco-temporal do Universo é do tipo Friedmann-Robertson-Walker
ds* = dt* — a®(t) (do® + dy® + d=?) (5.4)

onde t é o tempo fisico, x, y e z sao coordenadas espaciais comdveis e consideramos também
que a geometria do Universo é plana; o que deve ser valido durante boa parte do regime
inflacionario. O tensor energia-momento para o inflaton pode ser escrito como o de um fluido
perfeito, de modo que podemos resolver a agao (5.3) para a métrica (5.4) e as equagoes de

Einstein reduzem-se a

G 1
2 = _Z(p+3p).
" 3(p+p)

Vamos focar a nossa atencao ao caso em que o inflaton segue uma dinamica padrao,
1 3
L= 50ux9"x — V(x), (5.5)

sendo sua densidade de energia e pressao dados por

1. 1.
p:§X2+v, p:§X2—V. (5.6)

As solugoes das equagoes de Einstein podem ser agora reescritas na forma

1., 2
H?> = 2+ 2V; :
3 —|~3V7 (5.7a)

H = —2 (5.7b)
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e como antes a equacao da continuidade para o inflaton é dada por
X+3Hx+V,=0, (5.8)
onde o indice x representa derivada com respeito ao campo.

Solugoes inflacionarias em que a densidade de energia do Universo é dominada pelo termo
potencial V() sao analisadas segundo a aproximagao de rolagem lenta, onde o inflaton nao
varia tao rapidamente e podemos negligenciar o termo cinético na equacao de Friedmann e o
termo de aceleragao na equacao de movimento do campo escalar. Essas condi¢oes nos levam

naturalmente ao conjunto de equacgoes de primeira ordem

2
H? §V(X) : (5.9)
SHY + V, 2 0. (5.10)

Para esse regime a escolha do potencial nos permite aplicar limites aos parametros
inflacionarios. O nimero N de e-foldings, que mede a duracao da inflacao coésmica, definido

por N = In(as/a), onde ay é o fator de escala no fim da inflagao, pode ser determinado, uma

o = ag exp (/tt (% V(X)) v dt) , (5.11)

ie. N = fttf H dt, sendo a evolucao do inflaton determinada por (5.11). A fase de inflagao

vez que

cosmica deve resolver os problemas das condigoes iniciais do Universo; em especial a condigao

de planura é alcangada quando os parametros de rolagem lenta € e 7, definidos por |23, 30|

1 (V) 1 Vi
- - | X = XX 12
, 4(V), n= g (5.12)

sdo muito pequenos, ou melhor, no limite |¢| << 1 e || << 1; alternativamente, a infla¢ao

cHésmica termina quando esse limite é violado, ou melhor, no limite e = 1, n ~ 1.

Perceba que todos esses parametros inflacionarios sao sensiveis a escolha do potencial

para o inflaton, e desde que o procedimento de deformagao permite explorar a relacao entre
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uma classe de potenciais analiticamente, este pode ser um caminho eficiente de analise desses
parametros, ou mesmo, de todos os paradmetros inflacionarios que sao func¢oes do potencial.
Vejamos na proxima se¢ao como este procedimento pode ser aplicado ao cenério inflacionario

sob um regime de rolagem lenta.

5.3 Deformando Modelos Inflacionarios

Inicialmente consideramos que o inflaton tem sua dindmica descrita pela Lagrangeana
padrao

1
L£=50x0"x = V(x) (5.13)

e podemos escrever a equagao da continuidade, nesse caso, na forma
py +3Hx =0. (5.14)
Desde que sabemos ser H* = 2p/3, quadrando (5.14) obtemos a relagao

6pX° = P . (5.15)

Agora consideramos a dinamica do inflaton descrita em um segundo modelo

L= 0,606~ V(). (5.16)

Similarmente aos resultados do modelo anterior, obtemos

650 = 7, . (5.17)

Para construir o método de deformacao em modelos inflaciondrios definimos uma

correspondéncia entre as solugoes, de modo que

x=f(¢), (5.18)
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onde f(¢) é a fungao de deformagao, que deve ser apropriadamente escolhida afim de que
a solucao deformada também responda as condigoes inflacionédrias. Como uma conseqiiéncia

direta desta definicao podemos escrever

LX
b= 5.19
Jo 519
em que fy = df /d¢. Usando (5.15) e (5.17) chegamos a
o) -
P o NP s=p0)

que representa uma correspondéncia genérica entre as densidades de energia do modelo de
origem e do modelo deformado para o inflaton. De um modo menos restritivo, esta é uma
alternativa natural para implementar o método de deformagao entre solugoes de um tnico
campo escalar dominante em Cosmologia, sendo satisfeita uma equagao da continuidade para

o fluido césmico.

Nosso interesse ¢é voltado para modelos inflacionérios sob um regime de rolagem lenta, que

aplicada a equacao de movimento do campo escalar nos leva a

3Hyx = —-V,. (5.21)
Nesse caso
22 12
6VX" =V (5.22)
e similarmente
6V? =V;. (5.23)

Usando agora as relagoes (5.22) e (5.23) chegamos a

Vi1 (V2
2= (%) , (5.24)
Voo s =1(9)

que representa uma correspondéncia genérica entre os potenciais do modelo de origem e do

modelo deformado para o inflaton, sob uma aproximacao de rolagem lenta.
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A solucao do novo modelo pode ser obtida considerando a inversa da funcao de deformagao
¢ = f~1(x), calculada a partir da solugdao do modelo original. Uma importante implicacio
deste método é a possibilidade de obter uma descricao analitica para uma nova solugao
inflacionaria, o que permite analisar os parametros inflacionarios para esta solucao, desde
que sejam conhecidos os parametros inflacionédrios para o modelo original, minimizando a

necessidade de recorrer a técnicas numéricas.

Note também que o limite em que a condicao de rolagem lenta deixa de ser valida

x%/2 = V(x) depende do potencial escolhido. Nesse caso

Xf dX
tf—tl-:/ X (5.25)
v V2V

etemos ty—t; # t f —1;, desde que (5.24) é uma relagdo valida entre o potencial do modelo de
origem e o potencial do modelo deformado. Desse modo, o método de deformacao, aplicado
ao cenario inflacionario, nao apresenta uma correlacao entre dois setores do regime de rolagem
lenta, mas entre dois potenciais que seguem um regime de rolagem lenta, por construgao; isso
pode ser verificado analisando a deformacao dos parametros inflacionarios, como mostramos

a seguir em alguns casos particulares.

5.4 Aplicando o Método de Deformacao em Modelos
Inflacionarios sob o Regime de Rolagem Lenta

Inflacao cadtica x inflacao eterna

Para ilustrar o método, inicialmente consideramos um modelo baseado na inflagao cadtica

[117, 118, 119], em que a dindmica do inflaton é dirigida pelo potencial quadratico V() =

2

Vox*. Aplicando o método de deformacao a esse modelo podemos obter diretamente um

modelo de inflagao eterna [120, 121, 122], que é descrito pelo potencial f/(gb) = Vy¢?, onde
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escolhemos p > 2, assumindo a funcao de deformacao

- Vo ¢*%(p*4)
(@) =x= —4\/‘;0m ) (5.26)

aplicada ao potencial da inflagao cadtica e usando (5.24).

Uma vez que o potencial de origem e o potencial deformado sao conhecidos, podemos obter

os parametros de rolagem lenta. Para o potencial original temos € = n = y 2.

Aplicando
o método de deformagao esses parametros sao obtidos para o novo potencial (nesse caso a

inflagdo eterna) e escrevemos

_ 7 _
€= — n=

p(p—1)
7 (5.27)

202
O fim do periodo inflacionério é determinado agora com a escolha adicional do parametro p
para o modelo deformado, enquanto apenas condigoes sobre o comportamento do inflaton sao
necessarias para o modelo original. Neste sentido, o método de deformacao nao conecta uma
fase de rolagem lenta, para o potencial original, a uma fase de rolagem lenta para o potencial
deformado, uma vez que precisamos ajustar apropriadamente o modelo deformado afim de
determinar a duracao do regime inflacionario. De fato, o nimero de e-foldings, que estima

essa duragao, calculado para o modelo de inflagao cadtica é dado por

1
N =304 -xd) (5.2)

por outro lado, para o modelo de inflacao eterna temos

N = (6} - ). (529

Note que o caso p = 4 deve ser analisado separadamente. Para esta escolha, temos

\N/(gb) = \¢* e seguindo os resultados anteriores, a funcao de deformacao é

ﬂ@zxz%?%ﬁ. (5.30)
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Agora os parametros de rolagem lenta sao
€= — n=— (5.31)

e para este caso o numero de e-foldings é o mesmo dado por (5.29), substituindo a escolha

p=4.

Na Fig. 5.4 apresentamos o comportamento dos potenciais da inflagao caoética e da inflagao
eterna, o que permite analisar a dinamica do inflaton nessas solu¢oes. Para tanto, vamos
recorrer a uma analogia simplificada, em que imaginamos o inflaton como uma particula
classica, rolando em um diagrama de energia; seguindo essa analogia podemos reafirmar a
discussao anterior, uma vez que para a condicao p > 2, o inflaton deve rolar mais rapidamente
sob o potencial da inflagdo eterna, o que altera a duragao do regime inflacionario, como

analisado anteriormente.
Inflacao hilltop % inflagao natural

Consideramos agora como modelo de origem a inflagao hilltop [123, 124, 125|, em que a

dindmica do inflaton é guiada pelo potencial

vuw:(%—gxwﬁz. (5.32)

Aplicando o método de deformagao podemos obter diretamente o potencial da assim chamada
inflacio natural [126, 127, 128, dado por V(¢) = V; cos®(r¢), desde que escolhamos a seguinte

funcao de deformagao

5.33
p —4) Aarctanh (5:33)

- 4\/‘707’2 2/(p—4)
“@‘X‘<< «mv@) /

em que a constante de integragao foi escolhida de modo que f(¢ = 7/(2r)) = 0.
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Nesse caso, os parametros de rolagem lenta para o potencial original sao

1 P2
e — - X (5.34)

e O
P A
p—1 _ 1V B

X 2N
n = —2 . (5.35)

R\
(7_7)

Por outro lado, para o potencial deformado obtemos

€ = r?tan®(r¢), i = r*(tan®(r¢) — 1). (5.36)

O numero de e-foldings pode ser calculado como

1 Vo xP2\1Y
N = {XZ (— 40X )} (5.37)
p Ap—4 Xi

e para o modelo deformado temos

Nl (M) : (5.38)

72 sin(r¢y)

Para a escolha p = 4, que deve ser analisada separadamente, chegamos a

gmw>)ﬂKwﬁﬂ

1 + cos(r¢) (539)

ﬂ@zxz(

e a constante de integracao foi escolhida de modo que f(¢ = 7/(2r)) = 1. Os parametros de
rolagem lenta € e 7 sdo os mesmos obtidos em (5.34), substituindo p = 4 em suas respectivas

expressoes e o numero de e-foldings é agora dado por

2 Xf

X Vo
N= |2 22 . 4
[4 S DXL (5.40)

A Fig. 5.1 ilustra o comportamento do potencial de origem e do potencial deformado e permite
avaliar o dinamica do inflaton em ambos os modelos; em especial podemos perceber que a
configuracao de vacuo do modelo de inflacao natural pode ser mapeada a partir do potencial
hilltop, porém exigindo um regime inflacionério cada vez maior a medida que consideramos
valores esperados no vacuo cada vez maiores para o inflaton, em acordo com a analise dos

parametros inflacionérios nesse caso.
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Figura 5.1: Comportamento do potencial de inflacdo caotica (linha solida) e do potencial
de inflagdo eterna para p = 3 (linha pontilhada), p = 4 (linha tracejada), e p = 5 (linha

pontilhado-tracejada).
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Figura 5.2: Comportamento do potencial da inflagdo natural (linha solida) e do potencial
da inflacao hilltop para p = 4 (linha pontilhada), p = 8 (linha tracejada), e p = 12 (linha
pontilhado-tracejada). O parametro A foi apropriadamente escolhido de modo que os zeros
do potencial da inflagdo natural fossem coincidentes com os zeros do potencial da inflacao

hilltop.
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Comentarios Finais

Exploramos algumas aplicagoes do formalismo de primeira ordem em situagoes de corrente
interesse na Cosmologia com campos escalares. Em particular, utilizamos essa ferramenta
tedrica no estudo de um modelo de Universo em que além do conteudo de energia escura
é considerada a presenga de matéria (baridonica + escura), de modo que foi possivel obter
solugoes em bom acordo com os dados observacionais. Embora tenhamos nos limitado a
modelos no ambito da Cosmologia padrao, a aplicabilidade do método é geral e abre espago
para uma série de investigagoes; como, por exemplo, no estudo de modelos cosmolégicos
dentro do contexto da teoria de Horava, ou ainda, no estudo de gravidade massiva em 21

dimensoes; ambas em fase de desenvolvimento.

Considerando um regime de violagao da simetria local de Lorentz em teorias de
inflacao coésmica, a aplicagao do formalismo de primeira ordem permitiu verificar que novas
consideracoes precisam ser implementadas, afim de garantir o sucesso do regime inflacionério.
Uma possivel extensao dessa linha de pesquisa esta relacionada a modelos de energia escura
vetorial; nesses modelos, uma configuragao de campos vetoriais reproduz as inomogeneidades
no CMB e permitem a inclusao de uma fase de expansao cosmica acelerada, um tema bastante

atual e que sera foco de nossa atencao.

Futuros dados observacionais podem descartar uma constante cosmolégica como candidato
a energia escura e ainda assim parecerem ser consistentes com uma equacao de estado

constante e diferente de —1. Investigamos essa possibilidade e identificamos que uma grande
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quantidade de ajuste fino desse ser adicionada ao modelo, o que torna a solugao bastante nao
natural e deve ser interpretado como uma forte indicagao em favor de um modelo dindmico de
energia escura; no caso de modelos de energia escura unificada, verificamos também que esse
ajuste fino ocorre mesmo no caso em que a equagao de estado é igual a —1. Esses resultados
foram demonstrados para o caso de modelos de quintesséncia ou de energia escura taquidnica,
mas esperamos que resultados similares sejam obtidos em qualquer modelo de energia escura

dinamica, que seja descrita por um campo escalar, vetorial ou tensorial.

Outra linha de investigacao que iniciamos nesse trabalho de tese é relacionada a introdugao
do método de deformagao em modelos inflacionarios sob um regime de rolagem lenta;
mostramos que, no caso em que o inflaton é associado a um tnico campo escalar, é possivel
encontrar uma relacao de deformacao direta entre os potenciais de dois modelos inflacionarios.
A partir desse resultado foi possivel investigar as caracteristicas do modelo deformado, uma
vez conhecidas as caracteristicas do modelo de origem. Uma extensao natural dessa aplicagao
é a inclusao de um segundo campo escalar, o que permitiria o estudo de modelos de inflacao

hibrida, abrindo possibilidades para diversas investigagoes nessa linha de atuacao.
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