ISABELLA LIMA ARRAIS RIBEIRO

DISCREPÂNCIAS MARGINAL VERTICAL E INTERNA DE INFRAESTRUTURAS CERÂMICAS DE ZIRCÔNIA: INFLUÊNCIA DO TIPO DE SISTEMA DE FRESAGEM E DO TÉRMINO CERVICAL

Dissertação apresentada à Universidade Federal da Paraíba como parte dos requisitos para obtenção do título de MESTRE, pelo programa de Pós-Graduação em Odontologia, área de DIAGNÓSTICO BUCAL.

ISABELLA LIMA ARRAIS RIBEIRO

DISCREPÂNCIAS MARGINAL VERTICAL E INTERNA DE

INFRAESTRUTURAS CERÂMICAS DE ZIRCÔNIA: INFLUÊNCIA DO

TIPO DE SISTEMA DE FRESAGEM E DO TÉRMINO CERVICAL

Dissertação apresentada à Universidade Federal da Paraíba como

parte dos requisitos para obtenção do título de MESTRE, pelo

programa de Pós-Graduação em Odontologia, área de DIAGNÓSTICO

BUCAL.

Orientador: Prof^o. Dr. Rodrigo Othávio de Assunção e Souza

João Pessoa

2011

FOLHA DE APROVAÇÃO

RIBEIRO, I. L. A. Avaliação das discrepâncias marginal vertical e interna de infraestruturas cerâmicas de zircônia: influência do tipo de sistema de fresagem e do término cervical [dissertação]. João Pessoa: Universidade Federal da Paraíba; 2011, 100f.

João Pessoa, 13 de dezembro de 2011.

Banca examinadora

1) Prof. Dr. Rodrigo Othávio de Assunção e Souza

Titulação: Prof. Adjunto, Disciplina de Prótese Fixa, Departamento de Odontologia Restauradora, Universidade Federal da Paraíba.

2) Prof. Dr. André Ulisses Dantas Batista

Titulação: Prof. Adjunto, Disciplinas de Oclusão e Clínica Protética, Departamento de Odontologia Restauradora, Universidade Federal da Paraíba.

3) Profa. Dra. Adriana da Fonte Porto Carreiro

Titulação: Profa. Adjunta, Disciplina de Prótese Dentária, Departamento de Odontologia, Universidade Federal do Rio Grande do Norte.

Adriana de trait l'at laure Andre Ulige Donntas partists Keraja (Harsio de America Souza (Orientador)

DEDICO ESSA DISSERTAÇÃO

Ao Grande Arquiteto do Universo, esse poder supremo entendido como Deus, Espírito Superior, Fonte de Inteligência e de Energía que permite que tudo aconteça e que criemos nossa própria realidade, baseados no trabalho e na dedicação.

Por ter conduzido a minha caminhada durante mais essa etapa de estudos e de aprimoramento profissional, na busca da ciência em benefício da profissão que abracei.

Aos meus país, Francisco Américo Arrais Ribeiro e Raimunda Rosângela Viana de Lima Ribeiro pela dedicação que sempre dispensaram à minha educação, pelas sábias palavras em todos os momentos, por todo o amor e carinho.

Às minhas irmãs, Gabriella Lima Arrais Ribeiro e Júllia Lima Arrais Ribeiro pelo companheirismo na distância dos nossos pais, pela compreensão nos momentos de maior dedicação às questões universitárias, pelos momentos divertidos; enfim, por tudo o

que temos vivido juntas em função do que mais gostamos de fazer que é estudar... e estudar... e estudar.

Aos meus avós José Evangelista de Lima (in memorian) e Gercina Viana de Lima (in memorian); Luís Orilo Ribeiro e Maria lsa Ribeiro, por serem a base de tudo o que venho conquistando. Aos meus Grandes Tios e Tías, Primos, Primas e Afilhada (Ana Lua); é muito bom pensar em todos vocês nesse momento.

A Clélio Verissimo de Almeida Véras, meu amor. Pelas horas dispensadas a escutar minhas dificuldades e pelas soluções encontradas. Por ter contribuído com a sua Engenharia Mecânica nos projetos que precisei ao longo desse estudo. Por ser meu motivador e meu companheiro de todas as horas.

AGRADECIMENTOS ESPECIAIS

Ao meu orientador, Prof. Dr. Rodrigo Othávio de Assunção e Souza, por ter me proporcionado novas fontes de conhecimento, me apresentado novas formas de fazer pesquisa. Pela paciência e extrema dedicação aos trabalhos desenvolvidos. Pelo exemplo de pesquisador e de profissional a ser seguido.

Ao grupo de pesquisa NEMOP: Amanda María de Olíveira dal Piva; Fernanda Campos; Laísa Daniel Gondím; María Luíza Líma Alves e Rafael Santiago de Sousa. Trabalhar com vocês ao longo desses dois anos foi muito importante para o desenvolvimento de trabalhos de mérito! Por cada um de vocês eu tenho uma admiração enorme!

AGRADECIMENTOS

À Universidade Federal da Paraíba, por mais esse período de crescimento educacional e profissional.

Ao **Programa de Pós - Graduação em Odontologia**, por tornar possível essa minha realização.

À Faculdade de Odontologia de São José dos Campos - SP (Universidade Estadual Paulista) pela possibilidade de realização de parte importante deste trabalho em suas instalações.

Ao Laboratório de Prótese e Ortodontia Dent'art e ao Dr. Leonardo Sarmento pela contribuição com a pesquisa.

À Empresa Neodent (Curitiba-PR) e ao Laboratório Esthetix (Natal-RN) por acreditarem nesse projeto e terem nos concedido os *copings* cerâmicos fundamentais ao que aqui foi estudado.

A **Empresa Bioart**, pelo equipamento cedido para a execução dessa pesquisa.

Ao Centro de Tecnologia da UFPB, por ter cedido seus laboratórios para a confecção de dispositivos necessários a esse estudo e ao técnico e estudante de Engenharia Mecânica Jackson da Silva Farias, por tão bem tê-los confeccionado.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e à Pró-reitoria de Pós – Graduação da UFPB, pelo apoio financeiro para a execução desse trabalho.

SUMÁRIO

RESUMO	7
LISTA DE FIGURAS	8
LISTA DE QUADROS E TABELAS	10
LISTA DE ABREVIATURAS E SIGLAS	11
1 INTRODUÇÃO	13
2 REVISÃO DA LITERATURA	18
2.1 Discrepâncias marginal vertical e interna de infraestruturas cerâmicas	19
2.1.1 Quanto ao sistema de confecção de copings cerâmicos	19
2.1.2 Quanto ao tipo de término cervical	29
3 PROPOSIÇÃO	34
4 MATERIAIS E MÉTODOS	36
4.1 Materiais utilizados	37
4.2 Confecção dos troquéis metálicos	38
4.3 Duplicação dos troquéis metálicos	40
4.4 Obtenção dos modelos de gesso	44
4.5 Obtenção dos <i>copings</i> de zircônia	46
4.5.1 Sistema MAD/MAM – Zirkonzahn	46
4.5.2 Sistema CAD/CAM – Neodent	47
4.5.2.1 Impressão óptica dos preparos	47
4.5.2.2 Obtenção dos <i>copings</i>	48
4.6 Análise da discrepância marginal vertical	50
4.7 Discrepância interna	54
4.7.1 Técnica da réplica	54
4.7.2 Análise da discrepância interna	57
4.8 Análise estatística dos resultados	60
5 RESULTADOS	61
5.1 Discrepância Marginal Vertical	62
5.2 Discrepância Interna	67
6 DISCUSSÃO	76
7 CONCLUSÃO	86
8 REFERÊNCIAS	88
ADCTDACT	100

RIBEIRO, I. L. A. Discrepâncias marginal vertical e interna de infraestruturas cerâmicas de zircônia: influência do tipo de sistema de fresagem e do término cervical [dissertação]. João Pessoa: Universidade Federal da Paraíba; 2011, 100f.

RESUMO

Objetivou-se avaliar o efeito do sistema de fresagem e do tipo de término cervical nas discrepâncias marginal (DM) e interna (DI) de copings de zircônia. A partir de três troquéis metálicos padrões com diferentes terminações cervicais, sessenta copings foram confeccionados (N=60) de acordo com os fatores "término cervical" (Chanfro Largo/CL; Chanfro Inclinado/CI e Ombro Arredondado/OA) e "sistema de fresagem" (CAD/CAM-Neodent e MAD/MAM-Zirkonzahn) (n=10): G1: CL + CAD/CAM; G2: CI + CAD/CAM; G3: OA + CAD/CAM; G4: CL + MAD/MAM, G5: CI + MAD/MAM; G6: OA + MAD/MAM. Para a análise de DM, foram mensurados 50 pontos ao longo de toda a margem do preparo, medindo a distância entre a borda externa do preparo até a margem externa do coping. Para a análise de DI foi utilizada a técnica da réplica e 12 pontos foram avaliados em cada amostra, sendo: 4 Oclusais (Ocl); 4 Axiais (Ax) e 4 na região de Raio (Rai). Todas as mensurações foram realizadas em microscópio óptico (250x). Os dados foram submetidos à análise de variância ANOVA (2 e 3-fatores) e teste de Tukey (5%). O ANOVA revelou que os fatores "término cervical" (p=0,0001) e "sistema de fresagem" (p=0,0001) afetaram significativamente a DM. O sistema MAD/MAM gerou maiores valores de DM (119,4µm^A), superiores aos do CAD/CAM (19,1µm^B) (Tukey 5%). O grupo CL (156,4µm^A) produziu valores de DM maiores que o CI (46,0 μ m^B) e que o OA (5,5 μ m^B). O G4 (258,9 μ m^A) produziu valores de DM significantemente superiores aos demais grupos $(G1 = 53.9 \mu m^B; G2 = 1.9 \mu m^B; G3 = 1.6 \mu m^B; G5 = 9.0 \mu m^B; G6 = 90.4 \mu m^B).$ A DI também foi influenciada pelo sistema de fresagem (p=0,0001) e pela região mensurada (p=0,0001), sendo os menores valores obtidos para o sistema MAD/MAM e para a região axial. Concluiu-se que para a DM, o sistema CAD/CAM gerou os menores valores independente do término cervical, no entanto, o término em CL no sistema MAD/MAM gerou valores de DM incompatíveis com uso clínico; já para a DI, o sistema MAD/MAM gerou menores valores que o sistema CAD/CAM, o que variou entre as regiões dos pontos mensurados.

PALAVRAS-CHAVE: Término cervical; Zircônia; Materiais Dentários.

LISTA DE FIGURAS

FIGURA 1 - Representação esquemática dos troquéis metálicos: a) vist oclusal; b) vista lateral e detalhe dos términos cervicais. Valore em mm
FIGURA 2 - Troquéis metálicos com diferentes términos cervicais: A (Chanfr Largo); B (Ombro Arredondado); C) (Chanfr Inclinado)
FIGURA 3 - Delineador (Bioart B2) modificado4
FIGURA 4 - Sequência da Moldagem Simultânea (a, b, c) e Moldes em vist superior e lateral, respectivamente (d, e)44
FIGURA 5 - Troquéis em gesso, identificados4
FIGURA 6 - Pantógrafo. Sistema MAD/MAM - Zirkonzahn46
FIGURA 7 - Copings do sistema MAD/MAM – Zirkonzahn, após fresagem sinterização
FIGURA 8 - Imagem computadorizada do coping a ser fresado49
FIGURA 9 - Sistema CAD/CAM - Neodent4
FIGURA 10 - Copings do sistema CAD/CAM - Neodent, após fresagem sinterização
FIGURA 11 - Vista lateral do conjunto: A) Coping cerâmico; B) Troque metálico
FIGURA 12 - Dispositivo para fixação do <i>coping</i> cerâmico no conjunto troque metálico / base cilíndrica apoiada sobre base de madeira: A base cilíndrica metálica, B= troquel metálico, C= <i>copin</i> cerâmico, D= parafusos laterais de fixação do êmbolo e eêmbolo (vista superior)
FIGURA 13 – Delineador (Bioart, B2) modificado com peso de 750g5
FIGURA 14 - Obtenção do troquel de silicone pela técnica da réplica5

-	análise da disc	-				FIGURA
l (Oclusal); (vista	ão do conjunto de leitura: Ocl ((Raio)	ıs regiões d Rai	e e	do/denso, demo (Axial)	fl A	FIGURA
as secções e 4 (vista	gmentação do os pontos e das ões 1, 2, 3 e	uração dos ra: secçõe	so e mensu ada amost	cone fluído/den ultantes em c	s	FIGURA
cordo com	llores obtidos pa copings, de aco	agem dos d	ma de fresa	grupo de siste	р	FIGURA
	em um <i>coping</i>					FIGURA
	em um <i>coping</i>		-	-		FIGURA
	em um <i>coping</i>					FIGURA
	DI (Região O	-	·	-		FIGURA
_	AD/MAM; Chanfi	•	-	-		FIGURA
	/CAM; Chanfro I					FIGURA
	o cervical em c			•		FIGURA
	a de fresagem			•		FIGURA

LISTA DE QUADROS E TABELAS

QUADRO 1 -	- Relação dos materiais utilizados37
TABELA 1	- ANOVA (2-fatores) para os dados de Discrepância Marginal
	Vertical62
TABELA 2 -	Média e desvio-padrão dos valores de Discrepância Interna por
	região, sistema de fresagem e tipo de término cervical (valores em
	μm)68
TABELA 3 - I	Resultados da análise de variância ANOVA 3-fatores e a interação
	dos fatores para a Discrepância Interna (*p<0.05)69
TABELA 4 -	Valores médios (em μm) (<u>+</u> desvio-padrão) de DI de acordo com
	os diferentes tipos de término cervical (CL, CI e OA), regiões
	(Raio, Oclusal e Axial) e sistema de fresagem. (Teste Tukey,
	α=0.05)71

LISTA DE ABREVIATURAS E SIGLAS

Ax = Região Axial

CAD = Computer Aided Design (Unidade computadorizada acessória)

CAM = Computer Aided Machine (Unidade fresadora acessória)

CI = Grupo Chanfro Inclinado

CL = Grupo Chanfro Largo

DI = Discrepância Interna

DM = Discrepância Marginal Vertical

g = grama

Kg = quilograma

MAD = Manual Assisted Design (Unidade de desenho manual)

MAM = Manual Assisted Machine (Unidade Fresadora Manual)

MEV = Microscopia Eletrônica de Varredura

min = minuto

ml = mililitros

mm = milímetros

MO = Microscópio Óptico

N = Newton

Ni = Níquel

OA = Ombro Arredondado

Ocl = Região Oclusal

PPF = Prótese Parcial Fixa

Rai = Região de Raio

s = segundo

x = vezes

Y-TZP = Zircônia Tetragonal Parcialmente estabilizada por Ítria

 Y_2O_3 = Ítria

 ZrO_2 = Zircônia

% = unidade de porcentagem

< = menor que

> = maior que

°C = graus Celsius

 $\mu m = micrometro$

1 INTRODUÇÃO

O anseio dos pacientes que procuram tratamento odontológico com excelência estética, bem como o desejo dos profissionais de Odontologia em buscar melhores soluções protéticas, têm motivado inúmeros esforços no aperfeiçoamento tecnológico, biológico e mecânico dos materiais restauradores. Para minimizar os problemas inerentes às resinas diretas e indiretas, como a baixa dureza e instabilidade de cor e a alta contração de polimerização das resinas diretas, as restaurações cerâmicas passaram a ser bastante utilizadas (PALLESEN; VAN DIJKEN, 2000).

Uma grande evolução nas técnicas de restauração dentária vem sendo estabelecida pelo uso de materiais cerâmicos. Esses materiais apresentam inúmeras vantagens devido ao ótimo desempenho das suas propriedades mecânicas e estéticas, biocompatibilidade e estabilidade química (HENCH; WILSON, 1993; ABOUSHELIB et al., 2002; TEIXEIRA et al., 2007). A tendência atual é a de substituição das estruturas metálicas das restaurações por estruturas cerâmicas, visando estética e resistência.

As cerâmicas à base de zircônia (ZrO₂) estabilizadas com ítria (Y₂O₃), também designadas Y-TZP, possuem combinações únicas de propriedades entre os materiais cerâmicos, tais como elevada tenacidade à fratura, alta dureza e resistência ao desgaste, estabilidade química e biocompatibilidade (DE AZA et al., 2002; GUAZZATO et al., 2004; MAEDA et al., 2007). Dentre as indicações da zircônia, as próteses fixas têm tomado um lugar de destaque nos procedimentos restauradores. A elevada tenacidade desse material deve-se à transformação induzida por tensão da fase tetragonal para a fase monoclínica das partículas de zircônia, a qual é acompanhada de expansão volumétrica (3 a 6%). Essa transformação de fase absorve parte da energia necessária para a propagação da trinca, induzindo a um aumento da tenacidade à fratura (SOUZA et al., 2008).

A confecção de restaurações cerâmicas pode ser realizada através de sistemas computadorizados denominados CAD/CAM (*Computer Aided Design* – Unidade Computadorizada Acessória/ *Computer Aided*

Machine - Unidade Fresadora Acessória) ou de forma convencional através do sistema MAD/MAM (Manual Assisted Design – Unidade de Desenho Manual/ Manual Assisted Machine - Unidade Fresadora Manual), onde o bloco de zircônia é fresado com o auxílio manual.

No sistema CAD/CAM é realizada uma impressão óptica do preparo em modelos de gesso, utilizando scanners a laser (Cercon, Dentsply, Ceramco, USA), de infra-vermelho (Scaner inEos, Cerec inLab, Sirona, Bensheim, Alemanha) ou de contato (Procera, Nobel Biocare, Gotenborg, Suíça). A imagem digitalizada é enviada a uma unidade computadorizada acessória (CAD), onde a restauração é confeccionada com o auxílio de um programa computacional e em seguida enviada para a unidade fresadora acessória (CAM) para fresagem da restauração final a partir de blocos cerâmicos pré-fabricados. Como exemplo o sistema CAD/CAM para usinagem de blocos de zircônia tem-se destacado o sistema Neo Shape/Neodent.

Dentre as vantagens dos sistemas CAD/CAM destacam-se: rapidez nos procedimentos comparado às técnicas convencionais, dispensar a realização de modelos refratários, biocompatibilidade, ausência de fundição de metal, estética natural das restaurações, durabilidade, baixa taxa de fraturas devido à alta qualidade dos blocos cerâmicos, os quais são confeccionados industrialmente, garantindo uma alta homogeneidade dos seus componentes e pouquíssimas porosidades internas nos blocos de cerâmica (MORIM, 2001; KURBAD; REICHEL, 2006).

Já a tecnologia MAD/MAM é baseada em um enceramento prévio da estrutura de forma convencional. A infra-estrutura de zircônia é fresada utilizando um sistema pantográfico (PROTAMIC, 2010). Através de um pantógrafo, e com o auxílio do guia manual, a peça cerâmica é fresada seguindo um modelo previamente confeccionado. O sistema Zirkonzahn é exemplo do sistema MAD/MAM.

Segundo Denissen et al. (2000) e Kokubo et al. (2005) o sucesso clínico das restaurações depende de múltiplos fatores, como a adaptação marginal e interna da coroa cerâmica em relação ao dente preparado. Discrepâncias marginais acentuadas entre a restauração e o preparo dentário interferem na longevidade do tratamento restaurador. O

cimento exposto ao meio bucal é um ponto fraco entre a restauração e o dente preparado e grandes fendas marginais podem afetar os tecidos periodontais adjacentes, aumentando a retenção do biofilme dentário (CHAN; WEBER, 1986; LIM; IRONSIDE, 1997; KNOERNSCHILD; CAMPBELL, 2000), favorecer o desenvolvimento de cáries recorrentes e lesões pulpares (WAERHAUG, 1960; LÖE, 1968; ØRSTAVIK; ØRSTAVIK, 1976; FAUCHER; NICHOLLS, 1980; FELTON et al., 1991; JACOBS; WINDELER, 1991; GOLDMAN et al., 1992), favorecer a reabsorção óssea (KNOERNSCHILD; CAMPBELL, 2000) e gerar concentrações de carga em determinadas áreas da restauração devido a variações na adaptação marginal (ALKUMRU et al., 1988).

A adaptação marginal é um critério importante usado para avaliação clínica das restaurações protéticas cimentadas. A dimensão da desadaptação marginal das restaurações protéticas é dependente dos vários passos envolvidos no processo clínico e laboratorial, podendo ser traduzida como uma somatória de distorções, que são inerentes a cada etapa de confecção e das características dos materiais empregados (GASSINO et al., 2004). Quanto maior for essa desadaptação, mais rapidamente poderá ocorrer a dissolução do cimento, aumentando a retenção de biofilme nesta região e, em consequência, alterações periodontais e pulpares podem ocorrer, comprometendo a longevidade da restauração protética e do dente suporte (QUINTAS; OLIVEIRA; BOTTINO, 2004).

Adicionalmente, as discrepâncias internas acentuadas podem reduzir a resistência à fratura de restaurações totalmente cerâmicas (ALKUMRU, et al. 1988, TUNTIPRAWON; WILSON, 1995). A qualidade das adaptações marginal e interna de restaurações fixas tem sido extensamente estudada na Odontologia, sempre objetivando a melhoria das técnicas e dos materiais para a minimização do desajuste marginal (OLIVEIRA; SAITO; OLIVEIRA, 2007).

Estudos têm mostrado que diferentes tipos de configuração do preparo marginal têm influência na adaptação final de infraestruturas em zircônia, no entanto, os estudos que contemplaram esse fator têm se mostrado contraditórios (BOTTINO, 2001; OLIVEIRA; SAITO; OLIVEIRA, 2007; SOUZA et al., 2011).

Nesse sentido, o presente estudo avaliou as adaptações marginal e interna de *copings* de zircônia confeccionados com diferentes sistemas de fresagem, variando os términos cervicais.

2 REVISÃO DA LITERATURA

Baseado na temática abordada nessa pesquisa - discrepâncias marginal vertical e interna de infraestruturas cerâmicas de zircônia: influência do tipo de sistema de fresagem e do término cervical – realizou-se uma revisão de literatura buscando informações sobre as adaptações marginal vertical e interna de infraestruturas de zircônia. Para isso esta revisão de literatura foi dividida de acordo com a temática abordada.

2.1 Discrepâncias marginal e interna de infra-estruturas cerâmicas

2.1.1 Quanto ao sistema de confecção de copings cerâmicos

Yeo et al. (2003) realizaram um estudo com o objetivo de avaliar a discrepância marginal vertical de coroas unitárias anteriores confeccionadas com diferentes sistemas: a) Celay In-Ceram; b) In-Ceram convencional; c) IPS-Empress II; d) Metalo-cerâmica (controle). Em um incisivo central superior foi realizado um preparo para coroa total, com terminação cervical configurada em Ombro Arredondado e a partir deste, 120 troquéis em gesso foram fabricados, sendo divididos em quatro grupos experimentais de trinta amostras cada. As coroas foram confeccionadas de acordo com as recomendações de cada sistema e em seguida, cada amostra foi submetida à análise da discrepância marginal em microscópio óptico com 240x de aumento. Foram avaliados 50 pontos ao longo de toda a margem do preparo, com pontos aleatoriamente distribuídos ao longo do perímetro total de 400μm de cada coroa. Os resultados mostraram que o IPS Empress II (46 ± 16μm) apresentou discrepância marginal significativamente menor que o grupo de coroas metalo-cerâmicas (87 ±

 $34\mu m$) e que o In-Ceram convencional ($112\pm55\mu m$) apresentou valores de discrepância significativamente maiores comparado ao grupo controle. Não foram verificadas diferenças estatisticamente significantes entre os grupos In-Ceram convencional e Celay In-Ceram ($83\pm33\mu m$). Os autores concluíram que todos os três sistemas cerâmicos estudados apresentaram discrepâncias marginais dentro dos padrões clinicamente aceitáveis de $120\mu m$.

Al-Ghazzawi et al. (2004) avaliaram o efeito da espessura de copings e o processamento laboratorial na adaptação marginal de copings de alumina e de zircônia fabricados com a tecnologia CAD-CAM. Um troquel metálico foi confeccionado com 1mm de largura de margem e 4mm de altura, com uma convergência para a oclusal de 12º. As amostras de alumina e zircônia foram confeccionadas com 0,6mm e 0,8mm de espessura, respectivamente, variando o espaço interno de 20, 30 e 40μm. As amostras foram avaliadas e a fenda marginal foi mensurada através de três estágios: pós-fresagem microscopia óptica em (PM); após acompanhamento (PT) e após infiltração com fase vítrea (PI). Os resultados mostraram que a média de discrepância para os copings de Alumina e de Zircônia foi de: (PM: 53,5 + 12,6μm; PT: 55,6 + 26,0μm; PI: $40.4 \pm 35 \mu m$); (PM: $53.5 \pm 12.0 \mu m$; PT: $47.5 \pm 13.0 \mu m$; PI: $35.8 \pm 13.9 \mu m$), respectivamente. A análise estatística mostrou não haver diferença estatisticamente significante entre os três grupos exceto para a zircônia nos grupos PM e PI. A adaptação marginal não foi afetada pelas diferentes espessuras dos *copings* (0,6mm: $38,3 \pm 22,9\mu m$; 0,8mm: $38,8 \pm 21,6\mu m$), nem pelo espaço interno (20mm: 36,5 \pm 20,2 μ m; 30 mm: 39,5 \pm 21,4 μ m; 40mm: 39,9 ± 24,6μm). Os autores concluíram que a infiltração vítrea melhorou a adaptação marginal nos copings de zircônia, permitindo que essas restaurações possam atender melhor aos padrões clínicos.

Bindl e Mörmann (2005) avaliaram a precisão do sistema CAD/CAM frente às técnicas convencionais na adaptação marginal e interna de coroas totais cerâmicas. Um conjunto de seis primeiros molares superiores esquerdos em acrílico foram preparados individualmente com término cervical em chanfro. O ângulo de convergência com a oclusal foi de 6º. Cada um dos seis preparos foi duplicado doze vezes com silicone de

impressão, obtendo 72 moldes, que foram vazados para a obtenção de troquéis em gesso. Os troquéis foram divididos aleatoriamente de acordo com os sistemas de confecção dos copings cerâmicos: a) In-Ceran (Slipcast); b)Empress II (técnica injetada); c) Cerec – inLab; d) DCS; e) Decim e f) Procera. Após a confecção e os ajustes internos, as coroas cerâmicas foram cimentadas em seus respectivos troquéis em gesso com cimento resinoso autopolimerizável (Panavia 21 TC) sob uma carga constante de 50N. Em seguida o conjunto troquel/coroa foi submetido à análise de adaptação marginal em MEV com 120x de magnificação. Foram realizadas oito leituras ao longo da margem cervical de cada amostra. Para a análise da adaptação interna, o conjunto coroa/troquel foi previamente incluído em resina acrílica e seccionado com discos diamantados da seguinte forma: seis amostras de cada grupo foram seccionadas no sentido mésio-distal e as outras seis no sentido vestíbulo-lingual. Cada hemi-face foi analisada em MEV (120x) para mensuração do espaço interno, sendo realizadas onze leituras em cada hemi-face. Os resultados mostraram que a adaptação dos copings da tecnologia convencional dos sistemas Slip-cast (25 + 18μm) e Empress II (44 + 23μm) diferiram estatisticamente entre si. Já os sistemas CAD/CAM Procera (17 ± 16μm) e Decim (23 ± 17μm) não diferiram da técnica convencional Slip-cast (25 + 18µm), no entanto apresentaram médias de discrepância marginal significativamente menores que o Empress II (44 + $23\mu m$). O sistema Cerec InLab (43 + $23\mu m$) apresentou valores praticamente iguais aos do sistema Empress II (44 + 23µm). Para a adaptação interna, os resultados mostraram que no sentido mésio-distal, o sistema Slip-cast (71 + 30μm) e o sistema Empress II (75 + 33μm) não diferiram entre si. Os sistemas CAD/CAM Procera (119 + 49μm) e DCS (116 + 60μm) apresentaram copings com discrepância interna significativamente maior que os do sistemas Empress II e Slip-cast, bem como aos do sistema CAD/CAM Decim (74 + 75µm) e Cerec InLab (82 + 49μm). Para a desadaptação interna no sentido vestíbulo-lingual, o sistema Procera (136 + 68μm) apresentou valores significativamente maiores que os sistemas Decim (81 ± 30μm) e Slip-cast (94 ± 84μm), enquanto o Empress II (105 + $53\mu m$) e DCS (110 + $79\mu m$) e Cerec InLab (114 + $58\mu m$) não diferiram dos sistemas Procera, Decim e Empress II. Os autores

concluíram que *copings* confeccionados pelos sistemas convencionais e CAD/CAM apresentaram valores das adaptações marginal e interna semelhantes entre si e que tanto a técnica convencional bem conduzida quanto a tecnologia CAD/CAM são bem aceitas para uso clínico.

Oliveira, Saito e Oliveira (2007) avaliaram in vitro a precisão de assentamento marginal de copings de três sistemas cerâmicos (In-Ceram; IPS Empress2 e Procera AllCeram) a duas variações de terminação cervical diferentes (Ombro 90º e Chanfro). Os grupos de estudo se constituíram em: IO (In-Ceram/Ombro 90°); IC (In-Ceram/Chanfro); EO (Empress/Ombro 90°); EC (Empress/Chanfro); PO (Procera/Ombro 90°); PC (Procera/Chanfro). Foram realizados preparos padronizados em dois incisivos centrais superiores idênticos de manequim, um com terminação cervical em Ombro 90º com ângulo interno arredondado e o outro com terminação em Chanfro. Para a confecção dos copings, os preparos foram reproduzidos em gesso por meio de moldagens padronizadas em silicone de adição. Foram confeccionados 72 copings, que foram subdivididos em 3 grupos de vinte e quatro cada um, de acordo com o tipo de material cerâmico (12 de cada tipo de término para cada um dos sistemas cerâmicos). O desajuste marginal dos copings foi avaliado em mensurado em microscopia óptica, com aumento de 40x, a partir da fenda marginal entre cada amostra assentada com silicone de adição no modelo de reprodução. Foram realizadas doze mensurações para cada amostra e os resultados médios mostraram variação de 23,08 a 36,11µm. Os grupos do sistema Procera apresentaram os melhores resultados (PO=23,08μm; PC=25,77μm) e diferiram estatisticamente do grupo IO (36,11μm) que apresentou o pior resultado médio. Entre os demais grupos não houve diferenças estatisticamente significantes e os resultados encontrados foram: IC (28,46μm); EO (29,51μm) e EC (27,94μm). Para o término cervical, a análise estatística não foi conclusiva; no entanto, os autores sugeriram que o Chanfro apresentou melhor comportamento em razão de esse término cervical ter apresentado desvios-padrão baixos comparados aos grupos do Ombro 90º. Os autores concluíram que os resultados médios de todos os grupos estudados ficaram dentro do patamar de aceitabilidade clínica estabelecido de 25 a 40µm.

Kunii et al. (2007) investigaram o efeito da sinterização após a fabricação na adaptação marginal e interna de infraestruturas cerâmicas fabricadas com o sistema CAD/CAM. Próteses unitárias (A: abutment), triunitárias (APA, P: pôntico), tetra-unitárias (APPA) e penta-unitárias (A₁P₁A₂P₂A₃) foram fabricadas com blocos de zircônia não-sinterizados usando o sistema CAD/CAM. Após confeccionadas, as estruturas foram submetidas à sinterização em forno, onde a temperatura variou de 500°C inicialmente, para 1.400°C. As infraestruturas foram cimentadas em seus respectivos modelos de trabalho e, logo em seguida, seccionados em sentido mésio-distal. A espessura de cimento foi mensurada em pontos específicos, utilizando um microscópio digital com 40x de magnificação. Para o A (3,6 ± 5,8μm), o ajuste se mostrou excelente com exceção da região oclusal (50,9 + 1,1μm). Foi verificado que a adaptação marginal APA (não pônticos: 4,2 ± 7,2μm / pôntico: 43,2 ± 8,7μm) e APPA (não-pônticos: 10,3 ± 8,9μm / pônticos: 115 ± 13,5μm) estava dentro dos critérios de aceitação clínica. No entanto, a discrepância marginal e a linha de cimento na superfície axial do pônticos de APA (não- pônticos: 10,9 ± 9,5μm / pôntico: 118,7 ± 6,3μm) e APPA (não-pônticos: 9 ± 4,9μm / pônticos: 115 ± 13,5μm) apresentaram valores ligeiramente maiores que os mesmos valores nos elementos não-pônticos e A₁P₁A₂P₂A₃ apresentou valores superiores a APA e APPA. Os autores concluíram que para garantir um bom ajuste de infraestruturas de zircônia fabricadas com CAD/CAM, é necessário um delicado ajuste durante o processo CAD assim como implementar as diretrizes de confecção para evitar distorções.

Gonzalo et al. (2009) compararam o ajuste marginal de próteses fixas posteriores de zircônia, confeccionadas com o sistema CAD/CAM com próteses metalo-cerâmicas fabricadas pelo sistema convencional (técnica da cera perdida), antes e após a cimentação. Os autores usaram quarenta modelos mestres com dois suportes laterais simulando o primeiro pré-molar mandibular. O conjunto foi simulado para receber uma prótese fixa tri-unitária (primeiro pré-molar mandibular ao primeiro molar mandibular) e dividido em quatro grupos (n=10): LAVA All-Ceramic System, Procera Bridge Zirconia, VITA-In-Ceram 2000 YZ e Metalocerâmico (grupo controle). Todas as peças cerâmicas foram

preparadas com um espaço interno de 50µm. O espaço marginal externo das restaurações foi investigado por mensurações em 30 pontos nas margens das superfícies lingual e bucal. As mensurações foram realizadas com o auxílio de um programa de análise de imagens, onde as próteses foram avaliadas antes e após cimentação no modelo mestre. Os resultados mostraram que não houve diferenças significantes na adaptação marginal antes e após a cimentação na análise dos grupos. A discrepância marginal para o grupo Procera antes (9 ± 10 □ μm) e após (12 ± 9 □ μm) a cimentação foi menor que os outros grupos. Diferencas significantes (p=0.001) foram observadas na adaptação marginal entre Procera Bridge Zirconia e os outros grupos. Os autores concluíram que a cimentação não ocasiona aumento na discrepância marginal e que o espaço interno de 50µm proporciona alta precisão de adaptação das restaurações; que as discrepâncias foram menores para o grupo controle (metalo-cerâmicas) e que o grupo Procera foi o que mostrou as menores discrepâncias marginais.

Beuer et al. (2010) compararam a precisão do ajuste de infraestruturas fresadas a partir de blocos pré-sinterizados, fabricados de duas formas diferentes. A partir de 10 troquéis de resina, foram confeccionadas próteses dentárias fixas (PDF) posteriores tri-unitárias utilizando o sistema CAD/CAM dos sistema Cercon[®] (Brain) e o sistema (Compartis Integrated Systems). Após confecção, infraestruturas foram cimentadas nos troquéis e em seguida embebidas em gesso. O pôntico foi descartado e a peça foi seccionada centralmente nos sentidos vestíbulo-lingual e mesio-distal, resultando 8 espécimes, que foram submetidos à análise. A análise de variância foi utilizada para a comparação dos dados (α=0,05). As médias de desadaptação marginal para os sistemas Brain e Compartis foram de 56,0 ± 34,5µm e 51,7 ± 45,2μm, respectivamente. A média de discrepância interna variou entre 62,8 + 37,5μm e 164,6 + 33,4μm, mensurados de acordo com a localização da análise e o sistema de confecção. Os dados para as adaptações marginal e interna não se mostraram diferentes estatisticamente. Os autores concluíram que a precisão dos sistemas de confecção avaliados foi satisfatória para uso clínico.

Kokubo et al. (2011) avaliaram a discrepância marginal e interna de coroas em zircônia (NobelProcera). Para isso foram avaliados preparos dentários realizados em 51 pacientes. Nesses pacientes, no período de Dezembro de 2006 a março de 2009 foram realizados 91 preparos dentários distribuídos da seguinte maneira: (anterior: 44; prémolar: 35 e molar: 12). Todos os dentes foram preparados com redução oclusal de 1,5mm e término cervical em Ombro com largura de 0,8mm. Foram obtidas impressões dos preparos com Polivinilsiloxano e os modelos foram obtidos com Gesso especial tipo IV. Em seguida os modelos em gesso foram escaneados usando o Procera Forte (Nobel Biocare) e os copings confeccionados. Para a avaliação da discrepância marginal e interna, foi utilizada a técnica da dupla moldagem, utilizando silicone de adição nas cores branco e preto. Os troquéis de silicone foram seccionados no sentido vestíbulo-lingual e em seguida, no sentido mésio-distal e a espessura foi mensurada usando microscópio com aumento de 100x. Foram avaliados quatro pontos em quatro diferentes regiões (Margem; Ombro Arredondado; Axial e Oclusal), totalizando 16 mensurações por amostra. As médias de discrepância marginal e interna foram calculadas e os resultados foram os seguintes: Grupo de anteriores (Margem: 42,5 + 65,5μm; Ombro Arredondado: 215,2 <u>+</u> 130,5μm; Axial: 84,0 <u>+</u> 56,6μm; Oclusal: 178,9 + 122,3µm); Grupo de pré-molares (Margem: 41,9 + 57,1μm; Ombro Arredondado: ± 136,0μm; Axial: 79,9 ± 63,5μm; Oclusal: 156,0 ± 89,6μm) e Grupo de molares (Margem: 57,4 + 74,2μm; Ombro Arredondado: 188,0 + 122,4μm; Axial: 95,9 + 70,8mm; Oclusal: 159,4 + 68,5μm). Os resultados mostraram ainda que os maiores desvios-padrão foram verificados para a região de Ombro Arredondado (203,2 + 131,8µm). Além disso, como se pôde ver, a média de discrepância marginal foi maior para o grupo OA (Ombro Arredondado) em comparação aos demais grupos. Os dados de discrepância marginal não diferiram estatisticamente entre os grupos avaliados, no entanto, foram verificadas diferenças estatísticas entre os dados de adaptação marginal e interna de cada grupo. Os autores concluíram, dentro das limitações do estudo, que não há influência do grupo de dentes na adaptação marginal e que os padrões do estudo podem ser reproduzidos clinicamente de forma favorável.

Karatasli et al. (2011) analisaram a adaptação de diferentes copings fabricados com dois sistemas de confecção: MAD/CAM (Celay e Zirkonzahn) e CAD/CAM (Lava e DC-Zircon). Copings metálicos foram utilizados como grupo controle. Um molde de aço inoxidável foi preenchido com resina acrílica, reproduzindo modelos com término cervical preparado em Chanfro e 6º de angulação. Esses modelos foram utilizados na confecção dos copings de zircônia. Foram confeccionados 10 copings para cada grupo. Sessenta pontos foram marcados ao longo das margens dos copings e o ajuste marginal foi avaliado com estereomicroscópio em aumento de 150x. Os resultados das médias de discrepância foram, em ordem crescente de discrepância: Lava (24,6 ± 14,0μm) < Celay (64,9 ± $25,2 \square \mu m$) < DC-Zircon (110,1 \pm 36,5 $\square \mu m$) < Zirkonzahn (112,11 \pm 22,6 \square µm) < Metal (120,1 \pm 33,1 \square µm). Os autores concluíram que a adaptação marginal não é dependente somente do tipo de sistema usado na fabricação dos copings de zircônia e que o uso do sistema MAD/CAM ou CAD/CAM pode não ser o fator mais importante para a adaptação marginal.

Korkut; Cotert e Kurtulmus (2011) compararam in vitro a adaptação marginal e interna em infraestruturas de zircônia (Procera All-Zircon, Cercon Smart Ceramics) em comparação a infraestruturas prensadas ao calor (Empress 2). Trinta molares superiores foram divididos em três grupos e preparados individualmente com término cervical em Chanfro com ângulo de convergência de 6º. Foram realizadas impressões em polivinilsiloxano (Penta-soft Duo-Mix 3M ESPE, Germany) e, a partir dos moldes, réplicas em gesso tipo IV, que serviram de base para a confecção dos copings. Através dos sistemas: CAD/CAM (Procera); CAM (Cercon) e pressão ao calor (Empress 2), como controle. Todos os espécimes foram cimentados com cimento resinoso dual (Variolink II, Ivoclar-Vivadent) e armazenados em água destilada à temperatura ambiente por quatro semanas. Após esse período, os espécimes cimentados foram seccionados verticalmente em dias partes na direção vestíbulo-palatal e avaliados em 17 pontos (cada parte) através de um microscópio com 100x de magnificação. Os resultados mostraram que a

discrepância marginal entre os sistemas foi de: Cercon ($43,2 \pm 4,00\mu m$); Empress 2 ($47,51 \pm 12,79\mu m$) e Procera ($50,29 \pm 5,19\mu m$), o que se mostrou estatisticamente significante (p<0,05). Para a discrepância interna, os valores foram: Cercon ($57,10 \pm 8,84\mu m$); Procera ($65,40 \pm 13,08\mu m$) e Empress 2 ($74,01 \pm 16,41\mu m$). As comparações revelaram que para a adaptação interna, Cercon e Empress 2 diferiram estatisticamente. Os autores concluíram que as menores lacunas foram verificadas para o grupo Cercon, enquanto que as maiores no grupo Procera tanto na análise de adaptação marginal quanto na análise de adaptação interna.

Grenade, Mainjot e Vanheusden (2011) compararam os ajustes marginal e interno de copings de zircônia confeccionados pelo sistema CAD/CAM (Procera; Nobel Biocare) e pelo sistema de manufatura convencional (Ceramill; Amann Girrbach). Para isso, foram realizados vinte preparos para coroa cerâmica in vitro que serviram como modelo para a produção dos copings. Foi realizada a reprodução dos preparos e em seguida confeccionados troquéis em gesso. Sobre os mesmos, foram confeccionados os copings, que foram cimentados em seus respectivos troquéis em gesso. Os espécimes foram seccionados e nove mensurações foram realizadas em torno no término de cada coping. Foram mensurados pontos acima e abaixo de cada local de leitura da margem. Os resultados mostraram que os valores de discrepância interna entre os sistemas Procera e Ceramil não foram diferentes estatisticamente (P=13). A média de discrepância marginal para os *copings* do grupo Procera (51 + 50μm) foram estatisticamente menores que os do grupo Ceramill (81 + 66µm) (P<0.005). As porcentagens de supra e de sub-extensões de margem foram de 43% e 57%, respectivamente, para o sistema Procera e de 71% e 29% para o sistema Ceramill. Os autores concluíram que dentro das limitações do estudo, a adaptação marginal dos copings confeccionados pelo sistema Procera foram significantemente melhores que as verificadas nos copings confeccionados pelo sistema Ceramill.

Groten et al. (2000) realizaram um estudo com o objetivo de avaliar a discrepância marginal de coroas totais cerâmicas e determinar o número mínimo de mensurações que se deve realizar nas margens de coroas unitárias para produzir resultados relevantes em estudos de

adaptação marginal. Foi utilizado um troquel metálico, que serviu de modelo na confecção de dez troquéis em gesso e, sobre eles foram confeccionadas coroas cerâmicas (Celay In-Ceram). Com o auxílio de um microscópio eletrônico de varredura, três tipos de discrepâncias marginais verticais foram mensuradas para cada coroa em dois momentos: nos troquéis metálicos e após a cimentação das coroas nos respectivos modelos de gesso. No total, foram realizadas 230 mensurações, de maneira aleatória ou sistemática, em cada coroa, inicialmente e, em seguida o número de mensurações foi reduzido a valores inferiores. Para os grupos não cimentados, o sistema Celay In-Ceram gerou valores médios de discrepância marginal que variaram de 30μm a 97μm. Já para os grupos cimentados, as médias de discrepância variaram de 51 µm a 125μm. Os autores concluíram que um número mínimo de 50 mensurações é necessário para se obter resultados relevantes em estudos de avaliação da discrepância marginal vertical em coroas unitárias, independente se as leituras são realizadas de forma aleatória ou sistematizada ao longo da margem da coroa.

2.1.2 Quanto ao tipo de término cervical

Quintas et al. (2004) pesquisaram a influência de diferentes términos cervicais e agentes cimentantes na discrepância marginal vertical de *copings* confeccionados com diferentes sistemas cerâmicos. A partir de dois troquéis metálicos, com diferentes términos cervicais (Chanfro Largo e Ombro Arredondado) e dimensões: 5,5mm de altura; 6,8mm de diâmetro e raio de 1,2mm, foram confeccionados troquéis em gesso e, a partir dos mesmos, 180 *copings* foram fabricados em materiais cerâmicos distintos (n=60): IPS Empress II, In-Ceram alumina e Procera. As amostras de cada grupo foram cimentadas com os seguintes tipos de agentes cimentantes: fosfato de zinco, ionômero de vidro e resina composta. Os 180 *copings* foram divididos em 18 grupos com 10 amostras cada um, representando uma combinação entre cada sistema cerâmico, término cervical e agente cimentante. As mensurações de margem foram realizadas com o auxílio de

um projetor de perfil, antes e após a cimentação. Os resultados mostraram que o tipo de cerâmica influenciou significativamente na discrepância marginal vertical dos *copings* cerâmicos. Os valores obtidos anteriormente à cimentação foram: Empress II (68 \pm 47µm); In-Ceram (57 \pm 38µm) e Procera (25 \pm 9µm). Após a cimentação as médias dos valores de discrepância marginal foram: Empress II (110 \pm 77µm); In-Ceram (117 \pm 85µm) e Procera (44 \pm 19µm). Os autores concluíram que após a cimentação, o sistema Procera alumina gerou *copings* com menores valores de discrepância marginal vertical para todas as condições avaliadas.

Komine et al. (2007) investigaram a adaptação marginal e interna de próteses fixas unitárias de zircônia com três diferentes términos cervicais. Vinte e quatro troquéis foram preparados para incisivos centrais superiores com as seguintes terminações cervicais: Ombro (S), Ombro Arredondado (RS) e Chanfro (C). Vinte e quatro *copings* em zircônia foram confeccionados com o sistema CAD/CAM (Cercon Smart Ceramics). Os resultados não verificadas mostraram que foram diferenças estatisticamente significantes entre os três grupos de estudo para a discrepância marginal. As médias de discrepância marginal foram: S (73 + 69 μm); RS(61 ± 60 μm); C (64 ± 55 μm). Quanto à adaptação interna, foram verificadas diferenças estatisticamente significantes entre todos os grupos: S (117 \pm 111 \square µm); RS (72 \pm 75 \square µm); C (56 \pm 57 \square µm). Não foi verificado diferenças estatísticas na análise intra-grupo para a adaptação marginal e interna e o tipo de término cervical (S, RS e C) não exerceu influência na adaptação marginal. Os autores concluíram que os valores de adaptação marginal e interna estavam todas dentro dos padrões do clinicamente aceitável.

Comlekoglu et al. (2009) estudaram o efeito de diferentes tipos de término cervical na adaptação marginal de *copings* cerâmicos de zircônia (Y-TZP / ICE Zircon). Quatro diferentes términos cervicais (C: Chanfro; MC: Mini-chanfro; FE: Lâmina de faca e S: Ombro Arredondado) foram preparados em incisivos projetados e reproduzidos em resina epóxica. A amostra constituiu-se de vinte e oito troquéis de resina, sendo sete de cada tipo de terminação cervical. Os *copings* cerâmicos foram

confeccionados pelo Sistema de fresagem MAD/MAM (Zirkonzahn) usando blocos de cerâmica pré-fabricados. Depois de confeccionados, os copings foram cimentados aos troquéis com cimento de policarboxilato. O conjunto foi seccionado e o espaço marginal foi mensurado considerando a abertura marginal absoluta (AMO) e a abertura marginal (MO) para cada coping em microscopia óptica através de um processador de imagens (Lucia). Os resultados mostraram que para as médias da AMO o término FE (87 + 10μm) obteve valores significantemente menores que o término em Chanfro (144 + 14 μ m), Ombro (114 + 16 μ m) e Mini-chanfro (114 + 11 μ m). As médias de MO mostraram que o término FE apresentou menores valores de discrepância (68 + 9μm), comparado aos demais grupos: Ombro $(95 + 9\mu m)$, Mini-chanfro $(97 + 12\mu m)$ e Chanfro $(128 + 10\mu m)$. O tipo de terminação cervical teve influência na adaptação marginal dos copings em zircônia. Embora o término FE tenha resultado nos menores valores de AMO e MO, a sua desvantagem mecânica é comprovada e seu uso não está indicado na prática clínica. Com isso, os autores concluíram que para uma melhor adaptação marginal, os melhores términos cervicais para utilização clínica são o Ombro e o Mini-Chanfro.

Fernandes Jr. et al. (2009) avaliaram as adaptações cervicais de copings cerâmicos confeccionados pelos sistemas Empress II e In-Ceram, variando os términos cervicais dos preparos em Chanfro Largo e Ombro 90º Arredondado. Troquéis de aço inoxidável foram confeccionados com conicidade de 15° para a oclusal (7,5° em cada parede axial). O modelo padrão foi reproduzido empregando-se silicone de adição, pela técnica da dupla moldagem. Foram confeccionados 40 troquéis em gesso tipo V e, a partir desses, vinte copings cerâmicos pelo sistema IPS Empress II e vinte copings pelo sistema In-Ceram, sendo de cada um desses grupos, dez de cada tipo de término cervical. Os copings foram cimentados e a análise realizada em microscopia óptica (metroscópio). Os resultados mostraram que os términos cervicais em Chanfro e em Ombro, para qualquer um dos sistemas, mostraram resultados semelhantes e o sistema In-Ceram apresentou um valor médio de discrepância de assentamento menor que o IPS Empress II, não significante estatisticamente.

Cerutti et al. (2010) avaliaram o ajuste marginal de coroas totalmente cerâmicas com términos cervicais em Chanfro e em Ombro. Dois modelos dentários em acrílico foram selecionados para simular preparos dentários clínicos: um molar foi preparado com término em Chanfro e um pré-molar foi preparado com término em Ombro Arredondado. Cada modelo foi duplicado 10 vezes usando silicone de impressão e gesso tipo IV para confecção dos troquéis de estudo. Foram obtidos 20 copings, que foram divididos em dois grupos (n=10 para cada término cervical). 50 mensurações foram realizadas de forma controlada ao longo de toda a margem dos troquéis e a discrepância marginal foi mensurada através de microscópio de luz com magnificação de 100x. As mensurações foram realizadas sem cimentação. A média para o desajuste marginal foi 30 ± 3μm para o grupo com término em Chanfro e 28 ± 4μm para o grupo com término em Ombro Arredondado. Os dois grupos não diferiram estatisticamente. Os autores concluíram que as discrepâncias mostraram-se clinicamente aceitáveis para o padrão de até 120µm e que preparações em Chanfro e Ombro Arredondado não apresentaram diferenças com relação à discrepância marginal.

Baig, Tan e Nicholls (2010) avaliaram o ajuste marginal em relação ao espaço e sobreposição de coroas cerâmicas de Y-TZP, comparado a coroas de Dissilicato de lítio e completamente metálicas. Foram preparados 30 troquéis em gesso, a partir da impressão de prémolares com términos cervicais em Ombro ou em Chanfro com 20° de convergência para oclusal. Os troquéis foram distribuídos em 3 grupos teste para confecção de coroas nos sistemas de fabricação Cercon Y-TZP, IPS Empress II e completamente metálicas. As coroas após confeccionadas foram submetidas a avaliação em 6 áreas localizadas na margem do preparo usando sistema de análise através de imagem digital computadorizada. A média geral de espaço entre a margem da coroa e a margem do preparo foi de: $66.4 + 42.2 \mu m$ (Cercon), $36.6 + 32.1 \mu m$ (Empress II), 37,1 + 22,3μm (Totalmente metálico). A média geral de sobreposição foi de: -15,2 + 47,5μm (Cercon), -22,1 + 34,7μm (IPS Empress II) e 30,9 + 31,3μm (Totalmente metálico). Os autores verificaram haver diferenças significantes para a sobreposição coroa/margem do preparo entre Ombro e Chanfro e ausência de significância relacionada ao material de confecção das coroas. Os autores concluíram que o sistema Cercon apresentou-se significantemente maiores valores de discrepância marginal que IPS Empress II e completamente metálico, mas não houve diferença significante para a sobreposição marginal relacionada ao material utilizado na confecção das coroas. Também não houve diferença significante entre os dois tipos de configuração dos preparos (Chanfro e Ombro) com relação à discrepância marginal. No entanto, os diferentes tipos de término mostraram-se diferentes estatisticamente para a sobreposição de margens.

Souza et al. (2011) avaliaram a discrepância marginal (DM) e interna (DI) em copings cerâmicos com diferentes términos cervicais confeccionados com o sistema CAD/CAM (Cerec In-Lab). Três troquéis metálicos padrões (altura: 5,5mm; largura: 7,5mm; conicidade: 6°) com diferentes términos cervicais (CL: Chanfro Largo; CI: Chanfro Inclinado; OA: Ombro Arredondado) foram confeccionados. A partir dos troquéis foram realizadas dez impressões de cada troquel usando um delineador modificado. As impressões foram vazadas em gesso tipo IV e obtidos modelos que foram utilizados na confecção de trinta coroas cerâmicos (IPS Empress CAD, Ivoclar). As coroas foram fixadas nos respectivos modelos metálicos e fixados com um dispositivo para análise da discrepância marginal vertical. Para isso foi realizada leitura óptica (250x) e mensurada a interface (margem da coroa / margem do preparo) em 50 pontos. Através da técnica da réplica a discrepância interna foi avaliada em 12 pontos equidistantes em cada uma das regiões (Raio do término cervical: R; Axial: A; Oclusal: Occl). Os resultados mostraram que o grupo do OA (28,24 + 11,42µm) mostrou valores de DM significantemente menores que os grupos CI (99,92 + 18,32μm) e CL (64,71 + 25,64μm), ambos também diferentes estatisticamente entre si. Para a DI os resultados mostraram que CL (183, 01 + 62,82µm) mostrou valores significantemente menores que os grupos CI (216,26 + 83,23μm) e OA (219,12 + 87,24μm). Para CI e OA, dos dados de DI não foram estatisticamente diferentes. Entre as regiões avaliadas, os dados de DI mostraram diferenças estatísticas significantes (p=0,0001). Os autores concluíram que o OA produziu valores de DM

significativamente menores que CI e CL, no entanto CL apresentou-se com menor DI e que independente do tipo de término cervical a DI foi menor na região axial seguida pela região de Raio e Oclusal.

3 PROPOSIÇÃO

Diante da importância da adaptação marginal e interna para as restaurações cerâmicas, os objetivos deste estudo foram:

- 1) avaliar a influência do tipo de sistema de fresagem nas discrepâncias marginal vertical e interna de *copings* cerâmicos de Y-TZP;
- pesquisar o efeito do tipo de término cervical nas discrepâncias marginal vertical e interna de copings cerâmicos de Y-TZP;
- 3) analisar a possibilidade das discrepâncias internas variarem entre a região dos pontos mensurados.

Baseado nos objetivos propostos, as hipóteses foram as de que:

- a) o sistema de fresagem influencia as discrepâncias marginal vertical e interna de *copings* cerâmicos;
- b) o tipo de término cervical afeta as discrepâncias marginal vertical e interna de *copings* cerâmicos;
- c) a discrepância interna varia entre a região dos pontos mensurados.

4 MATERIAIS E MÉTODOS

Nesse estudo foram avaliadas as Discrepâncias Marginal (DM) e Interna (DI) de *copings* cerâmicos frente a dois sistemas de confecção (Sistema MAD/MAM – Zirkonzahn e Sistema CAD/CAM – Neo Shape/Neodent) e a três diferentes términos cervicais (Término em Ombro Arredondado; Término em Chanfro Largo; Término em Chanfro Inclinado).

4.1 Materiais utilizados

Os materiais utilizados para a realização deste estudo, bem como a respectiva marca comercial e fabricante, estão relacionados no Quadro 1.

QUADRO 1 – Relação dos materiais utilizados.

Material	Marca comercial	Fabricante
Blocos cerâmicos de		
zircônia tetragonal	105.71	- 7' 1 1
estabilizada por Ítria	ICE Zirkon	Zirkonzahn,
(Y-TZP) – Sistema	Ceramik	Itália.
Zirkonzahn		
Blocos cerâmicos de		
zircônia tetragonal		N
estabilizada por Ítria	Neoshape	Neodent,
(Y-TZP) – Sistema Neodent		Brasil.
Silicone polimerizado por		Kettenbach
reação de adição -	Panasil –	GmbH & Co.
consistência massa	Putty soft	KG - Germany
Silicone polimerizado por		Kettenbach
reação de adição -	Panasil initial	GmbH & Co.
consistência fluida	contact - regular	KG – Germany
Gesso especial tipo IV		Talladium, Inc.
	Tuff Rock	USA
	Fórmula 44	

4.2 Confecção dos troquéis metálicos

Para análise da DM foram confeccionados três troquéis metálicos padrões usinados a partir de uma barra de liga de alumínio aeronáutico (MAS, 4050F, SAE Aerospace International group) com 15mm de diâmetro e 69mm de comprimento. Essa barra foi seccionada em três segmentos de 23mm e os troquéis foram usinados em um torno mecânico modelo Emco T-120 com CNC Emcotronic T-1 (Fresadora Bridge Port EZ-Track II), com dimensões iguais, variando apenas o término cervical. O objetivo dos troquéis foi simular os preparos de copings de paredes axiais lisas, com 3° de expulsividade em cada lado axial, resultando em uma conicidade para oclusal de 6°, com términos cervicais diferenciados e bem definidos (OA - Ombro arredondado; CL - Chanfro largo; CI - Chanfro Inclinado). A altura de cada troquel foi padronizada em 5,5mm, com 7,5mm de diâmetro na base do preparo e términos com raios de 1,2mm para os términos em Chanfro Largo e Chanfro Inclinado. O término em Ombro Arredondado foi configurado com raio de 0,4mm mais 0,6mm de base horizontal (Figuras 1 e 2).

Na parte oclusal de cada troquel metálico foi realizado um entalhe com inclinação de 45° em relação ao plano vertical, para permitir o exato reposicionamento dos *copings* cerâmicos quando retornarem dos modelos de gesso aos troquéis metálicos, para mensurações dos desajustes marginais. Na base dos troquéis foi preparada uma rosca para permitir o encaixe à haste vertical móvel de um delineador durante o procedimento de moldagem e ao dispositivo metálico cilíndrico durante o momento da leitura da DM.

Cerca de 1,5mm abaixo do término cervical, foram realizadas 25 marcações a laser, com 0,5mm de espessura cada e espaçadas entre si aproximadamente 0,5mm e com 14,4° de inclinação entre duas marcações vizinhas. Tais marcações foram realizadas com o objetivo de padronizar a etapa de mensuração da DM em cada amostra (Figuras 1 e 2).

FIGURA 1 - Representação esquemática dos troquéis metálicos: a) vista oclusal; b) vista lateral e detalhe dos términos cervicais. Valores em mm.

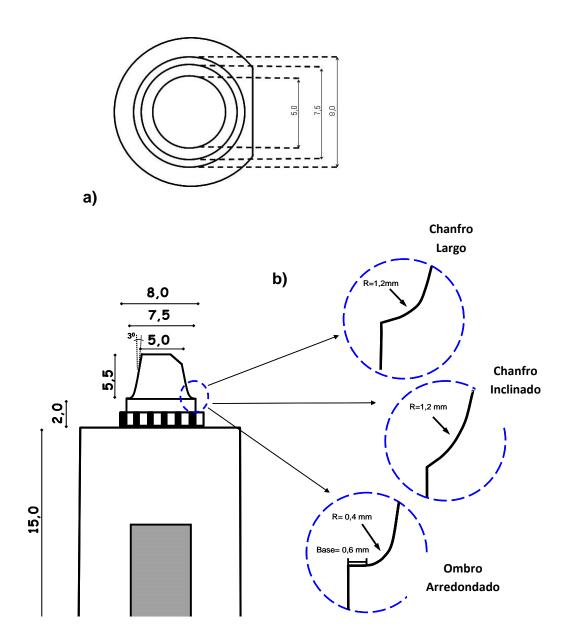
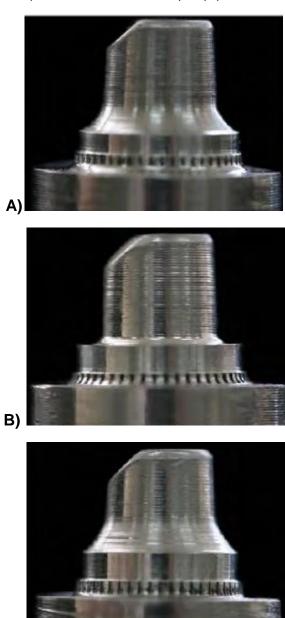



FIGURA 2 – Troquéis metálicos com diferentes términos cervicais: A (Chanfro Largo); B (Ombro Arredondado); C) (Chanfro Inclinado).

4.3 Duplicação dos troquéis metálicos

Para cada troquel metálico foram realizadas vinte moldagens, totalizando sessenta moldes, a partir dos quais foram obtidos os troquéis em gesso. Para padronizar a inserção e remoção dos troquéis metálicos das moldeiras durante as moldagens, um delineador

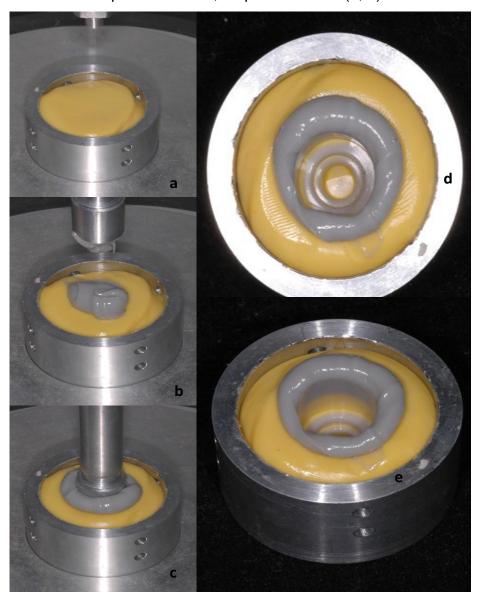
convencional (Bioart B2, Equipamentos Odontológicos Ltda, Brasil) foi modificado (Figura 3), com a adaptação de uma nova haste e uma base com entalhe central para fixação das moldeiras individuais. Tal procedimento objetivou facilitar a manutenção de espessura uniforme do material de moldagem fluído durante a etapa de moldagem.

Para padronizar as moldagens, foram confeccionadas moldeiras individuais perfuradas, fabricadas com liga de alumínio (GFTC, China) com 25mm de altura e 38mm de diâmetro.

Cada troquel metálico recebeu um dispositivo em sua base, que se encaixou perfeitamente através de rosqueamento, com a porção inferior da haste vertical móvel do delineador. Desta forma, garantiu-se a centralização do conjunto haste móvel e troquel metálico em relação às moldeiras durante todas as moldagens.

A profundidade do troquel no material de moldagem presente na moldeira foi calculada previamente e as modificações e adaptações realizadas no delineador permitiram o "stop" da haste no momento ideal de profundidade pretendida. Além disso, foi confeccionado um centralizador adaptado às medidas externas do troquel, a fim de centralizá-lo na moldeira individual anteriormente às moldagens.

Para duplicação dos troquéis metálicos (Figura 3), foi utilizado silicone polimerizado por reação de adição Panasil *putty soft* (Kattenbach GmbH & Co. KG, Germany) e Panasil *initial contact* regular (Kattenbach GmbH & Co. KG, Germany) pela técnica da moldagem simultânea, seguindo as recomendações do fabricante.

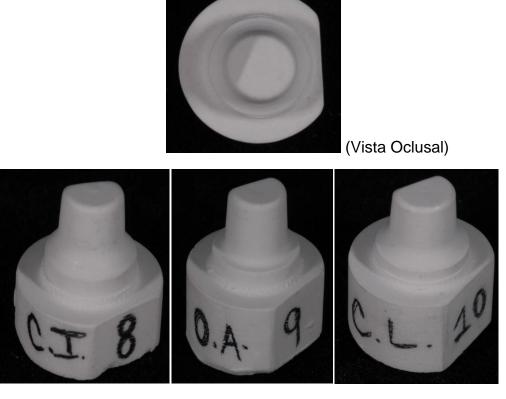

O material denso (base e catalisador) foi proporcionado utilizando-se as colheres de dosagem indicadas pelo fabricante, misturados durante 30 seg. até a obtenção de uma massa de cor uniforme. A moldeira metálica foi preenchida com o material de moldagem e posicionada no dispositivo para fixação da moldeira na base do delineador.

Em seguida, proporções iguais do material de moldagem fluído foram proporcionadas em uma placa de vidro, misturadas e espatuladas com uma espátula nº.24, obtendo massa de cor uniforme que foi dividida em duas porções. A primeira porção foi levada com auxílio de uma espátula de inserção de forma a cobrir todo o preparo no troquel metálico, já rosqueado à haste móvel do delineador. A outra porção foi dispensada sobre o material denso, na moldeira individual. O troquel metálico foi então introduzido no material de moldagem até a profundidade determinada pela haste, e mantido em posição até a finalização do tempo de polimerização. Todas as moldagens foram realizadas no mesmo ambiente e em condições térmicas semelhantes.

Após a polimerização do material fluído, a haste vertical móvel foi levantada. De posse do molde, foi iniciada a sua análise e caso fosse observada a presença de irregularidades, bolhas positivas ou negativas, o molde foi então descartado e uma nova moldagem realizada (Figura 4).

FIGURA 3. Delineador (Bioart B2) modificado.

FIGURA 4. Sequência da Moldagem Simultânea (a, b, c) e moldes em vista superior e lateral, respectivamente (d, e).


4.4 Obtenção dos modelos de gesso

O vazamento dos moldes foi realizado vinte e quatro horas após a moldagem. Para o vazamento foi utilizado gesso especial tipo IV (Tuff rock fórmula 44, Talladium, Inc. USA). Para sua espatulação, foi proporcionado 100g do pó em balança digital de precisão (Modelo Grey, Plenna, São Paulo/SP) para 20 ml de água destilada medidos em medidor plástico, seguindo recomendações do fabricante. A incorporação do pó na água foi realizada manualmente durante 15 seg., seguida pela espatulação

a vácuo (20 psi) por 30 seg. com 425 rpm, em espatuladora mecânica digital (TurboMix, EDG Equipamentos e Controle LTDA, São Paulo).

Com o auxílio de um pincel fino e com o molde apoiado em um vibrador, os moldes foram preenchidos com pequenas porções de gesso, e somente após o recobrimento da região do preparo, porções maiores de gesso foram incorporadas para finalizar o preenchimento dos moldes, utilizando uma espátula nº. 7. Após 45min. do preenchimento dos moldes, estes foram separados e analisados visualmente. No caso de haver bolhas e irregularidades os troquéis foram descartados e procedeuse nova moldagem. Cada molde foi preenchido com gesso apenas uma única vez. A porção inferior de cada troquel em gesso foi recortada com um recortador de gesso, de maneira que a sua base ficasse lisa e paralela ao plano horizontal. Os troquéis foram identificados e enviados aos laboratórios para confecção dos *copings* cerâmicos (Figura 5).

FIGURA 5 – Troquéis em gesso, identificados.

(Vista lateral)

4.5 Obtenção dos copings de zircônia

4.5.1 Sistema MAD/MAM – Zirkonzahn

Após delimitação manual do término cervical dos preparos, foi realizado o enceramento manual dos *copings* de todos os grupos experimentais, utilizando uma resina composta do próprio sistema Zirkonzahn. Após a polimerização e acabamento da resina e a partir de um bloco de zircônia, os *copings* foram confeccionados com auxílio manual, através de fresagem por um pantógrafo (Figura 6). Em seguida foi realizada sinterização dos *copings*, em forno específico do sistema (Figura 7).

FIGURA 6 - Pantógrafo. Sistema MAD/MAM - Zirkonzahn.

FIGURA 7. *Copings* do sistema MAD/MAM – Zirkonzahn, após fresagem e sinterização.

4.5.2 Sistema CAD/CAM – Neodent

4.5.2.1 Impressão óptica dos preparos

Para captura da imagem dos preparos, foi utilizado um scanner óptico, o qual foi acoplado a um computador acessório. A impressão óptica é definida como um grande número de pequenas unidades (denominada de *pixels*), como seria visto em uma fotografia altamente ampliada, que juntos, representam a imagem em sua totalidade (DURET; BLOUIN; DURET, 1988). O scanner se baseia no sistema videográfico, de maneira que para digitalizar uma superfície, ele projeta sobre o objeto uma faixa de luz que carrega uma informação volumétrica, a

qual é refletida pelo objeto e capturada por um sensor presente no próprio scanner, sendo em seguida a imagem digitalizada.

Em seguida, a imagem foi enviada, na forma de valores numéricos, e armazenada na unidade computadorizada acessória (CAD) onde foi desenhada virtualmente em três dimensões a respectiva restauração. Cada troquel em gesso foi posicionado dentro do *scanner* óptico do sistema, o qual foi reposicionado em diversas orientações para que todas as superfícies do preparo fossem alcançadas pela faixa de luz do *scanner*, gerando ao final a imagem digitalizada preparo (Figuras 8 e 9).

4.5.2.2 Obtenção dos copings

Após a captura da imagem pelo *scanner* do sistema e envio dos dados para a unidade computadorizada (CAD), o término do preparo foi delimitado virtualmente com o auxílio de um software em 3D, e os *copings* cerâmicos então desenhados virtualmente.

O alívio interno foi padronizado em 20 µm, previamente a sua fresagem. Após, o bloco de zircônia foi fixado na unidade fresadora (CAM) e os *copings* usinados com o auxílio de pontas montadas diamantadas (Figuras 9 e 10).

FIGURA 8 – Imagem computadorizada do *coping* a ser fresado.

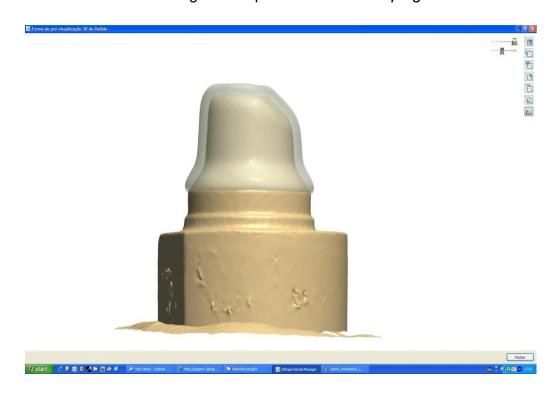


FIGURA 9 - Sistema CAD/CAM - Neodent.

FIGURA 10 - *Copings* do sistema CAD/CAM – Neodent, após fresagem e sinterização.

4.6 Análise da discrepância marginal vertical

A análise da discrepância marginal vertical foi realizada em 50 pontos ao longo da margem do troquel metálico, segundo recomendações de Groten et al. (2000). Para padronizar o número e o local

das leituras, foram realizadas 25 marcações a laser cerca de 1,5mm abaixo do término cervical, com 0,5mm de espessura cada e espaçadas entre si aproximadamente 0,5mm.

Antes de iniciar a leitura da margem cervical, cada *coping* cerâmico foi adaptado ao troquel mestre correspondente (Figura 11) e em seguida, o conjunto foi fixado em uma base cilíndrica na base metálica cilíndrica, a qual auxilia na mensuração do desajuste marginal em diversos pontos das amostras, por permitir a rotação em 360° do troquel metálico ao redor do seu eixo. O conjunto base cilíndrica, troquel metálico e *coping* foi posicionado no dispositivo desenvolvido por Pavanelli et al. (2001) (Figura 12), o qual permitiu a aplicação de uma força constante no *coping* sobre o troquel metálico durante todo o processo de mensuração. Com o *coping* em posição sobre o troquel metálico, o êmbolo foi baixado aplicando-se uma pressão digital e em seguida fixados os parafusos laterais do êmbolo, mantendo-se a posição de assentamento final dos *copings*.

FIGURA 11 – Vista lateral do conjunto: A) *Coping* cerâmico; B) Troquel metálico.

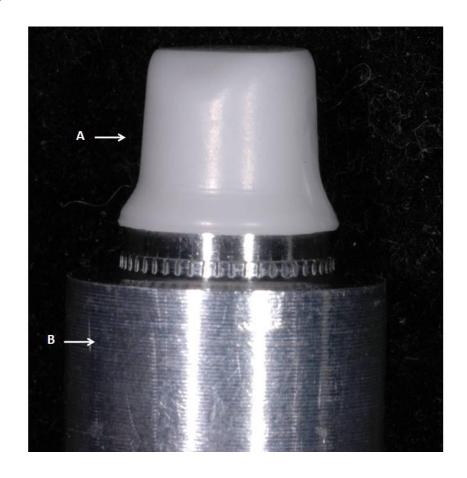
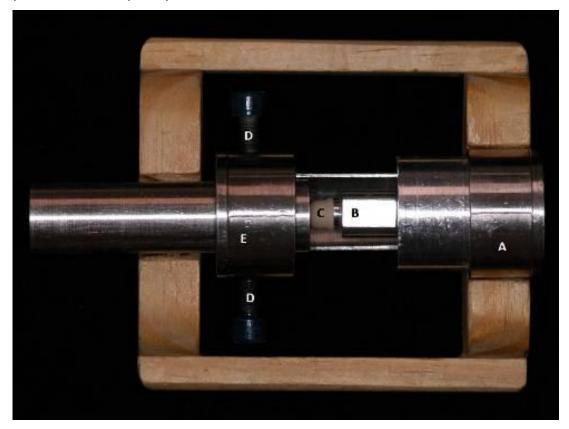



FIGURA 12 - Dispositivo para fixação do *coping* cerâmico no conjunto troquel metálico / base cilíndrica apoiada sobre base de madeira: A= base cilíndrica metálica, B= troquel metálico, C= *coping* cerâmico, D= parafusos laterais de fixação do êmbolo e E =êmbolo (vista superior).

(Pavanelli et al. (2001).

Para mensuração da DM, foi aferida a distância vertical de um ponto da margem do *coping* até um ponto na margem do preparo, que segundo Holmes et al. (1989) esta distância equivale à discrepância marginal vertical. Utilizando-se uma caneta hidrocor azul de ponta ultrafina, foi marcado um ponto no troquel metálico situado abaixo de uma marcação a laser, determinando assim a leitura inicial, e a partir dele realizadas as mensurações ao longo da margem do troquel. Quando finalizada a leitura de um ponto, a base cilíndrica foi girada no sentido anti-horário, de maneira que os dois pontos, sendo um localizado no *coping* e outro no troquel estivessem perpendiculares ao plano vertical de leitura no microscópio. Este procedimento foi realizado para cada um dos 50 pontos em cada um dos sessenta *copings*. Os valores obtidos foram submetidos à média

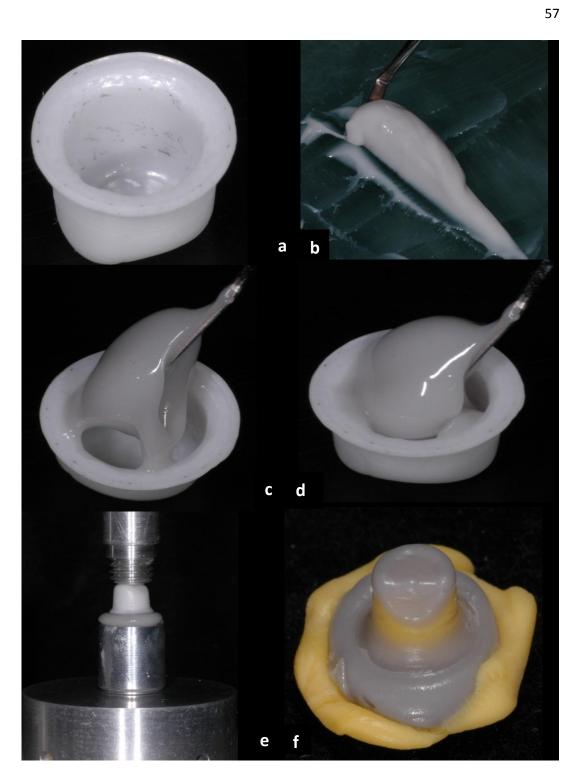
aritmética e um único valor médio foi obtido para cada *coping*. Todas as mensurações foram realizadas por um único operador, sendo os valores obtidos em milímetros e transformados em micrometros antes da análise estatística.

A análise quantitativa da DM foi realizada em microscópio óptico tridimensional com mesa digital, 250x de aumento e precisão de 1µm, e as medidas calculadas utilizando-se o programa computacional Automap XYZ versão 6.0 (RAM Optical Instrumentation, Inc. 1991-96, Irvine). Os valores de DM obtidos abaixo de 1µm foram considerados 0µm.

4.7 Discrepância interna

4.7.1 Técnica da réplica

Para analisar a DI, cada *coping* foi preenchido com silicone polimerizado por reação de adição na consistência fluída (Panasil *initial contact* regular, Kettenbach GmbH & Co. KG, Germany), de acordo com os procedimentos descritos por Boening et al. (2000) e Tinschert et al. (2001). Nesta técnica, o espaço que será ocupado pelo cimento entre padrão metálico e o *coping* cerâmico, caso se decida por esse procedimento, foi preenchido por um silicone de moldagem fluído, que após polimerizado copia de forma satisfatória a espessura desse espaço, que pode ser considerado como o desajuste interno entre as bordas das superfícies de contato, interna do *coping* e externa do padrão metálico. Após o preenchimento do *coping* com o silicone ativado e a inserção do padrão metálico no seu interior, cada amostra foi mantida em posição por 10 min., sob uma carga constante de 750g obtida com o auxílio do mesmo delineador modificado para as moldagens, recebendo um peso adicional (750g), rosqueado na porção superior da haste móvel (Figura 13).


Decorrido o tempo reservado à polimerização do silicone (10min.) o conjunto foi separado. O silicone fluído, que representa

tridimensionalmente o espaço do cimento, permaneceu no interior do *coping* que, segundo Kelly, Davis e Campbell (1989), equivale à discrepância interna do *coping*. Em seguida foi introduzido o material denso até completar o nível do *coping*. Esperou-se o tempo de polimerização (10min) do material denso e, então, obteve-se um troquel de silicone para posterior análise (Figura 14).

FIGURA 13 – Delineador modificado com peso de 750g.

FIGURA 14. Obtenção do troquel de silicone pela técnica da réplica.

4.7.2 Análise da discrepância interna

Com o auxílio de uma lâmina de bisturi nº 15c, o troquel de silicone obtido conforme a descrição do item anterior foi cuidadosamente seccionado em 4 partes iguais (corte isométrico) passando um deles pelo centro da depressão criada na oclusal (Figura 15). As cores dos silicones denso e fluído permitiram a visualização precisa da adaptação interna, onde o material denso na cor amarela representou clinicamente o dente preparado e o silicone fluído na cor cinza, representou a discrepância interna da peça protética.

Das quatro secções obtidas, foram separadas para leitura da DI, propositalmente, duas opostas pelo vértice, ou seja, as secções 1 e 3 ou seções 2 e 4. Em cada uma das faces selecionadas foram mensurados três pontos distribuídos nas diferentes regiões: Rai= Raio, Ax= Axial e Ocl= Oclusal, resultando 12 mensurações em cada amostra, sendo 4 em cada região (Figuras 16 e 17).

As mensurações quantitativas da espessura do filme de silicone fluído foram realizadas por um único operador em um microscópio óptico tridimensional com mesa digital, 250x de aumento e precisão de 1 µm, e as medidas obtidas foram calculadas com o programa computacional Automap XYZ versão 6.0 (RAM Optical Instrumentation, Inc. 1991-96, Irvine).

FIGURA 15 - Secção do troquel de silicone para análise da discrepância interna.

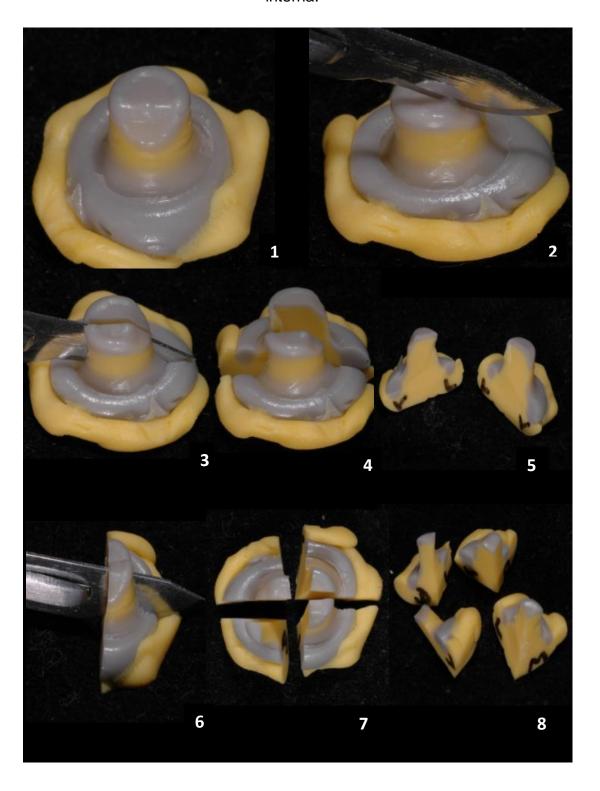


FIGURA 16 – Detalhe de uma das faces da secção do conjunto silicone fluído/denso, demonstrando as regiões de leitura: Ocl (Oclusal); Ax (Axial) e Rai (Raio) (vista interna).

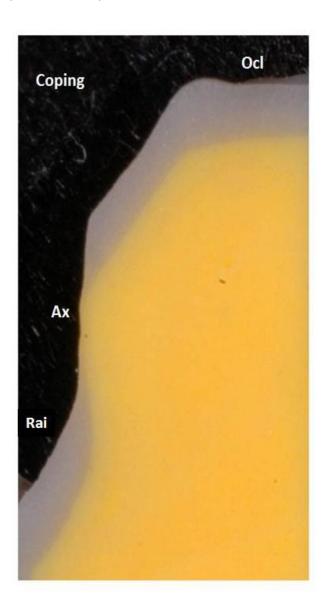
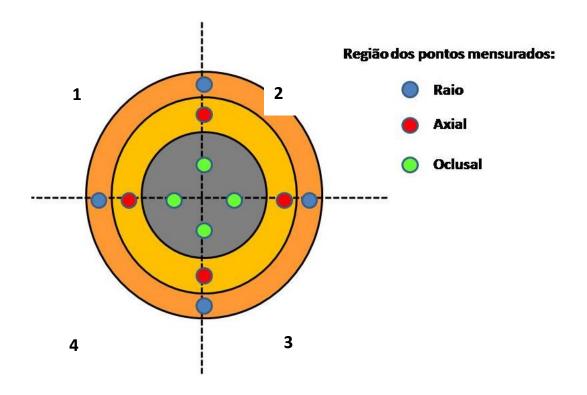



FIGURA 17 – Representação esquemática da segmentação do conjunto silicone fluído/denso e mensuração dos pontos e das secções resultantes em cada amostra: secções 1, 2, 3 e 4 (vista oclusal).

4.8 Análise estatística dos resultados

Os dados obtidos com as leituras da DM e DI dos *copings* cerâmicos nos diferentes grupos analisados foram submetidos à análise estatística através programas computacionais: MINITAB (Minitab, versão 14.12, 2004) e STATISTICA (StatSoft, versão 5.5, 2000), PRISM (GraphPad, versão 4.0) e STATISTIX (Analytical Software Inc., versão 8.0, 2003) para os testes de análise de variância (ANOVA – 2 - fatores e 3-fatores) e de comparação múltipla de Tukey, com níveis de significância de 5%.

5 RESULTADOS

5. 1 Discrepância marginal vertical

Para obtenção das médias da DM nos grupos CL, CI e OA foi realizada a média aritmética das 50 leituras de cada amostra e, após obtida a média geral por grupo. Esse procedimento foi realizado em todos os grupos (CAD/CAM e MAD/MAM). Em seguida, as médias gerais foram submetidas à análise estatística (ANOVA 2- fatores e Teste Tukey 5%).

Os valores de médias \pm DP para os grupos experimentais foram: MAD/MAM (CI- 9,08 \pm 4,68 μ m; CL- 258,98 \pm 179,26 μ m; OA- 90,41 \pm 65,51 μ m) e CAD/CAM (CI- 1,96 \pm 2,40 μ m; CL- 1,04 \pm 0,89 μ m; OA-1,64 \pm 2,76 μ m).

Os dados obtidos para a DM foram submetidos à análise estatística (ANOVA 2-fatores) e as relações entre o tipo de sistema de fresagem (CAD/CAM; MAD/MAM) e os tipos de términos cervicais (CL; CI; OA) estão descritos na tabela 1.

TABELA 1. ANOVA (2-fatores) para os dados de discrepância marginal vertical.

Fatores	gl	SQ	QM	F	Р
Sistema	1	208653	208653	34,34	0,0001*
Término	2	161278	80639	13,27	0,0001*
Sistema	2	163651	81826	13,47	0,0001*
x					
Término					
Erro	54	328144	6077		
Total	59	861726			

gl: grau de liberdade; SQ: soma dos quadrados; QM: SS/DF;

^{*} significância estatística.

Foi verificado que com o teste ANOVA (Tabela 1), o fator "sistema de fresagem" e "término cervical" mostraram diferenças estatísticas intra e inter-grupos (p=0,0001). Isso demonstra que os valores obtidos foram significativamente diferentes entre os grupos estudados. A relação para a DM entre sistema de fresagem e tipo de término cervical está representada graficamente na Figura 18.

Quando apenas o fator "sistema de fresagem" foi considerado estatisticamente o sistema MAD/MAM (119,49 μ m^A) apresentou desajuste marginal estatisticamente superior ao sistema CAD/CAM (1,55 μ m^B) (p=0,0001). Já quando o fator "término cervical" foi analisado, o grupo CL mostrou valores mais elevados que os demais grupos, os quais foram similares entre si: CL (130,02 μ m^A); OA (46,03 μ m^B); CI (5,53 μ m^B) (Tukey, 5%).

Quando todos os grupos experimentais foram comparados entre si (Teste de Tukey, 5%), o grupo CL do sistema MAD/MAM apresentou valores de discrepância marginal superiores estatisticamente em relação aos demais grupos, os quais foram semelhantes entre si: MAD/MAM (CL) - 258,98μm^A; MAD/MAM (OA) – 90,41μm^B; MAD/MAM (CI) – 9,09μm^B; CAD/CAM (CI) – 1,97μm^B; CAD/CAM (OA) – 1,64μm^B; CAD/CAM (CL) – 1,05μm^B. As mensurações estão representadas nas figuras 19, 20 e 21.

FIGURA 18. Representação gráfica da média dos valores obtidos para a discrepância marginal vertical, por grupo de sistema de fresagem dos *copings*, de acordo com o tipo de terminação cervical.

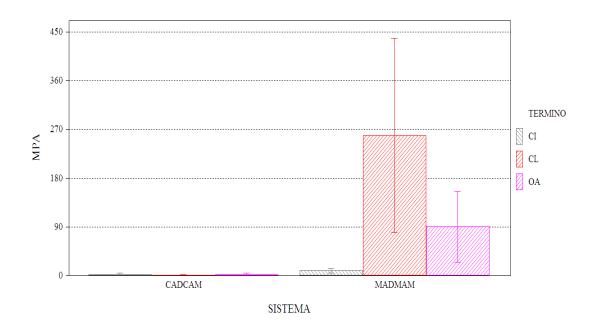


FIGURA 19 – Visualização da mensuração da DM em um *coping* cerâmico (Chanfro Largo - MAD/MAM).

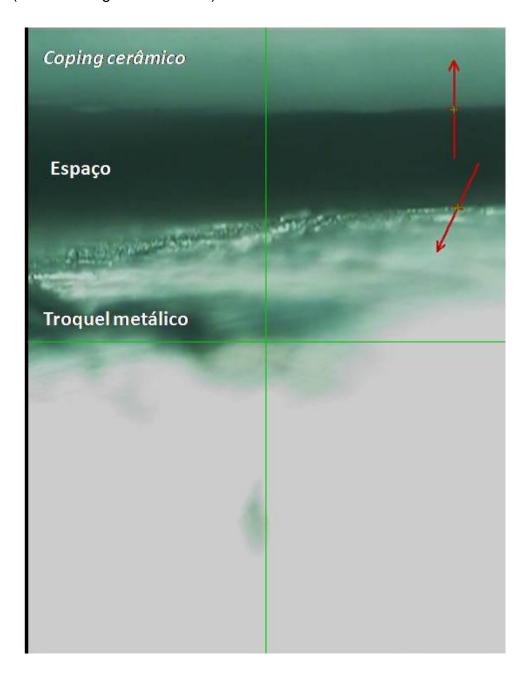


FIGURA 20 – Visualização da mensuração da DM em um *coping* cerâmico (Chanfro Largo - CAD/CAM).

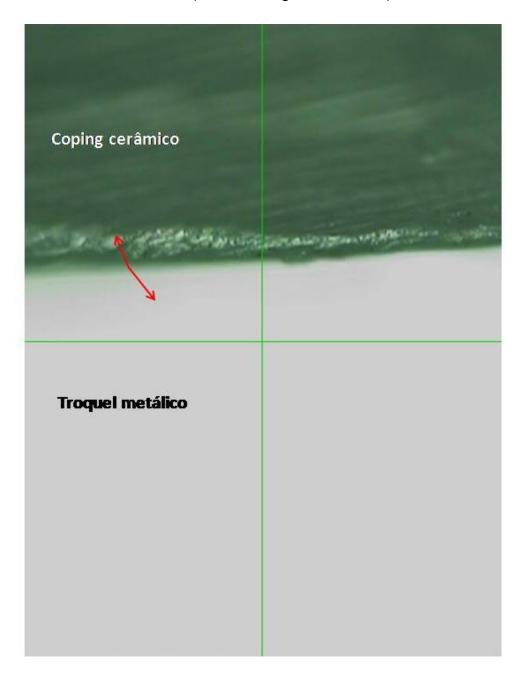
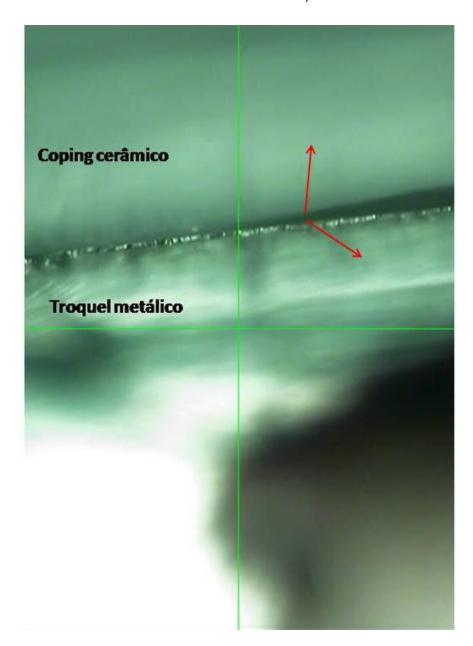



FIGURA 21. Visualização da DM em um *coping* cerâmico (Chanfro Inclinado - MAD/MAM).

5.2 Discrepância interna

Para obtenção das médias de DI nos grupos CL, CI e OA, foi realizada a média aritmética das leituras obtidas para cada amostra (120 mensurações por grupo). As médias foram submetidas à análise estatística (ANOVA 3-fatores e Teste Tukey).

Na tabela de médias (Tabela 2), é possível observar que a região oclusal para os dois sistemas de fresagem mostrou os maiores valores de discrepância interna, apresentando também os maiores valores de desvio padrão (741,85 \pm 297,69 μ m). Entre os sistemas de fresagem, o CAD/CAM mostrou-se com maiores valores de DI, bem como os maiores valores para desvio-padrão (471,70 \pm 365,94 μ m). Da mesma forma, dentre os tipos de términos cervicais, o grupo OA também obteve os maiores valores de DI (523,26 \pm 421,17 μ m).

TABELA 2. Média e desvio-padrão dos valores de Discrepância interna por região, sistema de fresagem e tipo de término cervical (valores em µm).

Variável	N	Média	SD
Região			
Axial	240	117,81	65,332
Oclusal	240	741,85	297,69
Raio	240	422,79	266,31
Sistema de fresagem			
CAD/CAM	360	471,70	365,94
MAD/MAM	360	383,26	318,45
Tipo de término			
CI	240	343,33	267,90
CL	240	415,85	306,19
OA	240	523,26	421,17

A análise de variância através do ANOVA 3-fatores e a interação entre os tipos de términos cervicais para a DI (Tabela 3) mostraram que entre as regiões avaliadas os valores foram significativamente diferentes entre si (P=0,0001). O mesmo ocorreu para a análise dos sistemas de fresagem (P=0,0001) e para o fator tipo de término

cervical (P=0,0001), isoladamente. Ainda na tabela 3, a interação dos valores obtidos para a DI entre o tipo de terminação cervical e as regiões avaliadas (Raio, Oclusal e Axial) foi estatisticamente significante (P=0,0001) para o teste de Tukey.

TABELA 3. Resultados da análise de variância ANOVA 3-fatores e a interação dos fatores para a Discrepância interna (*p<0.05).

Fatores	gl	SQ	QM	F	Р
Região	2	4,67E+07	2,33E+07	543,39	0,0001
Sistema	1	1407737	1407737	32,73	0,0001
Término	2	3933491	1966746	45,73	0,0001
Região x Sistema	2	1227145	613573	14,27	0,0001
Região x Término	4	2278532	569633	13,25	0,0001
Sistema x Término	2	21695,3	10847,6	0,25	0,7771
Região x Sistema x Término	4	89799,9	22450,0	0,52	0,7196
Erro	702	3,019E+07	43006,9		
Total	719	8,589E+07			

gl: grau de liberdade; SQ: soma dos quadrados; QM: SS/DF;

Para os diferentes términos, os valores de DI foram: CI (343,33 μ m^C); CL (415,85 μ m^B); OA (523,26 μ m^A); para a região avaliada: Raio (422,79 μ m^B); Axial (117,81 μ m^C); Oclusal (741,85 μ m^A) e para o sistema de fresagem, os valores de DI foram: CAD/CAM (471,70 μ m^A); MAD/MAM (383,26 μ m^B).

Na tabela 4 há uma representação da homogeneidade entre todos os grupos; onde se pode observar que: no sistema CAD/CAM as

^{*} significância estatística.

regiões de Raio apresentaram valores semelhantes somente nas amostras do grupo CI ($343,91\mu m^{(FG)}$) e CL ($439,88\mu m^{(EF)}$) e a região Axial mostrouse com valores de DI praticamente iguais nos três tipos de terminação cervical. Para o sistema de fresagem MAD/MAM, a região Axial mostrou valores semelhantes em todos os tipos de terminações cervicais e, para a região de Raio, os dados mostraram-se homogêneos somente para os grupos CI ($215,47\mu m^{(GH)}$) e CL ($346,64\mu m^{(FG)}$) (Figuras 24, 25 e 26).

TABELA 4. Valores médios (em μ m) (\pm desvio-padrão) de DI de acordo com os diferentes tipos de término cervical (CI, CL e OA), regiões (Raio, Axial e Oclusal) e sistema de fresagem. (Teste Tukey, α =0.05).

Condições exp	perimentais		Média
Sistema	Término cervical	Região	
		Raio	343,91 ^(FG)
	Chanfro Inclinado	Axial	108,41 ^(H)
<u>-</u>	(CI)	Oclusal	698,78 (BCD
		Raio	439,88 ^(EF)
CAD/CAM	Chanfro Largo (CL)	Axial	107,63 ^(H)
<u>-</u>		Oclusal	855,99 ^(AB)
		Raio	653,37 (CD)
	Ombro Arredondado	Axial	103,54 ^(H)
	(OA)	Oclusal	933,78 ^(A)
		Raio	215,47 ^(GH)
	Chanfro Inclinado	Axial	136,90 ^(H)
MAD/MAM	(CI)	Oclusal	556,52 (DE)
		Raio	346,64 ^(FG)
	Chanfro Largo (CL)	Axial	120,58 ^(H)
		Oclusal	624,39 ^(CD)
		Raio	537.44 (DE)
	Ombro Arredondado	Axial	129.78 ^(H)
	(OA)	Oclusal	781.63 (ABC

FIGURA 22. Discrepância interna por tipo de término cervical em cada uma das regiões avaliadas (Axial, Oclusal e Raio).

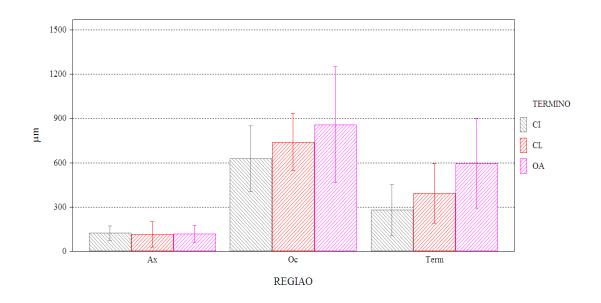


FIGURA 23. Discrepância interna por tipo de sistema de fresagem em cada um dos tipos de terminações cervicais.

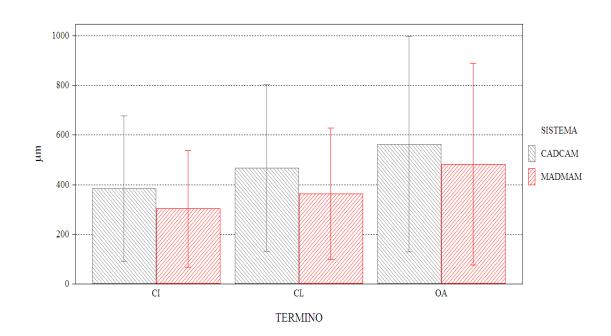


FIGURA 24 – Visualização da mensuração da DI (CAD/CAM; Chanfro Largo; região Oclusal).

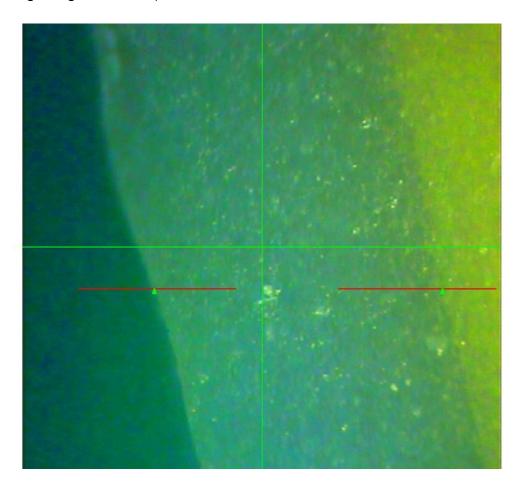


FIGURA 25. Visualização da DI (MAD/MAM; Chanfro Largo; região de Raio).

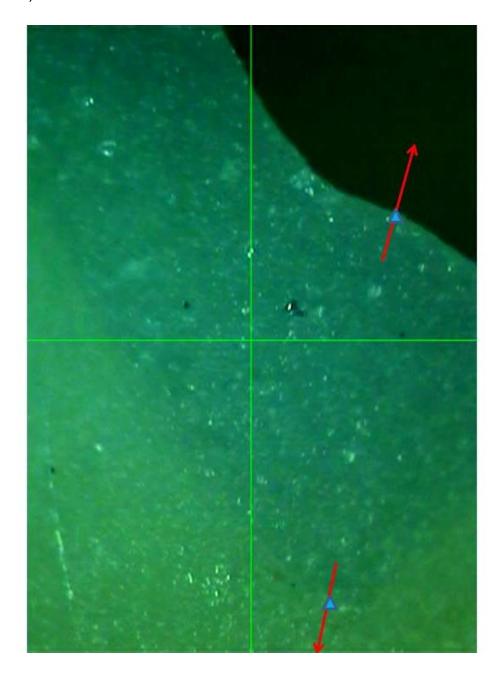
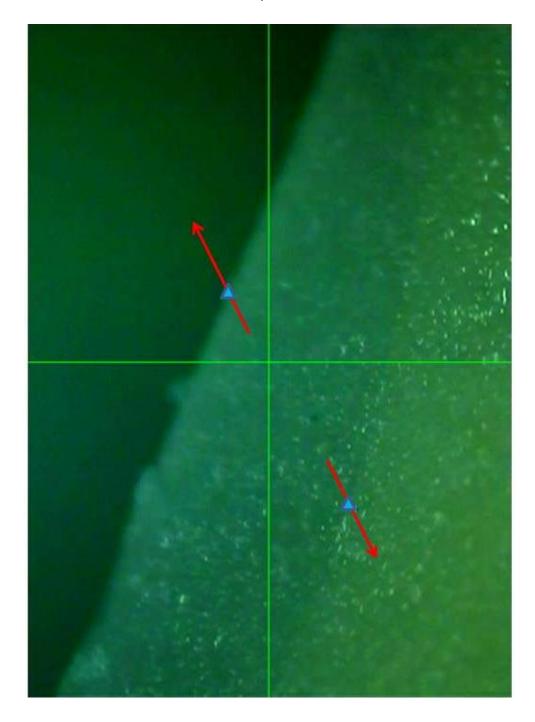



FIGURA 26. Visualização da DI (CAD/CAM; Chanfro Inclinado; Região de Raio).

6 DISCUSSÃO

Considerando todos os materiais cerâmicos avaliados tendo em vista a manutenção da saúde dos tecidos orais, a Y-TZP oferece as melhores propriedades, com muitas vantagens como biocompatibilidade, menor adesão de microrganismos e excelentes propriedades mecânicas (YEO et al., 2003; SILVA et al., 2010; KARATASLI et al., 2011). Fendas marginais em restaurações fixas podem ser responsáveis pelo aparecimento de cáries, dissolução do cimento de união, mudanças na microflora subgengival, destruição periodontal e lesões periapicais que podem resultar em comprometimento pulpar (FELTON et al., 1991). Por essas razões, o ajuste marginal é de fundamental importância na longevidade das restaurações (ALBERT; EL-MOWAFY, 2007; BEUER et al., 2009).

Diversos estudos têm avaliado as adaptações marginal e interna em restaurações fixas fabricadas com diversos sistemas e materiais (HOLMES et al., 1989; MOLIN; KARLSSON, 1993; GROTEN; AXMANN, 2000; MOU et al., 2002; REICH et al., 2005; BAIG; TAN; NICHOLLS, 2010). Fatores como o tipo de terminação cervical, o tipo de cerâmica empregada e o processamento da mesma têm sido citados como influenciadores de adaptação em restaurações cerâmicas (ALKMURU et al., 1988, SYU et al., 1993, SHEARER et al., 1996, QUINTAS; OLIVEIRA; BOTTINO, 2004, BALKAYA; CINAR; PAMUK, 2005; COMLEKOGLU et al., 2009). No presente estudo, assim como alguns outros (QUINTAS; OLIVEIRA; BOTTINO, 2004; KUNII et al., 2007; CASTILLO et al., 2009; KARATASLI et al., 2011; SOUZA et al., 2011) foram utilizados troquéis metálicos padronizados, simulando preparos em dentes naturais, com variações de configuração do término cervical. Estudos similares foram realizados utilizando dentes naturais (TAO; HAN, 2009; GRENADE, MAINJOT, VANHEUSDEN, 2011) ou com dentes de acrílico (OLIVEIRA, SAITO, OLIVEIRA, 2007; DENRY; KELLY, 2008; BEUER et al., 2010). No nosso estudo a opção por modelos mestres metálicos foi em razão da uniformização durante todo o processo de confecção das amostras até a

obtenção dos *copings*, o que garantiu a redução de fatores que pudessem contribuir para a discrepância marginal. Além disso, os troquéis utilizados nesse estudo possuíam marcações em 50 pontos equidistantes ao longo de toda a margem do preparo o que permitiu e facilitou a exploração e mensuração de margem em cada *coping*. De acordo com Groten et al. (2000) e Karatasli et al. (2011) o número de áreas mensuradas influencia no resultado da análise de discrepância marginal. Quanto maior o número de leituras, melhor é a análise, principalmente quando se comparam vários tipos de término cervical.

O tipo de material cerâmico escolhido (Y-TZP) para a confecção dos *copings* foi resultado das ótimas propriedades do material, verificadas em alguns estudos (TINSCHERT et al., 2001; SANTOS; ELIAS, 2007; BAIG; TAN; NICHOLLS, 2010; SILVA et al., 2010) o que assegura maiores chances de integridade marginal durante as análises. Além disso, para controle do nosso estudo, todos os procedimentos foram executados por um único operador, com padronização das técnicas, cuidadosamente e utilizando os melhores materiais e equipamentos. Oliveira (2002) relatou que a dimensão do desajuste marginal de restaurações fixas é resultado de várias etapas envolvidas no processo de confecção, podendo ser traduzida como a somatória de distorções que acontecem ao longo do processo. Por essa razão, nesse estudo priorizou-se a máxima redução de fatores que pudessem contribuir para as discrepâncias marginal vertical e interna.

Para o sistema de fresagem MAD/MAM, os maiores valores de DM foram encontrados no grupo com término CL (258,98 ± 179,26 μm) e OA (90,41 ± 65,51 μm). Nos mesmos grupos, para o sistema CAD/CAM os valores foram: CL (1,05 ± 0,89 μm) e OA (1,64 ± 2,76 μm). Diante dos resultados obtidos, como já é esperado para os sistemas manuais, o sistema MAD/MAM oferece a maior possibilidade de incorporar erros do operador durante o processo de confecção dos *copings* em relação ao sistema CAD/CAM, o que pode aumentar as discrepâncias ao longo da margem de um mesmo *coping* e de discrepâncias entre um *coping* e outro do mesmo grupo, o que é verificado pelos maiores valores de desviopadrão do MAD/MAM comparado ao CAD/CAM. Além disso, a produção

dos *copings* no sistema MAD/MAM requer o uso de materiais sujeitos a alterações dimensionais que podem influenciar no resultado final.

No sistema MAD/MAM, os grupos com maiores valores de discrepância marginal (CL e OA), refletem a maior quantidade de resina utilizada no enceramento desses tipos de términos cervicais, que possuem maior raio, e consequentemente maior profundidade que o grupo CI. A contração de polimerização do material resinoso durante o processo de confecção dos copings cerâmicos nesse tipo de sistema pode ter contribuído para as alterações dimensionais da resina e influenciado diretamente no desajuste marginal dos copings. Comlekoglu et al. (2009) estudando copings confeccionados com o sistema MAD/MAM verificaram que o Chanfro apresentou maiores valores de discrepância que o Mini-Chanfro, o que pode confirmar a hipótese anterior, no entanto houve também a preferência pelo término em Ombro Arredondado, o que não aconteceu em nosso estudo para os copings do sistema MAD/MAM. Para Azar et al. (2011) diferentes profundidades nos términos cervicais influenciam na dimensão da fenda marginal nos sentidos vestíbulo-lingual e mésio-distal resultando em prejuízos à adaptação marginal. Oliveira (2002) observou a precisão de adaptação marginal de copings nos dois sistemas de confecção avaliados nesse estudo (CAD/CAM e MAD/MAM) frente a dois tipos de términos cervicais: Ombro 90º e Chanfro. No sistema CAD/CAM, o grupo de melhores resultados foi o Ombro 90º (23,08µm) comparado ao Chanfro (25,77µm). O grupo Ombro 90º (36,11µm) do sistema MAD/MAM mostrou-se diferente estatisticamente do mesmo grupo no sistema CAD/CAM.

Estudos que avaliaram a influência do tipo de término cervical na adaptação marginal mostram resultados bastante variados e contraditórios. Alguns estudos mostraram que a adaptação não foi influenciada pelo tipo de configuração do preparo ao nível marginal (PERA et al., 1994; SHEARER et al., 1996, LIN et al., 1998, SUAREZ et al., 2003, QUINTAS; OLIVEIRA; BOTTINO, 2004; BALKAYA; CINAR; PAMUK, 2005; OLIVEIRA; SAITO; OLIVEIRA, 2007; KOMINE et al., 2007). No entanto, outros estudos mostraram resultados onde a adaptação marginal mostrou

variações frente aos diferentes tipos de término cervical (COMLEKOGLU et al., 2009; SOUZA et al., 2011).

Lin et al. (1998) relataram que o término cervical em lâmina de faca de copings cerâmicos de zircônia resultou em ampla discrepância marginal quando comparado ao términos em Chanfro e em Ombro (0,8µm e 0,5μm, respectivamente), o que também foi verificado por Comlekoglu et al. (2009). Da mesma forma, Bindl and Mörmann (2005) recomendaram o Ombro, o Ombro biselado e o Chanfro como os melhores tipos de términos cervicais para a adaptação marginal. Já Oliveira, Saito e Oliveira (2007) estudando copings cerâmicos em relação aos melhores términos cervicais, não obtiveram análise estatística conclusiva, no entanto, sugeriram o Chanfro como o melhor tipo em razão dos menores valores de desviopadrão obtidos por esse término comparado aos valores de desvio-padrão obtidos pelo Ombro 90°. No estudo de Souza et al. (2011), utilizando coroas confeccionadas com o sistema CAD/CAM o grupo com término cervical em Ombro Arredondado (28,24 ± 11,42 µm) apresentou significativamente os menores valores de DM, seguidos do grupo com término em Chanfro Largo (64,71 ± 25,64 µm) e em Chanfro Inclinado (99,92 ± 18,32 μm), onde todos os grupos foram estatisticamente diferentes entre si. A contradição entre o melhor término é finalmente confirmada por Karatasli et al. (2011), que mostraram preferência pelo término do tipo Chanfro e pelo nosso estudo em que encontramos dados satisfatórios para uso clínico em todas as amostras, com exceção das do grupo com término em Chanfro Largo, do sistema de fresagem MAD/MAM.

Para Bindl e Mörmann (2005), baseados em um estudo *in vitro* comparando a precisão de ajuste marginal de *copings* cerâmicos confeccionados com CAD/CAM ao sistema de confecção MAD/MAM, o ajuste marginal mostrou-se similar para os dois sistemas. No entanto, de acordo com outros autores (OLIVEIRA, SAITO, OLIVEIRA, 2007; GORDILHO et al., 2009; GRENADE, MAINJOT, VANHEUSDEN, 2011) e reafirmado nesse estudo, o sistema CAD/CAM oferece de forma significante menores discrepâncias e melhor ajuste de margem que os sistemas convencionais. Grenade, Mainjot e Vanheusden (2011) verificaram que o ajuste em *copings* confeccionados com o sistema

Procera (CAD/CAM) (51 ± 50μm) obteve valores de discrepância marginal significativamente menores que o sistema Ceramill (MAD/MAM) (86 ± 66μm). Karatasli et al. (2011) observaram que sistemas convencionais otimizados como o MAD/CAM obtiveram valores de fenda marginal significativamente maiores que os obtidos pelo sistema CAD/CAM. Esses autores concluíram que o sistema CAD/CAM reproduz rapidamente as configurações cervicais desejadas e cumpre com as normas determinadas, reduzindo erros decorrentes da técnica empregada na confecção de estruturas cerâmicas quando comparado ao sistema MAD/CAM. No entanto, o sistema MAD/CAM é mais acessível economicamente e de fácil execução, o que pode ser levado em consideração por alguns clínicos.

Estudos *in vitro* têm mostrado que discrepâncias marginais de coroas totalmente cerâmicas fabricadas usando o sistema CAD/CAM variam de 64 a 83μm (SULAIMAN et al., 1997, LIN et al., 1998, BINDL; WINDISCH; MÖRMANN, 1999). Outros estudos avaliando também infraestruturas cerâmicas fabricadas com CAD/CAM obtiveram valores de fendas marginais entre 32 e 74μm (KARLSSON, 2004, COLI; KARLSSON, 2004; BINDL; MÖRMANN, 2005). No presente estudo, a média de discrepância marginal para o sistema CAD/CAM nos diferentes tipos de término cervical foi de 1,55μm, o que demonstra que esse sistema é preciso no delineamento de margem de *copings* cerâmicos.

A adaptação da infraestrutura cerâmica à margem do preparo é fundamental à longevidade da restauração e à manutenção da saúde dos tecidos envolvidos (FELTON et al., 1991; TUNTIPRAWON; WILSON, 1995). Observações sobre as reconstruções em cerâmica mostraram a ocorrência de discrepâncias e fendas marginais, indicando problemas com o ajuste marginal das infra-estruturas cerâmicas (SAILER et al., 2007; EDELLHOFF et al., 2008; CEHRELI; KOKAT; AKCA, 2009; ORTORP; KIHL; CARLSSON, 2009;). Christensen (1966) e Andersson et al. (1998) relataram a aceitabilidade clínica de fendas marginais entre 25 e 40μm. Para Sulaiman et al. (1997), fendas marginais entre 1 e 165μm são consideradas aceitáveis, o que também foi encontrado por Boening, Walter e Reppel (1992) que sugeriram que fendas entre 110 e 150μm são

aceitáveis para restaurações cerâmicas. Já McLean e von Fraunhofer (1971) recomendaram 120 μm como o máximo aceitável para o valor de discrepância marginal. Esse último estudo recebeu maior atenção e a sua recomendação é mais aceita pelos clínicos em razão de os autores terem avaliado um total de mil restaurações cerâmicas ao longo de 5 anos. Holmes et al. (1992) também associaram melhor longevidade de restaurações cerâmicas a discrepâncias de margem inferiores a 120μm. Cerutti et al. (2010) e Souza et al. (2011) também utilizaram este como o critério de classificação de aceitabilidade clínica de restaurações cerâmicas. De acordo com essas observações e, tendo como base essa última recomendação (120μm), nesse estudo os valores de DM apresentaram-se clinicamente aceitáveis, com exceção do término em CL do sistema MAD/MAM (258,98μm).

A adaptação interna é tão importante para a longevidade de restaurações cerâmicas quanto a marginal, já que uma má adaptação interna pode resultar em redução da resistência à fratura da restauração cerâmica (TUNTIPRAWON; WILSON, 1995; KOKUBO et al. 2011). No presente estudo, os dados de DI, por região (Raio, Oclusal e Axial) mostraram que os maiores valores foram obtidos para a região Oclusal (741,85 ± 297,69 μm). A região Axial obteve os menores valores (117,81 ± 65,332 µm). Moldovan et al. (2008) também apresentaram a região Oclusal como a que apresentou os maiores valores de DI. Souza et al. (2011) mostraram que quando as regiões avaliadas para a adaptação interna (Raio, Oclusal e Axial) foram comparadas, a região Axial mostrou-se significantemente com as menores discrepâncias (117,69 µm) comparadas com a Região de Raio (218,31 µm) e Oclusal (282,39 µm). Já para Kokubo et al. (2011) a região de Ombro Arredondado (Raio) foi a que obteve os maiores valores de Discrepância interna, entre as demais áreas avaliadas (Oclusal, Margem e Axial).

De acordo com o sistema de fresagem, os maiores valores de DI foram obtidos pelo sistema CAD/CAM (471,70 ± 365,94µm). Coli and Karlsson (2004) concluíram que o sistema CAD/CAM oferece alta precisão na confecção do espaço interno em *copings* de zircônia. Grenade, Mainjot and Vanheusden (2011) avaliaram a influência do sistema de fresagem no

espaço interno de infraestruturas cerâmicas e observaram que os valores obtidos pelos sistemas Procera (CAD/CAM) e Ceramil (MAD/MAM) não foram diferentes estatisticamente. No presente estudo, de acordo com o teste de Tukey, o sistema CAD/CAM apresentou dados de adaptação interna diferentes estatisticamente dos apresentados pelo sistema MAD/MAM.

Para o tipo de terminação cervical quanto à análise da DI, os maiores valores foram obtidos pelo grupo OA (523,26 \pm 421,17µm^A), seguidos do grupo CL (415,85 \pm 306,19µm^B) e os menores valores foram encontrados no grupo CI (343,33 \pm 267,90µm^C), sendo esses valores considerados diferentes estatisticamente entre si de acordo com o teste de Tukey. Da mesma forma, no estudo de Souza et al. (2011), quando os valores médios de DI foram comparados, o fator "tipo de término cervical", de acordo com o teste de Tukey, também apresentou diferenças estatísticas significativas entre o grupo CL (183,01µm) e os grupos CI (216,26µm) e OA (219,12µm). Ainda nesse último estudo, CI e OA não foram estatisticamente diferentes entre si.

Embora não existam evidências conclusivas sobre os melhores valores de espaço interno entre as regiões aqui estudadas, alguns autores têm citado como desejáveis os espaços internos entre 50 e 100μm, valores esses que são aceitáveis tendo em vista as propriedades físicas e de desempenho clínico dos cimentos de união à base de resina que são utilizados na cimentação das peças cerâmicas (LEINFELDER; ISENBERG; ESSING, 1989, MOLIN; KARLSSON; KRISTIANSEN, 1996, MORMANN et al., 1998). Estudos in vitro sobre o processo de confecção de copings cerâmicos têm revelado médias de discrepâncias internas entre 30 e 204µm (COLI: KARLSSON, 2004, BINDL: MÖRMANN, 2005, NAKAMURA et al., 2005; REICH et al., 2005). O nosso estudo encontrou valores diferentes dos estudos anteriores e diferentes também entre as regiões avaliadas (Raio, Axial e Oclusal). A DI dos copings desse estudo pode ter sofrido influência do alívio interno de +20μm, bem como da quantidade de pontos mensurados e da dificuldade em padronizar a etapa laboratorial de ajuste interno dos *copings* cerâmicos.

Os valores obtidos para DI nesse estudo ficaram entre 933, 78µm (Região Oclusal, CL, CAD/CAM) e 103,54µm (Região Axial, OA, CAD/CAM). Assim como nos estudos de Kokubo et al. (2005) e Souza et al. (2011), os valores de DI obtidos nesse estudo para a região Oclusal foram superiores às demais regiões. Segundo Kokubo et al. (2005), essas diferenças devem-se a deficiências nas leituras dos preparos, que sofrem influência e dependem da angulação dos mesmos.

Estudos *in vitro* têm demonstrado restaurações clinicamente aceitáveis com DI entre 200 e 300μm (SORESEN; MUNKSGAARD, 1995; MOLIN et al., 1996). Dessa forma, pode-se afirmar que os dados obtidos para DI nesse estudo estão adequadas para gerar desempenho clínico satisfatório nas regiões axiais de todos os términos cervicais, nos dois sistemas e na região de raio do grupo CI do sistema de fresagem MAD/MAM. Esse último dado sugere a facilitação de leitura e delimitação de espaço interno onde as angulações são menores, assim como as profundidades. Elevados valores de DI, podem ser melhorados clinicamente através do uso de agentes cimentantes adesivos, onde o espaço é preenchido por material resinoso, que apresenta módulo de elasticidade muito próximo ao da dentina (BINDL et al.,1999).

Em razão dos resultados apresentados e das discussões geradas com esse estudo frente aos demais já realizados, sugerimos que novos estudos possam ser delineados a fim de melhorarmos a nossa discussão sobre o sistema de fresagem mais indicado para trabalhos protéticos em zircônia, bem como o término cervical mais adequado na confecção dos preparos.

7 CONCLUSÕES

Baseado nos dados obtidos é possível afirmar que:

- 1 O sistema CAD/CAM promoveu valores de DM clinicamente aceitáveis, independente do término cervical, ao contrário dos *copings* com término em chanfro largo, confeccionados pelo sistema MAD/MAM;
- O término CI gerou valores inferiores de DM e DI para ambos os sistemas de fresagem, em relação aos términos CL e OA.
- 3 As DI variaram entre as regiões dos pontos mensurados, sendo os maiores valores observados para a região oclusal, seguida da região de raio e, por fim da região axial, independente do sistema de fresagem.

8 REFERENCES

ABOUSHELIB, M. N. et al. Microtensile bond strength of different components of core veneered all-ceramic restorations. **Dent Mater**, v. 21, p. 984-991, 2005.

ALBERT, F. E; EL-MOWAFY, O. M. Marginal adaptation and mikroleakage of procera all-ceram crowns with four cements. **Int J Prosthodont**, v.17, p. 529-535, 2004.

AL-GHAZZAWI, T. et al. Marginal adaptation of CAD/CAM generated alumina and zirconia copings. [resumo] In: IADR 82nd GENERAL SESSION: Hawaii. Prosthodontics Research Program, march 10-13, 321B, 2004.

ALKUMRU, H. et al. Factors affecting the fit of porcelain jacket crowns. **Br Dental J.,** Ribeirão Preto, v. 164, n. 2, p. 39-43, jan. 1988.

ANDERSSON, A.; RAZZOOG, M. E.; ODÉN, A. Procera: A new way to achieve an all-ceramic crow. **Quintessence International**, v. 29, n. 5, p. 285-296, 1998.

AZAR, M. S. et al. Effect of preparation depth differences on the marginal fit of zirconia crown copings: an in vitro study. **Int J Prosthodont**, v. 24, n.3, p. 264-6, 2011.

BAIG, M. R.; TAN, K. B-C.; NICHOLLS, J. I. Evaluation of the marginal fit of a zirconia ceramic computer-aided machined (CAM) crown system. **The Journal of Prosthetic Dentistry**, v. 104, n.4, p. 126-227, 2010.

BALKAYA, M. C.; CINAR, A.; PAMUK, S. Influence of firing cycles on the margin distortion of 3 all-ceramic crown systems. **J Prosthet Dent**, v. 93, p. 346-355, 2005.

BEUER, F. et al. Marginal and internal fits of fixed dental prostheses zirconia retainers. **Dent Mater**, v. 25, p. 94-102, 2009.

BEUER, F.; KORCZYNSKI, N.; REZAC, A. et al. Marginal and internal fit of zirconia based fixed dental prostheses fabricated with different concepts. Clinical, **Cosmetic and Investigational Dentistry**, v. 2, n. 5, p. 5-11, 2010.

BINDL, A.; WINDISCH, S.; MÖRMANN, W. H. Full-ceramic CAD/CIM anterior crowns and copings. **Int J Comput Dent**, v.2, p. 97-111, 1999.

BINDL, A.; MÖRMANN, W. H. Marginal and internal fit of all-ceramic CAD/CAM crown-copings on chamfer preparations. **Journal of Oral Rehabilitation**, v. 32, p. 441-447, 2005.

BOENING, K. W. et al. Clinical fit of Procera allceramic crowns. **J Prosthet Dent.**, v. 84, n. 4, p. 419-24, 2000.

BOTTINO, M. A. **Cimentação em próteses livres de metal**. In: Estética em reabilitação oral: metal free. São Paulo: Artes Médicas; 2001. cap.7. p.381-441.

BUSO, L.; NEISSER, M. P.; BOTTINO, M. A. Evaluation of the marginal fit of electroformed copings in function of the cervical preparation. **Cienc Odontol Bras.**, v. 7, n. 1, p. 14-20, 2004.

CASTILLO, O. R. et al. Influence of CAM vs. CAD/CAM scanning methods and finish line of tooth preparation in the vertical misfit of zirconia bridge structures. **Am J Dent**, v.22, p. 79-83, 2009.

CEHRELI, M. C.; KOKAT, A. M.; AKCA, K. CAD/CAM Zirconia vs. slip-cast glass-infiltrated Alumina/Zirconia all-ceramic crowns: 2-year results of a randomized controlled clinical trial. **J. Appl. Oral Sci.**, v. 17, p. 49-55, 2009.

CERUTTI, F. et al. Marginal fit of zirconia crown-copings. [abstract]. IADR, 2010.

CHAN, C.; WEBER, H. Plaque retention on the teeth restored with fullceramic crowns: a comparative study. **J Prosthet Dent**., v. 56, n. 6, p. 666-71, 1986.

CHISTENSEN, G. J. Why all-ceramic crowns. **J Am Dent Assoc**, v. 128, n. 10, p:1453-1455, 1997.

CHRISTEL, P. et al. Mechanical properties and short-term *in vivo* evaluation of yttrium-oxide-partially-stabilized zirconia. **J Biomed Mater Res**, v.23, p. 45-61, 1989.

CHRISTENSEN, G. J. Marginal fit of gold inlay castings. **The journal of Prosthetic Dentistry**, v.16, n.2, p. 297-305, 1966.

COLI, P.; KARLSSON, S. Fit of a new pressure-sintered zirconium dioxide coping. **Int J Prosthodont**, v. 17, p. 59-64, 2004a.

COLI, P.; KARLSSON, S. Precision of a CAD/CAM technique for the production of zirconium dioxide copings. **Int J Prosthodont**, v. 17, p. 577-580, 2004b.

COMLEKOGLU, M. et al. Influence of cervical finish line type on the marginal adaptation of zirconia ceramic crowns. **Operative Dentistry**, v.34, n.5, p. 586-592, 2009.

DE AZA, A. H. et al. Crack growth resistance of alumina, zircônia and zircônia toughened alumina ceramics for joint protheses. **Biomaterials**, v.23, p. 937-945, 2002.

DENISSEM, H. et al. Marginal fit and short-term clinical performance of porcelain – veneered CICERO, CEREC and Procera onlays. **J Prosthet Dent.**, local, v. 84, n. 5, p. 506-13, 2000.

DENRY, I.; KELLY, J. R. State of the art of zirconia for dental applications. **Dent. Mater**, v. 24, p. 299-307, 2008.

DURET, F.; BLOUIN, J.; DURET, B. CAD-CAM in dentistry. **J Am Dent Assoc.**, v. 117, n., p. 715-20, 1988.

EDELHOFF, D. et al. HIP zirconia fixed partial dentures-clinical results after 3 years of clinical service. **Quintessence Int,** v. 39, p. 459-471, 2008.

FAUCHER, R. R.; NICHOLLS, J. I. Distortion related to margin design in porcelain-fused-to-metal restorations. **J Prosthet Dent**., v.43, n. 2, p. 149-55, 1980.

FELTON, D. A. et al. Effect of *in vivo* crown margin discrepancies on periodontal health. **J Prosthet Dent**, v. 65, p. 375-364, 1991.

FERNANDES, J. R. et al. Discrepâncias de assentamento ocorridas em copings cerâmicos confeccionados pelos sistemas IPS Empress 2 e In-Ceram, variando-se os términos cervicais e os agentes cimentantes: estudo *in vitro*. **Braz Dent Sci**, v.12, n.4, p. 12-17, out/dez.2009.

GARVIE, R. C.; HANNINK, R. H. J.; PASCOE, R. T. Ceramicsttel. **Nature**, v. 258, p. 703, 1975.

GASSINO, G. et al. Marginal adaptation of fixed prosthodontics: anew in vitro 360-degree external examination procedure. **The International Journal of Prosthodontics**, v.17, n.2, p.218-23, 2004.

GOLDMAN, M.; LAOSONTHORN, P.; WHITE, R. R. Microleakage: full crowns and the dental pulp. **J Endodon**., v. 18, n. 10, p. 473-5, 1992.

GONZALO, E. et al. A comparison of the marginal vertical discrepancies of zirconium and metal ceramic posterior fixed dental protheses before and after cementation. **Journal of Prosthetic Dentistry**, v. 102, n.6, p. 378-384, 2009.

GORDILHO, A. C. et al. Adaptação marginal dos principais sistemas de cerâmica pura. **Revista Odonto**, v. 17, n.34, p. 82-92, 2009.

GRENADE, C.; MAINJOT, A.; VANHEUDEN, A. Fit of single tooth zirconia copings: comparison betwenn various manufacturing process. **Journal of Prosthetic Dentistry**, v. 105, n. 4, p. 249-255, 2011.

GROTEN, M. et al. Determination of the minimum number of marginal gap measurements required for pratical in-vitro testing. **J Prosthet Dent**, v. 83, p. 40-49, 2000.

GUAZZATO, M. et al. Strength, fracture toughness and microstructure of a selection of all ceramic materials. Part II. Zirconia-based dental ceramics. **Dent Mater**, v. 20, p. 449-456, 2004.

HENCH, L. L.; WILSON, J. Na introduction to Bioceramics, advanced series in ceramics, **World Scientific**, Singapura, p. 1-23, 1993.

HEYMANN, H. D. et al. The clinical performance of CAD/CAM-generated ceramics inlays. A four year study. **J Am Dent Assoc**, v. 127, p. 1171-81, 1996.

HOLMES, J. R. et al. Considerations in measurement of marginal fit. **J Prosthet Dent**, v. 62, n. 4, p. 404-8, 1989.

HOLMES, J. R. et al. Marginal fit of castable ceramic crowns. **J Prosthet Dent**, v. 67, p. 594-599, 1992.

HUNG, S. H. et al. Accuracy of one-step versus two-step putty wash addition silicone impression technique. **J Prosthet Dent**, v. 67, n. 5, p. 583-9, 1992.

KARATASLI, Ö. et al. Comparison of the marginal fit of different coping materials and designs produced by computer aided manufacturing systems. **Dental Materials Journal**, v. 30, n. 1, p: 97-102, 2011.

KELLY, J. R.; DAVIS, S. H.; CAMPBELL, S. D. Nondestructive, three-dimensional internal fit mapping of fixed prostheses. **J Prosthet Dent**, v. 61, p. 368-373, 1989.

KNOERNSCHILD, K. L.; CAMPBELL, S. D. Periodontal tissue responses after insertion of artificial crowns and fixed partial dentures. **J Prosthet Dent**, v. 84, n. 5, p. 492-8, 2000.

KOKUBO, Y. et al. Clinical marginal and internal gaps of zirconia all-ceramic crown. **Journal of Prosthodontic Research**, v. 55, p. 1, p. 40-43, 2011.

KOKUBO, Y. et al. Clinical marginal and internal gaps of In-Ceram crowns fabricated using the GN-I system. **J Oral Rehabil**, v. 32, p. 753-8, 2005.

KOMINE, F. et al. Influence of framework configuration on the marginal adaptation of zirconium dioxide ceramic anterior four-unit frameworks. **Acta Odontol Scand**, v. 65, p. 361-366, 2005.

KOMINE, F. et al. Marginal and Internal Adaptation of Zirconium Dioxide Ceramic Copings and Crowns with Different Finish Line Designs. **Dental Materials Journal**, v. 26, n.5, p: 659-664, 2007.

KORKUT, L; COTERT H. S.; KURTULMUS H. Marginal, Internal fit and microleakage of zirconia infrastructures: an in-vitro study. **Operative Dentistry**, v. 36, n. 1, p. 72-79, 2011.

KUNII, J. et al. Effect of sintering on the marginal and internal fito f CAD/CAM-fabricated zircônia frameworks. **Dental Material Journal**, v. 26, n. 6, p. 820-826, 2007.

KURBAD, A.; REICHEL, K. InEOS - new system component in Cerec 3D. Int J Compu Dent, v. 8, n. 1, p. 77-84, 2005.

KURBAD, A.; REICHEL, K. Multicolored ceramic blocks as an esthetic solution for anterior restorations. **Int J Comput Dent**, v. 9., p. 69-82, 2006.

LEINFELDER KF, ISENBERG BP, ESSIG ME. A new method for generating ceramic restorations: a CAD-CAM system. **J Am Dent Assoc**, v. 118, p. 703-707, 1989.

LIM, C. C.; IRONSIDE, J. G. Grit basting and marginal accuracy of two ceramic veneer systems- a pilot study. **J Prosthet Dent**, v. 77, n. 4, p. 359-64,1997.

LIN, M.T. et al. The effect of tooth preparation form on the fit of Procera copings. **Int J Prosthodont**, v. 11, p. 580-590, 1998.

LÖE, H. Reactions of marginal periodontal tissues to restorative procedures. **Int Dent J**, v. 18, p. 759-78, 1968.

LUTHARDT, R. G. et al. Reability and Properties of Ground Y-TZP-Zirconia Ceramics. **J Dent Res**, v. 81, n. 7, p. 487-491, 2002.

MAEDA, L. D. et al. Efeito da adição de biovidro na resistência à fratura dos compósitos biocerâmicos ZrO₂ – Biovidro. **51º Congresso Brasileiro de Cerâmica.** Salvador – BA, 2007.

MAY, K. B. et al. Precision of fit: The Procera All-ceram crown. **J Prothet Dent**, v. 80, p. 394-404, 1998.

MCLEAN, J. W.; VON FRAUNHOFER, J. A. The estimation of cement film thickness by an *in vivo* technique. **Br Dent J**, v. 131, p. 107-111, 1971.

MIYAZAKI, T. et al. An approach to the dental CAD/CAM using the electric discharge machining. (Part 1) Measurement of coronal figure, computer graphics and CAD procedure. **Showa ShingakkaiZasshi**, v. 11, p. 65-69, 1991.

MOLDOVAN, O. et al. Internal 3D-fit of CAD/CAM-made zirconia copings: a comparative in-vitro study. IADR 86th General Session, Toronto, 2008.

MOLIN, M. K.; KARLSSON, S. L. The fit of gold inlays and three ceramic inlay systems. A clinical and in vitro study. **ActaOdontol Scand**, v. 51, p. 201-206, 1993.

MOLIN, M. K.; KARLSSON, S. L.; KRISTIANSEN, M. S. Influence of film thickness on joint bend strength of a ceramic/resin composite joint. **Dent Mater**, v. 12, p. 245-249, 1996.

MORIM, M. Cerec: the power of technology. **Compendium**, v. 22 (suplem.), p. 27-9, 2001.

MÖRMANN, W. H. et al. Effects of preparation and luting system on all-ceramic computer-generated crowns. **Int J Prostodont**, v.11, p. 333-339, 1998.

MOU, S. H. et al. Influence of different convergence angles and tooth preparation heigts on the internal adaptation of Cerec crowns. **J Prosthet Dent**, v. 87, p. 248-255, 2002.

NAKAMURA, T. et al. *In vitro* study on marginal and internal fit of CAD/CAM crowns. **Dent Mater J**, v. 24, p. 456-459, 2005.

NONO, M. C. A. Cerâmicas à base de zircônia tetragonal policristalina do sistema CeO2-ZrO2 (Ce-TZP). Tese de Doutorado, Faculdade de Odontologia de São José dos Campos, Universidade Estadual Paulista. São José dos Campos – ITA-CTA, 1990.

OLIVEIRA, A. A. Estudo comparativo da precisão de adaptação marginal de copings de três sistemas cerâmicos em função de dois tipos diferentes de terminação cervical. Tese (Doutorado) apresentada à Faculdade de Odontologia da Universidade de São Paulo. São Paulo, 2002. 72p.

OLIVEIRA, A. A.; SAITO, T.; OLIVEIRA, S. H. G. Adaptação marginal de copings de três sistemas cerâmicos em função de dois tipos diferentes de terminação cervical. **Revista Ciência em Extensão**, v. 3, n.2, p: 27-42, 2007.

ØRSTAVIK, D.; ØRSTAVIK, J. *In vitro* attachment of *Streptococcus sanguis* to dental crown and bridge cements. **J Oral Rehabil**, v. 3, p. 139-44, 1976.

ORTOP, A.; KIHL, M. L.; CARLSSON, G. E. A 3-year retrospective and clinical follow-up study of zirconia single crowns performed in a private practice. **J. Dent.**, v. 37, p. 731-736, 2009.

PALLESEN, U.; VAN DIJKEN, J. W. V. An 8-year evaluation of sintered ceramic an glass ceramic inlays processed by the CAD/CAM system. **Eur J Oral Sci**, v. 108, p. 239-46, 2000.

PAVANELLI, C. A.; NOGUEIRA JÚNIOR, L.; FIGUEIREDO, A. R. Discrepância vertical de assentamento de coroas totais: dispositivo para fixação e mensuração pré e pós-cimentação (*in vitro*). **PGR**, v. 4, n. 2, p. 60-4, 2001.

PERA, P. et al. In vitro marginal adaptation of alumina porcelain ceramic crowns. J Prosthet Dent, v. 72, v. 585-590, 1994.

PROTAMIC. Disponível em: < http://www.protamic.com/media/emax1.pdf>. Acesso em: 20/abril/2011.

QUINTAS, A. F.; OLIVEIRA, F.; BOTTINO, M. A. Vertical marginal discrepancy of ceramic copings with different ceramic materials finish lines, and luting agents: an in vitro evaluation. **J Prosthetic Dent**., v. 92, n. 3, p. 250-7, 2004.

REICH, S.; WICHMANN, M.; NKENKE, E. Clinical fit of all-ceramic three-unit fixed partial dentures, generated with three different CAD/CAM systems. **Eur J Oral Sci**, v. 113, p. 174-179.

ROSEMBLUM, M. A.; SCHULMAN, A. A review of all-ceramic restorations. **J Am Dent Assoc**, v. 128, n. 3, p. 297-307, 1997.

SAILER, I. et al. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. **Int. J. Prosthodont**, v. 20, p. 383-388, 2007.

SANTOS, C. et al. Mechanical properties of Y-TPZ ceramics obtained by liquid phase sintering using bioglass as additive. **Materials Science and Engineering**, v. 478, n. 1-2, p. 257-263, 2008.

SANTOS, C.; ELIAS, C. N. Comparação das propriedades e biocompatibilidade de blocos de zircônia nacionais e importados para uso em próteses dentárias. **Revista Brasileira de Implantodontia**, v. 13, n. 3, p. 13-16, 2007.

SHEARER, B.; GOUGH, M. B.; SETCHELL, D. J. Influence of marginal configuration and porcelain addiction on the fit of In-Ceram crowns. **Biomaterials**, v. 17, p. 1891-1895, 1996.

SILVA, N. R. F. A. et al. Performance of Zirconia for Dental Healthcare. **Materials**, v. 3, p. 863-896, 2010.

SORESEN, J. A. et al. Marginal fidelity of ceramic crowns with different margin designs [abstract 1365]. **J dent Res**, v. 69, p. 279, 1990.

SORESEN, J. A.; MUNKSGAARD, E. C. Interfacial gaps of resin cemented ceramic *inlays*. **Eur J Oral Sci**, v. 103, p. 116-120, 1995.

SOUZA, R. C. et al. Performance of 3Y-TZP Bioceramics under Cyclic Fatigue Loading. **Materials Research**, v. 11, n, p. 1-10, 2008.

SOUZA, R. O. A. et al. Marginal and Internal discrepancies related to margin design of ceramic crowns fabricated by a CAD/CAM system. **Journal of Prosthodontics**, v. 00, p. 1-7, 2011.

STEVENS R. **Zirconia and Zirconia ceramics**. 2 ed. Twickenham: Magnesium Electron Publication n. 113, 1986.

SUAREZ, M. J.; GONZALES, V. P.; PRADIES, G. et al. Comparison of the marginal fito f Procera AllCeram crowns with two finish lines. **Int J Prosthodont**, v. 16, p. 229-232, 2003.

SULAIMAN, F. et al. A comparison of the marginal fit of In-Ceram, IPS Empress and Procera crowns. **Int J Prosthodont**, v. 10, p. 478-484, 1997.

SYU, J. Z. et al. Influence of finish-line geometry on the fit of crowns. **Int J Prosthodont**, v. 6, p. 25-30, 1993.

TAO, J.; HAN, D. The effect of finish line curvature on marginal fit of all-ceramic CAD/CAM crowns and metal-ceramic crowns. **Quintessence Int**, v. 40, p. 745-752, 2009.

TEIXEIRA, L. H. P. et al. Sinterização e propriedades mecânicas do compósito Y-TZP/Al₂O₃. **Cerâmica**, v. 53, n. 527, 2007.

TINSCHERT, J. et al. Marginal fit of alumina and zirconia-based fixed partial dentures produced by a CAD/CAM system. **Oper Dent**, v. 26, p. 367-74, 2001.

TUNTIPRAWON, M.; WILSON, P. R. The effect of cement thickness on the fracture strength of all-ceramic crowns. **Aust Dent J**, v. 40, n. 1, p. 17-21, 1995.

WAERHAUG, J. Histologic considerations which govern where the margins of restorations should be located in relation to the gingival. **Dental Clin North Am.**, v. 4, p. 161-76, 1960.

YEO, I-S.; YANG, J-H.; LEE, J-B. *In vitro* marginal fit of three all-ceramic crown sustems. **J Prosthet Dent**, v. 90, p. 459-464, 2003.

ZIRKONZAHN. Informações para download. Disponível em: < http://www.zirkonzahn.com/pt/Informacao-para-download.aspx>.

Acesso em: 25/abril/2011.

ABSTRACT

It was aimed to evaluate the effect of the system of milling and of finish line type in the marginal (MD) and internal (ID) discrepancies of zirconia copings. From three standard metallic dies with different finishes lines, sixty copings were manufactured (N=60) of accord with the factors "finish line" (Large Chamfer/LC; Tiled Chamfer/TC and Rounded Shoulder/RS) and "system of milling" (CAD/CAM-Neodent and MAD/MAM-Zirkonzahn) (n=10): G1: LC + CAD/CAM; G2: TC+ CAD/CAM; G3: RS + CAD/CAM; G4: LC + MAD/MAM; G5: TC + MAD/MAM; G6: RS + MAD/MAM. For MD analysis were measured in 5 points, the distance between each coping extern edge to the edge of the cervical preparation. For the analysis of the ID was utilized the replica technique and 12 points were evaluated in each sample, being: 4 Occlusals (Occl); 4 Axials (Ax) and 4 in the Ray region (Ray). All the measurements were realized in optical microscope (250x). The dates were submitted to the analysis of variance ANOVA (2 and 3 - way) and Tukey's test (5%). The ANOVA showed that the factors "finish line" (p=0.0001) and "system of milling" (0.0001) affected significantly the MD. The MAD/MAM system presented the higher values of the MD (119.4µm^A) than the CAD/CAM system (19.1µm^B) (Tukey's 5%). The LC group (56.4µm^A) presented values of the MD higher than the TC (46.0µm^B) and than the RS (5.5µm^B). The G4 (258.9 µm^A) presented values of MD significantly higher than other groups (G1 = 53.9 μ m^B; G2 = 1.9 μ m^B; G3 = 1.6 μ m^B; G5 = 9.0 μ m^B; G6 = 90.4 μ m^B). The ID too was influenced for the system of milling (p=0.0001) and for the meansured region (p=0.0001), being the smaller values obtained for the MAD/MAM system and for the Axial region. It was concluded than for the MD, the CAD/CAM system presented lower values, independent of the finish line, however, the finish line LC in the MAD/MAM system presented values incompatible with clinical usage; already for DI, the MAD/MAM system presented smaller ID than the CAD/CAM system, what varied between the regions measured.

KEY-WORDS: Finish line; Zirconia; Dental materials.

R484a Ribeiro, Isabella Lima Arrais.

Avaliação das discrepâncias marginal vertical e interna de infraestruturas cerâmicas de zircônia: influência do tipo de sistema de fresagem e do término cervical / Isabella Lima Arrais Ribeiro.-- João Pessoa, 2011.

100f.: il.

Orientador: Rodrigo Othávio de Assunção e Souza Dissertação (Mestrado) - UFPB/CCS

- 1. Odontologia. 2. Diagnóstico bucal. 3. Término cervical.
- 4. Sistema de fresagem. 5. Materiais dentários. 6. Zircônia.

UFPB/BC CDU: 616.314(043)