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Durante este outono, preocupei-me largamente
com a consideracdo geral das superficies curvas,
0 que conduz a um campo imitado. .. Essas pes-
quisas ligam-se profundamente com outros assun-
tos, inclusive — como me sinto lentado a dizer —
com a metafisica da geometria, e nao € sem in-
gentes esforcos que consigo me arrancar as con-
sequéncias que dai advém, qual seja, por exemplo,
a verdadeira metafisica das grandezas negativas e
imagindrias, o verdadeiro sentido de \/—1, mas
creto que serd extraordinariamente dificil expressd-

lo com palavras.
GAUSS 3

3Carl Friedrich Gauss (1777 — 1855), matemético alemdo. Visto por muitos como o maior
matematico de todos os tempos. E dele a expressao niimeros complexos.



Resumo

O ensino dos Numeros Complexos baseia-se quase exclusivamente, em uma abor-

dagem algébrica, embora, a abordagem geométrica dos ntimeros complexos esteja
contemplada no estudo da sua forma polar (ou trigonométrica).
O proposito deste trabalho é apresentar algumas aplicagoes significativas dos niime-
ros complexos na geometria plana, fazendo, assim, uma contraposicao a essa visao
estritamente algébrica e formal, que tradicionalmente caracteriza o ensino destes ni-
meros. Vamos abordar alguns teoremas classicos da geometria e alguns problemas
geométricos, avaliando a eficiéncia dos numeros complexos como ferramenta para
demonstrar os teoremas e os resultados pertinentes a resolucao de tais problemas.
Alguns dos teoremas selecionados em nosso estudo foram: o Teorema de Napoledo,
o Circulo dos Nove Pontos e a Reta de Simson.

Palavras-chave: Numeros Complexos, Geometria Plana.
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Abstract

The teaching of Complex Numbers is based almost exclusively on an algebraic

approach, although the geometric approach of complex numbers is contemplated in
the study of its polar form (or trigonometric).
The purpose of this paper is to present some significant applications of complex
numbers in plane geometry, making thus a contrast to this view strictly algebraic
and formal, that has traditionally characterized the teaching of these numbers. We’ll
cover some classical theorems of geometry and some geometric problems, evaluating
the efficiency of complex numbers as a tool to demonstrate the theorems and results
relevant to the resolution of such problems. Some of the theorems selected in our
study were: Napoleon’s Theorem, the Circle of Nine Points and Simson Line.

Keywords: Complex Numbers, Plane Geometry.
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Introducao

Os numeros complexos ou imaginarios surgiram como resposta a um problema
que desafiou os matematicos durante séculos. O problema surge quando tentamos
calcular raizes quadradas de ntiimeros negativos. Em 50 d.C., o matemético grego
Heron de Alexandria, enfrentou esse problema ao tentar calcular o volume de parte
de uma piramide. No entanto, o primeiro matematico a usar raizes quadradas de
numeros negativos em seus trabalhos foi o italiano Girolamo Cardano (1501 — 1576),
quando tentava encontrar uma férmula resolutiva para equacoes do 3° grau. Mas foi
René Descartes (1596 — 1650) que cunhou o nome “imaginario” para as raizes qua-
dradas de nimeros negativos. Mais tarde, os matematicos De Moivre (1667 — 1754)
e Newton (1642 — 1727), combinaram trigonometria com ntimeros complexos em
seus trabalhos. Mais tarde ainda, Euler (1707 — 1783) usou ¢ para designar o ni-
mero imaginario /—1, que foi amplamente aceito, pois ocultava o espectro da raiz
quadrada negativa.

O topografo e cartografo noruegués Caspar Wessel (1745 — 1818) foi o primeiro
a representar geometricamente os niimeros complexos. O trabalho de Wessel passou
despercebido e foi um livreiro parisiense chamado Jean Robert Argand (1768 —1822)
quem publicou pela primeira vez um trabalho em que os niimeros complexos passa-
ram a ser compreendidos de um novo ponto de vista: eles comecaram entao a ser
vistos como pontos (ou vetores) do plano e suas operagoes de adigao e multiplicagao

tiveram desvendados os seus significados geométricos (translagoes, rotacoes e dila-

xii



INTRODUCAO

tacoes no plano).

Esse novo ponto de vista veio finalmente a se consagrar com as realizacoes de
Gauss (1777 — 1855), um dos maiores matematicos de todos os tempos. Gauss nao
sO6 explorou a identificacao do conjunto dos ntimeros complexos com o plano, mas
principalmente usou os complexos para obter diversos resultados sobre Geometria
Plana e sobre os niimeros reais, e até sobre os nimeros inteiros. Foi com a ajuda dos
complexos que Gauss decidiu quais eram os poligonos regulares construtiveis com
régua e compasso. Foi utilizando o plano complexo que Gauss deu sua demonstra¢ao
geomeétrica de que todo polinémio de coeficientes reais pode ser decomposto em fa-
tores de grau maximo dois, o que ele chamou de Teorema Fundamental da Algebra.

A importancia dos nimeros complexos vai além da obtenc¢ao das raizes quadra-
das de ntimeros negativos, desempenhando um papel importante nos mais diversos
ramos da matemaética, aparecendo em problemas que envolvem rotacgoes, funcoes
trigonométricas, movimentos periodicos, dentre outros. Neste trabalho apresentare-
mos algumas aplicagoes significativas dos niimeros complexos na geometria plana.

No Capitulo 1, faremos uma introducao aos ntmeros complexos, que difere um
pouco do que ocorreu historicamente, onde apresentaremos algumas definicoes e
propriedades que serao de suma importancia no desenvolvimento deste trabalho.

No Capitulo 2, apresentaremos algumas propriedades e nogoes geométricas sim-
ples no plano complexo, tais como angulo formado entre duas retas, equacoes da
reta, semelhanca de triangulos, que serao utilizadas para a demonstracao de alguns
teoremas da geometria plana como o Teorema de Napoledao, o Circulo dos Nove
Pontos e a Reta Simson. Ainda no Capitulo 2, faremos uso dos ntimeros complexos
para resolver alguns problemas geométricos.

No apéndice A, traremos uma relacao entre a geometria analitica e os nimeros
complexos. No apéndice B, traremos as solugoes de dois problemas geométricos

apresentados no Capitulo 2, porém com um enfoque diferente.

xiil



Capitulo 1

Numeros Complexos

1.1 Introducao

O modo padrao de introduzir os niimeros complexos é fazer uma extensao do con-
junto dos niimeros reais, ou seja, estender o conceito de niimero, para que possamos

resolver qualquer equagao quadratica. Como sabemos a equacao quadratica
ar’® +brx+c=0, coma,beceER a#0 (1.1)

possui duas raizes reais se A := b* — 4ac > 0, uma raiz real se A = 0 e nao possui

raiz real se A < 0. Desta maneira, muitas equacoes quadraticas como, por exemplo,
2 o 2 _ 2 _
r+1=0, z2—2+1=0, 2°+x+1=0,

nao possuem solugoes reais. Para eliminar esta dificuldade, vamos estender o nosso

conceito de ntimero, considerando, por convencao, que a equacao

?+1=0
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tem uma raiz que chamaremos de numero imagindrio. Tal raiz nao é um nimero
real, pois nao existe um nimero real cujo quadrado seja igual a —1. Denotaremos
este numero imaginario pela letra i. Acrescentando o nimero ¢ ao conjunto dos
nimeros reais, teremos um conjunto estendido. Para que ¢ possa ser chamado de
numero, devemos definir como efetuamos a multiplicacao e a adi¢ao de niimeros re-
ais com ¢, neste novo conjunto estendido de ntimeros. Também devemos considerar
como nimeros imaginarios todas as expressoes da forma bi, onde b é um nimero
real, e todas as expressoes da forma a + b7 onde a e b sdo niimeros reais.

Para as expressoes da forma a + bi, definiremos

e Jgualdade
at+bi=ct+dicsa=ceb=d (1.2)

e Adicao
(a+bi)+ (c+di)=(a+c)+ (b+d)i (1.3)

e Multiplicagao

(a+ bi)(c+ di) = ac + adi + bei + bdi® = (ac — bd) + (ad +be)i — (1.4)

Aqui levamos em conta que, por definicdo, i é a raiz da equacao 22 + 1 = 0, de
modo que i2 4+ 1 = 0, ou seja, 2 = —1.

Dividir dois niimeros complexos, %, significa encontrar um nimero complexo
x + yi tal que

a+bi=(c+di)- (x+yi).

Efetuando o produto indicado, temos

a+bi = (cx — dy) + (dz + cy)i,
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e pela igualdade de ntimeros complexos, obtemos

cx — dy = a,

dr +cy =b.
Resolvendo o sistema de equacoes, encontramos a solu¢ao tnica

ac + bd _bc—ad

rT = —— -
2+ YT ara

onde ¢ e d nao sao simultaneamente nulos. Dai

a+bi  ac+bd be—ad.

c+di 2+ d2 + c2+d21'

O conjunto assim obtido de nimeros da forma a + bi (que inclui para b = 0 todos os
nimeros reais, e para a = 0 todos os nimeros da forma bi) é denominado conjunto
dos numeros complexos, que denotaremos por C.

Para o nimero complexo z = a+bi  (a,b € R), a é a parte real do nimero z e é

denotada por Re(z) e b é a parte imaginaria de z, e é denotada por Im(z).

Exemplo: Dados z1 =3 —2i e 2o =1+ 1, temos
(d) 1+22=0B-2))+(1+1i)=4—1i;
(b) 21 —22=(3—-2i) — (14+4i) =2 — 3

(c) 2120 =(3—-20)(1+i) =3+ 3i —2i —2i> =5 +4;

w)z1_3—2i_(3—%x1—w__&—&—2r+%2_1—5¢

1
n  1+i  (I4+i)(1—14) 12 412 2 2

9.
- —i.
2

Assim, com os niimeros complexos podemos somar, subtrair, multiplicar e dividir.
Além disso, as regras que regem essas operacoes coincidem com as usadas para as

operacgoes com numeros reais.
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1.2 Raiz Quadrada de um Numero Complexo

No conjunto dos ntimeros reais s6 ¢ possivel extrair a raiz quadrada de niimeros
nao negativos. No entanto, no conjunto dos nimeros complexos é possivel extrair a

raiz quadrada de qualquer ntimero z = a + bi. Com efeito, fazendo
a+bi = (x+yi)?, coma,b,zeyER,

obtemos, facilmente, que
2 —y? =a,
2zy = b.
Resolvendo este sistema de equagoes, obtemos
vat+b+a Va2 +b? —a

SN S — 4+
. 2 © Y 2

Como vVa?+b2+a>0 e +a?+b*>—a >0, temos que x e y SA0 NAMEros reais.
Os sinais dos radicais sao escolhidos de tal forma que o produto xy tenha o mesmo

sinal de b. Assim, as raizes quadradas de a + bi sao dadas por
Va2 +bv +a vVaz+bv®—a
#%—z- —— |, para b>0;

(
+
2
I~/ A2 b2 /2 bQ_
m: :l: i %4_2. %)) para b<07

+va, para b=0, a>0;
+i-v/—a, para b=0, a<0.

\

Para a € R, a notagao /a foi usada para a raiz quadrada nao negativa, quando
a>0,ea=1i-v/—a=1i-+/|a], quando a < 0. Mostramos, assim, que todo

nimero complexo nao nulo possui duas raizes quadradas.
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Daqui, deduzimos diretamente que, no conjunto dos ntimeros complexos, toda
equacao do segundo grau, ax? + bxr + ¢ = 0, com a # 0, onde a, b e ¢ sdo reais ou

complexos, tem duas raizes (diferentes ou iguais), que sdo dadas por

Em particular, se a, b e ¢ sdo nimeros reais, com a # 0, esta equagao tem duas raizes

—b+ VA . o b
———— para A > 0, duas raizes reais iguais r;o = ——

2a ’ 2a
b+ VAL

2a

reais diferentes 1, =

para A = 0 e duas rafzes complexas diferentes (conjugadas) z12 =

para A < 0.

1.3 Definicao de Niimero Complexo

Na Secao 1.1, dissemos que os ntimeros complexos sao nimeros da forma a + bi,
onde a e b sao ntumeros reais. Assim, os nimeros complexos sdo essencialmente um

par ordenado de nimeros reais a e b. Daremos, agora, uma definicao formal.

1.3.1 Definicao

Um nimero complexo é um par ordenado (a,b) de nimeros reais com as

seguintes propriedades:

1) Dois nimeros complexos (a,b) e (c,d) sdo iguais se, e somente se, a = c e

b=d.

2) A soma e o produto de dois niimeros complexos (a,b) e (¢, d) sdo definidas por
(a,0) + (¢, d) = (a+ ¢, b+ d), (1.5)

(a,b) - (¢c,d) = (ac — bd, be + ad). (1.6)
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Se considerarmos nimeros complexos da forma (a,0), entao
(a,0) £ (b,0) = (a £ b,0);
(CL, O) ’ (ba O) = (CLb, O)a

(a,0) = <%,O>, com b # 0,

que sao resultados idénticos aos obtidos entre dois numeros reais a e b. Assim,
podemos considerar os nimeros complexos da forma (a,0) como um nimero real a.
Consequentemente, podemos considerar um niimero real como um caso particular de
nimero complexo, cuja segunda componente é igual a zero. Considerando o niimero

complexo (0,1), temos que
(0,1)> = (0,1) - (0,1) = (~1,0) = —1.

Assim, o ntimero complexo (0, 1) pode ser identificado como o niimero imaginéario i.

Desta forma , um ntimero complexo qualquer (a,b) pode ser escrito como
(a,b) = (a,0) + (0,b) = (a,0) + (b,0) - (0,1) = a + bi.

1.3.2 Conjugado de um Niumero Complexo

O nimero Z = a — bi é denominado conjugado do ntimero z = a + bi. A seguir,

a partir da definicao de nimero conjugado deduzimos as seguintes propriedades:

1) z é real se, e somente se Z = z;
2) z é imaginario puro se, e somente se Z = —z;
3) 7=z

4) 2z = a* + b%
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5) z1 £ 20 =71 £ %3,

10) b =1Im(z) = 22_2,

Demonstracgao:

1) Para z = a + bi, a relagdo Z = z equivale a a — bi = a + bi. Donde 2bi = 0 e

b=0. Assim 2z =a € R.

2) Para z = a + bi, temos que relagdo Z = —z equivale a a — bi = —a — bi. Donde

2a =0e a=0. Assim z = bt ¢ um imaginario puro.
3) Temos quez=a—biez=a— (—bi) =a+bi =z
4) 2z = (a+bi)(a — bi) = a® — b*i* = a® + b*.

5) Para z; = a+ bi e 25 = ¢ + di, temos que

atzm=(at+c)+(b+di=(a+tc)—(b+d)i=(a—bi)+ (c—di) =7z +Z.

6) Para z; = a+ bi e 25 = ¢+ di, temos que

|21 - 22| = (ac — bd) + (ad + be)i = (ac — bd) — (ad + be)i = (a — bi)(c — di) =

1 1 - 1
7) Como z - — = 1, temos que <z . —) = 1, e pela Propriedade 5, Z - (—) =1, e
z z z

assim 2-1 = (2)71.
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8) Pelas Propriedades 6 e 7, temos que

()=(2)=(B)=ms2
— )= \Ar ) TR\ T TR T
29 29 ) Z2 <2

9) Como z+7% = (a+ bi) + (a — bi), temos z + Z = 2a, donde a = Re(z) = Z;Z
10) Como z —Z = (a+ bi) — (a — bi), temos z —Z = 2bi, donde b = Im(z) = Z;iz
=

Exemplo: Sejam zq, 25 € C. Prove que o ntimero F = z; - Z5 + Z1 - 29 ¢ um nimero

real.

Solucdo. Temos que E = 21 - 23 + 21 - 22 = Z1 - 22 + 2122 = E, e pela Propriedade

1, temos que E € R.

1.3.3 Moédulo de um Nimero Complexo

O numero nao-negativo r = v/a? + b?, denomina-se médulo do ntimero com-

plexo z e é indicado por |z|.

Exemplo: Para o niimero complexo z = 1 4+ /3, temos que |z| = /12 + (/3)2 =
Vi = 2.

Da definicao de médulo, decorrem as seguintes propriedades:
1) 2] ==zl =z}

2) 2z = |2%

1
3) 2]l=1=-=7%
) =122 =2

4) |21+ 20| = |2 - |2l;

5) 1| = |21 se 2 #0;

2 | 21|
- 0.
Py se zy #

zZ2

6)
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Demonstragao:

1) Seja z = a+ bi, temos que | — z| = y/(—a)? + (—b)2 = Va® + 12 = |z|
e |z] = a2+ (=b)2=Va2 + b2 = |z], e dai |z| = | — z| = |7].

2) 2Z=a>+b>= (Va2 +2)? = |z|%

3) Pela Propriedade 2, temos que

1
zl=1=|zf=1=>2z2=1=>7z=".
z

4) Pela Propriedade 2, temos que

|21 - 2| = (21 22)(F1- ) = (21 Z1) (22 - Z2) = |21]? - |22

E consequentemente |z; - 23| = |21| - |22, pois |z| > 0.
. 1 1 1 1 N 1 _1
5) Da relagdo z - — = 1, temos que |z| - || =1 ou |—| = B Entao [z~ = |2z] 7.
2 z z
6) Pelas Propriedades 4 e 5, temos que
1
L A e A R I R PR =t
w w |w|
u
Exemplo: Send ol lcule |Z]
xemplo: Sendo z = calcule |Z].
P 3+ 4’
Solugao. Pelas Propriedades 1 e 6, temos que |z| = |z| ol 54
. ropri mos que [Z| = |z| = = =
¢ P ’ q 31 4i| |3+ 4]

1.4 Os Numeros Complexos como Pontos do Plano

Como definimos o ntimero complexo z = (a,b) = a + bi como um par ordenado
(a,b) de nimeros reais e este, por sua vez, pode ser visto como um ponto P(a,b) no
plano cartesiano, é natural que facamos a correspondéncia entre os niimeros com-
plexos e o plano R2. Nessa correspondéncia, um ntimero real a = a + 07 corresponde

ao ponto (a,0) sobre o eixo x, e um niimero imaginario puro bi = 0+ bi corresponde
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ao ponto (0,b) sobre o eixo y. Assim, o eixo x é chamado de eixo real e o eixo y de
eixo imaginario. O plano formado pelos eixos real e imaginario é chamado de plano

complexo, plano de Argand! ou plano Gaussiano.

Im
e ¢ 2 = (avb)
0 a  Re

Figura 1.1: Plano Complexo

Os ntimeros complexos que possuem modulos unitarios, r = 1, sao representados
no plano complexo por um circulo de centro na origem e raio igual a 1 (circulo

unitario), que denotaremos por S'.

Py
“ T = 1

Figura 1.2: Circulo Unitario

!Jean Robert Argand (1768 — 1822), matematico suigo. Seu artigo sobre o plano complexo foi
publicado em 1806.

10
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Ainda, de acordo com a definicdo dada, podemos pensar no niimero complexo
z = a + bi como o vetor, (isto é, o segmento orientado) de origem na origem do
sistema de coordenadas e extremidade (a,b), isto é, o complexo z ¢ representado

pelo vetor O—}%, onde P(a,b) é a imagem geométrica do nimero complexo z.

Y

Figura 1.3: Nimero Complexo como Vetor

1.4.1 Forma Polar dos Niimeros Complexos

Em muitos casos, é bastante 1til utilizar outra forma de representacao de um

niimero complexo z = a + bi, que destaca de modo especial seu médulo
r=|z| = Va?® + b2

Seja um ponto P = (a,b) no plano complexo. Considere o vetor ﬁ’ (onde O &
a origem). Seja 6 o angulo entre O? e o semi-eixo positivo x, e r = OP. Entdo,
x =rcosf e y=rsenf. As coordenadas polares do ponto P sao (r,6). O angulo 0
para o qual temos

b b
tg = - = 0 =arctg—
a a

é chamado de argumento do niimero complexo z e se indica por arg z. Se limitarmos
o valor de 6 ao intervalo (—, |, entdo para os niimeros reais positivos, sera igual a

0, enquanto que para os nimeros reais negativos, igual a 7.

11
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Figura 1.4: A Forma Polar

Os nimeros conjugados tem um mesmo modulo r e argumentos opostos 6 e —6.

Ya

b _______________ z
e
o

0 —0 a T
|

b7 :5

Figura 1.5: Conjugado de um Nimero Complexo

A origem é o dnico ponto em que r = 0; o argumento # da origem nao esta

definido. Entao, sendo z = a + bi # 0, podemos escrever sua forma polar como

z =r(cosf +i-send). (1.7)

Note que a substituicao de # na expressao acima por 6 + 2km, onde k é um nimero

12
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inteiro, nao altera o ntimero complexo z. Assim, podemos escrever
z = rlcos(d + 2km) + i - sen(6 + 2km)]. (1.8)
Exemplo: Dado z =1+ 1, temos
2l =V12+12=+2 e arg(z)=arctanl = % +2km, onde k€ Z.
Assim,
. T _ s
z= 1+2:\/§[COS<Z+2IC7T> +z-sen(z+2k7r>] , keZ,
ou, simplesmente,

zzl—i-z':ﬁ[eos(%)%—i-sen(%)]

1.4.2 Operacoes com Numeros Complexos na Forma Polar

A forma polar é bastante 1util para a multiplicacao, divisao e potenciacao de nu-

meros complexos.

1. Multiplicagao

Proposicao 1 Suponha que
z1 =r1(cosby +i-senfy) e zo = ry(cosby + i - senby).

Entao,

Z129 = T1T2[COS(01 + 92) +17- sen(91 + 92)] (19)

13
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Demonstragao: Temos que,

2129 = 11(cos by + i -senb) - ro(cos by + i - senby)

= riro{(cos by - cos Oy — senb; - senfy) + i(senb; - cos by + cos by - senby) }

e utilizando as identidades trigonométricas

cos(by + 03) = cos 0 cos y — senfsenbds

sen(6; + 02) = send; cos O + cos b;senbs,

segue que

2129 = 1T11r3[cos(0y + 63) + i - sen(6y + 67)].

]
Desta maneira, o médulo do produto é igual ao produto dos médulos dos fatores e

o argumento é igual a soma dos argumentos dos fatores.

|2120| = |21] - |22, arg(z122) = argz1 + arg 2z

Observacao 1 A formula (1.9) pode ser usada no produto de dois ou mais nimeros

complezos. Entao,

2129 2n = T1r9 - Tplcos(0y + 0y + -+ 0,) +i-sen(0; + 0y +---0,)].  (1.10)

14



Os Nameros Complexos CAPITULO 1

2. Poténcia de um Numero Complexo

Proposigao 2 (De Moivre®) Para z = r(cosf + i -senf) e n € N, temos
2" = 1r"[cos(nf) + i - sen(nd)]. (1.11)
Demonstragao: Aplicando a formula (1.10) para z = z; = 29 = - - - 2,,, Obtemos

ZM=rer--orjcos(@+0+---4+0)+i-sen(@+0+ -+ 0)]
Vv ~ Vv ~ —#
n vezes n vezes n vezes

= r"[cos(nf) + i - sen(nd)].

[
Como consequéncia do resultado anterior, temos que
|2 = |z|"; argz" =nargz.
3. Divisao
Proposicao 3 Suponha que
z1 =r1(cosby +i-senfy) e 2o =ry(cosby +i-senby), com zy # 0.

Entao,

21 1 .

— = —[cos(6h — 62) + i - sen(by — 6)]. (1.12)

22 T2

Demonstragao: Temos que

2 ri(cosfy +i-senf)  ri(costy +i-send)(cosly —i-sends)

2y ra(cosfy +i-senfy) ro(cos 03 + senf3)

2Abraham de Moivre (1667 — 1754), matematico frances, introduziu quantidades imaginarias
na Trigonometria.

15
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r
= —l(cos 01 - cos Oy + senb; - senfy) + i(senb; - cos By — cos by - sends)
)

e utilizando as identidades trigonométricas

cos(0; — by) = cos By cos Oy + senfysenby

e
sen(f; — 03) = senb; cos Oy — cos Hysenbs,
segue que
21 1 .
— = —[cos(6y — 02) +i-sen(f; — 02)].
22 ()

Como consequéncia do resultado anterior, temos que

21 81 |Z1| <1
—| = —=-—; arg— = argz; — arg 2».

T9 |2’2‘ Z9

Z9

1.5 Interpretacao Geométrica de Operacoes Algé-

bricas com Niuimeros Complexos

1.5.1 Multiplicagao de um Niumero Complexo por um Nii-

mero Real k&

O produto de um numero complexo z = a + bi por k € R, é dado por
kz = k(a+ bi) = ka + kbi.

e Se k > 0, multiplicamos o mddulo do vetor por k£ e mantemos a direcao.

e Se k < 0, multiplicamos o médulo do vetor por |k| e a dire¢do inverte.

16
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k>0 y k<O

----- kb

Figura 1.6: Produto de um nimero complexo por um ntimero real

1.5.2 Adicao e Subtracao

Sejam z; = a+bi e z9 = c+di dois nimeros complexos representados por vetores

do plano R?, entao

21+ 20 =(a+bi)+ (c+di) = (a+c)+ (b+ d)i. (1.13)

O numero z; + 2 ¢é representado por um vetor, cujas componentes sao as so-
mas das componentes dos vetores que representam z; e zo. Geometricamente, isto
significa que a soma é dada pela diagonal do paralelogramo construido sobre esses

vetores .

P(a+cb+d)

Py (e,d)

Figura 1.7: Soma de dois Nimeros Complexos

Para a subtracao, podemos escrever

29— 21 =29+ (—21), pois —z = (—1)z;.

17
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Geometricamente, isto significa que a diferenca 2o — 2; é dada pela diagonal do

paralelogramo construido sobre os vetores que representam 2o € —zy.

Y

P (a,b)

Sl

Sl

P, (c,d)

sl
|
c

|

P(c—a,d—0b)
P, (—a,—b)

Figura 1.8: Diferenga de dois Ntimeros Complexos

1.5.3 Multiplicagao e Divisao

Pela Proposicao 1, temos que multiplicar por z no plano complexo significa,
geometricamente, efetuar uma rotagao no sentido positivo (anti-horario), em torno
da origem, de um angulo igual ao arg z, seguido de uma distensao ou contragao de

um fator igual ao |z|.

[
W

Z2

01+ 602 “1

0

[

Figura 1.9: Produto de dois Nimeros Complexos

18
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Para dividir por z, a rotacao é no sentido negativo (horario), de um angulo igual
ao arg z, seguido de uma distensao ou contracdo de um fator igual ao |z|.

Y

22

21

Figura 1.10: Quociente de dois Ntmeros Complexos

Em particular, multiplicar um niimero complexo por ¢ corresponde a rotaciona-lo
7T . s . L. . ™ .
de um angulo 5 1o sentido positivo (anti-horéario). De fato, se z; = ¢ = cos 5 +i-

m
sen e z = r(cos @ + i - senf), entdo

iz:r[cos<9+g>+i-sen<9—|—g>}.

Dividir um nimero complexo por ¢ equivale a rotacioné-lo de 5 no sentido ne-

1
gativo (horério), pois SR (—1)iz.
i i

[

L]

Figura 1.11: Produto e Quociente de um Niumero Complexo por ¢

19
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1.6 Raizes n-ésimas da Unidade

Obter as raizes n-ésimas da unidade significa determinar todos os niimeros com-

plexos z que sao solucoes da equagao
2" —=1=0. (1.14)

Por inspecao, temos que zp = 1 é uma das raizes da equacao. Sabemos que cos 2k7+

1 -sen2km = 1, Vk € Z. Usando esse fato e a formula de De Moivre, temos que

2 2m\"
(cos il +- sen—ﬂ) = cos2m + 7 -sen2mw = 1.
n n

De acordo com o Teorema Fundamental da Algebra, a equacao 2" — 1 = 0 possui
exatamente n raizes complexas. Entao, podemos concluir que as raizes n-ésimas da

unidade sao dadas por

2% 2%
2= cos - 4isen—b . ke {0,1,2,---,n—1},
n n
pois,

2k 2km\"
(z1)" = (COS il +1- sen—W> = cos 2km + 1 - sen2km = 1.
n n

Explicitamente, temos

zo = cos0+4 i -sen0;
2T 27
21 = cos; +1- senﬁ;
4 47
Zg = COS— +1-sen—;
n n
2(n—1)m . 2(n —1)m
Zn—1 = C€COS——— +1-8en
n n

20
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. ) . 2T . 27
Para fins de simplificacao, z; = cos — 4+ 7 - sen— seré representada por w. Usando
n n

essa notacgao, as raizes n-ésimas da unidade serao
Lw,w? - w ! (1.15)

As raizes n-ésimas da unidade sdo geradas pelo nimero w, isto é, sdo poténcias de
w. Essas n raizes, n > 2, sao os vértices de um poligono regular de n lados inscrito
no circulo unitario e com um vértice em (1,0).

A seguir obteremos as raizes n-ésimas para alguns valores de n.

e Raizes Quadradas da Unidade

2

Para n = 2, a equacao 2z — 1 = 0 tem duas raizes —1 e 1, que sao as raizes

quadradas da unidade.
e Raizes Cibicas da Unidade

A obtencao das raizes cibicas da unidade serd de grande importancia para a
obtencao de alguns resultados no Capitulo 2. Para n = 3, as raizes cubicas da

unidade, ou seja, as raizes da equacao z® — 1 = 0, sao dadas por

2k 2k
2k = cos 21 +1- sen—ﬂ, ke {0,1,2}.
3 3
Por isso,
2 2m A 4m 9
=1 =z :cosg—l—%sen? =w e 2 :cos?—l—z-sen? =w". (1.16)

Essas trés raizes sao os vértices de um triangulo equilatero inscrito no circulo

21
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unitério S' e com um vértice em (1,0).

Figura 1.12: Raizes Cubicas da Unidade

Note que

o 2, =w? =@, pois w? é obtido, geometricamente, pela reflexdo de w em torno do
eixo real.

o WHw+1=0,poisw?—1=(w-1)(w?+w+1)=0ecomow # 1, temos
Ww+w+1=0.

e Raizes Quartas da Unidade
Para n = 4, as raizes quartas da unidade, ou seja, as raizes da equacao 2* —1 = 0,

sao dadas por

2k 2k
zk:cos—ﬁ—l—i‘sen—ﬂ, ke {0,1,2,3}.
4 4
Por isso,
1 7T+. ™ .
Zo = 1; zy=cos—=+1-sen— =w =1;
0 ) 1 2 2 3
29 = cosSTHi-sent=w?=—-1 e
cos37r—i-' se ST 3 )
z3 = 5 — 41 -sen— = w° = —1.
’ 2 2

22
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Essas quatro raizes sao os vértices de um quadrado inscrito no circulo unitario St e

com um vértice em (1,0).

Y

=Y

Figura 1.13: Raizes Quartas da Unidade

23



Capitulo 2

Numeros Complexos e (Geometria

Neste capitulo, apresentaremos algumas definicoes e propriedades geométricas
simples, no Plano Complexo, como equacoes de retas passando por dois pontos, se-
melhanca de triangulos, etc, que constituirao os pré-requisitos para as demonstragoes

dos teoremas propostos na Secao 2.2.

2.1 Algumas Propriedades e Nocoes Geométricas
Simples

Daqui em diante, o ponto correspondente ao niimero complexo z serd indicado

pela mesma letra z.

2.1.1 Distancia Entre Dois Pontos

A distancia d entre os pontos z; e z3 do plano coincide com o modulo |w| =
|zo — 21| do niimero complexo w = 2o — 21, jA que o vetor z1z5 é igual ao vetor Ow,

conforme figura 2.1.

24
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w = 2o — 2]

z1

Figura 2.1: Distancia Entre Dois Pontos

2.1.2 Angulo Orientado Entre Retas

Sejam z; e z5 dois nimeros complexos distintos e O a origem do plano complexo,
— . ~ . . -
o angulo 210z, é orientado se os pontos z; e zy sao ordenados no sentido positivo

(anti-horéario).

2.1.3 Angulo Formado Entre Duas Retas

—_—
O angulo §p = 202, entre as retas que se cortam na origem das coordenadas O

e que passam pelos pontos z; e 29 é dado por

ZOZ = arg 2 arg zo — arg z1. (2.1)
21

z2

21

6()

Figura 2.2: Angulo Entre Retas Que se Cortam na Origem

25
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Exemplo: Dados z; =1+1i e 20 = —1 417, temos que o angulo
por 29 -1+ (1+4)i . m
2102y = arg — = arg ——— = arg——— = argi = —.
DO A e 8173

. A —_—
Para determinar o angulo 0 = Zz1z9z3 entre duas retas que se cortam em um

ponto qualquer 2y e que passam pelos pontos 2; e 2o, efetuamos uma translagao que

transforma zy em O. Assim, temos

=z —2 € zy=29— 2.
Logo, o angulo ¢ (conforme figura 2.3) é dado por

29 — Z

/
§ = 212025 = arg Z—? = arg —— = arg(zg — 20) — arg(z1 — 2o). (2.2)
21 Z1 — 20

) z1

’ r
29 =2Z2— 20 Z1=21— 2

20

Figura 2.3: Angulo Entre Retas Que se Cortam em um Ponto Qualquer

Note que ¢ é o angulo que devemos girar o vetor zpzi no sentido anti-horério

para fazé-lo coincidir com o vetor zyz5.

26
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Exemplo: Dados 21 =2+ 31, 20 =2+ 51 e 23 = 4 + b1, temos que o angulo

I 29 — 21 2i i i(1—1) 147 =
ZaZ129 — ar =alg — = alg — = alflg —— = arg — = —.
sz e T My Ty T e T MR T 879 T}

2.1.4 Condicao de Alinhamento de Trés Pontos no Plano

Complexo

Proposicao 4 Trés pontos distintos z1, zo € z3 sao colineares se, e somente se,

Z3 — 21

eR. (2.3)

Z9 — 21

Demonstracao: A colinearidade dos pontos z1, 25 e 23 é equivalente a o angulo

— . . 23— 2 , .
Zo2123 ser igual a 0 ou a 7 , ou seja, se arg € {0, 7}, o que é equivalente a
2 — 2
23 — %1
e R.
22 — X1

2.1.5 Equacgao da Reta

Proposicao 5 Sejam z; e z5 pontos distintos do plano complexo. A equacdo da

reta que passa por esses dois pontos € dada por

S W (2.4)
22 — 21 22— 21
que € equivalente a
(ZQ - 21)2 - (22 — 21)2 = 2231 — leg. (25)

27



Nameros Complexos e Geometria CAPITULO 2

Demonstracao: De fato, se os pontos z, z; e z3 sao colineares, temos pela Propo-

sicao 4 que
zZ— 21
— cR.
22 — X1
c—z2 ,
Como ——— & um numero real, podemos escrever
22— X1

Z2—2 Z—2 Z—2 zZ—z
22— 2 22— 2 29— 21  Za—Z1
que é equivalente a

(ZQ — zl)E — (52 — 21)2 = 5122 — 2172,

ou ainda,

(ZQ — zl)E — (22 - 21)2 + 2122 - 2122 = 0.

Desta maneira, a equagao de uma reta pode ser escrita como
Bz — Bz+C =0, (2.6)

onde B =72y —%1, B=2y— 2, C = 2129 —Z129 ¢ C' € um imaginério puro, pois

C = 2122 - 212’2 = 2122 — 2132 =-C.
- L 1 .
Observacao 2 No caso em que |z1| = |z2| = 1, isto €, z1 = — e 290 = —, a equagao
21 Z2
(2.5) se torna
2+ 21292 = 21 + 29. (2.7)
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Observacao 3 A equacio (2.4) é equivalente a

z z 1
Z1 Z1 1[=0.
V) 52 1

z zZ 1
21 1 1|= 0
Z9 22 1

zZ— 21 7—21 0
— 21 21 1 =0
Z9 — 21 22—51 0

zZ— zZ1 5—21

Zo— 21 Zo—Z1
Z— 21 5—51
<~ = — —.
Z2 — X1 Z2 — 21

Logo, podemos obter a equacao da reta que passa por z; € 2o desenvolvendo o

determinante

z z 1
21 Z1 1|= 0.
Z9 22 1

29
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2.1.6 Equagao Paramétrica da Reta

Seja z um ponto qualquer da reta que passa pelos pontos z; e zo. Entao, pela

condigao (2.3), podemos escrever

zZ—z
—Q:t, onde t € R.
k1 — %2

22—z =1t(z2— 21),

donde
z=(1—-t)zn +tzn teR. (2.8)

A equagao (2.8) é denominada equacao paramétrica da reta que passa pelos

pontos z1 e 2.

2.1.7 Equagao da Circunferéncia

Proposicao 6 Quatro pontos distintos zy, zo, 23 € 24 estao situados em uma cir-

cunferéncia (wma reta) se, e somente se, o nimero

22 — 23 29 — 24 (2 9)
Z1 — 23 Z1 — 24 .
é um nidmero real.

Demonstracao: Suponha que os pontos estejam em uma circunferéncia. Da geo-
metria euclidiana plana, sabemos que quatro pontos, 21, 29, 23 € 24, estao situados em
. N . —_— —
uma circunferéncia se, e somente se, z12329 = 212422, N0 caso dos pontos z3 e z, esta-
. ~ N —_— —_—
rem no mesmo semiplano em relagao a reta 212y (figura 2.4), ou 212325 + 212422 = 7,

no caso dos pontos z3 e z4 estarem em semiplanos opostos em relacao a reta z;zs.
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21
z3

zZ9

. —_— —_— . ~
Figura 2.4: z;2329 e 212422 no mesmo semiplano em relagao a reta 212
. - —_— —_—
Para o primeiro caso, temos que z12329 = 212422. Logo

Z9 — 23 Z9 — Z4 Z9 — 23 29 — Z4
arg —— = arg ——, donde arg— —arg——— =0
Z1 — 23 Z1 — 24 Z1 — 23 21 — 24

22 — 23 22— R4\, ,
e, portanto, | —— ——— | é um numero real.
21— %3 21— 24

29 — 23 Z9 — 24 Z9 — 23 29 — Z4
Por outro lado, se | ——— — ] € R, temos que arg ———arg ——— =
21 — 23 21 — 24 21 — 23 21 — 24

km, com k € Z. E como z3 e 24 estao no mesmo semiplano em relagao a reta z; 2o,

temos k = 0, pois os modulos dos argumentos é menor que m. Assim, temos que

2 — 23 22—24_0 g2 —R3 2 T 24 —_—
arg ——— —arg —— =0 = arg ——— = arg ——— = 212322 = 2124%2.
1 — %3 Rl %4 1 — %3 21— R4

O segundo caso pode ser provado de modo semelhante.

~ ~ 22 — 23 2 T 24 .
Observacao 4 A expressao (—) /(—) serd denotada por (2o, 21 23, 24)-
21— %3 21— 24
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Proposicao 7 A equacdo da circunferéncia (da reta) que passa pelos pontos z, z,

zy € z3 € dada por

(=2)/G=)-GR)/E=) e

Demonstracao: Como os pontos z, 21, 22 e 23 pertencem a uma circunferéncia,

temos pela Proposicao 6, que

=2)/ =)

é um niumero real e podemos escrever

C=2) /) -22)/6=2)

que é equivalente a

(2 = 2)(Z = Z3)[(23 — 21)(Z2 — Z1)] = (2 — 23)(Z — Z2)[(22 — 21) (%5 — Z1)]-

Desta maneira, a equac¢ao de uma circunferéncia (reta) pode ser escrita como
AzZ+ Bz - Bz+C =0, (2.11)
onde

= (23— 21)(Z2 —%1) — (22 — 21)(Z3 — Z1),
= —Z3(z3 — 21)(Z2 — Z1) + Za(22 — 21)(Z3 — Z1),

= 2’253(23 — Zl)(gg — 21) — 2’352(2’2 — 21)(23 — 51),
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em que A e C' sdo imaginarios puros. Como ja sabemos, a equagao (2.11) representa

uma reta se, e somente se, A = 0, ou seja, se

(23— 21)(Z2 — Z1) = (22 — 21) (33 — Z1),

que é equivalente a
Zg — 21 23— 21

Z9 — 21 52—21.

2.1.8 Perpendicularismo no Plano Complexo

Proposicao 8 As retas z1z9 € 2324 sao ortogonais se, e somente se,

29 — 21
_— 2.12
—— (2.12)

for um imagindrio puro.

Demonstracao: Temos que 2125 L 2324 se, e somente se, o angulo formado pelas

. T T i . Z9 — 21 T 3T
retas 2129 e 2324 for igual a — ou a —. Isso é equivalente a arg —— € {=, —},
2 2 24 — R3 272
R2 — 21, . o
de onde segue que ——— é um imaginario puro.
R4 — 23

2.1.9 Equagao da Reta Perpendicular

Proposicao 9 A equacdo da reta perpendicular & reta z1zo e que passa por z3 €

dada por
S R )
Z9 — 21 Z9 — 21
que € equivalente a
(22 — Zl)§—|— (22 — 21)2’ = 23(52 - 21) + 53(22 - Zl). (213)
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Demonstracao: De fato, seja zz3 a reta que passa pelos pontos z e z3, temos que

zz3 L 2129 se, e somente se,

Z—Z3 , . c.
¢ um imaginario puro.

zZ9 — 21

Z—2Zz3 , . e
Como ¢ um imaginario puro, podemos escrever
Z9 — 21
Z — Z3 Z — 23
+ =0,

que é equivalente a

(22 — zl)E—i— (EQ — 51)2 = 23(52 — 71) +23(22 — Zl).

2.1.10 Equacao da Mediatriz de um Segmento

Vamos determinar agora a equacao da mediatriz de um segmento de extremos z;

e zo. A mediatriz é a reta perpendicular ao segmento z12, e que passa pelo ponto
21+ 22
2
ela é dada por

, que é o ponto médio do segmento z;z2. Logo, pela equacio (2.13),

z3 =

z1 + 22 Z1 + 22

5 (22 — 21)

(Zo—71) +

(20— 21)24+ (Za —Z1)2 =

ou

(Z2 — Zl)g—f— (22 — 21)2 = |22|2 — |21|2. (214)
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2.1.11 Triangulos

Na geometria plana elementar, os triangulos sao as pecas bésicas e a congruéncia
e a semelhanca de triAngulos, os conceitos fundamentais. Antes de apresentar o
conceito de semelhanca de triangulos, em termos de nimeros complexos, vamos
estabelecer as seguintes convencoes:

Sejam 21, 29, 23, W1, Wo, w3 numeros complexos. Dizemos que
e A notacao Az;zo23 denota um triangulo com vértices z1, z e 23.

e Um tridngulo é orientado se a ordem de seus vértices é especificada. Essa ori-

entacao pode ser positiva (sentido anti-horario) ou negativa (sentido horario).

e Os triangulos Az2923 € Awjwows possuem a mesma orientacao se ambos sao

horarios ou anti-horéarios.

e Os tridngulos Azj2923 e Awjwsws possuem orientacoes distintas se um é ho-

rario e o outro anti-horario.

Na figura abaixo, os dois primeiros triangulos possuem a mesma orientacao e os dois

ultimos, assim como o primeiro e o ultimo, possuem orientacoes opostas.

wo &1
21

w3

= &

w1y

Figura 2.5: Triangulos: Orientacoes
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2.1.12 Triangulos Semelhantes

Sejam zy, 29, 23, W1, W, w3 seis pontos no plano complexo. Dizemos que os tri-
angulos Az2923 e Awjwows sao semelhantes se o angulo z;, for igual ao angulo wy,

ke {1,2,3}.

Proposicao 10 Os tridngulos Az1z92z3 € Awjwows sao semelhantes com a mesma

orientacao se, e somente se,

22 — 21 W — Wy

= ) (2.15)
23— 2 w3 — Wy
Demonstracao: Temos que Azizo23 ~ Awiwows se, € somente se,
2122 w1Ws — —
—_— = € 232129 = W3WiWsa.
2173 w1ws
Isso é equivalente a
|22—21‘ ]wg—w1] Z9 — 21 Wo — W1
= rg —— = arg ———,
|23—21‘ ’w3_w1’ 23— X1 w3z — Wy
de onde obtemos que
22—z Wg — Wy
Z3 — 21 W3 — W1 .
[ ]

Observacao 5 A equacio (2.15) € equivalente a

Z1 W1 1
Z9 W2 1[=0.
Z3 W3 1
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Logo, podemos escrever

Z1 W1 1
R — X1 Wz — Wi
A2122z3 ~ Awlwgwg < = |z wy 1 |= 0.
23 — 21 w3 — Wy

z3 w31

Proposicao 11 Os tridngulos Az 2923 e Awwows sao semelhantes com orientacao
oposta, que denotaremos por Az 2223 ~q, Awjwews, se, e somente se,
29 —21 Wy — W

=1 (2.16)
23 — 21 w3 — W1

Demonstracao: A reflexdao em relacao ao eixo x transforma os pontos wy, wsy e w3
em Wy, W e W3, respectivamente (figura 2.6). Os triangulos Awjwyws e AW, Watws
sao semelhantes e possuem orientacao oposta. Por outro lado, os tridngulos Az; 2523

e Aw,wow3 sao semelhantes com a mesma orientacao (figura 2.7).

Y\

w2

w3

Figura 2.6: Aw1w2w3 ~op AE1WQW3
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Segue da Proposicao 10, que

21 wl 1

Zg — 721 Wy — W _

A2y 2923 ~op AWwows <= = ——— |2z wy, 1|=0.
Z3 — 21 w3 — W1

z3 wgl

w1 w:

22

5

Z1 w3 w1

Figura 2.7 A2’1222’3 ~ A@1WQE3 = AZ’12223 ~op Awlwgwg,

2.1.13 Triangulo Equilatero
A seguir apresentamos duas caracterizagoes de triangulos equilateros.

Proposicao 12 Os pontos z1, z3 € z3 sao 0s vértices de um tridngulo equildtero se,

e somente se,

21 R9 1
Z9 Z3 1[=0.
zZ3 21 1
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Demonstracao: O triangulo Az 2923 é equilatero se, e somente se, é semelhante

a0 Azpz321, com a mesma orientacao, isto é

Z1 2 1
Z9 Z3 1|=0.
Z3 21 1

[
Desenvolvendo o determinante, obteremos outra caracterizacao para triangulos equi-
lateros, a saber

2 2 2
2] 25+ 25 — 2120 — 2923 — 2223 =0

2 2 2 217
= 2i + 25 + 25 = 2129 + 2223 + 2923, (2.17)

Proposicao 13 O Azizy23 € equildtero se, e somente se,
21 +wzg +wlzs =0 (2.18)

ou
21 + w2y +wzs =0, (2.19)

onde w € uma das raizes complexas da unidade.

Demonstracao: De fato, o Az12923 é equilatero se, e somente se,
Aziz923 ~ Alww?  ou  Azjz9zz ~ Alww.

Pela Proposicao 12 , temos para o primeiro caso

21 1 1
2 w 1]=0= z(w—w?)+ 2w —1)+2(l-w)=0.

25 w? 1
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Como w é uma das raizes complexas da unidade e w? + w + 1 = 0, temos

21w — w?) + 22(w® — w?) + 23(w® —w) =0
—= 2w(l —w)+ 2w (1l —w) — 23wl —w)(1+w)=0

<— 21+ Wz —|—w2z3 = 0.

O segundo caso pode ser provado de forma anéloga ao primeiro.

2.1.14 Pontos Notaveis em um Triangulo

(a) Circuncentro

Proposicao 14 As trés mediatrizes de um tridngulo qualquer se encontram em um

iunico ponto. Esse ponto é chamado de circuncentro do triingulo.

Demonstracao: Sejam «, [ e v os vértices do triangulo.

Figura 2.8: Circuncentro

Entao, pela equagao (2.14), a equacdo da mediatriz relativa ao lado af é dada

por

(= B)z+(@— Pz = |af* — |8
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De modo anélogo, obtemos as equagoes das mediatrizes dos lados ya e Sv e , com

as equacoes obtidas, montamos o seguinte sistema

(a=pz+@-Bz=af =18 (1)
(V—aZ+(@F-a)z=hP-lof (2
B=7z+B-7z=87=h  (3)

Somando-se quaisquer duas dessas equacoes, obtemos a restante. Por exemplo,
somando-se (1) e (2) obtemos (3). Isso implica que a intersecdo de duas dessas
equacoes pertence a terceira delas. Logo, concluimos que as trés mediatrizes de um

triangulo qualquer encontram-se em um tnico ponto.

[ |
Para determinar o ponto de intersecao, ou seja, o circuncentro, resolveremos o
sistema formado pelas equagoes (1) e (2).

Isolando Z na equagao (1), temos

o> = [B]” = (@ - B)2
a— 3 '

7 =

Substituindo em (2), obtemos

o — 8] — (@ B)z

P (y—a)=*—laf?

F—a)z+

7T —a@)(a =Bz + (lo]* = B (v — ) = (@ = B)(y — )z = (Iy[* = |af*)(a — B)
@8 =) + By — o) +7(a = B)] = [a(B =) + B (v — @) + [y[*(a = B)

__aB=y+By—a)+7(a—H)
" aPB =) +1BP(G —a) + WPa—8) (2.20)

Note que, pela simetria do resultado obtido, podemos ver novamente que essa solu¢ao

z

também satisfaz a equacao (3).
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(b) Ortocentro

Proposicao 15 As trés alturas de um tridngulo qualquer se encontram em um

iunico ponto. Esse ponto € chamado de ortocentro do triangulo.

Demonstracao: Sejam «a, e v os vértices de um triangulo.

[e%

Figura 2.9: Ortocentro

De acordo com a equacdo (2.13), a reta suporte da altura relativa ao vértice a,

que é perpendicular ao lado (v, é dada pela equacao

(B=7Z+B-z=a(B—7) +a(8—).

De modo andlogo obtemos as retas suportes das alturas relativas aos vértices 5 e 7.

Com as trés equacoes obtidas, montamos o seguinte sistema

B=1z+B-Nz=aB-7) +a(B-7), (1)
(a=7)z+(@—7)z=p@—7)+Ba-7), (2)
(a=pB)z+(@—PB)z=~@—pB)+75(B—-7). (3)

Podemos observar que qualquer uma das trés equacoes é combinacao linear das

outras duas e portanto a intersecao de duas dessas equagoes pertence a terceira
delas, ou seja, as trés alturas de um triangulo se encontram em um tnico ponto.

[ |

Sem perda de generalidade, vamos calcular o ortocentro do triangulo inscrito no

circulo unitario com centro na origem. Nesse caso, temos |a| = |5 = |y| = 1, logo
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1 - 1 1
a=—,0= E e 7 = —. Substituindo essas relagoes e isolando Z nas equagoes (2)
a
e (3), temos
1 « z
Z=——— 4+ — 4
a Py Py @
e
1 v z
Z=——-—4—. 5
Yoo af )

1 a z

+ L + =
a By By v af  af’

eliminando os denominadores, ficamos com

By —al4za=Pa—yV+z2y =
za—z2y=a> 7y +aB— By <=

(@=7)z=(a+)(@=7)+fla-7)

z=a+ B+ (2.21)

(c) Baricentro

Proposicao 16 As trés medianas de um tridngulo qualquer se encontram em um

unico ponto. Esse ponto é chamado de baricentro.

Demonstracao: Seja um triangulo de vértices a, S e v .

«@

B Y

Figura 2.10: Baricentro
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A reta suporte da mediana relativa ao lado Sy é a reta que passa por « e pelo
ponto médio do segmento fvy. Temos pela equagdo (2.5), que a equagio da reta

procurada é dada por
B\~ (- B+, _ (B+7\ _(B+~
a———|Z—|a——)z=a|—— | —a|—— ),
2 2 2 2

Qa—B-7)z—(2a-F—-Fz=af+7)—a(B+7). (1)

ou seja,

De modo analogo, obtemos as retas suportes das medianas relativas aos lados avy e

af, que sao respectivamente

28—a—-7)z—(28-a—7)z=p@+7) - Bla+7) (2)

2v—a-Bz—2y—a-PB)z=~@+ B —7(a+p). (3)

Qualquer uma das trés equacoes acima é combinacao linear das outras duas,
somando-se, por exemplo, as equagdes (1) e (2) encontramos o oposto da equacdo

(3), desta forma as trés medianas se encontram em um dnico ponto.

[
Para obter o baricentro vamos utilizar a equacao paramétrica da reta suporte da
mediana relativa ao lado §v, que é dada por

z:a—wa+t0§;0 (0<t<1).

2
Para t = 3 temos
a+ B+

= — 2.22
e (222)
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que devido a simetria das equacoes, também pertence as medianas relativas aos

lados af e a.

2.2 Aplicacoes dos Nimeros Complexos na Geome-
tria Plana

Nesta secao, utilizaremos alguns dos resultados, obtidos anteriormente, para
apresentar algumas demonstragoes de teoremas da geometria plana, bem como para

a solucao de alguns problemas geométricos.

2.2.1 Teorema de Napoleao

Teorema 1 (Napoledo') Sobre cada lado de um triangulo arbitrdrio, desenhe um
tridngulo equildtero (no exterior). Temos entdo que os baricentros desses trés tridan-

gulos equildteros sao os vértices de um quarto tridngulo equildtero.

Demonstragao: Sejam Azjzo23 o tridngulo dado; Awizozs, Azzwezy € Azgziws
os tridngulos equilateros construidos sobre os lados do Az;z923 (figura 2.11), com a
mesma orientagao que 0 Alww? (com w?+w+1 = 0). Sejam (;, (s e (3 os baricentros

desses triangulos. Entao, pela Proposicao 12, temos que
wy + wzs + w222 = 0,

23 + wws + w221 = 0,

29 + w2y + w?ws = 0.

! Alguns historiadores acham pouco provavel que Napoledo Bonaparte (1769 — 1821) tenha real-
mente descoberto esse teorema. No entanto, ja na escola priméria, ele demonstrou grande talento
na resolucao de questoes aritméticas e uma grande inteligéncia logica. Por isso, chamavam-no “o
matemaético”. Alids, Napoledo costumava dizer que era “um gedmetra amador”.
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Figura 2.11: Teorema de Napoleao

Para provar que o A(1(2(3 é equilatero, vamos calcular
G+ wi + w3
1 w w?
= g(wl + 23 + 22) + §<23 + wo + 21) + ?(22 + 21+ 'LUg)
1 2 2 2
= §{(w1 + w2z + w?z) + (23 + wwg + w?z1) + (20 + w21 + W w3)}

=0.

Portanto, o A(1(2(3 é um tridngulo equilatero.
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2.2.2 Circulo dos Nove Pontos

Teorema 2 (Circulo dos Nove Pontos?) O circulo que passa pelos pés das al-
turas de qualquer tridngulo passa também pelos pontos médios dos lados, bem como
pelos pontos médios dos segmentos que unem os vértices ao ortocentro desse tridn-

gulo.

Figura 2.12: Circulo dos Nove Pontos

Demonstracao: Dado um tridngulo ABC, vamos supor, sem perda de generali-
dade, que o seu circulo circunscrito é o circulo unitario de centro na origem do plano
complexo, e sejam «, [ e v nimeros complexos que representam os vértices A, B e
C, respectivamente, com |a| = |B] = |y| = 1.
Vamos inicialmente encontrar o centro do circulo que passa pelos pontos médios dos
lados do AABC (figura 2.13).

O ortocentro H do AABC é dadopor o =a+f+ve 7= l(oﬂ—ﬁ—l—v) éo

2 2
ponto médio do segmento que une o circuncentro O com o ortocentro H.

’Este teorema foi descoberto em 1821 pelos grandes gedmetras franceses Jean Victor Poncelet
(1788 —1867) e Charles Julien Brianchon (1785 —1864). Entretanto, como o gedmetra alemao Karl
Wilhelm Feuerbach (1800—1834) publicou, no ano seguinte, um trabalho contendo idéias parecidas,
o Circulo dos Nove Pontos passou também a ser chamado de Circulo de Feuerbach.

47



Nameros Complexos e Geometria CAPITULO 2

B() Ty c)
Figura 2.13: Distancia de % para os pontos médios dos lados do AABC

A distancia de % para o ponto médio D do lado BC' é

o
Analogamente, as distancias de 5 para o ponto médio E do lado C'A, e para o

1
ponto médio F do lado AB sao todas iguais a 5 Logo, o centro do circulo é o ponto

a+fB+y
—

. . o .
Vamos obter agora a distancia de 5 para o ponto médio do segmento que une o

ortocentro H ao vértice A que é

a+o
2

o _‘a’_l
21 I21 2

o
Analogamente, as distancias de 5 para o ponto médio de BH, e para o ponto médio

1
de C'H sao também todas iguais a —.
. . . . g
Precisamos agora determinar a distancia de 5 para os pés das alturas do AABC. O

pé A da perpendicular do vértice A até o lado BC' é dada pela interseccao das retas

48



Nameros Complexos e Geometria CAPITULO 2

suportes do lado BC' e da altura relativa ao vértice A. As equacoes dessas retas sao

dadas respectivamente pelas equagoes

B=7)z—B-Tz=78-8 (1)

(B="7+ (B —7)z=a(B—7)+a(b—). (2)
Multiplicando a equagao (1) por —1 e somando com a equagao (2), obtemos

2:(B—7)=a(B—7) +a(B—7)+~8—-78

e
1 L (B—~ =B\ ( By
Z_El“+5(v—ﬁ)5”+< R )(v—ﬁﬂ

z:l{a+ﬁ+7—@]
2 «a

o
Analogamente, obtemos os pés das outras alturas do AABC' e as distancias de )

1
até eles, e também encontraremos 3
Como os nove pontos citados no teorema estao a uma mesma distancia do ponto
g . . P
> concluimos que existe um circulo que passa por esses nove pontos (o circulo dos

nove pontos) e assim, o teorema fica demonstrado.
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2.2.3 A Reta de Simson

Teorema 3 (A Reta de Simson®) Dado um AABC e um ponto D, sejam P, Q
e R os pés das perpendiculares de D até os lados (ou prolongamentos dos mesmos)
BC, CA e AB, respectivamente. FEntdo os pontos P, ), R estio alinhados se, e

somente se, D estd no circulo circunscrito do AABC.

Figura 2.14: Reta de Simson

Demonstragao: Suponhamos, sem perda de generalidade, que o AABC esta ins-
crito em um circulo unitario e que os pontos A, B, C, D sao representados, respecti-
vamente, pelos niimeros complexos «, [, v € 9.

A equacao da reta suporte do lado BC' é dada por

z 7z 1
BB 1|=0
v 71
isto é,
(B=7z—(B—=7)z= 57 -8 (1)

3Robert Simson (1687 —1768), Matematico escocés. Publicou, em latim e inglés, edigoes criticas
e comentadas sobre as obras dos antigos gedmetras.
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Por outro lado a equagao da reta perpendicular ao lado BC' passando por D(6)

é dada por
B=7Z+(B-7)2=0B~7)+3B~). (2)
Usando as relacoes [ = % e 7 = — e simplificando, temos
Y
2+ BZ=P+7 (1)
e
2= vz =6 — B0, (2)

Resolvendo o sistema formado pelas equagoes (1) e (2'), obtemos a interseco z =

P()) dessas duas retas
1 _
A= 5B+ +0—pyd).

De modo andalogo, encontramos os pontos Q(u) e R(v), que sao dados por
1 —
p=50r+a+d—yad),

U:%(a+ﬂ+5—aﬂg).

Pela condi¢ao de alinhamento, os pontos P()), Q(u) e R(v) sdo colineares se, e

somente se,

A—v
—v

e R.

2
Usando a notagao r = |d| (portanto 0 = %), temos

A—v _ y—a-(y-a)fi _ (y—a)(1-p9)
p—v y=B—(y=Bad  (yv—PB)(1—-ad)

- (52)/(557)

= (a,B;7,6r72).
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Desta forma,

P(\),Q(p) e R(v) sdo colineares <= (a, B;7v,0r %) € R
< a,f,7,6r 2 estdo em um circulo

|6r—2 =1
9]
191 9
6]

=
=
— |§| =1

Assim, D(0) pertence a circunferéncia e o teorema esta demonstrado.

A reta que passa pelos pontos P(N),Q(u) e R(v) é denominada de Reta de
Simson. Vamos, agora, encontrar a equagao da reta de Simson. Para isso usaremos
as mesmas notacoes utilizadas na prova do teorema. Em particular, assumiremos
que 0 AABC esta inscrito no circulo unitario, e o ponto D(§) pertence a esse circulo.
Como os pontos A, e v sao colineares, basta determinar a equacao da reta que

passa por A e u. De acordo com a equagao (2.5), a reta procurada é dada por
(b —NZ— (I — Nz = p) — M. (2.23)
Vamos introduzir as seguintes notagoes:
o1 =a+ B+,

o9 =By +ya+ap

o3 = af}y;
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entao,

1 1 1 1 6

03
Substituindo esses valores na equagdo (2.23) e efetuando as simplifica¢oes necessa-

rias, obtemos
03

(52—%015—02—7).

0z — 03Z =

N | —

2.2.4 Lei dos Cossenos e Lei dos Senos

Para a demonstragao das Lei dos cossenos e dos senos, utilizaremos as seguintes

igualdades:
- . N
Re(z) = L Z, 2> = 2z, senargz = m(z) e cosargz = e(2)
2 2] H
Teorema 4 (Lei dos cossenos) Seja ABC um tridngulo. Entado,
|BC|? = |ABJ* 4 |AC|* — 2|AB||AC| cos A. (2.24)

Demonstracao: Vamos supor, sem perda de generalidade, que A é a origem do

plano complexo, B esta em 1 e C' é representado pelo ponto z (figura 2.15).
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Assim, de acordo com as coordenadas estabelecidas, temos
AB| =1, |BC|=1|z—1|, |AC|=|z] ¢ A=argz.

Partindo do lado direito de (2.24), temos que

Figura 2.15: Triangulo ABC

|AB|? +|AC|? — 2|AB||AC|cos A =

= 1+ |2]* —2|z|cosarg 2
Re(z)
2]

= z2z2+1—-2|z|-

24z

= 2Z+1-2
= 2Z+1-2-%
= 2z-1)—(z-1)
= (z-D(E-1)

= |z—1?

= |BO|27

como queriamos demonstrar.
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Teorema 5 (Lei dos Senos) Seja ABC um triangulo. Entao

|AB| _|BC|  |AC|

senC  senA  senB

Demonstracao: Representando A, B e C' pelos nimeros complexos 0,1 e z, temos

AC| ol Jella=1 =1 _|BC]
senB Im(z — 1) Im(z) Im(z) senA’
|z — 1 |2
como queriamos demonstrar. ]

2.2.5 Resolucao de Problemas Geométricos

Problema 1 (PROFMAT - MA 13 AV1 2012) . Quadrados foram construidos
sobre 0s lados de um paralelogramo como mostra a figura abaixo. Mostre que os cen-

tros desses quatro quadrados sao vértices de outro quadrado.

Figura 2.16: Problema 1
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Solucao. A resolucao, a seguir, difere da que foi divulgada pela banca do PROF-
MAT, e que se encontra no Apéndice B.

Considere o ponto de intersecao das diagonais como sendo a origem do plano com-
plexo e sejam z, w, —z e —w as coordenadas dos vértices A, B, C' e D, respectiva-
mente. Sejam zi1, 2o, 23 € z4 as coordenadas dos centros dos quadrados construidos.
Como FB=FAe EB 1L FA, temos que o ponto A é obtido pela rotacao positiva

do ponto B, de um angulo de 90°, em torno de F. Assim,

) . Z —wi
FA=i-EB=z—z=i(lw—2z) .. 2=
1—1
Analogamente, temos que
w + 21 —z+wi —w — 2z
Z9 = 23=———"7T € 4= ——"
1—4 1—1 1—1
Segue-se que
_ 24— 2 —w — 2l — 2z + wi (w+ zi — 2+ wi)i .7
292124 = arg = arg , — = arg , — =argi = —,
29 — 21 w—+ 21—z 4+ wi w—+ 21—z 4+ wi 2
donde z129 = 2124, €
J— 29 — 23 w+ zi+ 2z — wi (—w — zi+ 2z —wi)i .o
24723729 = arg = arg , - = arg : — =argi = —,
24— 23 —wW — 21+ 2 — w1 —w — 21+ 2z —wi 2

0 que mostra que z3zy = 2324 €, portanto, z;292324 ¢ um quadrado.

Problema 2 Sobre os lados AB e BC de um tridngulo ABC', desenhe quadrados
com centros D e E tais que os pontos C' e D estejam do mesmo lado da reta AB e

0s pontos A e E estejam em lados opostos da reta BC. Prove que os dngulo entre

as retas AC e DFE € igual a 45°.
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Solugao. Sejam z4, zg, z¢, zp € zg numeros complexos que representam os pontos
A, B,C,D e E, respectivamente.
Como EFC = EB e EC 1 EB, temos que B ¢é obtido pela rotacao positiva do

A

Figura 2.17: Problema 2

ponto C, de um angulo de 90°, em torno de E. Assim temos que

. ZB — Zci
zp—zp = (20— 2g) -1 € zE:—l :
—1
Analogamente,
ZB — Zal
z = —
P
O angulo entre as retas AC e DE é igual ao
20 T RA 2o — ZA
arg ——— = arg . .
ZE — ZD ZB_ZCZ_ZB—ZA’L
1—1 1—1
2o — 24)(1 —1
_ arg< ¢ A)( )
—i(2c — 2a)
1—34
= arg ,
—1
= arg(l+1)
T
= o due é o resultado desejado.
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Problema 3 Seja ABC'D um quadrado de centro no ponto O e sejam M e N os
pontos médios dos segmentos BO e CD, respectivamente. Prove que o tridngulo

AMN € isdsceles e retdngulo.

Solucao.

S

Figura 2.18: Problema 3

Considere o ponto O como a origem do plano complexo e sejam as raizes quartas

da unidade, 1,4, —1, —i, as coordenadas dos pontos A, B, C, D, respectivamente.

—1—=
Os pontos M e N sao, respectivamente, M = % e N = Z. Assim,
1
AM 1-3 2—i  (—1-2i)i
= - - = = = 1.
MN —1—-¢ 1 —1-2 —1—2i
2 2

Entao, AM L MN e AM = NM, como queriamos mostrar.

Problema 4 (RPM 14, secao problemas: problema 67) Dois piratas Barba
Vermelha e Barba Negra, fugindo da marinha real, se dirigiram a uma ilha com o
objetivo de nela enterrar um tesouro. Na beira da praia existiam duas grandes rochas
e uma palmeira solitdria. Barba Vermelha dirigiu-se a uma das rochas e andou, na
direcao perpendicular a reta que unia a rocha a palmeira, uma distdncia igual a

distincia entre a rocha e a palmeira. Barba Negra fez a mesma coisa com relagao a
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outra rocha e a palmeira. Em sequida, eles caminharam um na direcao do outro e
enterraram o tesouro na metade do caminho. Dois anos mais tarde eles retornaram
a tlha para desenterrar o tesouro e descobriram que a palmeira nao estava mais ld.

Como serd possivel recuperar o tesouro?

Solugao. Na solucao desse problema, cuja reproducao encontra-se no Apéndice B, e
que foi publicada na RPM 16, o autor utiliza o plano cartesiano. A seguir utilizamos
o plano complexo para obter uma outra solucao.

Sejam 21, 22 e 2z, pontos do plano complexo que representam, respectivamente, as
posicoes das rochas e da palmeira. Suponha, sem perda de generalidade, que z; e
29 est@o sobre o eixo real, com 2z, & direita de z; (0 caso em que 2z esta & esquerda

de z; pode ser tratado de maneira semelhante).

M.,..(Tesouro)

z1(Rocha 1) 29(Rocha 2)
Figura 2.19: Mapa do Tesouro

O ponto z é obtido pela rotagao de 90°, no sentido anti-horério, do ponto z, em
torno de zq, isto é

z— 21 =i(2 — 21).

O ponto 2’ é obtido pela rotacao de 90°, no sentido horario, do ponto z, em torno
de z,, isto é

2 — 29 = —i(z, — 22).
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Assim, os pontos z e 2’ sao dados por

!/

z=1iz+(1—d)z e 2'=—iz,+ (1+1i)z.

Logo, o ponto médio do segmento zz' é dado por

Mo — 2+ 2 :izp—l—(l—i)zl—izp—i-(l—l—i),zz _ (1—i)z1 + (1 +1)2
= 2 2 2 '

Como podemos ver, o ponto médio do segmento zz’' nao depende de z,, isto &,
nao depende das coordenadas da palmeira. Se a rotagao de z, sobre z; fosse feita
no sentido horério e a rotacao de z, sobre 2z, fosse feita no sentido anti-horério, a
conclusao seria a mesma. No entanto, se as rotagoes fossem feitas no mesmo sentido,

a conclusao nao seria verdadeira, pois teriamos:

e Sentido anti-horario

2 = iz + (1 —1)z,
2= iz + (1 =)z e
M. — 2iz, + (1 —i)(z + 22)‘
2
e Sentido horario
z = —izp+ (1+14)z,
7= —iz,+ (1+1d)z e
M =2z, + (14+4)(21 + 22)
zz! 9 .

Nos dois casos, M., depende de z,, donde concluimos que, se os piratas andarem

no mesmo sentido, o tesouro estara perdido.
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Apéndice A

(GGeometria Analitica e Numeros

Complexos

O proposito deste apéndice é mostrar que podemos, utilizando a Geometria Ana-
litica, obter as demonstracoes de algumas das Proposicoes que foram apresentadas

no Capitulo 2.

A.1 Equacao da Reta

Proposicao 17 A equacdao de uma reta no plano complexo pode ser dada pela
equacao

a-zZ4+az+ =0,
ondeacC* ,feRez=ax+y1€C, com x,yecR

Demonstracao: A equacao de uma reta no plano cartesiano é representada pela
equacao

ar +by+c=0,
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onde a,b,c € R e a e b nao simultaneamente nulos. Se fizermos z = x + yi, entao,

pelas propriedades do conjugado de um nimero complexo, temos que

Assim,

que é equivalente a

a+ bi z 4 a—b rte—0
2 2 e

a-+bi
€ C* e f =ceR, segue que

Fazendo o« =

a-zZ+az+ =0, ()

como queriamos demonstrar.

Com respeito a equagao (x), temos as seguintes observagoes:
e Se a =@, entao b = 0 e temos uma reta vertical.

e Se o # @, entao definimos o coeficiente angular da reta cuja equacao é dada

por (%), como sendo o nimero

Proposicao 18 Considere as retas r1 e ro de equacoes dadas, respectivamente, por

61~E+0412+51:O
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62'24‘0622—1—&2:0.

Entdao as retas vy e ro G0

ay o
1) paralelas se e somente se — = —;
Qg Qg
. e3) (5
2) perpendiculares se e somente se — = ——.
Q2 Q2

Demonstragao:

1) Para que as retas r; e ry sejam paralelas devemos ter m,, = m,,. Portanto,

a1+61, 0624—@2,
1= 7.

a1 — 61 g — 62
Assim
042@1 = 04162
e, portanto,
ar o
Qg Qo
2) Para que as retas r e ry sejam perpendiculares devemos ter m,, - m,, = —1, isto
é
a1+ o Qg + Qo
—1 | - — | = —1.
a1 — Qg Qg — Q2
Logo,
Qo] = —Q0iy,
e, dai,
(e%1 Qay
Q2 ay
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A.2 Equacao da Reta Determinada por um Ponto
e uma Direcao

Proposicao 19 A equagao da reta que passa pelo ponto zy e € paralela a reta r :

az+az+ =0 € dada por
Z— 20 = —

Demonstracao: A equacao cartesiana da reta paralela a r passando por 2y é dada

por

a+

y—y():l&_a(x—xo)-

Por propriedades de niimeros complexos, temos que

2—Z 20— 2% ,oz—l—@(z—l—? ZO—I—EO>

2 2%  a—a\ 2 9

Multiplicando esta equacdo por 2i(cv — @), obtemos

donde
(z—2)(a—a+a+a@)=Z—-Z)(—a—a+a—a),
ou ainda,
Oé(Z — 20) = —E(Z — 20).
Finalmente, segue que
%z -m)
z2—z0=——(Z— Zo).
0 o 0
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Proposicao 20 A equacdo da reta que passa pelo ponto zy e € perpendicular a reta
r-az+az+p=0¢

Z— 2y = (3—50)

elel

Demonstracao: A equacao cartesiana da reta perpendicular a r passando por z

é dada por
1 a—«

L

(x — xp).

Usando nimeros complexos, temos

Z—7Z 20 — 20 1l a—a (z2+7Z 2o + 2o
21 21 T a+a '

B -3 2 2

Multiplicando a equagao acima por 2i(« + @), obtemos

(@ +@)[(z = 20) = (z = Z0)] = —(a =) [(z = 20) + (2 = Z0)],

donde
ou ainda,

Finalmente, segue que
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A.3 Equacao da Reta Determinada por Dois Pontos

Proposicao 21 A equacao da reta determinada pelos pontos z1 € z3 €

z z 1
21 21 1|= 0.
29 32 1

Demonstragao: A equagio de uma reta determinada pelos pontos z; = (x1,y;) e

29 = (w9, y2) no plano cartesiano é

x y 1
z1 yp 1 ]=0
To Yo 1

Denotando a primeira coluna e a segunda do determinante acima, respectivamente,
por (1 e Cy. Pelas Propriedades dos determinantes, podemos substituir C; por

Ci+Cy-1e Cy por Ch — Cy -1, obtendo

r4+yi v—y 1
I1+y1i ZL’l—yli 1 :O,

Ty + Y2t T — Yot 1

isto é,
z z 1
z1 z1 1| = 07
V) 52 1

que é o resultado desejado.
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Observacao 6 Desenvolvendo o determinante, temos

z z 1
21 zZ1 1| = 0 <= 221+ 220+ 2120 — Z129 — 229 — 221 = 0,
Z9 22 1

0 que € equivalente a
(ZQ — 21)2 — (52 — 71)2 = 2122 — 2122.

A.4 Condicao de Alinhamento de Trés Pontos

Proposicao 22 Trés pontos z1, za e z3 no plano complexo sdo colineares se, e

somente se,

21 71 1
Zo Z9 1[=0.
zZ3 53 1

Z1 71 1
29 Z9 1|= 0.
zZ3 33 1

Pelas Propriedades dos determinantes, temos

21 Z1 1
29 — 21 29— 21 0(=0

23 — 21 23—51 0
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[

11

E a demonstragao esta concluida.

zZ9 — 21 22—51
=0
zZ3 — 21 53—21
29 — 21 52—21
23 — 21 23—51
29 — 21
—€R
23 — 21

21,

Zo € z3 820 colineares.
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Apéndice B
Resolucao dos Problemas 1 e 4

Apresentamos aqui as solucoes dos problemas 1 e 4, do Capitulo 2, como foram

originalmente publicadas.

B.1 Problema 1

(PROFMAT - MA 13 AV1 2012). Quadrados foram construidos sobre os lados de
um paralelogramo como mostra a figura abaizo. Mostre que 0s centros desses quatro

quadrados sao vértices de oulro quadrado.

H, U/\ C
A \/B F
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Solucao. No paralelogramo ABCD os quadrados construidos sobre os lados AB,
BC, CD e DA tém centros F, I', G e H,respectivamente. Os triangulos AEB,
BFC, CGD e DHA sao retangulos e isosceles. O primeiro e o terceiro sao con-

gruentes e o segundo e o quarto sao também congruentes. Sejam ZBAD = «

Figura B.1: Problema 1

e ZADC = [ dois angulos internos vizinhos do paralelogramo. Sabemos que
a + B = 180°. Observemos que ZHAE = 45° + a + 45° = 90° + a e que
ZHDG = 360° — 45° — § = 270° — (180° — a) = 90° + o = LZHAE. Reu-
nindo as informacdes anteriores, concluimos que os triangulos HAE, HDG, FCG
e FFBE sao todos congruentes e, portanto, FH = HG = GF = FFE e o qua-
drilatero FFGH possui os quatro lados iguais. Da congruéncia dos triangulos
HAFE e HDG temos ZAHE = /DHG = z e seja ZEHD = y. por um lado,
/AHE + ZEHD = x +y = 90°, pois o angulo AHD é reto. Por outro lado,
/EFEHG = /DHG+ ZFHD = x +y = 90°. Assim, o quadrilatero FFGH possui

os quatro lados iguais e um angulo reto. Logo, é um quadrado.
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B.2 Problema 4

(RPM 14, segao problemas: problema 67). Dois piratas Barba Vermelha e Barba
Negra, fugindo da marinha real, se dirigiram a uma ilha com o objetivo de nela en-
terrar um tesouro. Na beira da praia existiam duas grandes rochas e uma palmeira
solitdria. Barba Vermelha dirigiu-se a uma das rochas e andou, na diregao perpen-
dicular a reta que unia a rocha & palmeira, uma distincia igqual a distdncia entre
a rocha e a palmeira. Barba Negra fez a mesma coisa com rela¢do a outra rocha e
a palmeira. Em sequida, eles caminharam um na direcao do outro e enterraram o
tesouro na metade do caminho. Dois anos mais tarde eles retornaram a ilha para
desenterrar o tesouro e descobriram que a palmeira nao estava mais ld. Como serd

possivel recuperar o tesouro?

Solugao. Sejam R;, R, as rochas e P um ponto qualquer distinto de R;. Considere:
e R A, obtido pela rotacao de 90°, no sentido anti-horario, de R;P;
e [, B, obtido pela rotacao de 90°, no sentido horario, de Ry P.

Sem perda de generalidade, suporemos R Ry horizontal no plano cartesiano e Ry a
esquerda de Ry. Mostraremos que
o ponto médio M de AB é o ponto da mediatriz do segmento R; R, do qual dista
%RlRQ e estd no semiplano superior determinado pela reta R Rs.
Invertendo as duas orientacoes dadas, M estard no semiplano inferior.
Donde concluiremos que, se os piratas escolherem sentidos contrarios, o tesouro
poderé ser encontrado, cavando-se, no maximo, em dois pontos.

Sejam A’, B, M’ e P’ as projegoes ortogonais, sobre a reta Ri1Ry, de A, B, M

e P, respectivamente. temos

A'Ry = PP'=B'R,
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B M A

Figura B.2: A e B no mesmo semiplano

pois, degenerados ou nao, AARA' = APRP' e ABRy;B' = APRyP'.
Além disso, A’M’ = B'M’, pois M & o ponto médio de AB. Logo, examinando as
possiveis projecoes de A’ e B’ na reta R;Rs quando P varia, podemos concluir que
R{M' = RyM’, portanto, M pertence a mediatriz de Ry Rs.
1
Levando em conta que AA’ = R P e BB' = Ry P, mostraremos que MM’ = §R1R2.
Na figura B.2, A e B, e, portanto, M, estao no semiplano superior. Neste caso
1 1 1
MM = §(AA' + BB') = E(Rlp/ + Ry P = §R1R2.
Na figura B.3, A esta no semiplano superior, B no inferior e AA' = R{P' > RyP' =

BB'. Neste caso, temos
! ]‘ !/ !/ 1

e M estd no semiplano superior.

Se P estiver a esquerda de R;, A estard no semiplano inferior, B no superior e

72



Resolugao dos Problemas 1 e 4 APENDICE

BB = RyP' > R{P' = AA’. Logo, temos

MM/ = %(BB/ - AAI) - %RlRQ

e M estd no semiplano superior.

A
l‘
M
PF B
A Ri M Ry
B

Figura B.3: A e B em semiplanos opostos

Dados agora dois pontos P;, i = 1,2, distintos, considere R;A; e RyB; obtidos
como anteriormente, porém com as rotacoes no mesmo sentido. Como A1 Ay e By Bo
sao paralelos e congruentes, entao M; # M,. Donde concluiremos que, se os piratas

andarem no mesmo sentido, o tesouro estara perdido.

Figura B.4: Rotacoes no mesmo sentido
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