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RESUMO

Este trabalho apresenta uma pesquisa sobre problemas de maximos e minimos
da Geometria Euclidiana. Inicialmente apresentamos alguns resultados prelimina-
res seguidos de suas demonstragoes que em sua esséncia usam conceitos basicos de
geometria. Em seguida apresentamos alguns problemas de maximizacao de area e
de minimizagao de perimetro em triangulos e poligonos convexos, culminando com
uma prova da desigualdade isoperimétrica para poligonos e comentario do caso ge-
ral. Resolvemos alguns problemas classicos de geometria que estao relacionados com

valores extremos e apresentamos outros como problemas propostos.

Palavras chaves: Geometria Euclidiana, Maximos e Minimos, Desigualdade Iso-

perimétrica.
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ABSTRACT

This work presents a research on problems of maxima and minima of the Eucli-
dean geometry. Initially we present some preliminary results followed by statements
that in essence use basic concepts of geometry. Below are some problems of maximi-
zing area and minimizing perimeter of triangles and convex polygons, culminating
in a proof of the isoperimetric inequality for polygons and review the general case.
Solve some classical problems of geometry that are related to outliers and present

other problems as proposed.

Keywords: Euclidean geometry, Maxima and Minima, isoperimetric inequality.
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Notacoes

PP, segmento de reta de extremos P, e P,

PP comprimento do segmento de reta de extremos P e P,
ITP; semirreta com origem no ponto P; passando por P,
?P; reta passando pelos pontos P; e Ps,

Plngg angulo formado pelas semirretas I?Pi e ]ﬁ,

P angulo interno de um poligono, angulo inscrito,

AABC triangulo de vértices A, B e C,

LAL Dois triangulos com dois lados correspondentes e o an-

gulo formado entre eles respectivamente iguais,
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INTRODUCAO

"Entre dois espiritos iguais,
postos nas mesmas condigdes,
aquele que sabe geometria

é superior ao outro

e adquire um vigor especial.”

(Pascal)

Este trabalho trata de uma pesquisa bibliografica sobre problemas de valores
extremos que em sua maioria sao resolvidos com recursos puramente geométricos.
Esta baseado no artigo Problemas de Maximo e Minimo na Geometria Euclidiana
de Djairo [2]. Os principais requisitos sao a Geometria Euclidiana plana elementar e
a Geometria Analitica, matérias do 1° e 2° graus. Alguns comentarios e observacoes
usam algum conhecimento de Trigonometria e Célculo Diferencial, mas podem ser
omitidos pelo leitor que nao domine essa ferramenta. Nao evitamos o uso de recur-
sos mais avancados para dar oportunidade aquele aluno mais aplicado, bem como

mostrar a relacao da matematica em seus diversos niveis de conhecimento.

O interesse por esse tipo de problema ¢ muito antigo, j& na antiguidade os ma-
teméticos demonstravam um grande interesse por eles. Euclides (£ 300 a.C.), em
sua obra Elementos, (Livro 6, proposi¢ao 27) fala de um problema de maximiza-

¢ao, que consiste em achar o maior produto possivel de dois niimeros cuja soma era

xii



Notacdes INTRODUCAO

dada. Mais tarde, Zenodorus (200 a.C a 140 a.C) estudou a area de uma figura com
perimetro fixado e o volume de um sélido com superficie fixada. Ele verificou que
entre todos os poligonos regulares com mesmo perimetro o poligono regular é o que
abrange a maior drea. Problemas deste tipo vém sendo abordados pelos matemati-

cos desde os primoérdios da geometria.

Porém problemas sociais, politicos e de formacao de professores tém acarretado
um gradativo abandono do ensino de geometria no Brasil. Com o Movimento da
Matemaética Moderna na década de 60 isso se intensificou ainda mais, dado ao ex-
tremo formalismo apresentado naquela época. Eu, particularmente, nao tive uma
boa formacao geométrica quando estudante das séries iniciais, e ainda percebo um
grande despreparo pelos professores que lecionam esse importantissimo tépico da
matemaética, muitos resultados simples e ainda assim elegantes me foram omitidos
em minha formacao. Como um apaixonado pela matematica, e em particular pela
geometria me inquietava quando via pessoas com certo nivel de conhecimento que
nao sabem diferenciar as simples figuras geométricas planas, tais como: quadrado,
retangulo, losango, trapézio, tratando-as todas indistintamente de quadrado, por
terem quatro lados. Essa realidade deve mudar, pois a geometria ajuda o cidadao
a conhecer melhor o mundo em que habita. A escolha desse tema vai ao encontro
desses objetivos, fascina pela beleza nas construcoes e resultados, ¢ de facil com-
preensao na sua esséncia, ¢ comumente reconhecivel na natureza, e traz muito de
conhecimentos matematicos, além de estimular o uso de novas tecnologias em sala
de aula. Outrossim possibilita uma atuacao diferente na sala de aula, transformando
o aluno em um sujeito ativo da sua aprendizagem, entre o aplicar a matematica e o
fazer arte.

O trabalho foi dividido em 4 capitulos:

xiil



Notacdes INTRODUCAO

No Capitulo 1 falamos de resultados preliminares, que sao algumas Definicoes,
Proposicoes, Colorarios, Teoremas e Lemas. Os resultados apresentados nesse capi-
tulo servirao para resolver os problemas que surgirao nos capitulos seguintes. Usa-
mos dados de [2], [7], [8].

No Capitulo 2 usaremos os resultados apresentados no capitulo anterior para re-
solver problemas de maximizacao de area e minimizacao de perimetro de triangulos
e poligonos convexos, apresentamos também uma prova da desigualdade isoperimé-
trica para poligonos. Usamos dados de [2], [4], [5], [7]-

No Capitulo 3 apresentamos alguns problemas classicos de maximos e minimos,
como o problema da estatua de Regiomontanus, que busca a distancia ideal para
um observador ter o maior angulo de visao; o Problema de Fagnano que consiste em
inscrever num triangulo acutangulo outro triangulo de menor perimetro possivel; o
Problema de Fermat que busca minimizar a soma PA+ PB + PC, onde A, Be C
sao pontos de um plano e P um ponto genérico desse plano; o Problema de Dido
que busca entre todas as curvas fechadas de um dado comprimento L aquela que
engloba maior area. A solucao de cada problema é comentada e servird para solucao
de problemas similares e suas variagoes. Usamos dados de [1], [2], |7]-

No Capitulo 4 apresentamos alguns exercicios propostos que podem ser resolvidos
fazendo uso das afirmacoes feitas no capitulo 1, bem como de resultados apresentados
nas resolucoes dos problemas apresentados nos capitulos 2 e 3. Usamos dados de
131, 7]

Finalmente, nas Consideragoes Finais apresentamos os ganhos pela realizagao
desse trabalho e a motivacao para outros.

As ilustragoes, foram produzidas com o auxilio do Geogebra e sao de autoria

propria.
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Capitulo 1

PRELIMINARES

1.1 Resultados preliminares

Neste capitulo apresentaremos algumas Proposi¢oes, Corolarios, Teoremas e Le-
mas que serao conclusivos nas demonstracoes das afirmagoes deste proprio capitulo,

bem como dos problemas tratados nos capitulos seguintes.

Proposicao 1 Se ABC ¢é um tridngulo com AB=c, AC=b e BC=a tal que B> é,
entao AC =b>c=AB.

Demonstragao: Como B > C’, podemos tracar a semirreta B?, onde P é um

ponto do lado AC de tal modo que CBP = %(B — (). (ver Figura 1.1).
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B C

Figura 1.1: Relacao entre os angulos e os lados opostos de um triangulo.

Como APB ¢ um angulo externo do triangulo BC P, temos:

~ ~ ~ 1 - ~ ~ 1 - ~
APB:CBP+BCP:§(B—C)+C:§(B+C).
Por outro lado temos:
~ ~ 1 - ~ 1 - ~
ABP:B—§(B—C):§(B+C).

Concluimos que o tridngulo ABP é isosceles de base BP, entao:

c=AB=AP < AP+ PC =.

Proposicao 2 (Desigualdade Triangular) FEm todo tridngulo, cada lado tem com-

primento menor que a soma dos comprimentos dos outros dois lados.

Demonstracao: Seja ABC' um triangulo com AB = ¢, AC =be BC = a. Nosso
trabalho é mostrar a desigualdade a < b + ¢, sendo as demais obtidas de forma

analoga.
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Marque o ponto D no prolongamento do segmento CA de modo que A € CD e
AD = AB (ver Figura 1.2).

c b A ¢ D
Figura 1.2: A desigualdade triangular.

Vemos que:

CD=CA+AD=CA+AB=b+c.

Pela Proposicao 1 basta mostrarmos que BDC < DBC. Como

BDA = DBA,

observemos que:
BDC = BDA = DBA < DBA+ ABC = DBC.
Assim a < b+c
De maneira analoga, obtemos os outros casos

b<a+4c, c<a-+hb.



Resultados preliminares CAPITULO 1

Uma consequéncia importante da desigualdade triangular é a seguinte, que apre-

sentamos como:

Corolario 2.1 Seja P um ponto do intertor do tridngulo ABC, entao ¢ vdlida a

desiqualdade PB+PC<AB+AC.

Demonstragao: Prolongue a semirreta ﬁ até que a mesma encontre o lado AC

no ponto Q. (ver Figura 1.3).

B~ " C
Figura 1.3: Consequéncias da desigualdade triangular.

Aplicando a desigualdade triangular sucessivamente aos triangulos ABQ e CPQ),

obtemos:

BQ < AB + AQ

PC < QC + PQ.

Somando as desigualdades membro a membro, obtemos:

BQ + PC < AB + AQ + QC + PQ.

Subtraindo P(@) de cada membro, obtemos:
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(BQ — PQ)+ PC < AB+ (AQ + QC) + PQ — PQ.

Finalmente concluimos que:

PB+ PC < AB + AC.

|
Definicao: Dados dois pontos distintos A e B, pertencentes a um plano w, seja 2¢
a distancia entre eles. Elipse é o conjunto dos pontos de m cuja soma das distdncias

a A e B € constante 2a (sendo 2a > 2c), ou seja,

Elipse = {P € n|PA+ PB = 2a}.

Uma consequéncia do Corolério 2.1 é a afirmacao a seguir:

Afirmacao 1 Dado um ponto () no interior de uma elipse, sendo A e B seus focos,
entao QA+ QB < 2a e também, dado um ponto R no exterior de uma elipse, entdo

RA + RB > 2a (ver Figura 1.4).

Figura 1.4: Ponto interior e exterior a elipse.
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Perceba que ) é um ponto no interior do triangulo ABP, pelo corolario 2.1

temos que:

QA+ QB < PA+ PB = 2a.

Agora considerando o triangulo ABR, podemos notar que P é interior a ele e

pelo mesmo corolario 2.1 temos que RA+ RB > PA+ PB = 2a. |

O proposicao a seguir ¢ conhecida como problema de Heron de Alexandria, que

viveu entre 150 a.C. e 250 d.C.

Proposicao 3 (Problema de Heron de Alexandria) Dados dois pontos P e Q
situados em um mesmo semiplano determinado pela reta v, a curva de menor com-
primento ligando os pontos P e () e tocando r € formada pelos segmentos de reta
PA e AQ, onde A € r € tal que os dngulos PAN e NAQ tém a mesma medida,
onde F\f € a semirreta ortogonal a r, que tem origem A e que estd do mesmo lado

dos pontos P e (Q).

Demonstracao: Seja P’ o simétrico de P em relacao a reta r, afirmamos que o

ponto A desejado é o ponto de intersec¢ao de P'Q) com r (ver Figura 1.5)
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P

Figura 1.5: Curva de menor comprimento ligando P a @) e tocando r.

(O protocolo de construgao dessa figura no Geogebra encontra-se no Apéndice)

De fato, seja B um outro ponto qualquer de r distinto de A, entao PA 4+ AQ <
PB + B@. Basta observar que os triangulos PC'B e P'C'B sao congruentes, bem
como os triangulos PCA e P'C'A. Isso garante que PPA = PAe P'B = PB.

Aplicando a desigualdade triangular ao triangulo P’'BQ), temos:

P'Q < P'B+ BQ

P'A+AQ = PA+ AQ < PB + BQ.

Para concluirmos nossa demonstragao precisamos provar a igualdade dos angulos
PAN e NAQ. Perceba que os triangulos PC' A e P'C' A sao congruentes, consequen-
temente os angulos APC e AP'C sdo iguais. Agora fundamentado pelo teorema das

paralelas cortadas por uma transversal, justificamos que:
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a) Os angulos APC e PAN sio iguais, pois sdo angulos alternos internos, e
b) Os angulos AP'C e NAQ sao iguais, pois sao angulos correspondentes.

Segue que PAN = QAN. |

Observacao: A proposicao 3 é um pouco mais geral, de fato, podemos provar
que a curva de menor comprimento ligando os pontos P e () e tocando r é formada
pelos segmentos de reta PA e AQ. Usando um resultado de geometria que diz
que "a curva de menor comprimento ligando dois pontos é o segmento de reta com

extremidades nestes pontos". Vemos que:

(i) A curva v de comprimento minimo toca r em apenas um ponto. De fato,
suponha, por contradicdo, que v toca r em dois pontos A e A. Podemos
perceber que a curva 7 obtida a partir de v pela substituicdo do trecho AQ
pelo segmento de reta A_Q tem um comprimento menor que o comprimento de

7. (ver Figura 1.6)

(ii) A curva ~y deve ser formada por dois segmentos de reta. De fato, seja A o ponto
onde v toca r, entdo necessariamente o trecho PA da curva é um segmento de

reta.

A\_/Z

Figura 1.6: Curva ligando P a @) e tocando r em dois pontos.
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Complementando a Proposicao 3, temos

Lema 3.1 Seja A a solucdo do problema de minimizacao estudado na Proposicao
3. Sejam B e By pontos da reta r, tais que By se situa (estritamente) entre A e B.
Entao

PB+ BQ > PB; + B1Q.

Demonstragao: Como na Proposicao 3, seja P’ o simétrico de P com relagao a r.

(ver Figura 1.7)

P/ 3/

Figura 1.7: Ponto B; entre os pontos A e B.
Entao a desigualdade a provar é equivalente a
P'B+ BQ > P'B; + BQ.

Observe que B; é um ponto do interior do triangulo P'B(@, pelo Corolario 2.1 a

desigualdade fica provada.
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Proposicao 4 Considere um tridngulo APQ e seja R o ponto médio do lado PQ).

Entao é vdlida a desigualdade
1
RA < E(PA + QA)

Demonstragao: Seja A’ o ponto tal que A’PAQ é um paralelogramo. (ver Figura

1.8).

A P

Figura 1.8: Triangulo APQ com R ponto médio de PQ.

Usando um argumento de geometria analitica temos que
(PQ)* + (AA)? = 2(AP)* + 2(AQ)*
como A’PAQ é um paralelogramo temos AA’ = 2AR, entao

(PQ)* + 4(AR)* = 2[(AP)* + (AQ)’] (1.1)

(PQIHAARY _ 4y ¢ (aq) (1.2)

Usando a desigualdade triangular no triangulo APQ temos:

—PQ < AP — AQ < PQ

10
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isto é,

|AP — AQ| < PQ

Elevando ao quadrado a expressao acima temos

(AP)* + (AQ)* — 2(AP)(AQ) < (PQ)*

(AP)? + (AQ)* < (PQ)* + 2(AP)(AQ)
pela equagao (1.2) temos

(PQ)* + 4(AR)?

2L < (PQP +2(4P)(AQ)

4(AR)* < (PQ)* + 4(AP)(AQ)

somando 4(AR)? em cada membro da desigualdade acima temos:
8(AR)? < (PQ)* + 4(AR)? + 4(AP)(AQ)
pela equagao (1.1) temos
8(AR)* < 2[(AP)? + (AQ)?] + 4(AP)(AQ)

4(AR)* < (AP)* + (AQ)* + 2(AP)(AQ)
4(AR)? < (AP + AQ)?
2AR < AP + AQ

1
AR < S(AP + AQ).

11
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Definicao 1 Um conjunto I' serd convexo se P e ) pertencem a I', entao o ponto

médio R do segmento PQ também pertence a I
Proposicao 5 A clipse é uma curva estritamente conveza

Demonstracao: Podemos mostrar que o conjunto I' dos pontos P do plano tais
que

PA+ PB <2a

¢ um conjunto convexo. E, além disso, mostraremos que se P e () estao sobre a
elipse, entao R ¢ tal que

RA+ RB < 2a

Sendo A e B os focos da elipse e fazendo uso da proposicao 4 que diz que

1
RA < 5(PA+QA)

1
RB < (PB+QB)

somando as duas desigualdades e lembrando que PA + QA = PB + QB = 2a

concluimos a demonstracao. |

Proposicao 6 Seja P um ponto sobre uma elipse, entao a reta normal a elipse em
P ¢ a bissetriz do dngulo APB, onde A e B sio os focos dessa elipse. (ver Figura

1.9)
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Figura 1.9: Retas tangente e normal a elipse.

Demonstracgao: Seja r a reta tangente a elipse no ponto P e seja P’ outro ponto
de r diferente de P , como a elipse é estritamente convexa P’ ¢ exterior a elipse,
pela Afirmacao 1 temos que P’A + P'B > 2a, ou seja, de todos os pontos de r, P é
0 que minimiza a soma das distancias aos focos A e B. Pela Proposicao 3 a reta s

perpendicular a r por P é a bissetriz do angulo APB. |

A afirmacao seguinte é conhecida como Teorema de Viviani, sua prova pode ser

feita facilmente utilizando o conceito de area.

Teorema 2 (Teorema de Viviani) A soma das distincias aos lados de um tridn-
gulo equildtero de um ponto pertencente ao seu interior ou a seus lados é constante

e igual a medida da altura do tridngulo.

Demonstracao: Seja ABC um triangulo equilatero de lado a, altura h e area S,

seja P um ponto do interior desse tridngulo, (ver Figura 1.10).
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Figura 1.10: Demonstracao do Teorema de Viviani.

E claro que a area do triangulo ABC' é igual a soma das areas dos triangulos
ABP, ACP e BCP, logo,
S=5+5+S53

colocando § em evidéncia no segundo membro, obtemos
a a
—h=—(hi+ha+h
5 2( 1 2 3)

e finalmente obtemos:

h=hy + hy + h3

Observacao 1 Caso P esteja sobre um dos lados, P e os extremos desse lado nao
formard um triangulo, por estarem alinhados, mais a soma das dreas dos outros dois

tridngulos serd igual a S.

Observacao 2 Se P estiver sobre um dos vértices a igualdade é evidente. ]
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Proposicao 7 Considere a regigo formada por uma curva convexa -y, e pelo seg-
mento AB. Suponha que a sequinte propriedade se verifique: dado qualquer ponto

P sobre vy, o dangulo APB ¢ reto. Entio v € um semicirculo. (ver Figura 1.11).

Figura 1.11: Semicirculo - APB = 90°

Demonstracio: Seja O o ponto médio do segmento AB. Devemos entdo provar
que OP = OA. Para isso basta mostrar que a = «/.
Trace uma reta passando por O paralela ao segmento PB, essa reta cortard o seg-
mento AP em M, como os triangulos AOM e ABP sio semelhantes M ¢é o ponto
médio do segmento AP, os angulos AMO e PMO séo retos. Logo, pelo critério
LAL os triangulos AMO e PMO sao congruentes o que resulta em o = o/, |
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Capitulo 2

MAXIMIZANDO A AREA,
MINIMIZANDO O PERIMETRO

Nesse capitulo apresentaremos algumas problemas de maximos e minimos rela-
cionadas com a geometria. Principalmente no que diz respeito a maximizar a area

e minimizar o perimetro de triangulos e de poligonos convexos.

2.1 Maximizando a area, minimizando o perimetro
de triangulos

Esse nosso estudo consiste na seguinte problemética (por enquanto se referindo
a triangulos): Tendo que cobrir uma &rea fixa qual deve ser o menor comprimento,

ou tendo um comprimento determinado qual é a maior area que se pode abranger?
Para darmos inicio ao nosso didlogo iremos propor dois problemas:

PROBLEMA 1: Entre todos os tridangulos de mesma &rea, qual é o de menor

perimetro?

16



Maximizando a area, minimizando o perimetro de tridngulos CAPITULO 2

PROBLEMA 2: Entre todos os tridngulos de mesmo perimetro, qual é o de

maior area?

Resolu¢ao do Problema 1: Afirmamos que ¢é o triangulo equilétero.

Observacao 3 Nesta demonstracao estamos assumindo a existéncia de um tridn-

gqulo de menor perimetro e de drea constante.

De fato, suponhamos por absurdo que os lados AB e BC do triAngulo ABC
sejam de comprimento diferentes. Seja r a reta que passa pelo ponto B e é paralela
ao lado AC e seja D a interseccdo da reta r com a reta s, perpendicular a r passando

pelo ponto médio de AC. (ver Figura 2.1).

Figura 2.1: Fixando a area e minimizando o perimetro.

Pela Proposicao 3, o tridangulo ADC' tem perimetro menor que o do triangulo
ABC', mas ambos tém a mesma area, pois tém a mesma base e mesma altura, o que

contradiz a hipotese. ]

Observacio 4 E claro na demonstracio do Problema 1 que o tridngulo procurado

tem que ser isdsceles.
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Baseado na Observacdo 4 podemos ver que o problema tem solucdo. (ver Figura

2.2).

.
b/2 b/2

Figura 2.2: Triangulo isosceles solu¢ao do Problema 1.

De fato, entao a area do triangulo é dada por:

b b
— . 2 _
A=5\y@ =73

e logo o perimetro é dado em funcdo de b (0 < b < 00) pela fungao

4A2 b2
b)=0+2\) — + —
p é funcao continua e:
li b) =
S, p(b) = o
e
lim p(b) = oo
b—o0

entdo p(b) tem que ter um minimo.
Resolugao do Problema 2: Novamente afirmamos que um triangulo com tal ca-
racteristica é equilatero.

Observacao 5 Nesta demonstracao estamos assumindo a existéncia de um tridn-
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gqulo de perimetro constante e maior drea.

De fato, Usando as construgoes do problema 1, (ver Figura 2.3) temos AB e BC

de comprimentos diferentes. Considere um ponto D’ € s acima de D que satisfaz:

AD'+ D'C = AB + BC.

Figura 2.3: Fixando o perimetro e maximizando a &area.

E claro que D’ ndo pode ser interior ao triangulo ACD, pois pelo Corolario 2.1
teriamos AD" + D'C' < AD + DC' o que seria contraditorio

Dessa forma a area do triangulo AD'C' é maior que a area do triangulo ADC, e
este ultimo tem a mesma area do triangulo ABC, por terem mesma base e mesma

altura, porém os triangulos AD'C' ¢ ABC tém o mesmo perimetro.

Vamos provar que a solucao do problema 2 ¢ um triangulo equilatero utilizando a
desigualdade entre as médias aritmética e geométrica, que foi um tema amplamente

abordado no programa PROFMAT.

A desigualdade entre as médias aritméticas e geométricas afirma que para um

conjunto de valores x1, x2, x3, ..., T,, positivos sempre teremos:
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r1+axtaxz+---+x,
n

> Yxy Lo Ty e Ty

Ou seja, a média aritmética sempre é maior do que ou igual a média geométrica
e a igualdade so se verifica se x1 = o = 3 = --- = z,. A demonstracao pode ser

obtida em [5].

Assim, considere um triangulo cujos lados medem: a, b e ¢, de perimetro cons-
tante e igual a:

2p=a+b+ec.

Pela a formula de Heron, podemos escrever a area de um triangulo em relacao a

seus lados:

A=+/plp—a)(p—1b)(p—c)

onde p é o semiperimetro.
A 4rea serd maxima se o produto (p — a)(p — b)(p — ¢) for maximo.

Vamos utilizar a desigualdade entre as médias aritmética e geométrica conside-
rando os valores 71 = (p —a), x2 = (p — b) e 3 = (p — ¢). Conforme enunciado,

temos:

X1+ Ty + 23

3 Z \3/ZE1(I,'21133.

(p—a)+(p—0)+(p—c)

2 > Y/ (p—a)p—b)p—o).
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3p — (a3+ G B/ P oy Y

L U N Y/ oy Y Sy py

pfi

Como p ¢ constante, 5= também é, logo o produto (p—a)(p—b)(p—c) serd menor

. 3 . . s P 2
do que ou igual a 5= e a igualdade, que é o valor maximo, s6 ocorrera se, e somente
se r1 = X9 = T3, ou seja, (p —a) = (p—b) = (p — ¢) de onde obtemos que a =b = ¢

concluindo a demonstracao.

2.2 Maximizando a area, minimizando o perimetro
de poligonos

Nesta secao estenderemos os problemas 1 e 2 para poligonos de n lados.

PROBLEMA 3. Entre todos os poligonos de n lados e de mesma éarea, qual deles

tem o menor perimetro?

PROBLEMA 4. Entre todos os poligonos de n lados e de mesmo perimetro, qual

deles tem a maior area?
A resposta a ambos os problemas é a mesma: é o poligono regular com n lados.

Resolucao do Problema 3.
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Seja o o poligono de n lados que satisfaz o problema 3, suponhamos que p tem
dois lados AB e BC' de comprimentos diferentes. Seja r a reta que passa por B e é

paralela ao segmento AC, (ver Figura 2.4).

Figura 2.4: Poligono regular.

Pela proposicao 3 existe B’ sobre r tal que:

AB' 4+ B'C < AB + BC.

Logo, podemos obter um poligono de n lados com menor perimetro e de igual

area substituindo os lados AB e BC por AB’ e B'C. Procedendo de igual maneira,
considerando dois a dois os lados consecutivos do poligono, concluimos que ele deve

ser equilatero.

Devemos provar que o poligono deve ser equiangulo. Considere trés lados con-

secutivos AB, BC' e CD, que ja sabemos serem congruentes. Suponhamos que os

angulos ABC = a > 8 = BCD. (ver Figura 2.5).
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Figura 2.5: Poligono equiangulo - Prova.

(O protocolo de construcao dessa figura no Geogebra encontra-se no Apéndice)

Agora, escolhemos o ponto F sobre o lado CD de modo que o angulo CBF =4
seja tal que 20 < a — 3, ou seja, a — 5 — 20 > 0. Sobre o prolongamento de AB
tome o ponto E de modo que EC seja paralelo a BF. Seja € a medida do angulo

EBF e w a medida do angulo BFC. Temos os seguintes angulos rasos:

a+e—0=180°

B4 w+ 60 =180°.

Igualando as duas expressoes, obtemos:
b+w+bl=a+ec—10

dai, obtemos:

w—e=a—[—20>0.
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Entao, concluimos:

w>e€

Consequentemente obtemos (provaremos em seguida):

BE + EF < BC + CF. (2.1)

Dai, substituindo a parte ABC'D do poligono considerado por AEF D, obtemos um
outro poligono de mesma &rea e perimetro menor que o anterior, o que é absurdo,

pois ja foi provado que o poligono equilitero é o de menor perimetro. |
Demonstracao da desigualdade 2.1:

Considere o quadrilatero BECF da Figura 2.5, de lados BF e EC paralelos e
angulos da base w > ¢. Tracamos a reta s pelo ponto médio de BF que intersecta
a reta r = % no ponto X, pela Proposicao 3 de todos os pontos de r, X é o
que minimiza a soma das distancias aos pontos B e F'. Levando em consideracao a

posicao do ponto E destacamos duas situacoes:

Situagao 1: E esta entre X e C, (ver Figura 2.6).

24



Maximizando a area, minimizando o perimetro de perimetros CAPITULO 2

B

Figura 2.6: Quadrilatero BECF com E entre X e C.

Nesse caso a desigualdade 2.1 fica provada pelo Lema 3.1

Situagao 2: X esta entre E e C, (ver Figura 2.7).

Figura 2.7: Quadrilatero BECF com X entre E e C.

Neste caso se designarmos por C’ o simétrico de C' em relagdo a reta s, a desi-

gualdade 2.1 é equivalente a:

BE +EF < BC'"+C'F

a qual é precisamente o caso apresentado na Situacao 1, pois E esta entre X e C'.

Resolucao do Problema 4: Vamos utilizar argumentos utilizados e ja provados

25
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no Problema 3.

Seja @ o poligono de n lados de maior area entre todos os poligonos de n lados
que tém o mesmo perimetro P. Digamos que a area desse poligono seja S. Se p
nao for regular, entao, pelo que ficou provado na resolucao do Problema 3, existe
um outro poligono ¢ regular de mesma area S e perimetro P < P. A partir de §
podemos construir um poligono ¢’ de n lados de perimetro P e drea &' > S, o que

¢ absurdo, pois p ja tem area maxima.

Tome dois lados consecutivos de g, AB e BC, (ver Figura 2.8).

Figura 2.8: Poligono ¢’ obtido a partir de .
Agora escolha um ponto B’ sobre a reta s perpendicular a AC de modo que

(AB'+ B'C) — (AB+ BC) =P —P.

O poligono ' é obtido de @ substituindo-se os lados AB e BC por AB'e B'C.
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2.3 A desigualdade isoperimétrica para poligonos

PROBLEMA 5: Dados dois poligonos regulares de mesmo perimetro P, aquele

que tem maior area é o que possui um maior nimero de lados.

Para a demonstracao desse problema usaremos um pouco de trigonometria e li-

mite.

Resolugao do Problema 5:
Um poligono regular é a uniao de n triangulos isésceles congruentes de base e altura
medindo respectivamente /¢, e a,, onde ¢, ¢ a medida de cada lado do poligono e a,

o seu apotema (distancia do centro a qualquer um dos lados). (Ver Figura 2.9).

\ 0 ,
\ /
' ﬁ
\
\ /
\
A, As
Ay Ay A

Figura 2.9: Poligono regular formado por n tridangulos isosceles

O perimetro do poligono serd n vezes a medida do seu lado e sua &rea sera n
vezes a area de um dos triangulos isésceles que o compoe. Vamos expressar a area

do poligono regular por S(n) e seu perimetro por P, Temos as seguintes equagoes:
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E?’L n
S(n)=n 2a (2.2)
e
P =nl, (2.3)

O angulo A10A, 6 0 angulo de uma volta completa dividido por n, ou seja, =*

2

radianos, queremos enfatizar na Figura 2.9 o triangulo retangulo A; MO reto em

M, como o triangulo A;OA, é isosceles, a altura OM

¢ também a bissetriz, logo

o angulo AléM ¢ a metade do angulo AléAg, ou seja, AléM = 7 radianos. E

também A, M é a metade de A A, ou seja, A/ M = L

AléM, obtemos:

tg(D) = =
gn " 2a, OM

Dividindo (2.2) por (2.3), obtemos:

S(n) _ ntge

P nt,,
que podemos escrever como:
25(n)
a, =
P

P nly
tg(f) =
dessa, obtemos:
= 2na,
tg(7)
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e finalmente:

P
= 2.
" 2ntg(E) (26)
De (2.5) e (2.6), obtemos:
28(n) P
P 2ntg(Z)
que é melhor representada por:
P21
- — 2.
Agora, em (2.7) fazemos a substituicdo + = - I, obtemos
P? 1 7
") = fe® 7 n
Arrumando os elementos, obtemos:
P? z
Sn)=-— —=2 2.8

Como P ¢é constante, S(n) varia em fun¢ao de n. Como n > 2, entao 0 < = < 7,
basta estudar a funcao:

T
f(x) (2.9)

tg()

no intervalo (0, %), onde z = Z.
Sabemos que tg(z) = iff;gi;, assim:
T
f(l’) - sen(z)
cos(x)

que podemos escrever:
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flz) = —2— . cos(x) (2.10)

~ sen(w)

Quando n — oo, x — 0, para n > 2, temos os limites (provaremos em seguida):

lim () = 1
e
lim f(z) =0

2

Como sen(z) > 0 em 0 < z < 7 entdo f & continua no intervalo (0, %) e sua

2
derivada f'(x) < 0, ela é estritamente decrescente, dessa forma S(n) é estritamente
crescente quando n cresce, assim se n < m as areas dos poligonos regulares de n e

m lados seré tal que:

S(n) < S(m)

A demonstracao acima tem algo mais a nos dizer. A medida que n cresce a area

S(n) também cresce, sendo limitada superiormente por 7)—2, pois f(x) tende a 1,
4
quando n cresce, mas nao atinge esse valor, entao em (2.8), temos:
P? z P?
S(n) n 1 (2.11)

= .
4r tg(T) 4w

Designando por S e P respectivamente a area e o perimetro de um poligono (regular

ou nao), segue-se de (2.11):
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478 < P?,

que é chamada de desigualdade isoperimétrica para poligonos.

A seguinte forma mais geral da desigualdade isoperimétrica pode ser vista em

[6].
A area S englobada por qualquer curva simples plana C, de comprimento P,

satisfaz a desigualdade

418 < P?,

e a igualdade ocorre, se e somente se, C for um circulo.

Na demonstracao anterior usamos o fato que

x
im—-—==1
z—0 sen ()

Uma demonstracao geométrica desse limite basico, pode ser obtida no livro de

Serge Lang [4].
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Capitulo 3

PROBLEMAS CLASSICOS DE
MAXIMOS E MINIMOS

Nesse capitulo mostraremos alguns problemas de extremos classicos. O termo
classico é devido a sua origem historica. No estudo desses problemas, na maioria
das vezes, serd feita uma demonstracido construtiva da solucdo. FEntretanto, em
alguns casos, comecaremos com a hipotese de que a solucao exista e em seguida,
analisaremos esta hipotese e extrairemos conclusoes que finalmente nos permitirao

descrever e construir a solugao.

3.1 Problema de Regiomontanus

Problema: Suponha uma estitua de altura h sobre um pedestal de altura p.
Um homem de altura m (m < p) enxerga do pé ao topo da estatua sob um angulo
a, que varia de acordo com a distancia d entre o homem e a base do pedestal.
Determinar d para que o angulo de visdo « seja o maior possivel (um maior angulo
de visao determinaria uma imagem maior na retina ou, de outra forma, uma visao

mais completa do objeto). (Ver Figura 3.1)
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Ay
h
B ........................
................................... q
| C
m

Figura 3.1: Representacao geométrica do problema de Regiomontanus

Solucao do problema de Regiomontanus

Esse problema poderia ser resolvido com as ferramentas do Calculo, mas prefe-
rimos uma solucao simples e engenhosa, utilizando argumentos da geometria eucli-
diana, por estar mais relacionado com a esséncia desse trabalho, que apresentamos
a seguir.

Primeiramente, iremos deixar claro que os pontos A, B e C na figura 3.1 repre-
sentam, respectivamente, o topo da estatua, o pé da estatua e os olhos do observador.
E claro que o problema tem solucdo, pois se o ponto C se deslocar para a direita
da estdtua, podemos notar que o angulo de visao vai se tornando cada vez menor.
Por outro lado, se o ponto C' for se aproximando da estatua, poderemos notar que
o angulo de visao aumenta, e torna a diminuir tendendo a zero quando ficar muito
proximo da reta que passa pelos pontos A e B. Assim, deve existir uma posicao para
o ponto C tal que o angulo o = ACB de visao é méaximo, e portanto o problema
tem solucao.

Para construirmos entao a solucao tracamos a reta r paralela a linha do chao
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que passa pelo ponto C'. Agora, tracamos a circunferéncia que passa pelos pontos A
e B e tangencia & reta r. Esta circunferéncia tem centro na mediatriz do segmento
AB e raio igual a distancia do ponto médio do segmento AB até a reta r. Essa
circunferéncia tangencia a reta r em um ponto C’, o qual queremos mostrar que é o
ponto que nos fornece a distancia exata para o maior angulo de visdo. (ver Figura

3.2)

Figura 3.2: Solucao geométrica do problema de Regiomontanus

Consideremos que o ponto C' percorre livremente a reta r. Para uma determinada
posicao de C' o angulo « serd o maior possivel. Queremos mostrar que o AC'B >
ACB para todo C!, C # (C'. Seja D o ponto de interseccao da reta que passa pelos
pontos A e C' com a circunferéncia. Note que AC'B = ADB, pois sio angulos
inscritos em uma mesma circunferéncia e determinados pelo mesmo arco. Agora
baseado no fato que a medida de qualquer angulo externo de um triangulo é igual a
soma das medidas dos dois angulos internos nao adjacentes a ele, o que nos permite

escrever que ( ADB é angulo externo relativo ao vértice D no ADBC):

AC'B = ADB = ACB + DBC > ACB.
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Portanto o ponto de tangéncia C” é o que nos fornece o angulo maximo de visao.
Conhecido o ponto C” que torna o angulo de visdo maximo, pretendemos obter a
distancia d do homem ao pedestal em fun¢do dos parametros: h (altura da estatua),

p (altura do pedestal) e m (altura do homem). (ver Figura 3.3)

Figura 3.3: Céalculo de d no problema de Regiomontanus

O triangulo BMO é retangulo em M que é o ponto médio do segmento AB.
Nele temos os catetos BM = h/2 e MO = d e a hipotenusa BO = R = h/2+p—m.

Aplicando o Teorema de Pitagoras no triangulo BMO obtemos:
(MO)? + (BM)? = (BO)?
substituindo os parametros fornecidos para cada lado do tridngulo obtemos

&+ (5P =
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desenvolvendo a poténcia no segundo membro, obtemos:

o4 (R =GP+ 20— m)+ (o= mp?

e agora cancelando os termos iguais e pondo em evidéncia (p — m), obtemos
d* = (p—m)(h+p—m)

e finalmente

d=+/(p—m)(h+p—m).

Variagao do problema de Regiomontanus

Este problema foi apresentado na segunda avaliagao nacional da disciplina MA11

- Nameros, Conjuntos e Fun¢oes Elementares - turma de 2011 PROFMAT.

Dentro de um campo de futebol, um jogador corre para a linha de fundo do time
adversario ao longo de uma reta paralela a lateral do campo que cruza a linha de
fundo fora do gol ver Figura 3.4 . Os postes da meta distam a e b (com a < b) da
reta percorrida por ele. Mostre que o jogador vé a meta sob angulo maximo quando

sua distancia x ao fundo do campo é igual a v ab.
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Figura 3.4: Esquema para o problema do campo

A solugao para esse problema levou em consideracao a seguinte hipotese:
Levando em conta que um angulo é maximo num certo intervalo quando sua

tangente ¢ maxima, use a formula:

tg(x) —tg(y)
I e ORI

para resolver o problema acima.

Solugao:

Em cada instante, o jogador vé a meta sob o angulo a = ay — «q, onde oy e
as sao os angulos entre sua trajetoria e as retas que o ligam aos postes da meta.

Temos:

_ tglag) —tg(an)
tgla) = 1+ tg(ae) - tglaq)

Se z ¢ a distancia do jogador ao fundo do campo, temos tg(a;) = 2 e tg(az) = 2,

logo
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Agora multiplicando numerador e denominador da expressao acima por x, obte-

mos

b—a
tg(a):l'—i-%b'

Como o numerador b— a é constante, tg(z) é maxima quando o denominador for
minimo. Ou seja, é preciso achar £ que minimiza a expressao x + “;b

Como a média aritmética é sempre maior do que ou igual a média geométrica,

1<x+a_b>2”x.a_b_\/@7
2 T T

ou seja, o denominador é sempre maior do que ou igual a 2v/ab. A igualdade vale

entao

se e somente se os dois termos da média sao iguais, isto é, quando

Portanto
ab
T+ —
x
atinge seu menor valor quando x = Vab. |

E claro que esse problema poderia ser resolvido de maneira bem mais simples,
aproveitando os resultados ja demonstrados do problema original de Regiomontanus.
No problema original temos uma estatua de altura h, sobre um pedestal de altura p
e um homem de altura m.

Nessa variacao apresentada podemos apresentar a associacao m = 0, pois a linha
apresentada nao ¢é a linha de visao do homem e sim a linha que o aproxima da meta,

também percebemos que h+p=b,p=aed=zx.
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No problema original a distancia d que fornece maior angulo de visao é obtido

pela expressao

d=+/(p—m)(h+p—m)

fazendo as devidas substituicoes obtemos
r=1/(a—0)(b—0)

e finalmente

x = vab

que é precisamente o resultado obtido pela utilizacao da tangente da diferenca de

dois angulos e da desigualdade entre as médias aritméticas e geométricas.

3.2 Problema de Fagnano

Problema: Dado um triangulo acutangulo inscrever nele um outro triangulo com
o0 menor perimetro possivel.

Solucao de Fejér

A solucao seguinte foi dada em 1900 pelo matematico hingaro L. Fejér. Seja

ABC o triangulo dado. Nos queremos encontrar pontos M, N e P sobre os lados

BC', C'A e AB, respectivamente, tal que o perimetro do triangulo M N P é minimo.
Primeiro, consideramos uma versao mais simples do problema. Considere um ponto
arbitrario P sobre AB. Devemos agora encontrar pontos M e N em BC e CA,
respectivamente, tal que AM NP tem perimetro minimo. (Esse niimero minimo é
claro vai depender da escolha de P.) seja P’ o simétrico do ponto P em relagao ao

lado BC e P" o simétrico de P em rela¢do ao lado AC (ver Figura 3.5).
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Figura 3.5: Problema de Fagnano - Solugao de Féjer - A

Entdo CP' = CP = CP", P'CB = PCBe P'"CA = PCA. Definindo v = BCA,
temos, entao, PCP" = 2v. Além disso, 2y < 180°, pois, por suposicao v < 90°.
Consequentemente, o segmento de reta P’ P" intercecta os lados BC' e AC do trian-
gulo ABC nos pontos M e N, respectivamente, e o perimetro do triangulo M N P
é igual a P'P"”. De forma semelhante, se X é qualquer ponto do lado BC e Y é
qualquer ponto do lado AC, o perimetro do triangulo X PY é igual ao comprimento
da linha quebrada P’XY P”, que é maior ou igual a P'P”. Assim, o perimetro do
triangulo PXY é maior do que ou igual ao perimetro do triangulo PM N, e a igual-
dade ocorre precisamente quando X = M e Y = N. Assim, temos de encontrar
um ponto P sobre AB tal que o segmento de reta P'P” tem comprimento minimo.
Observe que este segmento de reta é a base de um triangulo isosceles P”P'C' com
angulo constante 2y em C e lados CP' = CP"” = CP. Assim, temos que escolher P
sobre o lado AB tal que CP' = C'P & minima. Obviamente, para que isso aconteca
P deve ser o pé da altura do triangulo ABC relativa ao lado AB. Observe agora
que, se P & o pé da altura do triangulo ABC relativa ao lado AB, entdo M e N sdo

os pés das alturas do triangulo ABC relativos aos lados BC e AC, respectivamente.

Considerando P como o pé da altura relativa ao lado AB, existe um (tinico)
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triangulo de perimetro minimo inscrito no triangulo ABC', dentre todos aqueles que
tém P como vértice. Considere agora as solucoes andlogas, sendo M o pé da altura
relativa ao lado BC e aquela com N sendo o pé da altura relativa ao lado AC. Uma
das trés tem que ter o menor perimetro possivel. O que se quer argumentar agora é
que as trés solucoes sao a mesma solucao. Suponhamos que uma delas é a minima
(por exemplo, aquela obtida com P sendo o pé da altura relativa ao lado AB). Se,
nesta solucdo, o ponto M obtido sobre BC nio fosse o pé da altura relativa a este
lado, entdo a solucdo obtida com M no pé da altura relativa ao lado BC teria peri-

metro menor ainda, o que ¢ uma contradicao. Logo, os pontos P, M e N devem ser,

respectivamente, os pés das alturas relativas aos lados AB, BC e AC. Portanto, de
todos os triangulos inscritos no triangulo ABC, o com vértices nos pés das alturas

do triangulo ABC' tem perimetro minimo. |

3.3 Problema de Fermat

Problema: Trés pontos A, B e C sao dados em um plano, e um quarto ponto P

no plano é procurado de modo que a soma PA + PB + PC seja minima.

Solucao do problema de Fermat

Este problema foi proposto por Fermat em seu Métodos de determinacao de md-
rimos e minimos e tangentes a curvas. Evangelisto Torriceli lendo este trabalho,
resolveu este problema em algum periodo antes de 1640, localizando o ponto do
problema (Chamado ponto de Fermat, Torricelli ou Steiner). Isto é conhecido pelo
fato que seu aluno Vincenzo Viviane (1622 - 1703) publicou a solugao de seu mestre

no livro De mazimis et minimis (1659).
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Se A, B e (' sao colineares e se B estiver entre A e C, entao B é o ponto solu¢ao

do problema.

Quando A, B e C' nao sao colineares, entao formarao o triangulo ABC. Note
que a solucao nao esta fora do triangulo ABC', pois ao considerarmos um ponto
P fora do tridngulo ABC, sempre existirda um ponto P’ no tridngulo ABC' tal que
PA+ PB+ PC< PA+ PB+ PC, pois PB< PBe PA+ PB< PA+ PB
(Ver Figura 3.6)

Figura 3.6: Problema de Fermat - P exterior ao tridngulo ABC nao é solug¢ao

Assim, basta analisar o problema para o ponto no triangulo ABC ou no seu

interior, que é um conjunto fechado e limitado.

Observacao 6 Vejamos inicialmente, com um exemplo simples, que o ponto P pode
estar no interior do tridngulo ABC. Suponha que ABC' seja um tridngulo equild-

tero. Entao P € o centro deste tridngulo, pois tracando por A, B e C respectivamente

paralelas aos lados BC, AC e AB, obtemos um tridngulo equildtero MNQ. (Ver
Figura 3.7)
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Figura 3.7: Problema de Fermat - P Pode ser interior ao triangulo ABC'

Se P’ for qualquer outro ponto distinto de P, no tridngulo ABC no seu interior,
e denominando de C' o pé da perpendicular a QN de P', denominando de B’ o pé
da perpendicular a MN de P' e denominando de A’ o pé da perpendicular a MQ
de P', teremos:

P'A+PB+PC>PA+PB +PC.

Pelo Teorema de Viviani, apresentado no capitulo 1, temos que:
P'A+PB+PC>PA+PB +PC"=PA+PB+ PC.

Suponhamos que o ponto P solucao do problema esteja no interior do triangulo
ABC. Consideremos que a soma PA + PB esteja fixada. O lugar geométrico de
todos os pontos P para os quais a soma PA+ PB é dada, é a elipse com focos A e B
e a medida do eixo maior é igual a PA+ PB. Agora precisamos encontrar o ponto P
da elipse para o qual a distancia de P até o ponto C' é minima. A menor distancia
de C' a elipse vai ser alcangada quando a circunferéncia de centro C' tangencia a
elipse. Neste caso o centro da circunferéncia vai esti sobre a reta normal a elipse, e

pela Proposigao 6 da secao 1.1 a reta Cﬁ é a bissetriz interna do angulo APB (ver
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Figura 3.8)

Figura 3.8: Cincunferéncia de centro C' tangente a elipse de focos A e B

Consequentemente, teremos que CPA = CPB. Agora, fixando a soma PB+ PC

chegaremos analogamente a conclusao que CPA = BPA. Portanto concluimos que

CPA=CPB = BPA = 120°.

Este mesmo argumento nos mostra que o ponto P nao pode estar sobre os
lados pois, suponhamos que P estivesse no lado AB do triangulo ABC. Entédo
CPA = CPB se, e somente se, esta medida for igual a 90° e nio a 120°. (ver Figura

3.9)
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Figura 3.9: Problema de Fermat - P nao pertence a um dos lados do triangulo ABC

Sejam A e B dois pontos sobre um circulo. Para todo ponto M em um mesmo
arco determinado por A e B, o angulo a = AM B é constante. Este arco chama-se

arco capaz do angulo a sobre o segmento AB.

Mas serd que o ponto P podera estar sobre um dos vértices? Observe que para
que CPA = CPB = BPA = 120° o ponto P deve estar na intersecao dos arcos-

capazes de 120° relativos aos segmentos (no mesmo semi-plano do triangulo ABC)

AC, BC e AB respectivamente.

Suponhamos que AB seja o maior lado do triangulo ABC, de acordo com a
proposigao 1 ACB & o maior angulo do triangulo ABC.
Considere o arco capaz de 120° relativo ao lado AB. Teremos trés possibilidades

para o ponto C no semiplano determinado pela reta j@ que contém o arco capaz:

a) C estd no exterior do arco-capaz.
Neste caso ACB < 120° e o arco-capaz relativo ao segmento AC (ou BC)
cruzard o arco-capaz relativo ao segmento AB em um ponto no interior do

tridngulo. (ver Figura 3.10)
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Figura 3.10: Problema de Fermat - Ponto C' exterior ao arco-capaz AB

b) C estd sobre o arco-capaz de 120° relativo ao lado AB.

Neste caso ACB = 120° e C' ¢ o ponto de interseccao dos trés arcos-capazes
relativos aos lados do triangulo. Observe que para qualquer ponto () no inte-
rior ou sobre os lados do triangulo, exceto o ponto C, AQB > 120°. Como o
problema tem solucao, e como tal solucao nao esta no exterior nem nos lados
do triangulo, entao a solucao P deve estar em um dos vértices. Mas este vér-
tice deve ser C' pois AC' + BC < AC + AB e AC + BC < BC + AB. (ver
Figura 3.11)

Figura 3.11: Problema de Fermat - Ponto C' sobre o arco-capaz AB

¢) C estd entre o arco-capaz de 120° relativo ao lado AB e a reta Zg
Neste caso ACB > 120°, pelo mesmo argumento usado no caso anterior, po-

demos concluir que P s6 pode ser o ponto C. (ver Figura 3.12)
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Figura 3.12: Problema de Fermat - Ponto C' interior ao arco-capaz AB

Como vimos acima, quando o maior angulo do triangulo ABC for menor do que
120°, o ponto P ¢é a interseccao dos arcos-capazes de 120° relativos aos lados do
triangulo.

Acontece que, estes arcos-capazes estao respectivamente contidos nas circunferéncias
circunscritas aos triangulos equilateros construidos externamente sobre os lados do

triangulo ABC'. (ver Figura 3.13)

Figura 3.13: Problema de Fermat - Ponto de Torricelli

Em 1647 Bonaventura Francesco Cavalieri (1598 - 1647) mostrou em seu livro

Exercitationes Geometricae que os trés angulos ApC’, BPC e APB tém a mesma
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medida de 120°.

Mais tarde, em 1750 o matematico inglés Thomas Simpson (1710 - 1761) pu-
blicou no seu livro Doctrine and Application of Fluxions que o ponto de Torricelli,
isto é, o ponto de interseccao das trés circunferéncias circunscritas respectivamente
aos triangulos equilateros construidos sobre cada lado do triangulo ABC' pode ser
obtido, ligando-se os vértices A, B e (' aos vértices externos daqueles triangulos

equilateros (ver Figura 3.14).

Figura 3.14: Problema de Fermat - solugao de Simpson

Vejamos como provar este resultado. Liguemos os vértices A, B e C' ao ponto
P e prolonguemos cada segmento até cruzar as circunferéncias circunscritas aos
tridngulos equilateros externos nos pontos A, B e C' respectivamente (ver Figura
3.14).

Como os angulos APC" e A'PC sdo congruentes, pois sao opostos pelo vértice,
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e como APC’ + BPC' = APB = 120° = BPC = A'PB + A'PC segue-se que
A'PB+ APC' = 120° e que BPC' + APC = 120°. Como APC + BPC' + A'PB =
180° e como BPC' + A'PB + A'PC = 180° segue-se que BPC' = A'PB = 60°.
Conclui-se que CAB = AC'B = 60°, e portanto o triangulo AC'B é equilatero, e
que BCA' = BAC = 60°, e portanto o triangulo BA'C & equilatero. Analogamente
mostra-se que o triangulo AB'C' é equilatero. Logo, o ponto P ¢é interseccao dos
segmentos que unem os vértices A, B’ e C’, dos triangulos equilateros construidos

sobre as bases, respectivamente com os vértices A, B e C' do triangulo ABC.

Vamos provar agora que, se P é o ponto de Torricelli do triangulo ABC' (com
A <120°, B < 120° ¢ C' < 120°) entdo PA + PB + PC ¢ igual a altura méaxima

entre todos os triangulos equilateros circunscritos ao triangulo ABC.

Considere os arcos exteriores das circunferéncias circunscritas aos triangulos equi-
lateros construidos sobre os lados do triangulo ABC'. Tais arcos sao arcos-capazes
de 60°. Seja agora a reta m, perpendicular ao segmento PC, passando por C, e
sejam M e N os pontos de cruzamento de m respectivamente com os arcos-capazes

AC e BC (ver Figura 3.15).
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Figura 3.15: Problema de Fermat - Triangulo de altura maxima circunscrito AABC

Entao as retas m e ﬁ devem se cruzar em um ponto () sobre o arco-capaz
AB pois, como CMA = CNB = 60°, entdio MON = 60°. Além disso, a reta
m ¢ perpendicular ao segmento PA pois, o quadrilatero MCPA ¢ inscritivel e
MCP = 90°. Logo MAP = 90°. Analogamente tem-se que a reta ﬁ é perpen-
dicular ao segmento PB. Segue-se entao que PA + PB + PC' ¢ igual & altura do
triangulo M NQ@ (Teorema de Viviani). Este é o triangulo equilatero, circunscrito

ao triangulo ABC', de maior altura possivel.

Veja a prova dessa afirmativa:
Seja agora DEF outro triangulo equilatero qualquer circunscrito ao triangulo ABC.
Entdo DE e PC nao sio perpendiculares, nem DF e PA e nem EF e PB. Sejam
G, H e I respectivamente os pés das perpendiculares por P aos lados DE, DF e
EF do triangulo DEF.

Entao, PG < PC, PH < PAe PI < PB. Logo, PG+ PH + PI < PC+ PA+
PB. Mas PG + PH + PI é igual & altura do triangulo equildtero DEF. Logo o
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triangulo M NQ é o triangulo equilatero circunscrito ao triangulo ABC' de maior

altura possivel. (ver Figura 3.16)

Figura 3.16: Problema de Fermat - Triangulo M N tem altura maxima

3.4 Problema de Dido

Dido, filha de um rei fenicio, refugiou-se no norte da Africa, depois que seu ma-
rido foi assassinado. Foi-lhe prometida a extensao de Terra que pudesse cercar com
o couro de um boi. Diz a lenda que ela preparou com o couro uma longa e fina
correia, e cercou com a mesma um terreno circular. Essa ¢ a legendéria estéria da

fundacao da cidade de Cartago.

O problema de Dido ¢ o seguinte: Entre todas as curvas planas fechadas de um

dado comprimento L encontrar aquela que engloba maior area.
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Na se¢ao 2.3 do capitulo 2 abordamos a desigualdade isoperimétrica para poligo-
nos regulares, na demonstracao usamos recursos da trigonometria e do calculo. Pelo
processo de construcao 1a apresentado podemos inferir que a resposta ao problema
de Dido é um circulo. Dessa forma o problema de Dido é apenas parte do enunciado
da desigualdade isoperimétrica.

E interessante observar que podemos resolver o problema de Dido sem fazer uso
da desigualdade isoperimétrica.

Vamos fazer uso da demonstracao atribuida a Jakob Steiner (1796-1863), que
utiliza recursos puramente geométricos, nada de trigonometria ou calculo como foi
utilizado no capitulo anterior.

Steiner provou que a circunferéncia encerra a maior area entre todas as curvas
fechadas com um comprimento dado. A demonstracao de Steiner parte da hipotese
de que a solucao do problema existe, supondo que a curva v com comprimento L
seja a solugao do problema.

Steiner provou inicialmente que a curva  procurada deve ser convexa, no sentido
de que ela delimita uma regido convexa (qualquer segmento de reta unindo dois
pontos quaisquer da regiao deve estar inteiramente contido na regiao - a curva -y
incluida na regido).

A demonstracao é dividida em trés etapas:
Etapa 1: ~ é uma curva convexa. De fato, suponha por contradicdao, que ~y

possua uma reintrancia o entre A e B de modo que o segmento aberto AB esta fora

da regiao delimitada por 7. (ver Figura 3.17).
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Figura 3.17: A curva convexa engloba maior area

Seja o’ a reflexdo do trecho ¢ da curva com relacio ao segmento AB. A curva
7 obtida a partir de ~ substituindo-se o trecho o por ¢’ tem o mesmo comprimento
de 7 e engloba maior area.

Etapa 2: Agora mostraremos que o problema de Dido é equivalente ao seguinte:
Problema de Dido com Parede: Seja r uma reta do plano e X a uniao de r com um
dos semiplanos determinado por r.

Consideremos as curvas em X de um dado comprimento e cujos pontos inicial e
final estdao sobre r. Mostrar que entre essas curvas aquelas que juntamente com r

englobam a maior drea sao os semicirculos com base sobre 7.

Sejam A e B pontos de v que a divide em dois arcos vy; e 7 de mesmo compri-
mento. Entdo o segmento AB divide a area no interior de v em duas regides R, e
R, de areas iguais.

Para demonstrar essas afirmacoes suponha que as areas de Ry e Ry sao distintas,

(ver Figura 3.18).
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Figura 3.18: AB divide a curva v nas regides R, e R,.

Neste caso, o lado de maior area poderia ser refletido em torno do segmento AB
e, assim obtém-se uma nova curva de mesmo comprimento, mais que engloba maior

area que a anterior, novamente uma contradi¢ao com o fato que a drea é maxima.

As curvas 7 e 75 acima sao solucoes do problema de Dido com parede, pois se
nao fossem existiria uma curva s de igual comprimento unindo pontos C' e D de r
e delimidando com r uma area maior. Seja 74 a imagem refletida de 3 com relagao
a r. A curva fechada v3|J~4 teria o mesmo comprimento de v e delimitaria uma

maior area, o que nao é possivel.

Etapa 3: Agora o problema de Dido se reduz a determinar o arco de compri-
mento L/2 com pontos extremos A e B tal que a area entre esse arco e o segmento

AB seja maxima.
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Seja 71 uma curva convexa de comprimento L /2 com pontos extremos A e B tal que
a area entre o arco v e o segmento AB seja méaxima. Provemos usando a Proposicao
7 que y; € um semicirculo. Com efeito, se P € ~; entao o angulo APB ¢ um angulo
reto. Novamente por contradi¢ao, suponha que P é tal que o angulo APB nao é
reto. A area delimitada pelo arco APB e o segmento AB é dividido em trés partes:
as areas S; e S, limitada pela curva e os segmentos AP e PB, respectivamente, € a

area S3 limitada pelo triangulo APB, (ver Figura 3.19)

P
Q

S3

9

A B

Figura 3.19: S;, S; fixos e APB variavel

Fixando A e deslocando B por meio de uma rotacdo em P, mas mantendo o

comprimento PB podemos obter um angulo reto em P, (ver Figura 3.20).

Figura 3.20: APB = 90°

Logo o comprimento de v; é mantido.
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Neste caso as areas S; e S, também foram mantidas inalteradas, enquanto que a
area S3 varia. Por outro lado, a area S5 serd méxima justamente quando o angulo
APB é reto. De fato, entre todos os triangulos com dois lados de comprimentos

fixos, o que possui area méaxima é o triangulo retangulo, (ver Figura)

Figura 3.21: Triangulo de drea maxima fixados a e b

A area é dada pela expressao

absen(0)
2

sendo 6 o angulo entre os lados a e b, (6 € [0, 7]). Dai, quando sen(#) = 1, teremos
o maior valor para a area, isto ¢, quando # = 90°. Logo a curva v; em questao é um

semicirculo.
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Capitulo 4

PROBLEMAS PROPOSTOS DE
MAXIMOS E MINIMOS

Problemas extraidos do livro Circulos Mateméaticos. A Experiéncia Russa [3]

Problema 01: Encontre um ponto no interior de um quadrilatero convexo tal

que a soma das distancias do ponto aos vértices é minima.

Problema 02: Um colhedor de cogumelos sai da floresta em um determinado
ponto. Ele precisa chegar a uma estrada, que segue uma linha reta, e voltar para a
floresta em outro ponto dado. Como ele deve fazer isso para seguir o menor caminho

possivel?

Problema 03: A cabana de um lenhador fica no interior de uma peninsula que
tem a forma de um angulo agudo. O lenhador tem que sair de sua cabana, andar
até a praia de um dos lados da peninsula, depois até a praia do outro lado, depois

voltar para casa. Como ele deveria escolher o caminho mais curto?
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Problema 04: O ponto C estd dentro de um angulo reto e os pontos A e B
estao nos lados. Prove que o perimetro do triangulo ABC nao é menor do que o

dobro da distancia OC, onde O ¢ o vértice do angulo reto dado.

Problema 05: Resolva o Problema 03 supondo que a peninsula tem a forma de

um angulo obtuso.

Problemas extraidos do artigo de Kely Cristina Pasquali [7]

Problema 06: Seja A um ponto sobre o circulo de centro O e raio a e seja P
um ponto sobre a extensiio de OA através de A. Uma linha secante a P intercepta o

circulo nos pontos @ e ('. Dada uma posicao fixa de P determinar a area maxima

do tridangulo AQQ'.

Problema 07: Dado o triangulo ABC, escolha MN // AB de modo que a &rea do
triangulo MNP (P sobre AB) seja maxima?

Problema 08: Dado o triangulo ABC e P sobre AB fixado. Escolher pontos
M e N sobre BC' e AC, respectivamente, de modo que a area do triangulo PMN

seja maxima?

Problema 09: Existe um triangulo de area maxima inscrito em uma circunfe-

réncia dada?

Problema 10: Dada uma circunferéncia de raio R achar o triangulo de area ma-

xima inscrito na circunferéncia com uma das alturas igual a h?
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Problema 11: Dados uma reta [ e dois pontos P e () em lados opostos de [
encontre um ponto R em [ tal que a quantidade |p — ¢|, isto é, o valor absoluto da

diferenca das distancias de P e () para R, seja um méaximo?

Problema 12: De todos os tridangulos de mesma base e com mesmo angulo oposto

a base, qual tem area maxima?
Problema 13: Dadas as retas r e s concorrentes e um ponto M no interior do
angulo por elas formado, encontrar os pontos B sobre r e C sobre s de forma que

BC passe por M e a area de ABC seja minima.

Problema 14: Dada um circunferéncia encontrar o poligono de n lados inscrito

nesta circunferéncia que tem area maxima.

Problema 15: Dada uma semicircunferéncia encontrar o trapézio de drea méaxima

com vértices nesta circunferéncia.
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Capitulo 5

CONSIDERACOES FINAIS

O uso da geometria em sala de aula prova que a matematica nao é uma ciéncia
pronta, ela precisa ser construida. Porém as aplicagoes praticas e de facil compre-
ensao, bem como as formas que se assemelham com a prépria natureza, mostram
que a matemética que se estuda é aplicavel. Esperamos que as pessoas que tiverem
acesso a este trabalho possam se encantar com a beleza da geometria e percebam
que com apenas argumentos puramente geométricos é possivel resolver problemas
de maximos e minimos de maneira bastante elegante.

Deixo aqui como desafio a resolucao dos problemas apresentados no capitulo 4.
Tais problemas podem ser utilizados em sala de aula por professores nos diversos
niveis do ensino.

Espero seguir pesquisando e descobrindo novos problemas geométricos de facil
compreensao e aplicagao para utiliza-los em sala de aula mostrando a beleza e a

elegancia da geometria.

60



Apéndice A

Protocolo de construcao

do Geogebra

N, [Mome
1Ponto A,

2 Ponte El1
3Retar
4 Tendo textol
S Ponto P
B Ponto Q
7 Ponto P
8 Segmento d
9 Ponto B
10 Segmento b
11 Ponto A
12 Segmento a
13 Segmento ¢
14 Ponto C
15 Segmento e
16 Segmento 1
17 Segmento g
18 Retah
19 Ponte D
20 Segmento |
21 Angulo a
22 Angulo B
22 Angulo y

24 Angulo &

icone da Barra de Ferramentas | Definig3o

A
L

A
L

e

ABC
A
L]

A

pd
&

Reta A B,

[valor
A, =0(1,2)

B,=(7.2)
ry=2
r
P=(1,6)

Q=97

Reflexdo (ou Inversdo) de P emralagioar P'=(1.-2)

Segmento [P, F]

Ponto de intersecioder, d
Segmento [P, Q]

Ponto de intersecdo der, b
Segmenta [P, 4]
Segmento [4, Q]

Ponto sobre r

Segmento [P, C]
Segmento [C, P]

Segmento [C, O]

Reta passando por A & perpendicularar

Ponto sobre h
Segmento [4 D]
Angulo entre B, P, A
Angulo entre A P, B
Angulo entra D, A P

Angulo entre Q, A D

d=3
B=(12)
b=1204
A=(456,2)
a=535
c=6.69

G=(3.052)

g=777
hox=456
D=(4.56,73)
1=53
a=4163"
B=4183"
y=4163"

G=4163"

|Legenda

§r5

PE

Q%

P%

5CS

A5

5685

NS

Figura A.1: Protocolo de constru¢ao no Geogebra da Figura 1.5
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Apéndice APENDICE
N. [Nome icone da Barra de Ferramentas | Definigio [valor [Legenda
1 Ponto & A Ponto sobre EoX A= (=046, 0) SAS
L]
2Ponto B .,m B=(22) 565
3Segmentoa | s Segmento [4, B a=317
4Ponto C A C=(53) SC5
L]
5/Segmento b 'a/- Segmento [B, C] b=316
BPonto D A D=(7,054) s0%
L]
T|Segmento ¢ .;,P Segmento [C, D] c=317
8ldngulo a iﬁ Angulo enfre &, B, C o=159.32*
9/dngulo B A‘.‘ Angulo entre B, C, D B=11068"
10 Ponto F A Paonto sobre ¢ F=(5822) 5FS
]
11 Segmento d .-},t Segmento [B, F] d=382
12 Angulo y 4‘:' Angulo entre F, B, C y=18.49° ]
13Relae / Reta AB e -2x+2.46y=092
14Ponto G A Paonto sobre e G=(45 4.03) 5GS
L]
15 Segmento h ;,- Segmento [B, G) h=322
16Retal o Reta passando por Ceparalelaad  F0x=282y=1146
I
17Ponto E X Ponto de intersecio de e.f E=(3.23.3) SES
18 Segmento g :/n Segmento [C, E] g=177
19 Angulo & -d_.“_ Angulo entre B, C, E 5=18.49° ]
20 Angulo £ .{". Angulo entre F, B, E £=30.16°
21 Angulo { Angulo entre C.F, B {=50.84" W

£

Figura A.2: Protocolo de construcao no Geogebra da Figura 2.5
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