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RESUMO

Este trabalho apresenta uma pesquisa sobre problemas de máximos e mínimos

da Geometria Euclidiana. Inicialmente apresentamos alguns resultados prelimina-

res seguidos de suas demonstrações que em sua essência usam conceitos básicos de

geometria. Em seguida apresentamos alguns problemas de maximização de área e

de minimização de perímetro em triângulos e polígonos convexos, culminando com

uma prova da desigualdade isoperimétrica para polígonos e comentário do caso ge-

ral. Resolvemos alguns problemas clássicos de geometria que estão relacionados com

valores extremos e apresentamos outros como problemas propostos.

Palavras chaves: Geometria Euclidiana, Máximos e Mínimos, Desigualdade Iso-

perimétrica.
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ABSTRACT

This work presents a research on problems of maxima and minima of the Eucli-

dean geometry. Initially we present some preliminary results followed by statements

that in essence use basic concepts of geometry. Below are some problems of maximi-

zing area and minimizing perimeter of triangles and convex polygons, culminating

in a proof of the isoperimetric inequality for polygons and review the general case.

Solve some classical problems of geometry that are related to outliers and present

other problems as proposed.

Keywords: Euclidean geometry, Maxima and Minima, isoperimetric inequality.

vii



Sumário

1 PRELIMINARES 1

1.1 Resultados preliminares . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 MAXIMIZANDO A ÁREA, MINIMIZANDO O PERÍMETRO 16

2.1 Maximizando a área, minimizando o perímetro de triângulos . . . . . 16

2.2 Maximizando a área, minimizando o perímetro de polígonos . . . . . 21

2.3 A desigualdade isoperimétrica para polígonos . . . . . . . . . . . . . . 27

3 PROBLEMAS CLÁSSICOS DE MÁXIMOS E MÍNIMOS 32

3.1 Problema de Regiomontanus . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Problema de Fagnano . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Problema de Fermat . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Problema de Dido . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 PROBLEMAS PROPOSTOS DE MÁXIMOS E MÍNIMOS 57

5 CONSIDERAÇÕES FINAIS 60

A Protocolo de construção do Geogebra 61

REFERÊNCIAS BIBLIOGRÁFICAS 63

viii



Lista de Figuras

1.1 Relação entre os ângulos e os lados opostos de um triângulo. . . . . . 2

1.2 A desigualdade triangular. . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Consequências da desigualdade triangular. . . . . . . . . . . . . . . . 4

1.4 Ponto interior e exterior à elipse. . . . . . . . . . . . . . . . . . . . . 5

1.5 Curva de menor comprimento ligando P a Q e tocando r. . . . . . . . 7

1.6 Curva ligando P a Q e tocando r em dois pontos. . . . . . . . . . . . 8

1.7 Ponto B1 entre os pontos A e B. . . . . . . . . . . . . . . . . . . . . . 9

1.8 Triângulo APQ com R ponto médio de PQ. . . . . . . . . . . . . . . 10

1.9 Retas tangente e normal à elipse. . . . . . . . . . . . . . . . . . . . . 13

1.10 Demonstração do Teorema de Viviani. . . . . . . . . . . . . . . . . . 14

1.11 Semicírculo - AP̂B = 90o . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Fixando a área e minimizando o perímetro. . . . . . . . . . . . . . . . 17

2.2 Triângulo isósceles solução do Problema 1. . . . . . . . . . . . . . . . 18

2.3 Fixando o perímetro e maximizando a área. . . . . . . . . . . . . . . 19

2.4 Polígono regular. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Polígono equiângulo - Prova. . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Quadrilátero BECF com E entre X e C. . . . . . . . . . . . . . . . . 25

2.7 Quadrilátero BECF com X entre E e C. . . . . . . . . . . . . . . . . 25

2.8 Polígono ℘′ obtido a partir de ℘̄. . . . . . . . . . . . . . . . . . . . . . 26

2.9 Polígono regular formado por n triângulos isósceles . . . . . . . . . . 27

ix



3.1 Representação geométrica do problema de Regiomontanus . . . . . . 33

3.2 Solução geométrica do problema de Regiomontanus . . . . . . . . . . 34

3.3 Cálculo de d no problema de Regiomontanus . . . . . . . . . . . . . . 35

3.4 Esquema para o problema do campo . . . . . . . . . . . . . . . . . . 37

3.5 Problema de Fagnano - Solução de Féjer - A . . . . . . . . . . . . . . 40

3.6 Problema de Fermat - P exterior ao triângulo ABC não é solução . . 42

3.7 Problema de Fermat - P Pode ser interior ao triângulo ABC . . . . . 43

3.8 Cincunferência de centro C tangente à elipse de focos A e B . . . . . 44

3.9 Problema de Fermat - P não pertence a um dos lados do triângulo

ABC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.10 Problema de Fermat - Ponto C exterior ao arco-capaz AB . . . . . . 46

3.11 Problema de Fermat - Ponto C sobre o arco-capaz AB . . . . . . . . 46

3.12 Problema de Fermat - Ponto C interior ao arco-capaz AB . . . . . . . 47

3.13 Problema de Fermat - Ponto de Torricelli . . . . . . . . . . . . . . . . 47

3.14 Problema de Fermat - solução de Simpson . . . . . . . . . . . . . . . 48

3.15 Problema de Fermat - Triângulo de altura máxima circunscrito ∆ABC 50

3.16 Problema de Fermat - Triângulo MNQ tem altura máxima . . . . . . 51

3.17 A curva convexa engloba maior área . . . . . . . . . . . . . . . . . . . 53

3.18 AB divide a curva γ nas regiões R1 e R2. . . . . . . . . . . . . . . . . 54

3.19 S1, S2 �xos e AP̂B variável . . . . . . . . . . . . . . . . . . . . . . . 55

3.20 AP̂B = 90o . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.21 Triângulo de área máxima �xados a e b . . . . . . . . . . . . . . . . . 56

A.1 Protocolo de construção no Geogebra da Figura 1.5 . . . . . . . . . . 61

A.2 Protocolo de construção no Geogebra da Figura 2.5 . . . . . . . . . . 62

x



Notações

P1P2 segmento de reta de extremos P1 e P2,

P1P2 comprimento do segmento de reta de extremos P1 e P2,

−−→
P1P2 semirreta com origem no ponto P1 passando por P2,

←−→
P1P2 reta passando pelos pontos P1 e P2,

P1P̂2P3 ângulo formado pelas semirretas
−−→
P2P1 e

−−→
P2P3,

P̂1 ângulo interno de um polígono, ângulo inscrito,

∆ABC triângulo de vértices A, B e C,

LAL Dois triângulos com dois lados correspondentes e o ân-

gulo formado entre eles respectivamente iguais,

xi



INTRODUÇÃO

"Entre dois espíritos iguais,

postos nas mesmas condições,

aquele que sabe geometria

é superior ao outro

e adquire um vigor especial."

(Pascal)

Este trabalho trata de uma pesquisa bibliográ�ca sobre problemas de valores

extremos que em sua maioria são resolvidos com recursos puramente geométricos.

Está baseado no artigo Problemas de Máximo e Mínimo na Geometria Euclidiana

de Djairo [2]. Os principais requisitos são a Geometria Euclidiana plana elementar e

a Geometria Analítica, matérias do 1o e 2o graus. Alguns comentários e observações

usam algum conhecimento de Trigonometria e Cálculo Diferencial, mas podem ser

omitidos pelo leitor que não domine essa ferramenta. Não evitamos o uso de recur-

sos mais avançados para dar oportunidade àquele aluno mais aplicado, bem como

mostrar a relação da matemática em seus diversos níveis de conhecimento.

O interesse por esse tipo de problema é muito antigo, já na antiguidade os ma-

temáticos demonstravam um grande interesse por eles. Euclides (± 300 a.C.), em

sua obra Elementos, (Livro 6, proposição 27) fala de um problema de maximiza-

ção, que consiste em achar o maior produto possível de dois números cuja soma era

xii



Notações INTRODUÇÃO

dada. Mais tarde, Zenodorus (200 a.C a 140 a.C) estudou a área de uma �gura com

perímetro �xado e o volume de um sólido com superfície �xada. Ele veri�cou que

entre todos os polígonos regulares com mesmo perímetro o polígono regular é o que

abrange a maior área. Problemas deste tipo vêm sendo abordados pelos matemáti-

cos desde os primórdios da geometria.

Porém problemas sociais, políticos e de formação de professores têm acarretado

um gradativo abandono do ensino de geometria no Brasil. Com o Movimento da

Matemática Moderna na década de 60 isso se intensi�cou ainda mais, dado ao ex-

tremo formalismo apresentado naquela época. Eu, particularmente, não tive uma

boa formação geométrica quando estudante das séries iniciais, e ainda percebo um

grande despreparo pelos professores que lecionam esse importantíssimo tópico da

matemática, muitos resultados simples e ainda assim elegantes me foram omitidos

em minha formação. Como um apaixonado pela matemática, e em particular pela

geometria me inquietava quando via pessoas com certo nível de conhecimento que

não sabem diferenciar as simples �guras geométricas planas, tais como: quadrado,

retângulo, losango, trapézio, tratando-as todas indistintamente de quadrado, por

terem quatro lados. Essa realidade deve mudar, pois a geometria ajuda o cidadão

a conhecer melhor o mundo em que habita. A escolha desse tema vai ao encontro

desses objetivos, fascina pela beleza nas construções e resultados, é de fácil com-

preensão na sua essência, é comumente reconhecível na natureza, e traz muito de

conhecimentos matemáticos, além de estimular o uso de novas tecnologias em sala

de aula. Outrossim possibilita uma atuação diferente na sala de aula, transformando

o aluno em um sujeito ativo da sua aprendizagem, entre o aplicar a matemática e o

fazer arte.

O trabalho foi dividido em 4 capítulos:
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Notações INTRODUÇÃO

No Capítulo 1 falamos de resultados preliminares, que são algumas De�nições,

Proposições, Colorários, Teoremas e Lemas. Os resultados apresentados nesse capí-

tulo servirão para resolver os problemas que surgirão nos capítulos seguintes. Usa-

mos dados de [2], [7], [8].

No Capítulo 2 usaremos os resultados apresentados no capítulo anterior para re-

solver problemas de maximização de área e minimização de perímetro de triângulos

e polígonos convexos, apresentamos também uma prova da desigualdade isoperimé-

trica para polígonos. Usamos dados de [2], [4], [5], [7].

No Capítulo 3 apresentamos alguns problemas clássicos de máximos e mínimos,

como o problema da estátua de Regiomontanus, que busca a distância ideal para

um observador ter o maior ângulo de visão; o Problema de Fagnano que consiste em

inscrever num triângulo acutângulo outro triângulo de menor perímetro possível; o

Problema de Fermat que busca minimizar a soma PA+ PB + PC, onde A, B e C

são pontos de um plano e P um ponto genérico desse plano; o Problema de Dido

que busca entre todas as curvas fechadas de um dado comprimento L aquela que

engloba maior área. A solução de cada problema é comentada e servirá para solução

de problemas similares e suas variações. Usamos dados de [1], [2], [7].

No Capítulo 4 apresentamos alguns exercícios propostos que podem ser resolvidos

fazendo uso das a�rmações feitas no capítulo 1, bem como de resultados apresentados

nas resoluções dos problemas apresentados nos capítulos 2 e 3. Usamos dados de

[3], [7]

Finalmente, nas Considerações Finais apresentamos os ganhos pela realização

desse trabalho e a motivação para outros.

As ilustrações, foram produzidas com o auxílio do Geogebra e são de autoria

própria.
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Capítulo 1

PRELIMINARES

1.1 Resultados preliminares

Neste capítulo apresentaremos algumas Proposições, Corolários, Teoremas e Le-

mas que serão conclusivos nas demonstrações das a�rmações deste próprio capítulo,

bem como dos problemas tratados nos capítulos seguintes.

Proposição 1 Se ABC é um triângulo com AB=c, AC=b e BC=a tal que B̂ > Ĉ,

então AC = b > c = AB.

Demonstração: Como B̂ > Ĉ, podemos traçar a semirreta
−−→
BP , onde P é um

ponto do lado AC de tal modo que CB̂P = 1
2
(B̂ − Ĉ). (ver Figura 1.1).

1



Resultados preliminares Capítulo 1

Figura 1.1: Relação entre os ângulos e os lados opostos de um triângulo.

Como AP̂B é um ângulo externo do triângulo BCP , temos:

AP̂B = CB̂P +BĈP =
1

2
(B̂ − Ĉ) + Ĉ =

1

2
(B̂ + Ĉ).

Por outro lado temos:

AB̂P = B̂ − 1

2
(B̂ − Ĉ) =

1

2
(B̂ + Ĉ).

Concluímos que o triângulo ABP é isósceles de base BP , então:

c = AB = AP < AP + PC = b.

�

Proposição 2 (Desigualdade Triangular) Em todo triângulo, cada lado tem com-

primento menor que a soma dos comprimentos dos outros dois lados.

Demonstração: Seja ABC um triângulo com AB = c, AC = b e BC = a. Nosso

trabalho é mostrar a desigualdade a < b + c, sendo as demais obtidas de forma

análoga.

2



Resultados preliminares Capítulo 1

Marque o ponto D no prolongamento do segmento CA de modo que A ∈ CD e

AD = AB (ver Figura 1.2).

Figura 1.2: A desigualdade triangular.

Vemos que:

CD = CA+ AD = CA+ AB = b+ c.

Pela Proposição 1 basta mostrarmos que BD̂C < DB̂C. Como

BD̂A = DB̂A,

observemos que:

BD̂C = BD̂A = DB̂A < DB̂A+ AB̂C = DB̂C.

Assim a < b+ c

De maneira análoga, obtemos os outros casos

b < a+ c, c < a+ b.

�

3



Resultados preliminares Capítulo 1

Uma consequência importante da desigualdade triangular é a seguinte, que apre-

sentamos como:

Corolário 2.1 Seja P um ponto do interior do triângulo ABC, então é válida a

desigualdade PB+PC<AB+AC.

Demonstração: Prolongue a semirreta
−−→
BP até que a mesma encontre o lado AC

no ponto Q. (ver Figura 1.3).

Figura 1.3: Consequências da desigualdade triangular.

Aplicando a desigualdade triangular sucessivamente aos triângulos ABQ e CPQ,

obtemos:

BQ < AB + AQ

e

PC < QC + PQ.

Somando as desigualdades membro a membro, obtemos:

BQ+ PC < AB + AQ+QC + PQ.

Subtraindo PQ de cada membro, obtemos:

4



Resultados preliminares Capítulo 1

(BQ− PQ) + PC < AB + (AQ+QC) + PQ− PQ.

Finalmente concluímos que:

PB + PC < AB + AC.

�

De�nição: Dados dois pontos distintos A e B, pertencentes a um plano π, seja 2c

a distância entre eles. Elipse é o conjunto dos pontos de π cuja soma das distâncias

a A e B é constante 2a (sendo 2a > 2c), ou seja,

Elipse = {P ∈ π|PA+ PB = 2a}.

Uma consequência do Corolário 2.1 é a a�rmação a seguir:

A�rmação 1 Dado um ponto Q no interior de uma elipse, sendo A e B seus focos,

então QA+QB < 2a e também, dado um ponto R no exterior de uma elipse, então

RA+RB > 2a (ver Figura 1.4).

Figura 1.4: Ponto interior e exterior à elipse.

5



Resultados preliminares Capítulo 1

Perceba que Q é um ponto no interior do triângulo ABP , pelo corolário 2.1

temos que:

QA+QB < PA+ PB = 2a.

Agora considerando o triângulo ABR, podemos notar que P é interior a ele e

pelo mesmo corolário 2.1 temos que RA+RB > PA+ PB = 2a. �

O proposição a seguir é conhecida como problema de Heron de Alexandria, que

viveu entre 150 a.C. e 250 d.C.

Proposição 3 (Problema de Heron de Alexandria) Dados dois pontos P e Q

situados em um mesmo semiplano determinado pela reta r, a curva de menor com-

primento ligando os pontos P e Q e tocando r é formada pelos segmentos de reta

PA e AQ, onde A ∈ r é tal que os ângulos PÂN e NÂQ têm a mesma medida,

onde
−−→
AN é a semirreta ortogonal a r, que tem origem A e que está do mesmo lado

dos pontos P e Q.

Demonstração: Seja P ′ o simétrico de P em relação à reta r, a�rmamos que o

ponto A desejado é o ponto de intersecção de P ′Q com r (ver Figura 1.5)

6



Resultados preliminares Capítulo 1

Figura 1.5: Curva de menor comprimento ligando P a Q e tocando r.

(O protocolo de construção dessa �gura no Geogebra encontra-se no Apêndice)

De fato, seja B um outro ponto qualquer de r distinto de A, então PA+AQ <

PB + BQ. Basta observar que os triângulos PCB e P ′CB são congruentes, bem

como os triângulos PCA e P ′CA. Isso garante que P ′A = PA e P ′B = PB.

Aplicando a desigualdade triangular ao triângulo P ′BQ, temos:

P ′Q < P ′B +BQ

P ′A+ AQ = PA+ AQ < PB +BQ.

Para concluirmos nossa demonstração precisamos provar a igualdade dos ângulos

PÂN e NÂQ. Perceba que os triângulos PCA e P ′CA são congruentes, consequen-

temente os ângulos AP̂C e AP̂ ′C são iguais. Agora fundamentado pelo teorema das

paralelas cortadas por uma transversal, justi�camos que:

7



Resultados preliminares Capítulo 1

a) Os ângulos AP̂C e PÂN são iguais, pois são ângulos alternos internos, e

b) Os ângulos AP̂ ′C e NÂQ são iguais, pois são ângulos correspondentes.

Segue que PÂN = QÂN. �

Observação: A proposição 3 é um pouco mais geral, de fato, podemos provar

que a curva de menor comprimento ligando os pontos P e Q e tocando r é formada

pelos segmentos de reta PA e AQ. Usando um resultado de geometria que diz

que "a curva de menor comprimento ligando dois pontos é o segmento de reta com

extremidades nestes pontos". Vemos que:

(i) A curva γ de comprimento mínimo toca r em apenas um ponto. De fato,

suponha, por contradição, que γ toca r em dois pontos A e A. Podemos

perceber que a curva γ obtida a partir de γ pela substituição do trecho AQ

pelo segmento de reta AQ tem um comprimento menor que o comprimento de

γ. (ver Figura 1.6)

(ii) A curva γ deve ser formada por dois segmentos de reta. De fato, seja A o ponto

onde γ toca r, então necessariamente o trecho PA da curva é um segmento de

reta.

Figura 1.6: Curva ligando P a Q e tocando r em dois pontos.

8



Resultados preliminares Capítulo 1

Complementando a Proposição 3, temos

Lema 3.1 Seja A a solução do problema de minimização estudado na Proposição

3. Sejam B e B1 pontos da reta r, tais que B1 se situa (estritamente) entre A e B.

Então

PB +BQ > PB1 +B1Q.

Demonstração: Como na Proposição 3, seja P ′ o simétrico de P com relação a r.

(ver Figura 1.7)

Figura 1.7: Ponto B1 entre os pontos A e B.

Então a desigualdade a provar é equivalente a

P ′B +BQ > P ′B1 +B1Q.

Observe que B1 é um ponto do interior do triângulo P ′BQ, pelo Corolário 2.1 a

desigualdade �ca provada.

�
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Resultados preliminares Capítulo 1

Proposição 4 Considere um triângulo APQ e seja R o ponto médio do lado PQ.

Então é válida a desigualdade

RA <
1

2
(PA+QA)

Demonstração: Seja A′ o ponto tal que A′PAQ é um paralelogramo. (ver Figura

1.8).

Figura 1.8: Triângulo APQ com R ponto médio de PQ.

Usando um argumento de geometria analítica temos que

(PQ)2 + (AA′)2 = 2(AP )2 + 2(AQ)2

como A′PAQ é um paralelogramo temos AA′ = 2AR, então

(PQ)2 + 4(AR)2 = 2[(AP )2 + (AQ)2] (1.1)

(PQ)2 + 4(AR)2

2
= (AP )2 + (AQ)2 (1.2)

Usando a desigualdade triangular no triângulo APQ temos:

−PQ < AP − AQ < PQ

10
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isto é,

|AP − AQ| < PQ

Elevando ao quadrado a expressão acima temos

(AP )2 + (AQ)2 − 2(AP )(AQ) < (PQ)2

(AP )2 + (AQ)2 < (PQ)2 + 2(AP )(AQ)

pela equação (1.2) temos

(PQ)2 + 4(AR)2

2
< (PQ)2 + 2(AP )(AQ)

e

4(AR)2 < (PQ)2 + 4(AP )(AQ)

somando 4(AR)2 em cada membro da desigualdade acima temos:

8(AR)2 < (PQ)2 + 4(AR)2 + 4(AP )(AQ)

pela equação (1.1) temos

8(AR)2 < 2[(AP )2 + (AQ)2] + 4(AP )(AQ)

4(AR)2 < (AP )2 + (AQ)2 + 2(AP )(AQ)

4(AR)2 < (AP + AQ)2

2AR < AP + AQ

AR <
1

2
(AP + AQ).

�
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De�nição 1 Um conjunto Γ será convexo se P e Q pertencem a Γ, então o ponto

médio R do segmento PQ também pertence a Γ.

Proposição 5 A elipse é uma curva estritamente convexa

Demonstração: Podemos mostrar que o conjunto Γ dos pontos P do plano tais

que

PA+ PB ≤ 2a

é um conjunto convexo. E, além disso, mostraremos que se P e Q estão sobre a

elipse, então R é tal que

RA+RB < 2a

Sendo A e B os focos da elipse e fazendo uso da proposição 4 que diz que

RA <
1

2
(PA+QA)

e

RB <
1

2
(PB +QB)

somando as duas desigualdades e lembrando que PA + QA = PB + QB = 2a

concluímos a demonstração. �

Proposição 6 Seja P um ponto sobre uma elipse, então a reta normal à elipse em

P é a bissetriz do ângulo AP̂B, onde A e B são os focos dessa elipse. (ver Figura

1.9)
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Figura 1.9: Retas tangente e normal à elipse.

Demonstração: Seja r a reta tangente à elipse no ponto P e seja P ′ outro ponto

de r diferente de P , como a elipse é estritamente convexa P ′ é exterior à elipse,

pela A�rmação 1 temos que P ′A+ P ′B > 2a, ou seja, de todos os pontos de r, P é

o que minimiza a soma das distâncias aos focos A e B. Pela Proposição 3 a reta s

perpendicular a r por P é a bissetriz do ângulo AP̂B. �

A a�rmação seguinte é conhecida como Teorema de Viviani, sua prova pode ser

feita facilmente utilizando o conceito de área.

Teorema 2 (Teorema de Viviani) A soma das distâncias aos lados de um triân-

gulo equilátero de um ponto pertencente ao seu interior ou a seus lados é constante

e igual à medida da altura do triângulo.

Demonstração: Seja ABC um triângulo equilátero de lado a, altura h e área S,

seja P um ponto do interior desse triângulo, (ver Figura 1.10).
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Figura 1.10: Demonstração do Teorema de Viviani.

É claro que a área do triângulo ABC é igual a soma das áreas dos triângulos

ABP , ACP e BCP , logo,

S = S1 + S2 + S3

a · h
2

=
a · h1

2
+
a · h2

2
+
a · h3

2

colocando a
2
em evidência no segundo membro, obtemos

a

2
h =

a

2
(h1 + h2 + h3)

e �nalmente obtemos:

h = h1 + h2 + h3

Observação 1 Caso P esteja sobre um dos lados, P e os extremos desse lado não

formará um triângulo, por estarem alinhados, mais a soma das áreas dos outros dois

triângulos será igual a S.

Observação 2 Se P estiver sobre um dos vértices a igualdade é evidente. �
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Proposição 7 Considere a região formada por uma curva convexa γ1 e pelo seg-

mento AB. Suponha que a seguinte propriedade se veri�que: dado qualquer ponto

P sobre γ1, o ângulo AP̂B é reto. Então γ1 é um semicírculo. (ver Figura 1.11).

Figura 1.11: Semicírculo - AP̂B = 90o

Demonstração: Seja O o ponto médio do segmento AB. Devemos então provar

que OP = OA. Para isso basta mostrar que α = α′.

Trace uma reta passando por O paralela ao segmento PB, essa reta cortará o seg-

mento AP em M , como os triângulos AOM e ABP são semelhantes M é o ponto

médio do segmento AP , os ângulos AM̂O e PM̂O são retos. Logo, pelo critério

LAL os triângulos AMO e PMO são congruentes o que resulta em α = α′. �
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Capítulo 2

MAXIMIZANDO A ÁREA,

MINIMIZANDO O PERÍMETRO

Nesse capítulo apresentaremos algumas problemas de máximos e mínimos rela-

cionadas com a geometria. Principalmente no que diz respeito a maximizar a área

e minimizar o perímetro de triângulos e de polígonos convexos.

2.1 Maximizando a área, minimizando o perímetro

de triângulos

Esse nosso estudo consiste na seguinte problemática (por enquanto se referindo

a triângulos): Tendo que cobrir uma área �xa qual deve ser o menor comprimento,

ou tendo um comprimento determinado qual é a maior área que se pode abranger?

Para darmos início ao nosso diálogo iremos propor dois problemas:

PROBLEMA 1: Entre todos os triângulos de mesma área, qual é o de menor

perímetro?

16
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PROBLEMA 2: Entre todos os triângulos de mesmo perímetro, qual é o de

maior área?

Resolução do Problema 1: A�rmamos que é o triângulo equilátero.

Observação 3 Nesta demonstração estamos assumindo a existência de um triân-

gulo de menor perímetro e de área constante.

De fato, suponhamos por absurdo que os lados AB e BC do triângulo ABC

sejam de comprimento diferentes. Seja r a reta que passa pelo ponto B e é paralela

ao lado AC e seja D a intersecção da reta r com a reta s, perpendicular à r passando

pelo ponto médio de AC. (ver Figura 2.1).

Figura 2.1: Fixando a área e minimizando o perímetro.

Pela Proposição 3, o triângulo ADC tem perímetro menor que o do triângulo

ABC, mas ambos têm a mesma área, pois têm a mesma base e mesma altura, o que

contradiz a hipótese. �

Observação 4 É claro na demonstração do Problema 1 que o triângulo procurado

tem que ser isósceles.
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Baseado na Observação 4 podemos ver que o problema tem solução. (ver Figura

2.2).

Figura 2.2: Triângulo isósceles solução do Problema 1.

De fato, então a área do triângulo é dada por:

A =
b

2
·
√
a2 − b2

4

e logo o perímetro é dado em função de b (0 < b <∞) pela função

p(b) = b+ 2

√
4A2

b2
+
b2

4

p é função contínua e:

lim
b→0+

p(b) =∞

e

lim
b→∞

p(b) =∞

então p(b) tem que ter um mínimo.

Resolução do Problema 2: Novamente a�rmamos que um triângulo com tal ca-

racterística é equilátero.

Observação 5 Nesta demonstração estamos assumindo a existência de um triân-
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gulo de perímetro constante e maior área.

De fato, Usando as construções do problema 1, (ver Figura 2.3) temos AB e BC

de comprimentos diferentes. Considere um ponto D′ ∈ s acima de D que satisfaz:

AD′ +D′C = AB +BC.

Figura 2.3: Fixando o perímetro e maximizando a área.

É claro que D′ não pode ser interior ao triângulo ACD, pois pelo Corolário 2.1

teríamos AD′ +D′C < AD +DC o que seria contraditório

Dessa forma a área do triângulo AD′C é maior que a área do triângulo ADC, e

este último tem a mesma área do triângulo ABC, por terem mesma base e mesma

altura, porém os triângulos AD′C e ABC têm o mesmo perímetro.

Vamos provar que a solução do problema 2 é um triângulo equilátero utilizando a

desigualdade entre as médias aritmética e geométrica, que foi um tema amplamente

abordado no programa PROFMAT.

A desigualdade entre as médias aritméticas e geométricas a�rma que para um

conjunto de valores x1, x2, x3, ..., xn, positivos sempre teremos:
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x1 + x2 + x3 + · · ·+ xn
n

≥ n
√
x1 · x2 · x3 · ... · xn.

Ou seja, a média aritmética sempre é maior do que ou igual a média geométrica

e a igualdade só se veri�ca se x1 = x2 = x3 = · · · = xn. A demonstração pode ser

obtida em [5].

Assim, considere um triângulo cujos lados medem: a, b e c, de perímetro cons-

tante e igual a:

2p = a+ b+ c.

Pela a fórmula de Heron, podemos escrever a área de um triângulo em relação a

seus lados:

A =
√
p(p− a)(p− b)(p− c).

onde p é o semiperímetro.

A área será máxima se o produto (p− a)(p− b)(p− c) for máximo.

Vamos utilizar a desigualdade entre as médias aritmética e geométrica conside-

rando os valores x1 = (p − a), x2 = (p − b) e x3 = (p − c). Conforme enunciado,

temos:

x1 + x2 + x3
3

≥ 3
√
x1x2x3.

(p− a) + (p− b) + (p− c)
3

≥ 3
√

(p− a)(p− b)(p− c).
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3p− (a+ b+ c)

3
≥ 3
√

(p− a)(p− b)(p− c)

3p− 2p

3
=
p

3
≥ 3
√

(p− a)(p− b)(p− c)

p3

27
≥ (p− a)(p− b)(p− c)

Como p é constante, p
3

27
também é, logo o produto (p−a)(p−b)(p−c) será menor

do que ou igual a p3

27
e a igualdade, que é o valor máximo, só ocorrerá se, e somente

se x1 = x2 = x3, ou seja, (p− a) = (p− b) = (p− c) de onde obtemos que a = b = c

concluindo a demonstração.

2.2 Maximizando a área, minimizando o perímetro

de polígonos

Nesta seção estenderemos os problemas 1 e 2 para polígonos de n lados.

PROBLEMA 3. Entre todos os polígonos de n lados e de mesma área, qual deles

tem o menor perímetro?

PROBLEMA 4. Entre todos os polígonos de n lados e de mesmo perímetro, qual

deles tem a maior área?

A resposta a ambos os problemas é a mesma: é o polígono regular com n lados.

Resolução do Problema 3.
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Seja ℘ o polígono de n lados que satisfaz o problema 3, suponhamos que ℘ tem

dois lados AB e BC de comprimentos diferentes. Seja r a reta que passa por B e é

paralela ao segmento AC, (ver Figura 2.4).

Figura 2.4: Polígono regular.

Pela proposição 3 existe B′ sobre r tal que:

AB′ +B′C < AB +BC.

Logo, podemos obter um polígono de n lados com menor perímetro e de igual

área substituindo os lados AB e BC por AB′ e B′C. Procedendo de igual maneira,

considerando dois a dois os lados consecutivos do polígono, concluímos que ele deve

ser equilátero.

Devemos provar que o polígono deve ser equiângulo. Considere três lados con-

secutivos AB, BC e CD, que já sabemos serem congruentes. Suponhamos que os

ângulos AB̂C = α > β = BĈD. (ver Figura 2.5).
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Figura 2.5: Polígono equiângulo - Prova.

(O protocolo de construção dessa �gura no Geogebra encontra-se no Apêndice)

Agora, escolhemos o ponto F sobre o lado CD de modo que o ângulo CB̂F = θ

seja tal que 2θ < α − β, ou seja, α − β − 2θ > 0. Sobre o prolongamento de AB

tome o ponto E de modo que EC seja paralelo a BF. Seja ε a medida do ângulo

EB̂F e ω a medida do ângulo BF̂C. Temos os seguintes ângulos rasos:

α + ε− θ = 180o

e

β + ω + θ = 180o.

Igualando as duas expressões, obtemos:

β + ω + θ = α + ε− θ

daí, obtemos:

ω − ε = α− β − 2θ > 0.
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Então, concluímos:

ω > ε

Consequentemente obtemos (provaremos em seguida):

BE + EF < BC + CF. (2.1)

Daí, substituindo a parte ABCD do polígono considerado por AEFD, obtemos um

outro polígono de mesma área e perímetro menor que o anterior, o que é absurdo,

pois já foi provado que o polígono equilátero é o de menor perímetro. �

Demonstração da desigualdade 2.1:

Considere o quadrilátero BECF da Figura 2.5, de lados BF e EC paralelos e

ângulos da base ω > ε. Traçamos a reta s pelo ponto médio de BF que intersecta

a reta r =
←→
EC no ponto X, pela Proposição 3 de todos os pontos de r, X é o

que minimiza a soma das distâncias aos pontos B e F . Levando em consideração a

posição do ponto E destacamos duas situações:

Situação 1: E está entre X e C, (ver Figura 2.6).
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Figura 2.6: Quadrilátero BECF com E entre X e C.

Nesse caso a desigualdade 2.1 �ca provada pelo Lema 3.1

Situação 2: X está entre E e C, (ver Figura 2.7).

Figura 2.7: Quadrilátero BECF com X entre E e C.

Neste caso se designarmos por C ′ o simétrico de C em relação à reta s, a desi-

gualdade 2.1 é equivalente a:

BE + EF < BC ′ + C ′F

a qual é precisamente o caso apresentado na Situação 1, pois E está entre X e C ′.

Resolução do Problema 4: Vamos utilizar argumentos utilizados e já provados
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no Problema 3.

Seja ℘ o polígono de n lados de maior área entre todos os polígonos de n lados

que têm o mesmo perímetro P . Digamos que a área desse polígono seja S. Se ℘

não for regular, então, pelo que �cou provado na resolução do Problema 3, existe

um outro polígono ℘̄ regular de mesma área S e perímetro P̄ < P . A partir de ℘̄

podemos construir um polígono ℘′ de n lados de perímetro P e área S ′ > S, o que

é absurdo, pois ℘ já tem área máxima.

Tome dois lados consecutivos de ℘̄, AB e BC, (ver Figura 2.8).

Figura 2.8: Polígono ℘′ obtido a partir de ℘̄.

Agora escolha um ponto B′ sobre a reta s perpendicular a AC de modo que

(AB′ +B′C)− (AB +BC) = P − P̄ .

O polígono ℘′ é obtido de ℘̄ substituindo-se os lados AB e BC por AB′ e B′C. �
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2.3 A desigualdade isoperimétrica para polígonos

PROBLEMA 5: Dados dois polígonos regulares de mesmo perímetro P , aquele

que tem maior área é o que possui um maior número de lados.

Para a demonstração desse problema usaremos um pouco de trigonometria e li-

mite.

Resolução do Problema 5:

Um polígono regular é a união de n triângulos isósceles congruentes de base e altura

medindo respectivamente `n e an, onde `n é a medida de cada lado do polígono e an

o seu apótema (distância do centro a qualquer um dos lados). (Ver Figura 2.9).

Figura 2.9: Polígono regular formado por n triângulos isósceles

O perímetro do polígono será n vezes a medida do seu lado e sua área será n

vezes a área de um dos triângulos isósceles que o compõe. Vamos expressar a área

do polígono regular por S(n) e seu perímetro por P , Temos as seguintes equações:
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S(n) = n
`nan

2
(2.2)

e

P = n`n (2.3)

O ângulo A1ÔA2 é o ângulo de uma volta completa dividido por n, ou seja, 2π
n

radianos, queremos enfatizar na Figura 2.9 o triângulo retângulo A1MO reto em

M , como o triângulo A1OA2 é isósceles, a altura OM é também a bissetriz, logo

o ângulo A1ÔM é a metade do ângulo A1ÔA2, ou seja, A1ÔM = π
n
radianos. E

também A1M é a metade de A1A2, ou seja, A1M = `n
2
. Calculando a tangente de

A1ÔM , obtemos:

tg(
π

n
) =

`n
2an

=
A1M

OM
(2.4)

Dividindo (2.2) por (2.3), obtemos:

S(n)

P
=
n `nan

2

n`n

que podemos escrever como:

an =
2S(n)

P
(2.5)

Agora, dividindo (2.3) por (2.4), obtemos:

P
tg(π

n
)

=
n`n
`n
2an

dessa, obtemos:
P

tg(π
n
)

= 2nan
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e �nalmente:

an =
P

2ntg(π
n
)

(2.6)

De (2.5) e (2.6), obtemos:
2S(n)

P
=

P
2ntg(π

n
)

que é melhor representada por:

S(n) =
P2

4tg(π
n
)
· 1

n
(2.7)

Agora, em (2.7) fazemos a substituição 1
n

= 1
π
· π
n
, obtemos:

S(n) =
P2

4tg(π
n
)
· 1

π
· π
n

Arrumando os elementos, obtemos:

S(n) =
P2

4π
·

π
n

tg(π
n
)

(2.8)

Como P é constante, S(n) varia em função de n. Como n > 2, então 0 < π
n
< π

2
,

basta estudar a função:

f(x) =
x

tg(x)
(2.9)

no intervalo (0, π
2
), onde x = π

n
.

Sabemos que tg(x) = sen(x)
cos(x)

, assim:

f(x) =
x

sen(x)
cos(x)

que podemos escrever:
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f(x) =
x

sen(x)
· cos(x) (2.10)

Quando n→∞, x→ 0, para n > 2, temos os limites (provaremos em seguida):

lim
x→0

f(x) = 1

e

lim
x→π

2

f(x) = 0

Como sen(x) > 0 em 0 < x < π
2
então f é contínua no intervalo (0, π

2
) e sua

derivada f ′(x) < 0, ela é estritamente decrescente, dessa forma S(n) é estritamente

crescente quando n cresce, assim se n < m as áreas dos polígonos regulares de n e

m lados será tal que:

S(n) < S(m)

�

A demonstração acima tem algo mais a nos dizer. À medida que n cresce a área

S(n) também cresce, sendo limitada superiormente por P
2

4π
, pois f(x) tende a 1,

quando n cresce, mas não atinge esse valor, então em (2.8), temos:

S(n) =
P2

4π
·

π
n

tg(π
n
)
<
P2

4π
· 1 (2.11)

Designando por S e P respectivamente a área e o perímetro de um polígono (regular

ou não), segue-se de (2.11):
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4πS < P2,

que é chamada de desigualdade isoperimétrica para polígonos.

A seguinte forma mais geral da desigualdade isoperimétrica pode ser vista em

[6].

A área S englobada por qualquer curva simples plana C, de comprimento P ,

satisfaz a desigualdade

4πS ≤ P2,

e a igualdade ocorre, se e somente se, C for um círculo.

Na demonstração anterior usamos o fato que

lim
x→0

x

sen(x)
= 1

Uma demonstração geométrica desse limite básico, pode ser obtida no livro de

Serge Lang [4].
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Capítulo 3

PROBLEMAS CLÁSSICOS DE

MÁXIMOS E MÍNIMOS

Nesse capítulo mostraremos alguns problemas de extremos clássicos. O termo

clássico é devido a sua origem histórica. No estudo desses problemas, na maioria

das vezes, será feita uma demonstração construtiva da solução. Entretanto, em

alguns casos, começaremos com a hipótese de que a solução exista e em seguida,

analisaremos esta hipótese e extrairemos conclusões que �nalmente nos permitirão

descrever e construir a solução.

3.1 Problema de Regiomontanus

Problema: Suponha uma estátua de altura h sobre um pedestal de altura p.

Um homem de altura m (m < p) enxerga do pé ao topo da estátua sob um ângulo

α, que varia de acordo com a distância d entre o homem e a base do pedestal.

Determinar d para que o ângulo de visão α seja o maior possível (um maior ângulo

de visão determinaria uma imagem maior na retina ou, de outra forma, uma visão

mais completa do objeto). (Ver Figura 3.1)
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Figura 3.1: Representação geométrica do problema de Regiomontanus

Solução do problema de Regiomontanus

Esse problema poderia ser resolvido com as ferramentas do Cálculo, mas prefe-

rimos uma solução simples e engenhosa, utilizando argumentos da geometria eucli-

diana, por estar mais relacionado com a essência desse trabalho, que apresentamos

a seguir.

Primeiramente, iremos deixar claro que os pontos A, B e C na �gura 3.1 repre-

sentam, respectivamente, o topo da estátua, o pé da estátua e os olhos do observador.

É claro que o problema tem solução, pois se o ponto C se deslocar para a direita

da estátua, podemos notar que o ângulo de visão vai se tornando cada vez menor.

Por outro lado, se o ponto C for se aproximando da estátua, poderemos notar que

o ângulo de visão aumenta, e torna a diminuir tendendo a zero quando �car muito

próximo da reta que passa pelos pontos A e B. Assim, deve existir uma posição para

o ponto C tal que o ângulo α = AĈB de visão é máximo, e portanto o problema

tem solução.

Para construirmos então a solução traçamos a reta r paralela à linha do chão
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que passa pelo ponto C. Agora, traçamos a circunferência que passa pelos pontos A

e B e tangencia à reta r. Esta circunferência tem centro na mediatriz do segmento

AB e raio igual à distância do ponto médio do segmento AB até a reta r. Essa

circunferência tangencia a reta r em um ponto C ′, o qual queremos mostrar que é o

ponto que nos fornece a distância exata para o maior ângulo de visão. (ver Figura

3.2)

Figura 3.2: Solução geométrica do problema de Regiomontanus

Consideremos que o ponto C percorre livremente a reta r. Para uma determinada

posição de C o ângulo α será o maior possível. Queremos mostrar que o AĈ ′B >

AĈB para todo C!, C 6= C ′. Seja D o ponto de intersecção da reta que passa pelos

pontos A e C com a circunferência. Note que AĈ ′B = AD̂B, pois são ângulos

inscritos em uma mesma circunferência e determinados pelo mesmo arco. Agora

baseado no fato que a medida de qualquer ângulo externo de um triângulo é igual a

soma das medidas dos dois ângulos internos não adjacentes a ele, o que nos permite

escrever que ( AD̂B é ângulo externo relativo ao vértice D no ∆DBC):

AĈ ′B = AD̂B = AĈB +DB̂C > AĈB.
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Portanto o ponto de tangência C ′ é o que nos fornece o ângulo máximo de visão.

Conhecido o ponto C ′ que torna o ângulo de visão máximo, pretendemos obter a

distância d do homem ao pedestal em função dos parâmetros: h (altura da estátua),

p (altura do pedestal) e m (altura do homem). (ver Figura 3.3)

Figura 3.3: Cálculo de d no problema de Regiomontanus

O triângulo BMO é retângulo em M que é o ponto médio do segmento AB.

Nele temos os catetos BM = h/2 eMO = d e a hipotenusa BO = R = h/2+p−m.

Aplicando o Teorema de Pitágoras no triângulo BMO obtemos:

(MO)2 + (BM)2 = (BO)2

substituindo os parâmetros fornecidos para cada lado do triângulo obtemos

d2 + (
h

2
)2 = [(

h

2
) + (p−m)]2

35



Problema de Regiomontanus Capítulo 3

desenvolvendo a potência no segundo membro, obtemos:

d2 + (
h

2
)2 = (

h

2
)2 + 2

h

2
(p−m) + (p−m)2

e agora cancelando os termos iguais e pondo em evidência (p−m), obtemos

d2 = (p−m)(h+ p−m)

e �nalmente

d =
√

(p−m)(h+ p−m).

�

Variação do problema de Regiomontanus

Este problema foi apresentado na segunda avaliação nacional da disciplina MA11

- Números, Conjuntos e Funções Elementares - turma de 2011 PROFMAT.

Dentro de um campo de futebol, um jogador corre para a linha de fundo do time

adversário ao longo de uma reta paralela à lateral do campo que cruza a linha de

fundo fora do gol ver Figura 3.4 . Os postes da meta distam a e b (com a < b) da

reta percorrida por ele. Mostre que o jogador vê a meta sob ângulo máximo quando

sua distância x ao fundo do campo é igual a
√
ab.
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Figura 3.4: Esquema para o problema do campo

A solução para esse problema levou em consideração a seguinte hipótese:

Levando em conta que um ângulo é máximo num certo intervalo quando sua

tangente é máxima, use a fórmula:

tg(x− y) =
tg(x)− tg(y)

1 + tg(x) · tg(y)

para resolver o problema acima.

Solução:

Em cada instante, o jogador vê a meta sob o ângulo α = α2 − α1, onde α1 e

α2 são os ângulos entre sua trajetória e as retas que o ligam aos postes da meta.

Temos:

tg(α) =
tg(α2)− tg(α1)

1 + tg(α2) · tg(α1)
.

Se x é a distância do jogador ao fundo do campo, temos tg(α1) = a
x
e tg(α2) = b

x
,

logo

tg(α) =
b
x
− a

x

1 + b
x
· a
x

=
b−a
x

1 + ab
x2

.
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Agora multiplicando numerador e denominador da expressão acima por x, obte-

mos

tg(α) =
b− a
x+ ab

x

.

Como o numerador b−a é constante, tg(x) é máxima quando o denominador for

mínimo. Ou seja, é preciso achar x que minimiza a expressão x+ ab
x
.

Como a média aritmética é sempre maior do que ou igual à média geométrica,

então
1

2

(
x+

ab

x

)
≥
√
x · ab

x
=
√
ab,

ou seja, o denominador é sempre maior do que ou igual a 2
√
ab. A igualdade vale

se e somente se os dois termos da média são iguais, isto é, quando

x =
ab

x
,

x2 = ab,

x =
√
ab.

Portanto

x+
ab

x

atinge seu menor valor quando x =
√
ab. �

É claro que esse problema poderia ser resolvido de maneira bem mais simples,

aproveitando os resultados já demonstrados do problema original de Regiomontanus.

No problema original temos uma estátua de altura h, sobre um pedestal de altura p

e um homem de altura m.

Nessa variação apresentada podemos apresentar a associação m = 0, pois a linha

apresentada não é a linha de visão do homem e sim a linha que o aproxima da meta,

também percebemos que h+ p = b, p = a e d = x.
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No problema original a distância d que fornece maior ângulo de visão é obtido

pela expressão

d =
√

(p−m)(h+ p−m)

fazendo as devidas substituições obtemos

x =
√

(a− 0)(b− 0)

e �nalmente

x =
√
ab

que é precisamente o resultado obtido pela utilização da tangente da diferença de

dois ângulos e da desigualdade entre as médias aritméticas e geométricas.

3.2 Problema de Fagnano

Problema: Dado um triângulo acutângulo inscrever nele um outro triângulo com

o menor perímetro possível.

Solução de Fejér

A solução seguinte foi dada em 1900 pelo matemático húngaro L. Fejér. Seja

ABC o triângulo dado. Nós queremos encontrar pontos M , N e P sobre os lados

BC, CA e AB, respectivamente, tal que o perímetro do triângulo MNP é mínimo.

Primeiro, consideramos uma versão mais simples do problema. Considere um ponto

arbitrário P sobre AB. Devemos agora encontrar pontos M e N em BC e CA,

respectivamente, tal que ∆MNP tem perímetro mínimo. (Esse número mínimo é

claro vai depender da escolha de P .) seja P ′ o simétrico do ponto P em relação ao

lado BC e P ′′ o simétrico de P em relação ao lado AC (ver Figura 3.5).
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Figura 3.5: Problema de Fagnano - Solução de Féjer - A

Então CP ′ = CP = CP ′′, P ′ĈB = PĈB e P ′′ĈA = PĈA. De�nindo γ = BĈA,

temos, então, P ′ĈP ′′ = 2γ. Além disso, 2γ < 1800, pois, por suposição γ < 900.

Consequentemente, o segmento de reta P ′P ′′ intercecta os lados BC e AC do triân-

gulo ABC nos pontos M e N , respectivamente, e o perímetro do triângulo MNP

é igual a P ′P ′′. De forma semelhante, se X é qualquer ponto do lado BC e Y é

qualquer ponto do lado AC, o perímetro do triângulo XPY é igual ao comprimento

da linha quebrada P ′XY P ′′, que é maior ou igual a P ′P ′′. Assim, o perímetro do

triângulo PXY é maior do que ou igual ao perímetro do triângulo PMN , e a igual-

dade ocorre precisamente quando X = M e Y = N . Assim, temos de encontrar

um ponto P sobre AB tal que o segmento de reta P ′P ′′ tem comprimento mínimo.

Observe que este segmento de reta é a base de um triângulo isósceles P ′′P ′C com

ângulo constante 2γ em C e lados CP ′ = CP ′′ = CP . Assim, temos que escolher P

sobre o lado AB tal que CP ′ = CP é mínima. Obviamente, para que isso aconteça

P deve ser o pé da altura do triângulo ABC relativa ao lado AB. Observe agora

que, se P é o pé da altura do triângulo ABC relativa ao lado AB, então M e N são

os pés das alturas do triângulo ABC relativos aos lados BC e AC, respectivamente.

Considerando P como o pé da altura relativa ao lado AB, existe um (único)
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triângulo de perímetro mínimo inscrito no triângulo ABC, dentre todos aqueles que

têm P como vértice. Considere agora as soluções análogas, sendo M o pé da altura

relativa ao lado BC e aquela com N sendo o pé da altura relativa ao lado AC. Uma

das três tem que ter o menor perímetro possível. O que se quer argumentar agora é

que as três soluções são a mesma solução. Suponhamos que uma delas é a mínima

(por exemplo, aquela obtida com P sendo o pé da altura relativa ao lado AB). Se,

nesta solução, o ponto M obtido sobre BC não fosse o pé da altura relativa a este

lado, então a solução obtida com M no pé da altura relativa ao lado BC teria perí-

metro menor ainda, o que é uma contradição. Logo, os pontos P , M e N devem ser,

respectivamente, os pés das alturas relativas aos lados AB, BC e AC. Portanto, de

todos os triângulos inscritos no triângulo ABC, o com vértices nos pés das alturas

do triângulo ABC tem perímetro mínimo. �

3.3 Problema de Fermat

Problema: Três pontos A, B e C são dados em um plano, e um quarto ponto P

no plano é procurado de modo que a soma PA+ PB + PC seja mínima.

Solução do problema de Fermat

Este problema foi proposto por Fermat em seu Métodos de determinação de má-

ximos e mínimos e tangentes a curvas. Evangelisto Torriceli lendo este trabalho,

resolveu este problema em algum período antes de 1640, localizando o ponto do

problema (Chamado ponto de Fermat, Torricelli ou Steiner). Isto é conhecido pelo

fato que seu aluno Vincenzo Viviane (1622 - 1703) publicou a solução de seu mestre

no livro De maximis et minimis (1659).
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Se A, B e C são colineares e se B estiver entre A e C, então B é o ponto solução

do problema.

Quando A, B e C não são colineares, então formarão o triângulo ABC. Note

que a solução não está fora do triângulo ABC, pois ao considerarmos um ponto

P fora do triângulo ABC, sempre existirá um ponto P ′ no triângulo ABC tal que

P ′A + P ′B + P ′C < PA + PB + PC, pois P ′B < PB e P ′A + P ′B < PA + PB

(Ver Figura 3.6)

Figura 3.6: Problema de Fermat - P exterior ao triângulo ABC não é solução

Assim, basta analisar o problema para o ponto no triângulo ABC ou no seu

interior, que é um conjunto fechado e limitado.

Observação 6 Vejamos inicialmente, com um exemplo simples, que o ponto P pode

estar no interior do triângulo ABC. Suponha que ABC seja um triângulo equilá-

tero. Então P é o centro deste triângulo, pois traçando por A, B e C respectivamente

paralelas aos lados BC, AC e AB, obtemos um triângulo equilátero MNQ. (Ver

Figura 3.7)
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Figura 3.7: Problema de Fermat - P Pode ser interior ao triângulo ABC

Se P ′ for qualquer outro ponto distinto de P , no triângulo ABC no seu interior,

e denominando de C ′ o pé da perpendicular a QN de P ′, denominando de B′ o pé

da perpendicular a MN de P ′ e denominando de A′ o pé da perpendicular a MQ

de P ′, teremos:

P ′A+ P ′B + P ′C > P ′A′ + P ′B′ + P ′C ′.

Pelo Teorema de Viviani, apresentado no capítulo 1, temos que:

P ′A+ P ′B + P ′C > P ′A′ + P ′B′ + P ′C ′ = PA+ PB + PC.

Suponhamos que o ponto P solução do problema esteja no interior do triângulo

ABC. Consideremos que a soma PA + PB esteja �xada. O lugar geométrico de

todos os pontos P para os quais a soma PA+PB é dada, é a elipse com focos A e B

e a medida do eixo maior é igual a PA+PB. Agora precisamos encontrar o ponto P

da elipse para o qual a distância de P até o ponto C é mínima. A menor distância

de C à elipse vai ser alcançada quando a circunferência de centro C tangencia a

elipse. Neste caso o centro da circunferência vai está sobre a reta normal à elipse, e

pela Proposição 6 da seção 1.1 a reta
←→
CP é a bissetriz interna do ângulo AP̂B (ver

43



Problema de Fermat Capítulo 3

Figura 3.8)

Figura 3.8: Cincunferência de centro C tangente à elipse de focos A e B

Consequentemente, teremos que CP̂A = CP̂B. Agora, �xando a soma PB+PC

chegaremos analogamente a conclusão que CP̂A = BP̂A. Portanto concluímos que

CP̂A = CP̂B = BP̂A = 120o.

Este mesmo argumento nos mostra que o ponto P não pode estar sobre os

lados pois, suponhamos que P estivesse no lado AB do triângulo ABC. Então

CP̂A = CP̂B se, e somente se, esta medida for igual a 90o e não a 120o. (ver Figura

3.9)
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Figura 3.9: Problema de Fermat - P não pertence a um dos lados do triângulo ABC

Sejam A e B dois pontos sobre um círculo. Para todo ponto M em um mesmo

arco determinado por A e B, o ângulo α = AM̂B é constante. Este arco chama-se

arco capaz do ângulo α sobre o segmento AB.

Mas será que o ponto P poderá estar sobre um dos vértices? Observe que para

que CP̂A = CP̂B = BP̂A = 120o o ponto P deve estar na interseção dos arcos-

capazes de 120o relativos aos segmentos (no mesmo semi-plano do triângulo ABC)

AC, BC e AB respectivamente.

Suponhamos que AB seja o maior lado do triângulo ABC, de acordo com a

proposição 1 AĈB é o maior ângulo do triângulo ABC.

Considere o arco capaz de 120o relativo ao lado AB. Teremos três possibilidades

para o ponto C no semiplano determinado pela reta
←→
AB que contém o arco capaz:

a) C está no exterior do arco-capaz.

Neste caso AĈB < 120o e o arco-capaz relativo ao segmento AC (ou BC)

cruzará o arco-capaz relativo ao segmento AB em um ponto no interior do

triângulo. (ver Figura 3.10)
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Figura 3.10: Problema de Fermat - Ponto C exterior ao arco-capaz AB

b) C está sobre o arco-capaz de 120o relativo ao lado AB.

Neste caso AĈB = 120o e C é o ponto de intersecção dos três arcos-capazes

relativos aos lados do triângulo. Observe que para qualquer ponto Q no inte-

rior ou sobre os lados do triângulo, exceto o ponto C, AQ̂B > 120o. Como o

problema tem solução, e como tal solução não está no exterior nem nos lados

do triângulo, então a solução P deve estar em um dos vértices. Mas este vér-

tice deve ser C pois AC + BC < AC + AB e AC + BC < BC + AB. (ver

Figura 3.11)

Figura 3.11: Problema de Fermat - Ponto C sobre o arco-capaz AB

c) C está entre o arco-capaz de 120o relativo ao lado AB e a reta
←→
AB.

Neste caso AĈB > 120o, pelo mesmo argumento usado no caso anterior, po-

demos concluir que P só pode ser o ponto C. (ver Figura 3.12)

46



Problema de Fermat Capítulo 3

Figura 3.12: Problema de Fermat - Ponto C interior ao arco-capaz AB

Como vimos acima, quando o maior ângulo do triângulo ABC for menor do que

120o, o ponto P é a intersecção dos arcos-capazes de 120o relativos aos lados do

triângulo.

Acontece que, estes arcos-capazes estão respectivamente contidos nas circunferências

circunscritas aos triângulos equiláteros construídos externamente sobre os lados do

triângulo ABC. (ver Figura 3.13)

Figura 3.13: Problema de Fermat - Ponto de Torricelli

Em 1647 Bonaventura Francesco Cavalieri (1598 - 1647) mostrou em seu livro

Exercitationes Geometricae que os três ângulos AP̂C, BP̂C e AP̂B têm a mesma
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medida de 120o.

Mais tarde, em 1750 o matemático inglês Thomas Simpson (1710 - 1761) pu-

blicou no seu livro Doctrine and Application of Fluxions que o ponto de Torricelli,

isto é, o ponto de intersecção das três circunferências circunscritas respectivamente

aos triângulos equiláteros construídos sobre cada lado do triângulo ABC pode ser

obtido, ligando-se os vértices A, B e C aos vértices externos daqueles triângulos

equiláteros (ver Figura 3.14).

Figura 3.14: Problema de Fermat - solução de Simpson

Vejamos como provar este resultado. Liguemos os vértices A, B e C ao ponto

P e prolonguemos cada segmento até cruzar as circunferências circunscritas aos

triângulos equiláteros externos nos pontos A′, B′ e C ′ respectivamente (ver Figura

3.14).

Como os ângulos AP̂C ′ e A′P̂C são congruentes, pois são opostos pelo vértice,
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e como AP̂C ′ + BP̂C ′ = AP̂B = 120o = BP̂C = A′P̂B + A′P̂C segue-se que

A′P̂B +AP̂C ′ = 120o e que BP̂C ′ +AP̂C = 120o. Como AP̂C +BP̂C ′ +A′P̂B =

180o e como BP̂C ′ + A′P̂B + A′P̂C = 180o segue-se que BP̂C ′ = A′P̂B = 60o.

Conclui-se que CÂB = AĈ ′B = 60o, e portanto o triângulo AC ′B é equilátero, e

que BĈA′ = BÂC = 60o, e portanto o triângulo BÂ′C é equilátero. Analogamente

mostra-se que o triângulo AB′C é equilátero. Logo, o ponto P é intersecção dos

segmentos que unem os vértices A′, B′ e C ′, dos triângulos equiláteros construídos

sobre as bases, respectivamente com os vértices A, B e C do triângulo ABC.

Vamos provar agora que, se P é o ponto de Torricelli do triângulo ABC (com

Â < 120o, B̂ < 120o e Ĉ < 120o) então PA + PB + PC é igual à altura máxima

entre todos os triângulos equiláteros circunscritos ao triângulo ABC.

Considere os arcos exteriores das circunferências circunscritas aos triângulos equi-

láteros construídos sobre os lados do triângulo ABC. Tais arcos são arcos-capazes

de 60o. Seja agora a reta m, perpendicular ao segmento PC, passando por C, e

sejam M e N os pontos de cruzamento de m respectivamente com os arcos-capazes

AC e BC (ver Figura 3.15).
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Figura 3.15: Problema de Fermat - Triângulo de altura máxima circunscrito ∆ABC

Então as retas
←−→
MA e

←→
NB devem se cruzar em um ponto Q sobre o arco-capaz

AB pois, como CM̂A = CN̂B = 60o, então MÔN = 60o. Além disso, a reta
←−→
MA é perpendicular ao segmento PA pois, o quadrilátero MCPA é inscritível e

MĈP = 90o. Logo MÂP = 90o. Analogamente tem-se que a reta
←→
NB é perpen-

dicular ao segmento PB. Segue-se então que PA + PB + PC é igual à altura do

triângulo MNQ (Teorema de Viviani). Este é o triângulo equilátero, circunscrito

ao triângulo ABC, de maior altura possível.

Veja a prova dessa a�rmativa:

Seja agora DEF outro triângulo equilátero qualquer circunscrito ao triângulo ABC.

Então DE e PC não são perpendiculares, nem DF e PA e nem EF e PB. Sejam

G, H e I respectivamente os pés das perpendiculares por P aos lados DE, DF e

EF do triângulo DEF .

Então, PG < PC, PH < PA e PI < PB. Logo, PG+PH +PI < PC +PA+

PB. Mas PG + PH + PI é igual à altura do triângulo equilátero DEF . Logo o
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triângulo MNQ é o triângulo equilátero circunscrito ao triângulo ABC de maior

altura possível. (ver Figura 3.16)

Figura 3.16: Problema de Fermat - Triângulo MNQ tem altura máxima

3.4 Problema de Dido

Dido, �lha de um rei fenício, refugiou-se no norte da África, depois que seu ma-

rido foi assassinado. Foi-lhe prometida a extensão de Terra que pudesse cercar com

o couro de um boi. Diz a lenda que ela preparou com o couro uma longa e �na

correia, e cercou com a mesma um terreno circular. Essa é a legendária estória da

fundação da cidade de Cartago.

O problema de Dido é o seguinte: Entre todas as curvas planas fechadas de um

dado comprimento L encontrar aquela que engloba maior área.
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Na seção 2.3 do capítulo 2 abordamos a desigualdade isoperimétrica para polígo-

nos regulares, na demonstração usamos recursos da trigonometria e do cálculo. Pelo

processo de construção lá apresentado podemos inferir que a resposta ao problema

de Dido é um círculo. Dessa forma o problema de Dido é apenas parte do enunciado

da desigualdade isoperimétrica.

É interessante observar que podemos resolver o problema de Dido sem fazer uso

da desigualdade isoperimétrica.

Vamos fazer uso da demonstração atribuída a Jakob Steiner (1796-1863), que

utiliza recursos puramente geométricos, nada de trigonometria ou cálculo como foi

utilizado no capítulo anterior.

Steiner provou que a circunferência encerra a maior área entre todas as curvas

fechadas com um comprimento dado. A demonstração de Steiner parte da hipótese

de que a solução do problema existe, supondo que a curva γ com comprimento L

seja a solução do problema.

Steiner provou inicialmente que a curva γ procurada deve ser convexa, no sentido

de que ela delimita uma região convexa (qualquer segmento de reta unindo dois

pontos quaisquer da região deve estar inteiramente contido na região - a curva γ

incluída na região).

A demonstração é dividida em três etapas:

Etapa 1: γ é uma curva convexa. De fato, suponha por contradição, que γ

possua uma reintrância σ entre A e B de modo que o segmento aberto AB está fora

da região delimitada por γ. (ver Figura 3.17).
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Figura 3.17: A curva convexa engloba maior área

Seja σ′ a re�exão do trecho σ da curva com relação ao segmento AB. A curva

γ obtida a partir de γ substituindo-se o trecho σ por σ′ tem o mesmo comprimento

de γ e engloba maior área.

Etapa 2: Agora mostraremos que o problema de Dido é equivalente ao seguinte:

Problema de Dido com Parede: Seja r uma reta do plano e X a união de r com um

dos semiplanos determinado por r.

Consideremos as curvas em X de um dado comprimento e cujos pontos inicial e

�nal estão sobre r. Mostrar que entre essas curvas aquelas que juntamente com r

englobam a maior área são os semicírculos com base sobre r.

Sejam A e B pontos de γ que a divide em dois arcos γ1 e γ2 de mesmo compri-

mento. Então o segmento AB divide a área no interior de γ em duas regiões R1 e

R2 de áreas iguais.

Para demonstrar essas a�rmações suponha que as áreas de R1 e R2 são distintas,

(ver Figura 3.18).
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Figura 3.18: AB divide a curva γ nas regiões R1 e R2.

Neste caso, o lado de maior área poderia ser re�etido em torno do segmento AB

e, assim obtém-se uma nova curva de mesmo comprimento, mais que engloba maior

área que a anterior, novamente uma contradição com o fato que a área é máxima.

As curvas γ1 e γ2 acima são soluções do problema de Dido com parede, pois se

não fossem existiria uma curva γ3 de igual comprimento unindo pontos C e D de r

e delimidando com r uma área maior. Seja γ′3 a imagem re�etida de γ3 com relação

a r. A curva fechada γ3
⋃
γ′3 teria o mesmo comprimento de γ e delimitaria uma

maior área, o que não é possível.

Etapa 3: Agora o problema de Dido se reduz a determinar o arco de compri-

mento L/2 com pontos extremos A e B tal que a área entre esse arco e o segmento

AB seja máxima.
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Seja γ1 uma curva convexa de comprimento L/2 com pontos extremos A e B tal que

a área entre o arco γ1 e o segmento AB seja máxima. Provemos usando a Proposição

7 que γ1 é um semicírculo. Com efeito, se P ∈ γ1 então o ângulo AP̂B é um ângulo

reto. Novamente por contradição, suponha que P é tal que o ângulo AP̂B não é

reto. A área delimitada pelo arco APB e o segmento AB é dividido em três partes:

as áreas S1 e S2 limitada pela curva e os segmentos AP e PB, respectivamente, e a

área S3 limitada pelo triângulo APB, (ver Figura 3.19)

Figura 3.19: S1, S2 �xos e AP̂B variável

Fixando A e deslocando B por meio de uma rotação em P , mas mantendo o

comprimento PB podemos obter um ângulo reto em P , (ver Figura 3.20).

Figura 3.20: AP̂B = 90o

Logo o comprimento de γ1 é mantido.
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Neste caso as áreas S1 e S2 também foram mantidas inalteradas, enquanto que a

área S3 varia. Por outro lado, a área S3 será máxima justamente quando o ângulo

AP̂B é reto. De fato, entre todos os triângulos com dois lados de comprimentos

�xos, o que possui área máxima é o triângulo retângulo, (ver Figura)

Figura 3.21: Triângulo de área máxima �xados a e b

A área é dada pela expressão

absen(θ)

2

sendo θ o ângulo entre os lados a e b, (θ ∈ [0, π]). Daí, quando sen(θ) = 1, teremos

o maior valor para a área, isto é, quando θ = 90o. Logo a curva γ1 em questão é um

semicírculo.
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Capítulo 4

PROBLEMAS PROPOSTOS DE

MÁXIMOS E MÍNIMOS

Problemas extraídos do livro Círculos Matemáticos. A Experiência Russa [3]

Problema 01: Encontre um ponto no interior de um quadrilátero convexo tal

que a soma das distâncias do ponto aos vértices é mínima.

Problema 02: Um colhedor de cogumelos sai da �oresta em um determinado

ponto. Ele precisa chegar a uma estrada, que segue uma linha reta, e voltar para a

�oresta em outro ponto dado. Como ele deve fazer isso para seguir o menor caminho

possível?

Problema 03: A cabana de um lenhador �ca no interior de uma península que

tem a forma de um ângulo agudo. O lenhador tem que sair de sua cabana, andar

até a praia de um dos lados da península, depois até à praia do outro lado, depois

voltar para casa. Como ele deveria escolher o caminho mais curto?
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Problema 04: O ponto C está dentro de um ângulo reto e os pontos A e B

estão nos lados. Prove que o perímetro do triângulo ABC não é menor do que o

dobro da distância OC, onde O é o vértice do ângulo reto dado.

Problema 05: Resolva o Problema 03 supondo que a península tem a forma de

um ângulo obtuso.

Problemas extraídos do artigo de Kely Cristina Pasquali [7]

Problema 06: Seja A um ponto sobre o círculo de centro O e raio a e seja P

um ponto sobre a extensão de OA através de A. Uma linha secante a P intercepta o

círculo nos pontos Q e Q′. Dada uma posição �xa de P determinar a área máxima

do triângulo AQQ′.

Problema 07: Dado o triângulo ABC, escolha MN // AB de modo que a área do

triângulo MNP (P sobre AB) seja máxima?

Problema 08: Dado o triângulo ABC e P sobre AB �xado. Escolher pontos

M e N sobre BC e AC, respectivamente, de modo que a área do triângulo PMN

seja máxima?

Problema 09: Existe um triângulo de área máxima inscrito em uma circunfe-

rência dada?

Problema 10: Dada uma circunferência de raio R achar o triângulo de área má-

xima inscrito na circunferência com uma das alturas igual a h?
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Problema 11: Dados uma reta l e dois pontos P e Q em lados opostos de l

encontre um ponto R em l tal que a quantidade |p − q|, isto é, o valor absoluto da

diferença das distâncias de P e Q para R, seja um máximo?

Problema 12: De todos os triângulos de mesma base e com mesmo ângulo oposto

a base, qual tem área máxima?

Problema 13: Dadas as retas r e s concorrentes e um ponto M no interior do

ângulo por elas formado, encontrar os pontos B sobre r e C sobre s de forma que

BC passe por M e a área de ABC seja mínima.

Problema 14: Dada um circunferência encontrar o polígono de n lados inscrito

nesta circunferência que tem área máxima.

Problema 15: Dada uma semicircunferência encontrar o trapézio de área máxima

com vértices nesta circunferência.
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Capítulo 5

CONSIDERAÇÕES FINAIS

O uso da geometria em sala de aula prova que a matemática não é uma ciência

pronta, ela precisa ser construída. Porém as aplicações práticas e de fácil compre-

ensão, bem como as formas que se assemelham com a própria natureza, mostram

que a matemática que se estuda é aplicável. Esperamos que as pessoas que tiverem

acesso a este trabalho possam se encantar com a beleza da geometria e percebam

que com apenas argumentos puramente geométricos é possível resolver problemas

de máximos e mínimos de maneira bastante elegante.

Deixo aqui como desa�o a resolução dos problemas apresentados no capítulo 4.

Tais problemas podem ser utilizados em sala de aula por professores nos diversos

níveis do ensino.

Espero seguir pesquisando e descobrindo novos problemas geométricos de fácil

compreensão e aplicação para utilizá-los em sala de aula mostrando a beleza e a

elegância da geometria.
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Apêndice A

Protocolo de construção do Geogebra

Figura A.1: Protocolo de construção no Geogebra da Figura 1.5
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Apêndice Apêndice

Figura A.2: Protocolo de construção no Geogebra da Figura 2.5
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