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Resumo

Neste trabalho, estudamos resultados de existéncia, nao existéncia e multiplicidade de

solucoes nodais para a equacao de Schrodinger nao-linear
(P) —Au+V(x)u= f(u) em €,

onde © é um dominio suave em R? ndo necessariamente limitado, f é uma funcao que
possui crescimento critico exponencial e V' é um potencial continuo e nao-negativo.
Na primeira parte, mostramos a existéncia de solucoes nodais de energia minima em
ambos os casos, dominio limitado e ilimitado. Mostramos ainda um resultado de nao
existéncia de solucdo nodal de energia minima para o caso auténomo em todo o R%. Na
segunda parte, estabelecemos a multiplicidade de solucoes do tipo multi-bump nodal.
Finalmente, para V' = 0, mostramos um resultado de existéncia de infinitas solucoes
nodais em uma bola. As principais ferramentas utilizadas sao Métodos Variacionais,
Lema de Deformacao, Lema de Lions, Método de penalizacao e um processo de conti-

nuagao anti-simétrica.

Palavras-chave: Equacao de Schrodinger, Crescimento critico exponencial, Solucoes

nodais, Métodos variacionais, Desigualdade de Trudinger-Moser.
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Abstract

In this work, we study existence, non-existence and multiplicity results of nodal solu-

tions for the nonlinear Schrodinger equation
(P) —Au+V(x)u= f(u) in Q,

where € is a smooth domain in R? which is not necessarily bounded, f is a continuous
function which has exponential critical growth and V' is a continuous and nonnegative
potential. In the first part, we prove the existence of least energy nodal solution in
both cases, bounded and unbounded domain. Moreover, we also prove a nonexistence
result of least energy nodal solution for the autonomous case in whole R2. In the
second part, we establish multiplicity of multi-bump type nodal solutions. Finally, for
V =0, we prove a result of infinitely many nodal solutions on a ball. The main tools
used are Variational methods, Lions’s Lemma, Penalization methods and a process of

anti-symmetric continuation.

Keywords: Schrédinger equation, Exponential critical growth, Nodal solutions, Vari-

ational Methods, Trudinger-Moser inequality.
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Notacao e terminologia

e Se f éuma funcao integravel, denotaremos por / f a seguinte integral / f(z)dz.
Q Q

e Denotaremos por H'(f2) o espago de Sobolev

ou
E)x,»

1/2
o= ([ 1+ [ 19u2)
Q Q

a norma usual em H'(Q).

HY(Q) == {u€L2(Q): e LX(Q); i:1,2}

e por

e Denotaremos por C§°(£2) o espago de todas as fungoes u € C*(£2) com suporte,

supp u, compactamente contido em 2, por Hj(€Q) o fecho de C§°(Q2) na norma

de HY(Q) e por
1/2
lullo = ( / |w|2) |
Q

e Para um subconjunto aberto 2 C R?, os simbolos |u|,q (¢ > 1) e |u]s o denotam

a norma usual em H}(Q).

as normas usuais nos espacos L7(€)) e L*>((2), respectivamente.

e O simbolos [|u|l1, |u|, (¢ > 1) e |u| denotam as normas usuais nos espacos

H'(R?), L1(R?) e L>*(R?), respectivamente.

e v (x) =max{u(x),0} e v (z) = min{u(x),0}.



Denotaremos por

1, se s> 0,

sgn(s) =4 0, se s =0,

-1, se s<0.

\

Para um intervalo (a,b) e [ € N, denotamos por (a,b) o produto cartesiano

(a,b) x (a,b) x --- x (a,b)

J/

Vv
l vezes

Para um conjunto A C RY, denotamos por A, A, |A| e A¢, a fronteira, o fecho,

a medida de Lebesgue e o complementar de A em RV, respectivamente.

A abreviagao q.t.p. significa quase todo ponto, ou seja, a menos de um conjunto

com medida de nula.
A notagao (PS)., significa sequéncia de Palais-Smale no nivel c.
0, (1) denota uma sequéncia de niimeros reais convergindo para 0, quando n — oo.

notam convergéncia for nvergéncia fr m
As setas — e —, denotam convergéncia forte e convergéncia fraca em espacos de

Banach, respectivamente.



Introducao

A proposta deste trabalho é estudar resultados de existéncia, nao existéncia e
multiplicidade de solucoes nodais, ou seja, solucoes que mudam de sinal, para a equagao

de Schrodinger nao-linear
(P) —Au+V(x)u= f(u) em

onde Q C R? ¢ um dominio suave e ndo necessariamente limitado, V : Q — R é um
potencial continuo e a nao-linearidade f é uma funcao continua tendo crescimento
critico exponencial, o qual definimos a seguir: Dizemos que f tem crescimento critico
exponencial em +o0o quando existe o > 0 tal que

1£(s)| 0, para todo «a > ag

lim —4 =
s—+oo e%s
400, paratodo «a < «p.

Uma vez que iremos trabalhar com o crescimento critico exponencial, algumas versoes
da Desigualdade de Trudinger-Moser sao cruciais em nossos argumentos. A primeira
versao que gostariamos de relembrar é a versao devida a Trudinger e Moser, ver [55] e
[45], a qual diz que se  é um dominio limitado em R? com fronteira 92 suave, entao

para qualquer u € H} (), tem-se
/ e < oo, paratodo a > 0. (1)
Q
Além disso, existe uma constante C' = C(q, [©2]) > 0 tal que

sup /ea|“l2 <C, Va<dnm. (2)
Q

llullo<1



Uma versao em H'(Q) foi provada por Adimurthi e Yadava [3], e diz que se Q ¢é

novamente um dominio limitado com fronteira suave, entao para qualquer u € H* (),
/ea“2 < 400, paratodo a > 0. (3)
Q
Além disso, existe uma constante positiva C' = C(«, [Q2]) tal que
sup / e’ <C, Va<2r. (4)
lull g1y <1 /2

A terceira versdo que usaremos é devida a Cao [26], a qual é uma versdo da

Desigualdade de Trudinger-Moser em todo o espaco R? e tem o seguinte enunciado:
/ (e?l* — 1) < 400, para todo u e H'(R?) e a > 0. (5)
RQ

Além disso, se a < 47 e |uls < M, entdo existe uma constante C; = Cy(M, ) > 0 tal

que

[Vul|2<1

Nos ultimos anos, observamos um crescente interesse no estudo da existéncia e
multiplicidade de solugoes nodais para problemas elipticos. Em [29], Cerami, Solimini
e Struwe mostraram a existéncia de multiplas solu¢oes nodais para a seguinte classe de

problemas elipticos com crescimento critico

—Au—Xu = |u* 2u, em
(£1)
u = 0, sobre 012,

onde Q = Br(0) C RV, N > 7,2* = % e A € [0,\], onde \; é o primeiro autovalor
de (—A, H}(Q2)). Em Bartsch e Willem [21], os autores estabeleceram a existéncia de

infinitas solugoes nodais radiais para o problema

—Au+u= f(|z|,u), em RN,
(P2)
u e HY(RY),

onde f ¢ uma fun¢do continua com crescimento subcritico do tipo Sobolev: |u|P~?u

com 2 < p < 2*. Em [27], Cao e Noussair relacionaram o nimero de solugoes positivas

e nodais da seguinte classe de problemas
—Au+u=Q(x)|ulP2u, em RV,

u e HY(RY),



onde 2 < p < 2%, com o nimero de pontos de maximo da funcao Q.
Em [28], Castro, Cossio e Neuberger consideraram o problema
—Au = f(u), em €,
(Fs)
u = 0, sobre 0f),
onde Q C RY & um dominio suave e f € C'! tem um crescimento superlinear e subcritico
com f’(0) < A;. Os autores estabeleceram a existéncia de uma solu¢do w que muda de
sinal apenas uma vez, i.e., w™ (R \ {0}) possui exatamente duas componentes.
Em Noussai e Wei [46, 47|, foi provada a existéncia e concentragao de solugoes
nodais para o problema
—Au+u = f(u), em Q,

(Ps)
Bu = 0, sobre 0,

quando ¢ — 0, onde  é um dominio limitado e suave, com condicao de fronteira
Bu = u em [46] ¢ Bu = g—z em [47].
Em [23], Bartsch e Wang consideraram a existéncia e concentragao de solugoes
nodais para a seguinte classe de problemas
—Au+ (Ma(z) + Du = f(u), em RY
(Fs)
u € H'(RY),

quando A — 400, supondo que f tem crescimento subcritico e a : RY — R é uma

fungdo continua e nao negativa com a~*({0}) sendo nao vazio e verificando
Hx € RY ; a(z) < Mp}| < +oo para algum M, > 0.

Em [16], Bartsch, Liu e Weth mostraram a existéncia de solugdo nodal com

exatamente duas regioes nodais para o problema
—Au+a(r)u= f(u), em RV,
u € HYRYN),

onde a ¢ uma funcao nao negativa verificando:

{z € B.(y) : a(x) < M} — 0 quando |y| — +oo para qualquer M, r > 0.



O leitor pode encontar mais resultados envolvendo solu¢oes nodais nos artigos de
Bartsch, Weth and Willem [18], Bartsch e Weth [19], Alves e Soares [8], Bartsch, Clapp
e Weth [24], Zou [57] e em referéncias contidas em todos os trabalhos citados acima.

Depois de uma revisao na literatura, observamos que existem poucos trabalhos
onde a existéncia de solucao nodal tem sido considerada para o caso em que a nao-
linearidade f tem um crescimento critico exponencial. Conhecemos apenas os trabalhos
de Adimurthi e Yadava [4], Alves [6] e Alves e Soares [10]. Em [4], os autores provaram
a existéncia de infinitas solugoes radiais para o problema (P;) quando Q = Br(0) C R2.
Em [6], o autor mostrou a existéncia de solu¢do nodal para uma classe de problemas
em dominio exterior com condicao de fronteira de Neumann, e em [10], a existéncia de

solucao nodal foi estabelecida para problemas do tipo
—Au+V(z)u = f(u), em RV,
u € H'(RY),

para e suficientemente pequeno e V' verificando algumas condicoes técnicas. Motivados
por este fato, nosso objetivo na presente tese é, a partir de um conjunto especifico de
hipoteses sobre V| f e ), analisar as questoes de existéncia, nao existéncia e multipli-
cidade de solugdes nodais para o problema (P).

No Capitulo 1, estudamos a existéncia de solugoes nodais de energia minima para
o problema (P), ou seja, solugbes que atingem o nivel de menor energia dentre todas
solucdes que mudam de sinal, no caso em que  é um dominio limitado, V: Q - R &

um potencial continuo e nao-negativo e f satisfaz as seguintes hipoteses:

(f1) (Crescimento critico exponencial)

Existe C' > 0 tal que

1£(s)] < Ce*™ " para todo s € R;

(f2) (Comportamento proximo da origem)

lim _f(s) =0;
s—0 8

(f3) (Condigao de Ambrosetti-Rabinowitz)



Existe 6 > 2 tal que

0<0F(s):= 9/05 f(t)dt < sf(s), paratodo s € R\ {0}.

(f1) A fungao s — ‘}](—S’) ¢ estritamente crescente em R\ {0}.
s

(f5) Existem constantes p > 2 e C, > 0 tais que

sgn(s)f(s) > Cy,|s|P~!, para todo s € R.

Como sabemos, a aplicabilidade do método variacional depende da geometria do fun-
cional associado ao problema e de alguma condicao de compacidade, por exemplo, a
condicao de Palais-Smale. No caso de problemas com crescimento critico exponencial,
o funcional energia nao satisfaz, em geral, a condi¢ao de Palais Smale. A constante
C, da hipotese (f5) desempenha um papel importante para contornar a falta de com-
pacidade. Neste capitulo, mostramos que o conjunto de hipoteses dado acima e uma
limitagao inferior adequada para a constante C), sao suficientes para garantir a existén-
cia de solugao nodal de energia minima para o problema (P) com condicao de fronteira

Bu = 0 sobre 052, para os dois casos seguintes:

e Bu=u, u€ H}(Q) (Condi¢ao de Dirichlet);

o Bu= %, u € H'(Q) (Condigao de Neumann).
v

Este capitulo complementa o estudo feito em [29], pois estamos considerando o
caso em que a nao-linearidade f tem crescimento critico exponencial. Além disso, nos
nossos argumentos nao necessitamos supor que f é impar, fato que desempenhou um
papel fundamental nos argumentos usados em [29] para garantir a existéncia de solugao
nodal de energia minima para (P;). A hipdtese (f5) é uma generalizagao natural, para o
contexto de fungoes que mudam de sinal, da hipotese inicialmente considerada em Cao
[26], a qual foi posteriormente utilizada em outros trabalhos envolvendo crescimento
critico exponencial (ver [11] e [6]).

No Capitulo 2, consideramos o problema (P) no caso em que = R% Obtemos
dois resultados para o problema auténomo (V' = constante): o primeiro ¢ um resul-

tado de nao existéncia de solucao nodal de energia minima e o segundo é um resultado



de existéncia de solucao nodal radial de energia minima, i.e., solucao de menor ener-
gia dentre todas as solucoes nodais radiais. Posteriormente, mostramos a existéncia
de solucao nodal de energia minima para um problema nao auténomo. Neste caso,

assumimos as seguintes hipoteses sobre o potencial V:

(V1) Existe uma constante V4 > 0 tal que Vy < V(x), para todo x € R?;

(V) Existe uma fungao continua e Z2-periodica V., : R? — R satisfazendo

V(z) < Velz) Vo € R?

lim |V (z) — Ve(z)| =0.

|z]—o00

(V3) Existem p < 1/2 e C > 0 tais que

V(x) < Vao(x) — Ce ™l para todo z € R%

Assumiremos que f é uma func¢do impar verificando as mesmas hipoteses (f1) — (f5)
utilizadas no primeiro capitulo. Em todos os resultados deste capitulo, assim como no
Capitulo 1, vamos precisar de uma limitacao inferior adequada para a constante C,
dada na hipotese (fs).
Os resultados obtidos nos Capitulos 1 e 2 fazem parte do artigo Alves e Pereira [7],
o qual foi aceito para publicacdo na revista Topological Methods in Nonlinear Analysis
(TMNA).
No Capitulo 3, consideramos a seguinte classe de problemas elipticos
—Au+ AV (z) + Du = f(u), em RV,
(P)a
u € HY(RY),
onde A € (0,00), V : RY — R é uma fungdo continua com V(z) > 0 para todo » € R¥.
Existem diversos artigos relacionados com a existéncia e multiplicidade de solu-
¢oes positivas para (P)y em RY, onde o comportamento da funcao V desempenha um
papel importante no estudo das solucoes. Para o caso N > 3, ver por exemplo, os
artigos de Bartsch e Wang [22], Clapp e Ding [30], Bartsch, Pankov e Wang [15]|, Gui
[37], Ding e Tanaka [33] e Alves, de Morais Filho e Souto [14].
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Em [33], Ding e Tanaka consideraram o problema (P), assumindo que o conjunto
Q = int V=1({0}) tem k componentes conexas e f(s) = |s|97%s com 2 < g < 2*, eles
mostraram que (P)y tem pelo menos 2 — 1 solugdes multi-bump positivas para valores
grandes de A, que sao essenciamente funcoes que tem uma quantidade finita de maximos
locais, levando em consideracao a quantidade de componentes conexas do conjunto €.
Alguns argumentos explorados em [33] foram adaptados de argumentos encontrados
nos trabalhos de del Pino e Felmer [49] e Séré [53]. O mesmo tipo de resultado foi
obtido por Alves, de Morais Filho e Souto em [14] e Alves e Souto [13], assumindo que
f tem crescimento critico para o caso N > 3 e critico exponencial para o caso N = 2,
respectivamente.

Em [5], Alves motivado por [30] e [33] considerou a existéncia e multiplicidade
de solugoes do tipo multi-bump nodal para (P), explorando também o nimero de
componentes conexas do conjunto 2 := int V~1{0}, assumindo que a nao-linearidade
f tem crescimento subcritico.

Motivados por [13] e [5], mostramos a existéncia e multiplicidade de solugoes do
tipo multi-bump nodal para (P), quando f tem crecimento critico exponencial em
R2. O principal resultado deste capitulo completa os estudos feitos em [13] e [5] nos

seguintes pontos:

e Em [13], apesar do crescimento da nao-linearidade ser o mesmo assumido aqui,

as solugoes encontradas sao positivas;

e Em [5], as solugoes encontradas sao do tipo multi-bump nodal, mas a nao linea-

ridade tem um crescimento subcritico.
e A construcao minimax é diferente do caso das solucdes multi-bump positivas.

No Capitulo 4, estudamos o problema

—Au = f(u), em B,
(P)
u = 0, sobre 0B,
onde B é uma bola em R? e f ¢ uma funcgao impar satisfazendo as condigoes (f1) — (f2),

e as seguintes hipoteses adicionais:



(H,) Existem sy > 0 e M > 0 tais que
0 < F(s) 1:/ f(t)dt < M|f(s)|, paratodo |s| > so.
0

(Hy) 0 < F(s) < %f(s)s, para todo s € R\ {0}.
(Hs) limy_ oo sf(s)e™4™" = 400

Dividindo B em setores angulares e usando o Teorema do Passo da Montanha,
mostramos a existéncia de uma solucao positiva em um dos setores de B. A partir
desta solucao e de um processo de continuacao anti-simétrica mostramos a existéncia
de infinitas solucoes nodais em B. Estas solucoes diferem-se umas das outras pelo
numero de regioes em que elas mudam de sinal.

A hipotese (Hs) foi inicialmente considerada em Adimurthi [2], ver também [34].
Esta hipotese sera fundamental para garantirmos nao so6 a existéncia, mas também a
infinidade de solucoes nodais.

Citamos a seguir dois artigos que nos motivaram a estudar o problema (P).

Em [31], Comte e Knaap desenvolveram um processo de continuacao anti-simétrica
para provar a existéncia de infinitas solucoes nodais para o problema com crescimento

critico
—Au = M+ |[uf* lu, em B,
ou
on
onde A € R e B C RY ¢ uma bola, com N > 3.

€9
= 0, sobre 0B,

Este resultado foi extendido ou complementado por de Morais Filho, Miyagaki e

Faria em [44], onde os autores mostraram que o sistema eliptico

-AU = V(%(AU,U)Rz—i—F(U)), em B,
(5:)
8—U = 0, sobre 0B,
an

onde B C RY ¢ uma bola, U = (u,v) € H'(Q) x HY(Q), AU = (Au,Av), V & o

operador gradiente,

A= € My o (R),



(-, -)r2 € o produto interno canonico e

2 *
F(u,v) = > (]u\“M’B + ul® + v

2*)
com «, 8 > 1 tais que a + [ = 2%, possui infinitas solucées nodais, desde que b > 0.
Nosso principal resultado neste capitulo complementa os estudos feitos em [31]
e [44], pois extendemos o processo de continuagao anti-simétrica de Comte e Knaap
para nao-linearidades f sendo apenas continua e impar, e por considerarmos o caso em
que f tem crescimento critico exponencial. E importante observar que em ambos os
trabalhos citados acima, foi considerada a condicao de fronteira de Neumann, tendo
em vista que a Identidade de Pohozaev |48] garante que o problema (P.), com condigao

de fronteira de Dirichlet, nao possui solugoes para A < 0e N > 3.
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Capitulo 1

Solucao nodal minimal em um

dominio lhmitado

Neste capitulo, estudamos a existéncia de solugoes nodais de energia minima para
o problema (P) quando  é um dominio limitado em R? com condigao de Dirichlet e de
Neumann sobre a fronteira. Nossa motivacao vem do trabalho de Cerami, Solimini e
Struwe [29], no entanto, desenvolvemos aqui um novo método para obter uma sequéncia

de Palais-Smale de funcoes nodais associada com o nivel nodal de energia minima.

1.1 Problema de Dirichlet

Nesta segao, consideramos a existéncia de solu¢cao nodal de energia minima para

o problema de Dirichlet
—Au+V(z)u = f(u), em Q,
(D)
u = 0, sobre 012,

onde Q C R? é um dominio limitado com fronteira suave, V : Q — R é um potencial

continuo e nao negativo e f é uma funcao continua verificando as seguintes condicoes:
(f1) Existe C' > 0 tal que

1£(s)| < Ce*™* para todo s € R;

(f2) lim fs) _ 0;

s—0 8



(f3) Existe 6 > 2 tal que

0<0F(s):= 9/5 f(t)dt < sf(s), paratodo s € R\ {0};
0

(fa) A funcio s — f|(_S’) ¢ estritamente crescente em R\ {0};
s

(f5) Existem constantes p > 2 e C, > 0 tais que

sgn(s)f(s) > Cy|s|P~! para todo s € R.

O principal resultado nesta secao é o seguinte.

Teorema 1.1.1 Seja V : Q — R um potencial continuo e nio-negativo e suponha que
(f1) — (f5) s@o wdlidas. Entdo, o problema (D) possui uma solu¢io nodal de energia

minima, desde que a constante C, verifique

2
C, > [920_52} ., onde [,= mf[, (1.1)

1
L =5 [ (FuP+ Vi) = [ jup
M, = {u € Hi(Q): uF#0 e / IVuE|? + V(z)u®]? = / |ui|p} :
Q Q
No que segue, denotamos por E o espago de Sobolev H}(€) munido da norma

Jullt = [ (Va +VEaP).

Tem-se que E é um espaco de Hilbert com produto interno definido por

(u,v)y = /Q (VuVo + V(z)uv) .

Além disso, a norma || - ||y é equivalente a norma usual || - | de HJ(Q2) definida por
Julfs = [ (9l
Q
pois
lulle, < llulli < @+ Vi/ M) [lullg,  Vu € Hy(9), (1.2)

onde \; & o primeiro autovalor de (—A, H}(Q2)) e V; = max V (x).
xe)
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Segue das hipoteses (f1) e (f2) que, dados € > 0, ¢ > 1 e o > 4, existe uma

constante C' = C(e,q, ) > 0 tal que
17(s)| < €|s| + Cs|"'e*”, para todo s € R. (1.3)

Consequentemente,

2
|F(s)] < e% + Cls|%, para todo s € R. (1.4)

Assim, pela Desigualdade de Trudinger-Moser (2), F(u) € L'(Q2) para todo u € FE.
Usando argumentos padrao, mostra-se que o funcional energia [ : E — R associado
com (D), dado por

() = Sllulf; - / F(u)

estd bem definido sendo de classe C'(E;R) com

I(u)v—uvv—/f v, VYu,ve€E.

Portanto, pontos criticos de I sdo solugbes fracas do problema (D). Sabemos que todo

ponto critico nao trivial de I pertence a variedade de Nehari
N ={ue E\{0}: I'(u)u =0}
Como estamos interessados em solugao nodal de energia minima, definimos o conjunto
M={uecE: vt #0, I'(u*)u* =0},

e o namero real

* = inf I(u).
=il

Interpretamos uma solu¢ao nodal de energia minima, como sendo uma funcao
u € M satisfazendo
I(u) =c" e I'(u) =0.
No que segue, estabelecemos alguns resultados necessarios para demonstrar o
Teorema 1.1.1. O primeiro deles, ja é classico na literatura, e sua demonstracao pode

ser encontrada em Willem [56, Lema 4.1].

Lema 1.1.2 Sob as condicoes (f1) — (f1), para qualquer uw € H}(Q) \ {0}, existe um
tinico t = t(u) > 0 tal que t(u)u € N. Além disso,

max [ (su) = I(t(u)u).

s>0
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Observacao 1.1.3 O leitor pode perceber que no Lema 4.1 de [56] a nao-linearidade
tem um crescimento subcritico, no entanto, a demonstra¢io do Lema 1.1.2 (onde a

nao-linearidade tem crescimento critico exponencial) é essencialmente a mesma.

Corolario 1.1.4 Sob as condigoes (f1) — (f1), para qualquer w € H} () verificando
u® # 0, existem tnicos s = s(u) >0 et = t(u) > 0 tais que s(u)u™ + t(u)u™ € M.

O préximo resultado estabelece uma limitacao superior para a constante ¢* que
serd explorada ao longo do trabalho.

Lema 1.1.5 Seja 0 o nimero definido pela condicao (fs). Tem-se

0—2

< —.
© o

Demonstracao. Seja u € M, verificando
I(u) = B, e I(a)=0. (1.5)

O leitor pode encontrar a demonstracao da existéncia de @ em Bartsch and Weth [20].

Segue de (1.5) que

8= [Vl +V@IaP)~ - [ jaP (1.6

/ﬂwﬁ+v /mv (1.7)
/(wui|2+v i) /| (1.8)

Substituindo (1.7) em (1.6), obtemos

b=(5-3) [1ar (19

Sendo @ € H(Q2) com a* # 0, pelo Corolario 1.1.4, existem tnicos s, > 0 tais

que su™ +tu~ € M. Logo,
< I(sut+ta)=I(sa")+ I(ta),

o que implica em
2
¢ < /(|va+yZ+V( JJat?) - /F(sfﬁ)
Q Q

2
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+§ Q(yvm?+V(:c)|qu|2) —/QF(ta).

Usando a hipotese (f5) e (1.8) ficamos com

2 P 2 D
c* S (S_ _ CpS ) / |ﬂ+|p + (t_ _ Cpt ) / |a_|p7
2 p Q 2 P Q

de onde segue que
2
r Cyrp
¢ <max{ — — -~ / |afP.
r20 | 2 p Q

Um céalculo simples mostra que

e portanto por (1.9)

2 /1 1 2
c<¢i7 (5-0) [lar=civa, (1.10)
2 p)Ja
A desigualdade em (1.10), juntamente com (1.1), implica em
. 0-—2

<—
€T

como queriamos demonstrar. |

O proximo lema estabelece dois importantes limites envolvendo a funcao f.
Lema 1.1.6 Seja (u,) uma sequéncia em E satisfazendo
(1) b= sup [|u, ||}, < 1;
neN
(2) u, = u em H}(Q) e;
(3) u,(z) = u(x) q.t.p. em Q.

Entio,
l?lﬁ@ﬂmzéfwu (1.11)

ngéﬂwwzlﬁwm (1.12)

para qualquer v € E.
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Demonstragao. Segue da hipdtese (f;) que
| f ()] < Clun|e?™ ™ ¥n e N.
Afirmamos que
|up |8 5 |ule” em LN(Q), quando n — . (1.13)
De fato, desde que [Ju,||3 < |lun||3 < b, para ¢t > 1 temos

t 2 |un| 2 |un| 2
/(&”'%2) :/647rtUnﬂ<|un|Q> S/e‘*’““’(mmf
Q Q Q

Sendo b < 1, podemos fixar t > 1 com ¢t ~ 1 de tal modo que tb < 1. Sendo assim,

pela Desigualdade de Trudinger-Moser (2),

t
2 2
sup/ (e“'“”‘) < sup /64“”’“ < 0.
no JQ lvllo<1 JQ

Logo, a sequéncia (e*™1“»") ¢ limitada em L!(Q) e

emlun (@) _y panlu(a)l? q.t.p. em .
Assim, pelo Lema A.9 do Apéndice A,
et s edmlul® e LH(Q). (1.14)

Por outro lado, usando a compacidade da imersao H}(Q) < L (Q),
lun| = |u| em L¥(Q), onde 1/t+1/t' =1. (1.15)

Segue de (1.14), (1.15) e do Lema A.8 do Apéndice A, que o limite em (1.13)
ocorre. Portanto, a demonstracao do limite em (1.11) é obtida usando o Teorema da
Convergéncia Dominada Generalizada de Lebesgue (Teorema A.12 do Apéndice A). A

demonstracao de (1.12) segue usando o mesmo argumento. |

O resultado abaixo é bem conhecido para problemas em RY com N > 3. Aqui,
decidimos escrever sua demonstracao porque estamos trabalhando com crescimento

critico exponencial.

Lema 1.1.7 Emziste uma constante mg > 0 tal que

0<mo<|lullf, YueN.
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Demonstragao. Comecamos fixando ¢ > 2 em (1.3). Suponha por contradigdo que a
desigualdade acima ndo ocorra. Sendo assim, existe uma sequéncia (u,) C N tal que

|u,|l3- — 0, quando n — co. Sendo u,, € N, temos
= |
Q

o que implica por (1.3) em

< elunfi +C [ funfrer

Q
Pelas imersoes de Sobolev e desigualdade de Hélder,
1/2
2
linll < Crelunly + Clunltyq [ )

Usando as imersoes continuas de Sobolev,

1/2
(1= Gl < Gl [ o)
Q

1-— 016
Cs

1/2
0< Cs < JJuy |4 (/ e2a'“n'2) . (1.16)
Q

Sendo ||u,||* = 0, quando n — oo, existe nyg € N tal que

Escolhendo € > 0 suficientemente pequeno, de modo que C5 := > 0, encontra-

mos

2al|u, ||* < 4w, Vn > n.

Usando novamente a Desigualdade de Trudinger-Moser (2),

9 2 2a||u ”2 ( |un| >2 471.( [un| )2
e2elunl® — [ g2elunlo\Tunle) < [ "\Twla) < €, ¥n > ny.
Q Q Q

Logo, por (1.16),

0, \ Va2
0< (ﬁ) <N||un|lv, Vn > n,

o que contradiz o fato que ||u,||y — 0, quando n — oco. |

Como uma consequéncia do Lema 1.1.7, temos os seguintes resultados.

Corolario 1.1.8 Para todo u € M,

0 <mo < [l < [full?-
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Corolario 1.1.9 FEziste 6, > 0 tal que

I(u), I(u*) > 25, Yue M.

Demonstracao. Note que se v € N, entao

ropo= (55 ) ol = [ (Fo) - o).

Logo, de (f3) e do Lema 1.1.7,

1 1 1 1

O resultado segue observando que se u € M, entdao u,u™ € N. [

|~

No que segue, mostraremos alguns resultados relacionados com o conjunto
Sy:={ueM: I(u) <c + A},
onde A > 0 é uma constante a ser fixada convenientemente.
Lema 1.1.10 Para todo u € Sy, tem-se
0 <mp < lu[lf < JJullf < m,

para alguma constante my € (0,1) e A > 0 suficientemente pequeno.

Demonstracdo. Sendo Sy, C M, em vista do Corolario 1.1.8, precisamos apenas

mostrar que existe m, > 0 tal que
ul? <my <1, Yué€ S,
Para tal fim, note que se u € S,
. 1, 1 1 9 1
A2 I(w) =1(u) = T(wu= |5 =2 | lully — [ | Fu) =2 f(u)u
0 2 Q 0
Logo, pela condi¢ao de Ambrosetti-Rabinowitz ( f3),

0—2
* > e 2.
e eaz (Y52 ) Il

Tendo em vista o Lema 1.1.5, podemos fixar A > 0 suficientemente pequeno de tal

) 02
T+ AL (2—6>,

18
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e portanto
20(c* + \)

0_2 ::mA<1, VuegA.

lully <

Assim completamos a prova do lema. [ |

O proximo lema é fundamental para garantir que o limite fraco de uma sequéncia

de Palais-Smale em S, é uma funcéo nodal.

Lema 1.1.11 Para cada q > 2, existe d; > 0 tal que
0<5qg/|ui|qg/|u\q, Vue s
Q Q
Demonstracao. Sendo u € Sy C M,
ol = [ty

€ por (fl):
< © [ futle T
Q

Usando imersoes continuas de Sobolev e a Desigualdade de Holder,

1/to
1 < el ([ o)

onde 1/t; 4+ 1/ty = 1. Pelo Corolario 1.1.8,

LoN2\ L/t
+ amtall I3 (257 )
mo < Clutls, o /6 [EE :
Q

e pelo Lema 1.1.10,

+)

| 2\ 1/t2
47rt2m)\< “ )
+ uE
mo < C’u |t1,Q (/ e lu=llgo .
Q

Sendo my < 1, podemos fixar 1 < ¢y proximo de 1 de tal modo que tomy < 1 e t; > 2.

Pela Desigualdade de Trudinger-Moser (2), existe uma constante C' > 0 tal que

+ 2
4 [u™] - -
/ . Tl'tQm)\(HuEH(Z) < C’ YV u e S,.
Q
Logo, para alguma constante C; > 0,

Cy < |ut)y0, Y ue S, (1.17)
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Agora, suponha por contradi¢do que existe ¢y > 2 e uma sequéncia (u,) C 5',\ tal que
U0 — 0, quando n — oc.

Pelo Lema 1.1.10 e por imersoes continuas de Sobolev, (uX) é limitada em L*(Q), para

cada s > 2. Logo, pelo Lema A.7 do Apéndice A,
|un|so — 0, quando n — oo,

para todo s > 2, o que contradiz (1.17). Portanto, o Lema 1.1.11 ocorre. [ |

No que segue, para um conjunto © C E e r > 0, denotamos por
O, ={uekl: dist(u,0) <r}.

O proximo lema serd crucial para garantirmos que, para uma escolha adequada

de um nimero real R > 1, o conjunto
i _ ~ 1
S:=<SsRu"™+tRu  : uesS, e s,te ﬁ’l ,
tem uma sequéncia (PS). de fungdes nodais para o funcional /.

Lema 1.1.12 Eziste R > 0 tal que

1 -
I(R'u®), I(Ru®) < 5J(ui), Vu € S.

Demonstracgio. Sejam v € Sy e R > 0. Pela definicio de I e por (f3),

_ 1 _ 1
MR = gl = [ PR < Sl

Usando o Lema 1.1.10,

I(R™*) < o2 < 6o,

para R > 0 suficientemente grande. Assim, pelo Corolario 1.1.9,
1 .
I(R'u*) <6, < §I(ui), Vu € S).

Segue da condi¢gdo de Ambrosetti-Rabinowitz (f3), que existem constantes by, by > 0
tais que

F(t) > b|t|” — by, VteER,
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de onde segue que

R2

R%m
I(Re) = Tt - / F(Ru*) < 1

- blRH/ [u®]? + by |9
Q

Pelo Lema 1.1.11, existe dg > 0 tal que

/ Wt > 6.
Q

ol — | PRy <

Sendo 6 > 2, concluimos que

Logo,
R2
2

R2m)\

I(Ru*) = — b1 RSy + by|€Y].
1 ~
I(Ru®) <0< 6 < §I(ui), Yu € Sy,

para R > 0 suficientemente grande. |

Seja P o cone das fungoes nao-negativas definido por
P={ueFE: u>0 qtp. em Q}

e considere o conjunto

A=PU(=P),

formados pelas fun¢oes com sinal definido.

O resultado seguinte garante que a distancia entre os conjunto A e S é positiva.

Lema 1.1.13
d(] = dlSt(S, A) > 0.

Demonstrag¢ao. Suponha por contradigao que dist(S,A) = 0. Entao, existem sequén-

cias (v,) C S e w, C A tais que
|vn, — W]l — 0, quando n — oo. (1.18)

Podemos supor sem perda de generalidades que w,(z) > 0, para todo = € Q e todo
~ 1
n € N. Sendo v,, € S, existem u,, € Sy e s,,t, € [ﬁ’ 1] tais que v, = s, Ru +t,Ru,, .

Pelo Lema 1.1.10, u,, é limitada em E. Logo, podemos assumir que
vn(z) = soRug (x) + toRug () q.t.p. em €,
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1
para algum ug € E e sg,ty € [ } Por outro lado, por (1.18) e pelo fato que (v,)

R
¢ limitada em F, tem-se que (w,) é também limitada em E. Por unicidade de limite,
temos

wy(z) = soRug (x) + toRug () q.t.p. em €.
Mas pelo Lema 1.1.11 e por imersoes compacta de Sobolev, uojE # 0. O que contradiz
o fato que w,(z) > 0, para todo = € 2 e todo n € N. [ |

A proxima proposicao garante a existéncia de uma sequéncia (PS). de fungoes

nodais para o funcional I. No que segue, para r > 0, denotamos

S, :={u€FE: dist(u,S) <r}

Proposigao 1.1.14 Dados €,6 > 0, existe u € I7([c* — 2¢, c* + 2¢]) N Sas verificando

4de
I —.
17wl < 5

Demonstracao. De fato, caso contrario, existem ¢,,d, > 0 tais que

e,
17 ()| > ; . Yu € IY([e* — 2€,, ¢ + 26,]) N Sas,.
Assim, para cada n € N,
¢,
I (uw)| > ‘ /n, Vu € I71([c" — 264, ¢* + 2¢€,]) N Sas, .
do/1
Sendo
I7Y([¢* = 2¢,/n, ¢ + 2¢,/n]) N So5,/n C I7Y([¢* = 2¢,, "+ 26,]) N Sas,
tem-se
e,
Il 2 5% e I = 26/ + 2e/n]) 1 S
o/
Logo, podemos fixar n € N suficientemente grande de tal modo que
€o . 252 N 60 do
€:=— < —, A 0 =—<—= 1.19
€= mln{ = } , . 5 (1.19)

4e

I (w)|| > 5 Yu € I ([c" — 2€,c* + 2€]) N Sas.

Logo, pelo Teorema de Deformacao (Teorema A.16 do Apéndice A), existe uma apli-

cacao continua 7 : F — FE satisfazendo:
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(1) 77(“) =u, YVu ¢ I_l([c* — 26, ct + 26]) N 523;
(ii) [In(u) —ullo <6 Yu € E;
(iii) 7 (I°+NS) C 17N Sy;

(iv) m é um homeomorfismo.

Pela definicao de c¢*, para tal € > 0, existe u, € M verificando

Iw) < +5. (1.20)
N _
Agora, defina () = <§, 1) e considere v : () — E definida por
v(s,t) = n(sRuf + tRu;).
Uma vez que uf € N, temos
I(sRu} + tRu) = I(sRu}) + I(tRu;) < I(u}) + I(u)) = I(u,).
Logo, pela escolha de € feita em (1.19) e por (1.20),
I(sRuf +tRu;) < I(u,) < c*+§ <t HE<c+ A,
para todo (s,t) € Q. Assim, u, € Sy, e pela defini¢io de S,
sRuf +tRu, € I NS,
e pelo item (i),
I(y(s,t)) = I(n(sRu,™ +tRu,”)) < c" —& V¥(s,t) € Q. (1.21)

Segue do item (i) que
Iy(s,8) — (sRut + tRu. )0 <3,
e pela escolha de 0 feita em (1.19), para v € A, temos
[7(s,t) = vlle = lv(s,t) = (sRuf + tRu.) + (sRuf +tRu;) — vllg

> |[(sRuy + tRu, ) = vllo = [[v(s,t) — (sRu + tRu,)|o

_ dy d
2d0—6>d0—50:§0>0,
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para todo (s,t) € Q. Portanto,

v(s,t)* #£0, V(s t) €Q. (1.22)

Afirmacdo 1.1.15 Ewxistem (so,t9) € Q tal que
I'((s0, t0) ™) (7(s0, t0) ™) = 0.

Suponha, por um momento, que a Afirmagao 1.1.15 seja verdadeira. Por (1.22),

v(s0,t0)* # 0. Logo, v(so,t0) € M, de onde segue que

[(’7(307 tO)) > C*a

o que contradiz (1.21), demonstrando a Proposicao 1.1.14.
Para demonstrar que a Afirmacao 1.1.15 é verdadeira, usaremos a Teoria do Grau

de Brouwer (ver [38, Capitulo 2]). Defina as funcdes H,G : Q — R? por

H(s,t) == (I'(v(s, ) ") (v(s,8) "), I'(7(s,1) ) ((5,£) 7))

G(s,t) .= (I'(sRu,")(sRu}), I'(tRu; ) (tRu,)).

1
Desde que as aplicacoes g1, gs : [ﬁ’ 1} — R dadas por
gi1(s) = I'(sRuf)(sRul) e go(t) = I'(tRu,)(tRu, )

sao continuas, pela Fdrmula Produto para o Grau de Brouwer em dimensao dois, temos

(G, Q,(0,0)) = d (gl, (% 1) ,0) d (92, (% 1) ,o) |

1
Agora, vamos calcular d (gl, <ﬁ’ 1) ,0) . Para isto, relembremos a definicao do Grau
Topolégico em dimensao um:

Seja g : [a,b] — R uma fun¢ao continua tal que g(a) # y e g(b) # y. Definimos

1

d(g, (a,b),y) := 5 [sgn(g(b) — y) — sgn(g(a) —y)].

Assim,

g1, (1/F%,1),0) = 5 [sgn(or(1)) — sgn(oa(1/F))].
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Segue da condicao (fy) que o maximo

max I (sRu)
s>0

¢ atingido em s = 1/R. Sendo 0 < 1/R? < 1/R < 1, pela geometria do funcional I,

temos
1 1
91(1/R?) = I/(Eui)ﬁuf >0
e
g1(1) = I'(Ru})Ruf < 0.
Logo,

1
Analogamente, mostra-se que
d(gs, (1/R?,1),0) = sgn(—g2(1/R%)) = —1.

Portanto,
d(G,Q,(0,0)) = (-1).(-1) = 1.

Agora , observe que

v(s,t) = n(sRuf + tRu,) = sRu} +tRu,, Y(s,t) € 0Q.

1
De fato, sejam s = 1/R?> e t € [ﬁ’ 1}. Pelo Lema 1.1.12,

1
I(sRu,* +tRu,”) = I(Euﬁ) + I(tRu.")

< I<“2*+) FI(w) = I(u) —

Por (1.20), Corolario 1.1.9 e pela escolha de € > 0 feita em (1.19),

2

I(sRu,t +tRu,”) < c* + % — 0y < " — 2,

ou seja,

1
EU*JF +tRu,” ¢ I"([c" — 2€, ¢ + 2€]) N Sy,

1
para todo t € [

o2 1}. Logo, pelo item (i),

1N (1. AN )
’Y(@ﬂf) —U(Ru* + tRu, )—Ru* + tRu,”.
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Os outros casos sao similares. Assim,
V(s b = sRuf e A(s,t)” = tRuy, ¥(s,t) € 90,

e portanto H = (G sobre 0. Consequentemente, pela Propriedade de dependéncia

na fronteira do Grau de Brouwer,

d(H,Q,(0,0)) = d(G,Q,(0,0)) =1 #0

Sendo assim, da Propriedade de existéncia de solugdo, existe (so,t9) € @ tal que

H(807t0> = (0,0), ou Seja7

I'(v"(s0,t0))7" (s0,t0) =0 e I'(v (s0,t0))7 (50, t0) = 0.

Portanto,

v(s0,t0) € n(9(Q)) N M,

concluindo a demonstracao da Afirmacao 1.1.15.

Demonstracao do Teorema 1.1.1.

1 1
Para cada n € N, considere ¢ = — e § = —. Pela Proposicao 1.1.14, existe

4n N4

U, € Sy 5 verificando
U, € I"'([c" —1/2n,c" +1/2n))

1 (un) || <

Bl

S satisfazendo

N

Sendo u,, € Sy, /7, por continuidade, existe (v,)
I(v,) = ¢ e I'(v,) — 0,
em outras palavras, (v,) é uma sequéncia (PS). de fungdes nodais para I.

Afirmacgao 1.1.16 A sequéncia (v,) € limitada em E e, para uma subsequéncia de

(vn), ainda denotada por (vy,),

limsup ||v,||3 < 1.
n—00
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De fato, sendo (v,) C S, é simples ver que (v,) é limitada em E. Logo,

I'(vp)v, = 0,(1)

¢ 0u(D) = Ion) = 5o = (5= ) Il = [ [F@) = Grtenon

A igualdade acima, junto com (f3) e o Lema 1.1.5, implica em

limsup oy < 22
im sup [|v, ||y <
n%oop v 9_2

< 1.

Agora, seja vy € E o limite fraco de (v,) em E. Combinando a Afirmagao 1.1.16 com
o Lema 1.1.6, deduzimos que vy & uma solucao fraca do problema (D). Finalmente,

para concluir a demonstracao, devemos mostrar que v(jf # 0. Sabemos que
v, — vy em E;
() = vo(x) q.t.p. em Q; e
v, — vy em LY(9).

Por outro lado, sendo v, € S, existem constantes s,,t, € [ } e u, € Sy, tais que

!
Un = spRut + t,Ru,, . Logo, a menos de subsequéncia,

va(7) = sy Rut (z) + t, Ru,, (x) — soRug (z) + toRug (x) q.t.p. em €,

1
para algum par sg,ty € {?, 11, onde uy € F é o limite fraco da sequéncia (u,) C S).
Por unicidade do limite,
vo(x) = soRug (x) + toRug () q.t.p. em Q.
Usando o Lema 1.1.11, para ¢ > 2 escolhido arbitrariamente, existe o, > 0 tal que

/Q e > 5,

Passando ao limite de n — oo na desigualdade acima e usando a compacidade da

imersao H}(Q) — L1(Q), deduzimos que

/Q|uat|qzéq>o7

mostrando que uZ # 0. Portanto,
+_ + - _ —
vy = soRug #0 e vy =toRuy #0,
completando a demonstracao do Teorema 1.1.1.
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Observacao 1.1.17 Usando os mesmos arqumanetos da Se¢do 1.1, trabalhando agora
com a Desigualdade de Trudinger-Moser dada em (3) e (4), € possivel mostrar a exis-
téncia de solugao nodal de energia minima para a equagao de Schridinger com condi¢ao

de fronteira de Neumann

—Au+V(x)u = f(u), em Q,
(V)
@ = 0, sobre 01,
ov

onde Q é um dominio em R? com fronteira suave, e V : Q — R é um potencial
continuo verificando V(z) > Vi > 0, para todo v € Q. Mais precisamente, temos o

sequinte resultado:

Teorema 1.1.18 Suponha que as hipdteses (f1) — (fs) sao vdlidas. Entédo, o problema
(N) possui uma solug¢io nodal de energia minima, desde que a constante C, verifique

Cp >

40 (r—2)/2
By } , onde Vg =min{l, V,}.

[m
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Capitulo 2

Solucao nodal minimal em R?

Neste capitulo, mostramos que o caso autonomo (V' = V4 > 0) do problema (P),
quando 2 = R?, nao possui solucao nodal de energia minima. Mostramos ainda que é
possivel obter a existéncia de solugao nodal de energia minima para o problema nao-
autonomo (P) em R?, no caso em que V ¢ limitado inferiormente por uma constante
positiva e que no infinito se aproxima de um potencial Z2-periédico. Ainda sobre o
problema autdénomo, mostramos um resultado de existéncia de solucao nodal radial
minimal, i.e., solu¢ao nodal radialmente simétrica e de menor energia dentre todas as

solucoes radiais.

2.1 Existéncia de solucao nodal de energia minima

para o problema nao-auténomo.

Nesta secao, mostramos um resultado de existéncia de solucao nodal de energia

minima para o problema nao-auténomo:
—Au+V(zx)u= f(u) em R?
u € H'(R?),

onde V : R? = R é um potencial continuo satisfazendo

(V1) Existe uma constante V5 > 0 tal que Vy < V(x), para todo x € R?;



(V3) Existe uma fungao continua e Z*-periodica V,, : R* — R satisfazendo

V(z) < Vyl(z), Vo e R?

lim |V (z) — Ve(z)| = 0.

|z| =00

(V3) Existem p < 1/2 e C > 0 tais que

V(z) < Vio(z) — Ce™l para todo z € R2.

Vamos supor que a nao-linearidade f seja uma funcao continua e impar, satisfa-
zendo as mesmas hipoteses (f1) — (f5), enunciadas no Capitulo 1.

O nosso principal resultado para o problema nao-autéonomo é o seguinte.

Teorema 2.1.1 Suponha que as hipdteses (Vi) — (V3) sao vdlidas e que f seja uma

fungao impar satisfazendo as hipoteses (f1) — (fs). Entao, o problema eliptico

P) { —Au+V(z)u = f(u), in R?

u € H'(R?),

possui uma solu¢ao nodal de energia minima, desde que a constante C, verifique

20, P22
C, > —p} , 2.1
onde
Vo =min{l,Vu}, v, = inf J,,
M, (0)
1 1

Ju:—/ Vul> + Vi|ul? ——/ ul?, Vi =maxV(x

p(u) = 5 Bl(o)(l [+ Valul?) — Bl(o)l 7, Vi = max Vi (x)
e

leal(o) ={u€ Hy(Bi(0)): u“#0 e Jl’,(ui)ui = 0}.

A idéia para demonstrar o Teorema 2.1.1 foi inspirada em Alves, Soares e Souto [9]
e consiste no seguinte: Usaremos o Teorema 1.1.1 para obter uma solucao nodal de
energia minima u,, € H}(B,(0)), para o problema de Dirichlet quando Q = B,(0),
n € N. Em seguida, mostramos que a sequéncia (u,) é fracamente convergente em

H'(R?) e que o seu limite fraco é uma solugao nodal de energia minima para o problema

(P) em R
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No que segue, vamos considerar a seguinte norma em H'({):

rwn—(Agﬂvm2+vumm%)U2

Por (V1) e (V3), tem-se que || - || é equivalente a norma usual em H'(R?):
1/2
lull, = (/ (|Vul® + |u|2)) ,
R2
pois
Vollull < llull® < Vellulli, - Yu € HY(R?), (2.2)

onde V¥ = max{1,V;}.
Daqui em diante, denotamos por F o espaco H'(R?) munido com a norma || - ||.
Usando as hipoteses (f1) e (f2), mostra-se que para cada e >0, ¢ > 1e § > 4,

existe uma constante C' = C'(e, ¢, 3) > 0 tal que
f(s) < els| +Cls|?? (eB”SQ - 1> , para todo s € R, (2.3)
o que implica em
sf(s), F(s) <es*+C|s|? <eﬁ”52 - 1> , para todo s € R. (2.4)

Assim, pela Desigualdade de Trudinger-Moser devida a Cao (6), temos F(u) € L'(R?)

para todo u € H'(R?). Portanto, o funcional energia associado com (P), dado por

1
) = 3l = [ P, wer,

estd bem definido. Além disso, mostra-se que I é um funcional de classe C' sobre E

co1m

I'(u)v = /11@2 [VuVv + V (z)uv] — g fw)v, Vu,v € E.

Consequentemente, pontos criticos de I sdo precisamente as solucoes fracas de (P).

Sabemos que toda solucao nao trivial de I pertence a variedade de Nehari
N :={ue E\{0}: I'(u)u=0}.
Dizemos que uma fun¢ao u € N é uma solucao de energia minima de (P) quando
Iu)=¢ e I'(u)=0,
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onde

= Jél'{[[(u)

Como estamos interessados em solucao nodal de energia minima, definimos o conjunto:
M={uecE: vt#0, I'(u*)u* =0},

e o numero real

* = inf I(u).
=k

Note que toda solugao nodal de (P) pertence a M. Dizemos que u € M é uma solugao

nodal de energia minima de (P) quando

Lema 2.1.2 O numero c* verifica

c < Y .

Demonstracao Ver Lema 1.1.5 do Capitulo 1.

No que segue, enunciamos alguns resultados ja obtidos na literatura, os quais
serao necessarios para demonstrar o Teorema 2.1.1.

O primeiro pode ser encontrado em Alves, Carridao e Medeiros [12].

Lema 2.1.3 Seja F € C*(R,Ry) uma func¢io conveza e par tal que F(0) =0 e f(s) =
F'(s) >0, Vs € [0,+00). Entao, para todo t,s > 0,

[F(t —s) = F(t) = F(s)| < 2(f(t)s + f(s)t).

Os dois resultados seguintes sdo devido a Alves, do O e Miyagaki [11]. O primeiro
resultado esta relacionado com a existéncia de solugdo positiva do problema (P) para
potenciais Z2-periodicos.

Teorema 2.1.4 Suponha que as hipdteses (V1) — (Va), (f1) — (f5) e (2.1) sao vdlidas.

Entao

—Au+ V(r)u= f(u), em R2
(Poo)
u € HY(R?),
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possui uma solugdo positiva de energia minima, isto é, existe u € H'(R?) tal que u > 0,

Io(u) =cy e Il (u) =0, onde

1 2 2\ _ W), w 12
[oo(u):§/RQ (|Vul* + Voo (z)u?) /]R?F( ), ue H'(R?),
Coo = Inf Ioo(u)

ueNoo

e N denota a variedade de Nehari

N = {ue H(R)\ {0} : I'(w)u = 0}.

O segundo resultado esta relacionado com o caso assintoticamente peridédico.

Teorema 2.1.5 Suponha que as hipdteses (Vi) — (Va), (f1) — (f5) e (2.1) sao vdlidas.
Entao, o problema (P) possui uma solugdo positiva de energia minima, ou seja, eriste
u; € H'(R?) tal que uy; >0, I(u1) =c¢; e I'(uy) = 0.

Além disso, temos o seguinte resultado devido a Alves [6].

Teorema 2.1.6 Assuma que (f1) e (f2) sdo vdlidas. Entdo, qualquer solugdo positiva

u do problema (Ps,) satisfaz

(1) Cre~l < i < Che Mol jn R2,

onde Cy e Cy sao constantes positivas e 0 < b < 1 < a. Além disso, podemos escolher
a=1+9,b=1-9, para 6 > 0. O mesmo resultado vale para a fun¢ao uy dada no
Teorema 2.1.5.

Demonstrac¢ao. Usando o crescimento de f dado em (2.3), temos
|f(u)| < elu| +C (667”22 — 1) .

Logo, definindo h(z) := f(u(z)) e usando o Lema A.1 do Apéndice A, para ¢ > 1

h(@)]? < (2)0 / Jalt + (20)" / (e )"

< (2€)q |ﬂ|q +C/ <€ﬁrrqm _ 1) .
R2 R2

Logo, pela Desigualdade de Trudinger-Moser (5), temos h € L] (R?) para todo ¢ > 1.

loc

RQ

Por argumentos Bootstrap, para x € R? e R > 0, tem-se @ € W?9(Bg(z)) com

lallw2aBr@) < C (IPlLe@ant) + Ul LaBan))
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o que implica em

Ha“WQ’q(BR(x)) <C (’h’Lq(BQR(z)) + |a‘L2(BQR(93))) :

Usando a imersao continua W2%(Bg(x)) — C(Bg(x)), obtemos

]| oo (Bra)) < C (IMlLa(Ban() + |8l 2(Bon(a))) -

A tltima desigualdade implica que @ € L>(R?) e lim u(z) = 0.

|z|—o00

As desigualdades em (/1) envolvendo as funcoes exponenciais seguem usando o

mesmo argumento de Li e Yan [39]. [

A préxima proposicdo € um ponto importante em nosso argumento para obter
solucao nodal de energia minima, uma vez que estabelece uma importante estimativa

superior para o nivel c*.

Proposicao 2.1.7 Suponha que f € uma fungao impar satisfazendo (f1) — (f5) e que
as hipoteses (V1) — (V3) sao wvdlidas. Entao,

¢ <1 Coo.

Demonstracao. Sejam @ uma solu¢ao positiva de energia minima de (P.,) e u; uma
solugdo positiva de energia minima de (P) dadas no Teorema 2.1.4 e Teorema 2.1.5,

respectivamente. Vamos definir 4, (x) = u(z — x,), onde x,, = (0,n) e para a, § > 0
e 8) = [ (V(ow = g P + Via)liau - a,)*F)
R2
~ [ f((aws = o)) (aus ~ pan)*
R

Usando o fato que I'(uj)u; = 0 e a hipotese (fy),

[ (9P + Ve u/22) - [ /i
L. w
[ v +va) - [ e

N NG P 20

Ul 2U1
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Agora, observe que por uma mudanca de variaveis, temos

L 9P + V@27 = [ (V@2 +Vie+ @)

/RQ f(Un/2)(1,/2) = /R Fla/2)(a/2).
Segue de (V3) que

V(z+x,)(u(x)/2)* = Vao(z)(6(2)/2)* q.t.p. em R?
quando n — oo, e
V(z+z,)(0/2)* < Voolx)(u/2)* € L'(R?), Vn €N,

Logo, Pelo Teorema da Convergéncia Dominada de Lebesgue,

/RQ (IV(@@/2)P +V(z +2.)(@/2)*) = | (IV(@/2)]* + Vo (2)(3/2)7) .

RZ

Segue de (2.9) e (2.7) que

L (9P + V@) » [ (V@2E +Valo)a2p).

Usando a hipotese (f4), obtemos

Lua/2)(@/2) = [ (V@/2P +Va)@2?) = [ a2 >

Logo, por (2.8) e (2.10), existe ng € N tal que

L9 @/2P 4 V@27 - [ s/ >

para todo n > ngy. Analogamente, mostra-se que

/R 2(|V<2ﬂn>|2+V(x)(2an)2) — | feu)a,) <o.

R2

para todo n > ny.

Afirmacao 2.1.8 FExiste ny > 0 tal que

ht(1/2,8) >0,
ht(2,8) <0

para todo n > ng, uniformemente em B € [1/2,2]. Analogamente,

h, (a,1/2) > 0,
h, (a,2) < 0.
para todo n > ng, uniformemente em o € [1/2,2].
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Demonstracao da Afirmacgao 2.1.8. Vamos demonstrar apenas que existe ng € N
tal que hf(1/2,8) > 0 para todo n > ng, uniformemente em § € [1/2,2], pois os
demais casos seguem usando o mesmo argumento. Note que pelo item (I) do Teorema
2.1.6, temos u,(z) := u(r — z,) — 0 quando n — oo, pois |r — x,| — oo quando

n — o0o. Assim, a idéia é mostrar que
hy (1/2,8) = I'((u1/2 = Bin) ) ((ur/2 = Bin) ") = I'(u1/2)(ur/2) > 0

quando n — oo, uniformemente em § € [1/2,2]. Para isto, basta mostrar que os

seguintes limites ocorrem:

(2) g [V ((u1/2 = Bin)")[* — Rz\V(ul/2)|2;

O) [ V@250 = [ Vw2

© [ fw/2= 5 /2= ga)" > [ 2/

quando n — oo, uniformemente em 5 € [1/2,2].

Demonstracao de (a): Observe primeiro que, para § € [1/2,2] e n € N,

| vtz =008 = [ iR -5 [ wvava,
R2 R2 R2

(2.15)
48 [l Vul
RQ
onde Xn (%) = Xfu/2—pa,>0)(2), € R%.
Desde que
ntin || 2y < [|tn | w2y = (|0 1 r2)
e
Xn(2)tn(r) =0 qt.p. em R?
temos,
Xnlly =0 em  H'(R?),
de onde segue que
/ XoVuiV(t,) = | VuV(xati,) -0 quando n — co. (2.16)
R2 R2
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Sendo
XulV(ui(2)/2)” = |Vui(z) /2] q.t.p. em R

XnlV(u1/2)| < [V (ur/2)[* € L*(R?),

pelo Teorema da convergéncia dominada de Lebesgue, temos

[ o@IVa/2E > [ 19/2R, 0o

Agora, fazendo uma mudanca de variavel,

/ Xn|Vﬂn|2 = / ‘VEPX[W(x+a:n)/2—ﬁa(x)>o].

R2 R2

Desde que ui(z + x,) — 0 q.t.p. em R?
|va(x)|2X[u1(x+xn)/2—ﬁﬁ(x)>0] — 0 q.t.p. em R2.

Sendo
’va|2X[U1(z+wn)/2fﬁﬁ(x)>0} < ’va|2 S Ll(R2)7

pelo Teorema da Convergéncia Dominada de Lebesque,

/ Xn|Viin|* = 0, quando n — oo.
R2

(2.17)

(2.18)

Usando os limites em (2.16), (2.17) e (2.18), juntamente com o fato de que § €

[1/2,2], concluimos que o limite em (a) ocorre.

Demonstracao de (b): Para § € [1/2,2] e n € N, temos
U1/2 — 2ﬂn S 'LL1/2 — Bﬂn S U1/2 — ﬂn/Z,

o que implica em

[u1/2 — 21, > 0] C [u1/2 — Bu, > 0] C [u1/2 —a,/2 > 0].

Logo

IN

/’ V() (/2 — fu,)?
[u1/2— 21, >0]

IA
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/‘ V() (/2 — fu,)?
[u1/2—B1n>0]

/ Via)un/2 - B,
[u1/2—1n/2>0]

(2.19)



e por (2.19),

/ V(@) (un/2 — 20, / ) (u1 2 — )2
(41 /2= 2010 >0] [u1/2— ,Bun>0]

/ () (a2 — 1,/2)?
[ui/2— un/2>0

ou equivalentemente

[xv@tme-2up < [ view/2-sa)y

(2.20)
< [ Vi) - /2>
R2
onde x;, = Xu1/2—21,>0] € Xn = Xlui /2= /2>0]
Desde que @, (z) — 0 q.t.p. em R? e u; > 0, temos
o), x!(x) =1 qt.p. em R
Logo,
Xo V(@) (w1 /2 = 20,)* < V() (w1 /2)* € LY(R?),
X (@)V (@) (w1 (2) /2 = 2t (2))* = V(@) (wi(2)/2)* qt.p. em R,
e
XV (@) (u/2 = 0,/2)* < V(x)(u1/2)* € L'(R?),
Xo(@)V (@) (ur(2) /2 = @ (2)/2)* = V(2)(ui(2)/2)* q.t.p. em R?
pelo Teorema da Convergéncia Dominada de Lebesgue, temos
/ XV () (ur/2 — 2a,)* — | V(2)(w1/2)? (2.21)
R2 R2

/R V(@) (un/2 — i /2)? %/ ) (u1/2)2. (2.22)

Passando ao limite de n — oo em (2.20) e usando (2.21) e (2.22), concluimos que

[vez=sa) = [ v/

quando n — oo, mostranto que o limite em (b) ocorre.

Demonstracao de (c): Para § € [1/2,2] e n € N, temos
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o que implica em
[u1/2 —2u, > 0] C [u/2 — pu, > 0] C [u1/2 —u,/2 > 0].
Logo

/ o f(w/2 = Bun)(uy /2 — Bun) S/ fur/2 = Buy,)(ur /2 — Buy,)
[u1 /221, >0]

[“1/27/Bﬁn20}

</ Fun/2 = i) (/2 = Biin).
[y /2—1in /20]
Por (fy), a fungao t — f(t)t é crescente em ¢t € [0, 4+00]. Logo,

[ sz -2m) < [ Pl /2 — ) (s /2 — Bin)
[u1/2—21n>0]

[u1/2—Ban>0]
< / F01/2 = G 2)(ur)2 — T 2),
[u1/2—ﬂn/220]

ou equivalentemente,

/2 X f (U1/2 — 21, ) (w1 /2 — 20,) < /2 f(u1/2 = i) ) (ur /2 — Ban) ™
B " (2.23)

< / X (/2 = /D) /2~ 0 2),

onde X;L = Xu1/2—2u,>0] € XZ = Xu1/2—n/2>0]-

Usando novamente que t — f(t)t é crescente em t € [0, +o0] e o fato que
Un(z) = 0 q.t.p. em R?

obtemos
Xof (ur/2 = 20, ) (/2 = 2,) < flui/2)(ur/2) € LH(R?),
Xo (@) f(wr (2) /2 = 2t (x)) (w1 (2) /2 = 20 (2)) — flua(2)/2)(wr(2)/2) q.t.p. em R
Xonf (/2 = U /2) (w1 /2 = 10 /2) < f(ur/2)(wr/2) € LY(R?),
X (@) f (wr (2) /2 = () /2) (ur (2) /2 = T (@) 2) = flua(2)/2)(wr(2)/2) q.t.p. em R

Assim, pelo Teorema da Convergéncia Dominada de Lebesgue,

/R X (1 /2~ 20,) (2 20,) = /R (/2 /2) (2.24)

[tz =z -0m = [ fwpwe. )
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Passando ao limite de n — oo em (2.23) e usando (2.24) e (2.25), deduzimos que

[ #tunf2 = a2 = pa)t > [ /22

quando n — 0o, mostranto que o limite em (c) ocorre.
Sendo a Afirmacao 2.1.8 verdadeira, podemos aplicar a variante do Teorema do
valor médio devido a Miranda [41], para obter a*, 8* € [1/2,2] tal que hi(a*, 3*) = 0,

para qualquer n > ng. Logo,
a*uy — f*u, € M, para n > ng.

Assim, tendo em vista a definicdo de ¢*, para demonstrar a Proposicao 2.1.7 é

suficiente mostrar que

sup [(au; — Buy,) < ¢ + ¢ para n > ng.
1<a,p<2

Para isto, primeiro usamos o Lema 2.1.3 para obter a seguinte estimativa

T = i) < 5 [ (V0w + 9GP +5 [ Viaawl +1a,)

R2 2

—af | (Vu Vi, + V(z)uia,) — Ay,
R2
onde

A, :/RQF(aul)—l—/Rz F(,@un)—Q/RQ [ (aun) B + f(Biin)aua] .

Sendo u; uma solugdo positiva de (P),

/ (Vu, Va, + V(x)ua,) = f(uy)a, >0,

R2

o que implica em

I(auy — Buy,) < I(ouy) + Lo (Bun) +2a | f(Bun)ur +26 | flau)u,  (2.26)
R? R

5 [ @ - Ve,

Pela hipotese (V3),

/R (V(2) - Viela))i, < —C /R e,
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Usando a invariancia de R? por translacdo e fazendo uma mudanca de variavel na

ultima integral da desigualdade acima, obtemos

/ (V(z) — V(@) < —C / e Henl g,
R2 R2

e como | + x,| < |z| + |x,| = |z| + n,

e Hlztn] > e*u\wlﬂm7

o que implica em

R2
Sendo
/ e “|I|u2§/ u? < o0,
R2 R2
deduzimos que
(V(z) = Vo (z))u2 < —Ce™#m. (2.27)

R2

Usando o crescimento de f dado em (2.3),

flauy)u, < ea/

uitly, + C / (em?“f —~ 1) Uy Ty (2.28)
R2 R2

R?

Note que pelo Teorema 2.1.6,

/ Ulan S 02/ ule_b‘x_””" .
Bn/2 Bn/Q(O)

Uma vez que |z — z,| > |x,| — |z| = n — |z| e |z| < n/2, encontramos |z — z,,| > n/2,
de onde segue que

/ Uy, < C’z/ ure " < Cemt? (2.29)
Bn/2 Bn/2

e como o Teorema 2.1.6 ¢ também vélido para uq,

/ ulﬁn S 02/ G_b‘xlﬂn S C’ge_b"/Q/ Z_Ln S C'Qe_b”/2/ U. (230)
R2\B,, 2 R2\B,, 2 R? R?

De (2.29) e (2.30),

/ Uy, < Ce /2, (2.31)
R2
Por outro lado, sendo u; € L®(R?),
/ <e4m2“§ — 1> wi, < C | wi, < Ce 2. (2.32)
R2 R2
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Usando as desigualdades (2.31) e (2.32) em (2.28),

f(auy)a, < Ce™/2. (2.33)

R2
Analogamente,

f(Btin)uy < Ce™™/2, (2.34)

R2
Usando (2.33), (2.34) e (2.27) em (2.26), obtemos

Iauy — Biy) < sup I(u) + sup I (i) + C e/ — ).
a>0 >0

Sendo p < 1/2, para n suficientemente grande,
e /2 _emHn <,

o que implica em

sup  I(auy — Puy,) < €1 + Coo-
1/2<a,8<2

Consequentemente

" < e+ oo,

finalizando a demonstracao da proposicao. [

O proximo resultado ¢ uma versdo do Lema de Lions (ver [56, Lema 1.21]) para

crescimento critico exponencial em R? devido a Alves, do O e Miyagaki [11].

Lema 2.1.9 Seja (u,) C H'(R?) uma sequéncia verificando u, — 0 em H'(R?)
quando n — +00 e limsup [Ju,||] < m < 1. Se existe R > 0 tal que

n—o0

lim inf sup / [un|> =0
"0 yeR? J Br(y)

e (f1) — (fs) s@o vdlidas, entéao

/ F(uy), / unf(u,) =0, quando n — oo.
R R?

Usaremos a versao do Lema, de Lions para crescimento critico exponencial em R2,

para demonstrar o proximo resultado.

Lema 2.1.10 Assuma que (Vi) — (V3) e (f1) — (fs) valem. Se (u,) C E € tal que
I(u,) = o, u, = u em H'(R?), I'(uy)u, — 0 e

liminf [ f(u,)u, >0,

n—oo R2

entao u # 0, sempre que 0 < 0 < Cop.
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Demonstragao. Suponha por contradi¢do que v = 0. Por (13), dado € > 0 existe

R = R(€) > 0 tal que
|V (z) = Vo(z)| <€, para |z| > R.
Como uma consequéncia de u = 0, temos
/ V() = Voo (2)||un|* — 0.
Bpgr
A desigualdade abaixo
L@ -ve@lu < [ W) =Vl e [l
Bgr R2\BR
juntamente com a limitagao de (u,) em H'(R?) implica em
[I(up) — Io(uy)] — 0 quando n — oo.
Um argumento similar mostra que
1 ()t — I (up)un| — 0 as n — oo.
Consequentemente,
Io(un) =0 +0,(1) e I (up)u, = 0,(1). (2.35)
No que segue, fixamos s,, > 0 verificando
Sptln € No.

Afirmamos que, a menos de subsequéncia, (s,) converge para 1 quando n — oco. De

fato, vamos primeiro mostrar que

limsups, < 1. (2.36)

n—oo
Suponha por contradi¢do que existe uma subsequéncia de (s,), ainda denotada por

(sn), tal que s, > 1+ § para todo n € N e algum § > 0. Segue de (2.35) que

/(\V“nVQWLV )|t |?) /fun Up + 0, (1). (2.37)
RQ

Por outro lado, sendo s,u, € N,

sn/ (IVunl® + Voo () [un]?) / f(Sntin)tn,
R2
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de onde segue que

[ (Foed L o, (2.58)

Snln Unp

Afirmamos que existe (y,) C Z? com |y,| — oo, 7 > 0 e 8 > 0 tais que

/ ui > 5> 0.
B'r'(yn)

De fato, caso contrario, usando a versao do Lema de Lions para crescimento critico em

R? enunciado no Lema 2.1.9, obtemos

n—-+o0o R2

o que é contrario a nossa hipotese.
Agora, seja v, (z) := u,(r +y,). Uma vez que (u,) ¢ limitada em H'(R?), tem-se
que (v,) é também limitada em H!'(R?). Assim, para alguma subsequéncia, podemos

assumir que (v,,) é fracamente convergente, e vamos denotar por o seu limite fraco em

H'(R?). Observando que

/ wz/ 2> B> 0,
7‘(0) Br(yn)

deduzimos que ¥ # 0 in H'(R?). Agora, de (2.38), (f1) e do Lema de Fatou, temos
o< [ (Mt SOy
R2

(1+96)o 0

o que é impossivel. Logo
limsups, < 1.
n—oo

Se s, = limsup s, < 1, podemos assumir que s, < 1 para n suficientemente grande.
n—oo

Assim, aplicando novamente o Lema de Fatou, obtemos

0</Rg(f<~6)—f(5"@))62<0 se s, >0

U SoU

0< [ f(@0<0 se s,=0,
R2

o que é impossivel, mostrando que limsups, = 1. Assim, para alguma subsequéncia
n—o0

de (s,), ainda denotada por (s,), temos

lim s, = 1. (2.39)

n—0o0

Como uma consequéncia de (2.39), temos
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Afirmacgao 2.1.11

/R F(sua) — /]R F(u) = 0,(1)

f(spun)sptn — [ f(un)tn = 0n(1).
R2 R2

De fato, pelo Teorema do Valor médio, existe 6, (z) € [0, 1] tal que

| F(snun(2)) = F(un(2))] = f((0n(2) (50 = 1) + Dun(x))[(sn — Vun(z)]

Logo, usando o crescimento de f,

/}R2 F(spuy,) — /R2 F(uy,)

< - |F(Snun) - F(un)l

< f((On(2) (50 — 1) + Dup(x))|(5n — Dun ()]

RQ

< €(sn — D)[0n(2)(sp — 1) + 1] /R |

+C€(Sn - 1)/ Up, <€4F(6"($)(5n—1)+1)2u% _ 1) ‘
RQ

(2.40)
Vamos estimar a ultima integral acima. Usando a desigualdade de Holder e o Lema

A.1 do Apéndice A, obtemos

1/q
/ u, <e4w(en(;p)(sr1)+1)2ug _ 1> < C|un|q/ (/ (647"‘](971(1)(5n*1)+1)2“%, _ 1)) 7
R2 R2

(2.41)
onde 1/q +1/q¢ = 1. Desde que ||u,||> < m < 1, temos

/ (etmatn@tenben® 1) < / (et 1), (2.42)
R2 R2

onde o, = 4dmmq(0,(z)(s, — 1) + 1)* e v, = u,/||u,||*. Note que sendo s, — 1,
0.(x) € [0,1] e m < 1, podemos fixar ¢ > 1 suficientemente proximo de 1 e ng € N,
de tal modo que «,, < 4w, para todo n > ng. Assim, pela Desigualdade de Trudinger-

Moser devida a Cao (6), temos

/ (eo‘”“’% - 1) <C, Vn>nyg.
RQ

Logo, por (2.42),

/ <e4wq(9n(x)(sn71)+1)2ug _ 1) <C, Vn>ny, (2.43)
R2
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com 1 < g~ 1. Assim, de (2.41) e (2.43),

/ 0 <e4w(en(z)(sn—1)+1)2ug _ 1) < Clnly- (2.44)
RQ

Usando (2.44) em (2.40),

| P = [ Fw)

Sendo (u,) limitada em H!'(R?), por imersoes continua de Sobolev,

[ P = [ P

sendo s, — 1 quando n — oo,

[ P = [ Fw)

demostrando a primeira igualdade da Afirmacao 2.1.11. A demonstracao da segunda

< €(sp — D[0n(2) (80 — 1) + 1]unlz + C(sn — 1) |y

< Ce(sp — D)[0n()(s, — 1) + 1]+ C(s, — 1),

— 0, quando n — oo,

igualdade é obtida usando um argumento similar, concluindo a demonstracao da Afir-
macgao 2.1.11.

Agora, observe que sendo I/ (S,un)spt, = 0 e Il (up)u, = 0,(1), temos

Il (Spun)Sntiy — I (un)u, = 0,(1),

ou seja,
521 [ (Vi + Va@lin?) = a0+ [ s — [ S,
R2 R2 R2
o que implica, pela Afirmacao 2.1.11, em
(s2 — 1)/ (1Yl + Ve (2) ) = 0n(1): (2.45)
R2

Usando (2.45) e a Afirmagao 2.1.11, obtemos

TIoo(Sptin) = Ino(up) + 0n(1).
Logo
Coo < Ino(Sptiy) = 0 + 0,(1).

Passando ao limite de n — 400, encontramos c,, < 0, 0 que ¢ impossivel, pois 0 < Cx.

Esta contradicao ocorreu pelo fato de assumirmos que u = 0. Portanto, u # 0. [

O proximo lema mostra uma importante propriedade da Variedade de Nehari V.
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Lema 2.1.12 FEuxiste uma constante n > 0 tal que
lull> > 7 >0,

para todo u € N.

Demonstragao. De fato, caso contrario, existe uma sequéncia (u,) C E tal que

|u,]] = 0 quando n — oo. Sendo u,, € N, temos

Ay

o que implica, por (2.4),

||Un||2 < 6/ |Un|2+0/ |Un|q (637r|un|2 B 1>.
R2 R2

Usando as imersoes de Sobolev e a Desigualdade de Hélder, obtemos

1/2 o\ 1/2
il < el 40 ([ ) ([ (e =0))
R? R2

Usando novamente as imersoes de Sobolev e o Lema A.1 do Apéndice A,

, 1/2
ol < el + Clluf [ (0 1))
R2

Fixando € < 1 e ¢ > 2, obtemos

1/2
O < flun " ( [ (e - 1>) ' (2.46)
R2
/ (6257r|1m\2 — 1) = / (62ﬁ7r”u””2(llzzll)2 — 1)
R2 R2

e pela hipotese de contradicao feita no inicio da demonstracao,

Agora, observe que

257T||un||2 <drw, Vn > nyg,

para algum ny € N. Assim, definindo v, := Hu—"”7 temos |Vu,la < ||lu,]| = 1. Assim,
Unp

pela desigualdade de Trudinger-Moser devida a Cao (6), temos

/ <e2ﬁ7r\1m|2 _ 1) g/ (e‘”“’% — 1> < sup / <e4’”’2 — 1) < Oy (2.47)
R2 R2 |Vv[2<1 JR2

Usando (2.47) em (2.46), deduzimos
lun|| > C >0,

o que é uma contradigao, pois estamos supondo que |u,|| — 0 quando n — oo,

mostrando que o lema ocorre. |
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2.2 Demonstracao do Teorema 2.1.1

Aplicando o Teorema 1.1.1 do Capitulo 1 com Q = B,(0), para cada n € N,

existe uma solugao nodal u,, € H}(B,(0)) para o problema de Dirichlet
—Au+V(x)u = f(u), em B,(0),

u = 0, sobre 0B,(0),

no nivel

.
¢, =inf I,
n

onde

M, ={uec H}(B,(0): v*#0 e I'(u)u* =0}

Aqui, também denotamos por I o funcional energia associado com (P),, pois a restri¢do

de I ao espago H}(B,(0)) coincide com o funcional energia associado com (P),.
Afirmacao 2.2.1 O limite abaizo ocorre

lim ¢, = c".
n—oo

De fato, claramente (c}) é uma sequéncia nao crescente e limitada inferiormente por c*.
Suponha por contradi¢ao que lim ¢} = ¢ > c*. Pela definigao de infimo, existe ¢ € M
tal que I(¢) < é. Sendo ¢ # 0, por densidade, existe uma sequéncia (w,) C C5°(R?)
tal que
+ 112
wr #0, w, = ¢ em H (R*).

Observe que

I(wn) = Hwy) + I(w,) = 1(¢) = ¢" >0,

I(wy) = 1(6™),

I'(wh)wt = I'(¢*)¢* = 0.

n

Agora, considere t= > 0 os finicos ntimeros reais, dados pelo Corolario 1.1.4 do Capitulo
1, verificando tZw® € N e defina ¢, = tfw' + ¢ -w. € M. Usando argumentos

n

similares aos da demonstracao do Lema 2.1.10, mostrar-se que

tE =1 e I(trwd) — I(¢F),

n
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o que implica em,
I(¢n) = 1(0).

Logo, podemos fixar ng € N tal que I(¢,,) < ¢, VYV n > ng. Por outro lado, fixando

ny € N de tal modo que ¢,, € M,,,, tem-se
Cny < 1 (ny) < 6,

contradizendo a definicao de ¢, demonstrando a Afirmacao 2.2.1. |

Afirmamos que (u,) é uma sequéncia limitada em E. De fato, pela condi¢ao de

Ambrosetti-Rabinowitz (f3) e a Afirmacao 2.2.1, temos

1 1
I 2
> (2 9) a2

de onde segue que (u,,) é limitada em E. Além disso, usando a hipotese (f5) juntamente
com a condi¢do (2.1) e um argumento similar ao usado no Lema 1.1.5 do Capitulo 1,

deduzimos que

2c*6
lim sup ||u,||* < ¢

(2.48)

No que segue, denotamos também por u,, € H'(R?) a extensao nula de u,, € H}(B,).

Note que de (2.48), (2.2) e do Lema 2.1.2,
liinﬁs;ip unlli < % <1 (2.49)
Sendo H'(R?) um espago de Banach reflexivo, para algum u € H'(R?),
u, —u em H'(R?),

quando n — oo.
Afirmagao 2.2.2 O limite fraco u € uma solucdo fraca de (P).

De fato, seja ¢ € C5°(R?) e considere ng € N tal que

supp ¢ C B,(0), Vn > ng.

Sendo u,, uma solugao fraca de (P), e ¢ € H}(B,) para n > ny,

/ Vu, Vo +V(z)u,p = / flun)e, Vn > ng,
BTL BTL
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ou ainda

Vu,Vo+ V(z)u,p = flun)p, ¥n > ng. (2.50)
R2

R2
Tendo em vista (2.49), combinando a Desigualdade de Trudinger-Moser (6) com o

Teorema da Convergéncia dominada generalizada de Lebesgue, mostra-se que
flup)p — | flu)p, quando n — oc. (2.51)
R2 R2

Por outro lado, da convergéncia fraca de u,, para u em F,

Vu,Vo+ V(z)u,p — VuVye + V(z)up, quando n — oo. (2.52)
R2 R2

Passando ao limite em (2.50) e usando (2.51) e (2.52), obtemos

VuVeo+V(zyup = | flu)e, Ve e CF(R?),
RQ

R2
e por densidade,

VuVo +V(z)uww = [ f(u)v, Vo€ Hi(R?),
R2

RQ

mostrando que u é uma solugao fraca de (P).

Agora, nosso objetivo é mostrar que
ueM e I(u)=c".
A menos de subsequéncia, podemos assumir que
I(uF) = 0%, onde ¢*=0" +0.

Usando o fato que u;, u; € N, obtemos 0= > ¢; > 0. Esta altima desigualdade,

junto com a Proposicio 2.1.7, implica que o0& < cs. Sendo

L

pelo Lema 2.1.12, temos

n—oo

liminf [ f(ub)ut >n>0,
RQ
o que implica, pelo Lema 2.1.10, em u* # 0. Logo, u € M e I(u) > c*.
Para completar a demonstracao, basta notar que o Lema de Fatou conduz as

desigualdades

2¢* = liminf [21(u,) — I'(u,)u,] = lim inf /R2 (f (up)up — 2F (uy))

n—oo n—o0

> /R2 (fw)u —2F(u)) = 2I(u) — I'(w)u = 21 (u) > 2¢*.

Portanto I(u) = ¢*, mostrando que (P) tem uma solu¢ao nodal. |
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2.3 Existéncia de solucao nodal radial minimal para

o problema auténomo.

Nesta sec¢ao, combinamos o método desenvolvido no Capitulo 1 com o Principio de
Criticalidade de Palais para demonstrar a existéncia de solu¢ao nodal radial de energia
minima para uma classe de problemas elipticos auténomos envolvendo nao-linearidade
com crescimento critico exponencial.

Vamos comecar fazendo algumas defini¢oes e enunciando alguns resultados que
serao utilizados ao longo desta secao.

Definimos a acao de um grupo topolégico G sobre um espago vetorial normado

X, como sendo uma aplica¢do continua G x X — X, (g,u) — ¢ - u tal que
(1) 1-u=u, YuelX,;
(2) (gh)-u=g-(h-u), Vg,heG, ueX;
(3) u > g-u é linear.
Dizemos que a acao é isométrica quando
lg - wll = [lull.
O espaco de pontos invariantes é o subespaco fechado de X definido por
Fiz(G)={ue X: g-u=u, VgeG}.
e Um conjunto A C X ¢ invariante se g - A = A para cada g € G;
e Um funcional J : X — R é invariante se J o g = J para cada g € G}
e Uma aplicacao f: X — X é equivariante se go f = f o g para cada g € G.

O préximo resultado nos da condigoes para garantir que pontos criticos de um
funcional J : X — R restrito ao Fiz(G), sdo pontos criticos do funcional no espago X,

ver Willem [56].

Teorema 2.3.1 (Principio de Criticalidade de Palais) Sejam X um espago de
Hilbert e G um grupo topoldgico que age isometricamente em X. Se J € C'(X,R)
é um funcional invariante e u é um ponto critico de J restrito ao Fix(G), entio u é

ponto critico de J em X.
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No que segue, vamos denotar por H}(R?) o seguinte subespago de H'(R?)
H,(R*) ={ue H'(R") : u(x)=u(y), sempre que |z|= |y[},
formado pelas fungoes radialmente simétricas de H'(R?). Sabemos que
H, (R*) = Fiz(0(2))
segundo a agdo isométrica * : O(2) x H'(R?) — H'(R?) definida por

(g*u)(z) =ulg-z),

onde O(2) é o grupo das transformagoes ortogonais em R2.
O proximo resultado é fundamental para que possamos usar o método desenvol-

vido no Capitulo 1, sua demonstra¢ao pode ser encontrada em Kavian [38].
Lema 2.3.2 (Strauss) As sequintes imersoes sao compactas

H, (R?) < L*(R?),
para todo s > 2.

O principal resultado nesta secao é o seguinte.

Teorema 2.3.3 Suponha que as hipdteses (f1)—(fs) sejam vdlidas. Entao, o problema

autonomo
—Au+u= f(u), inR?
(Q)
u € H'(R?),

possui uma solu¢ao nodal radialmente simétrica, desde que a constante C, verifique

965 1 @-D/2
>[5
62

1 1
Bw=5 [ (vaspp)-o [
2 JBi(0) P B0

MY ={ue Hy(Bi(0)): u"#0 e I (u")u* =0}

., onde k,=infl, (2.53)
MY

Demonstracao. Considere o funcional energia

I =5 [ (Ve + 1)~ [ P
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restrito ao subespago H!(R?) e o nivel ¢! definido por

*:= inf
¢y = nf J(u),

onde

M, ={ue HR?: ut#0 e J(uF)u* =0}

Nosso objetivo é mostrar que o nivel ¢ é atingido por um ponto critico de J. Para
cumprir tal objetivo, como no Capitulo 1, precisamos antes de alguns resultados preli-

minares.
Lema 2.3.4 O nudmero c; verifica
6—2

% < .
“ = o

Demonstracao. Considere w, € MYJ radialmente simétrica tal que I,(w,) = K, e
p 1 p p P

I(w,) = 0. Tem-se

1 1
=y [ (Tl sl =5 [l (2.54)
(0) P JB(0)

/ (|va|2 + |wp|2) = / |wp|p <2-55>
B1(0) B1(0)

/ (IVwy |* + wy |*) = / |ws [P (2.56)
B1(0) B1(0)

Substituindo (2.55) em (2.54), obtemos

1 1 /
Kp=1|=-—- w,|P. (2.57)
P (2 p> Bl(o)| P|

Sendo w, uma fun¢io nodal e radialmente simétrica, pela condigao ( f4), existem tnicos

s,t > 0 tais que sw; +tw, € M,. Logo,
¢y < J(swy +tw,) = J(sw)) + J(tw, ),

o que implica em

. S
ch < E/ (|Vw;{|2 + |w;“|2) —/ F(sw;))
B1(0) B1(0)

12 _ _ _
—l——/ (IVw, >+ w, [?) — / F(tw,).
2 JBy(0)

B1(0)
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Usando (2.56) e a hipdtese (f5),

de onde segue que

2 C p
C:Smax{r—— ol }/ |wpl”.
r>0 2 p Bl(O)

Um céalculo simples mostra que

logo, por (2.57),

2 /1 1 2
o <Gy’ (— — —) / lw,|? = Cp ™" Ky (2.58)
2 ) JBo
Combinando a desigualdade em (2.58) com (2.53), obtemos
‘o 0—2
C —
(s 29 Y
como queriamos demonstrar. |

O proximo lema mostra dois importantes limites envolvendo a funcao f.
Lema 2.3.5 Seja (u,) uma sequéncia em H!(R?) satisfazendo
(i) b= sup |u, [ <1
neN
(ii) u, — u em H!(R?) e;

(iii) un(x) — u(z) ¢.t.p. em R2,

Entao,
lim | f(un)u, = | f(uw)u (2.59)
n R2 R2
e
lim [ f(u,)v= [ f(u)v, (2.60)
n R2 R2

para qualgquer v € H}(R?).

Demonstragao. Usando o crescimento de f dado em (2.4) com e >0, 5 =4 e ¢ > 2,

temos

f(s)s < els]* + C|s|? ((54”52 - 1> , VseR.
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Sejam P, ) : R — R definidas por
P(s) = f(s)s e Q(s):=€|s|*+ C|s|* <e47r52 N 1) |

Note que por (f)

Ce47r52
<
= B e =)

S

— 0, quando |s| = +oo.
s

<o

)
)
Além disso, por (f2),

P(s)

S

— 0 quando s — 0.

< o)

5]

o<|

Agora, observe que sendo

[ Q= [ uP e [ (et - 1),
R2 R2 R2

pela desigualdade de Holder e as imersoes continuas de Sobolev,

to 1/ts
[ 1G] < el + Clunly, ( [ (e 1) )
R2 R2

onde 1/t; 4+ 1/ty = 1. Pelo Lema A.1 do Apéndice A e a hipotese (i), temos

/ |Q(un)] < eb+ C’C!unlgtlf (64’”2'“"'2 — 1) . (2.61)
R2 R2

2
/ <647rt2\un|2_1> :/ (647rt2un||%<u;n||1) _1)
R2 R2
2
S/ <647rt2b(|u:1) —1) (262)
R2
< sup/ <647rt261)2_1>
lvll: <1 JR2

e como b < 1, podemos fixar 5 > 1 suficientemente proximo de 1 de tal modo que

Desde que

a = 4mtab < 4w, Logo, por (2.62) e pela Desigualde de Trudinger Moser (6), existe

uma constante C' > 0 tal que para todo n € N,

/ <e4’”2‘“"|2 - 1) < sup / <ea”2 - 1> <C, (2.63)
R2 [olli<1/R2

para algum t, > 1, suficientemente proximo de 1. Logo, usando (2.63) em (2.61),

obtemos

[ 10| < b+ Clun,. (200
R2
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pelas imersdes continuas de Sobolev e a hipdtese (i),
/ |Q(un)| < €b+ Cllun||f < eb+ CH,
R2

mostrando que

sup [ |Q(uy)| < oc.
n R2

Pela Desigualdade de Strauss (Lema A.6 do Apéndice A) e a hipotese (i), temos
[un(@)] < (2m) 72122 Jlunlly
< (QW)—1/2|$|—1/2b1/27

de onde segue que

up(x) — 0 quando |z| — oo,

uniformemente em n € N.

Segue de (ii7) que
P(u,(7)) = v(z) q.t.p. em R?

onde v(z) := f(u(z))u(z), x € R% Pelo Teorema A.13 do Apéndice A, concluimos que
P(u,) converge para v em L'(IR?), ou seja,
flup)un — | f(u)u, quando n — +oo,
R? R?
mostrando que o limite em (2.59) ocorre. A demonstracao de (2.60) é obtida usando o

mesmo argumento. u
Agora, estabelecemos alguns resultados relacionados com o conjunto:
S,i={ueM,: Ju)<c+71},
onde 7 > 0 é uma constante a ser fixada convenientemente.
Lema 2.3.6 Para todo u € S‘n tem-se
0 <o < [} < [lullf <m. <1,

para T > 0 suficientemente pequeno.
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Demonstracao. A demonstracao ¢ uma adaptacao dos argumentos usados na de-
monstragao do Lema 1.1.10, usando agora a Desigualdade de Trudinger-Moser devida

a Cao (6). |

Lema 2.3.7 Para cada q > 1, existe 6, > 0 tal que

0<35,< / |7 < / lul?, Vu € 3.
R2 R2

Demonstragao. Ver Lema 1.1.11. |

Usando o Lema 2.3.7, podemos fixar R > 0 tal que
1 .
J(=u®), J(Ru®) < 5J(ui), Vu € S;.

Definimos

~ 1
S:{sRu++tRu_: uesS, e s te {ﬁ,l}}

A préxima proposicao mostra a existéncia de uma sequéncia (PS).: de fungdes nodais

para o funcional J.

Proposigdo 2.3.8 Dados ¢,§ > 0, existe u € J ' ([c — 2¢, ¢k + 2¢€]) N Sas verificando

4e

17 @)l < 5

1
De fato, para cada n € N, considere € = n ed = . Pela Proposicao 2.3.8,

n

ik

existe u, € Sy, /m com

u, € JH[cE —1/2n, ¢+ 1/2n))

1 (un) || <

Bl

Assim, existe (v,) C S satisfazendo

J(v,) = e J(v,) =0,

T

com
”un — v, < 2/\/ﬁ

E facil ver que (v,) é limitada em H!(R?) com

limsup [|Jv,||3 < 1. (2.65)

n—0o0
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Agora, seja vy € H o limite fraco de (v,) em H}(R?). Combinando (2.65) com o
Lema 2.3.5, deduz-se que vy é um ponto critico do funcional J restrito ao subespaco

H!(R?). No que segue, vamos mostrar que vy # 0. Sabemos que
. 1(12).
v, = v9 em H,(R*);

vp(z) = vo(7) qt.p. em R?

v, = vy em LYR?), Vq>2.

1
Por outro lado, usando o fato que v, € S, existem s,,,t, € [ﬁ’ 1] e u, € M,, tal que

U = spRut + t,Ru;, = soRud 4+ toRuy em H(R?)

v (7) = spRuf () + toRu,, (v) — soRug (7) + toRug (r) q.t.p. em R?

1
para algum sg, ty € { ,onde uy € H}(R?) & o limite fraco da sequéncia (u,) C M,.

B
Pela unicidade do limite, tem-se vy = soRug +toRugy . Pelo Lema 2.3.7, obtemos ui # 0,

o que implica em vy = soRug # 0 e vy = spRuy # 0. Finalmente, sendo o funcional
J : H(R?) — R invariante sob o grupo das rotagoes, a demonstracao do Teorema 2.3.3

segue usando o Principio de Criticalidade de Palais.

2.4 Nao existéncia de solucoes nodais de energia mi-

nima para o problema auténomo.

Nesta secao, demonstramos um resultado de nao existéncia de solucao nodal de

energia minima para o problema auténomo (@), isto é, demonstramos que o nivel
¢:=inf J
M

nao é atingido, onde J é o funcional energia associado ao Problema (Q) e M é o

conjunto de Nehari nodal
M:={uec HR?: u*#0 and J'(uv*)u* =0}

O nosso principal resultado nesta se¢ao é o seguinte
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Teorema 2.4.1 Suponha que f satisfaz (fi) — (fs) e que a desigualdade em (2.53)

ocorre. Entao, o problema autonomo (Q) nao possui solugcio nodal de energia minima.

Antes de demonstrar o Teorema 2.4.1, fixamos algumas notacoes e demonstramos

uma proposicao. No que segue, denotamos por

PP R (CEE

e o funcional J, em H'(R?) por

Tuta) = [ (VuP+laf) - [ P,
R? R
onde F, ¢ a primitiva de f, com F(0) = 0. Segue de [11, Theorem 1.1], que o nimero
cy = }/\I/lf Ji
onde
Ny ={ue H'(R)\{0}: J\(w)u=0},

¢ um valor critico de J,. Seja v € N, o ponto critico correspondente. Mostra-se que
v~ = 0. Logo v é nao-negativa e, por principio de maximo, v > 0 sobre R?. Em
particular, v € um ponto critico positivo de J.

Analogamente, definindo

0, ¢t>0,
f(t), t<O,

f-(t) =

denotanto por J_ o funcional correspondente e por N_ a variedade de Nehari, o nimero
real

c_ =1inf J_
N_

é um valor critico de J_.
A proxima proposi¢ao é um ponto importante no nosso argumento para mostrar

o resultado de nao existéncia, pois ela nos fornece uma estimativa exata para ¢.
Proposicao 2.4.2 Sob as hipdteses (f1) — (f5), tem-se

é:C++C_.
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Demonstragido. Seja v,w € H'(R?) verificando
Ji(v)=cy, Ji(v)=0, v(x)>0, VoeR?

J (w)=c_, J (w)=0 w(x) <0, VreR?
e considere as funcoes

X T — T

onle) =9 (5) ) e wnaim g (S5 ) wla - a)

onde ¢ € C5°(R?) é uma fungao satisfazendo
supp o C By(0), 0 <o <1, p =1sobre Bi(0) e z, = (n,0).
Claramente, para n suficientemente grande,
supp vg N supp wr, = 0.
Sejam tr, sr > 0 tais que
J (tror)tror =0 e  J(spwpn)Spwrn, = 0.

Sendo
t%/ (IVog|* + |vrl?) = / J+(trvR)trur
R2 R2
e vg — v em H'(R?), por argumentos similares aos da demonstragao do Lema 2.1.10,

mostra-se que tg — 1, quando R — +o00. Similarmente,

3?%/ (|VwR,n’2+ \wR,n\Q) :/ J+(SRWRN)SRWR -
R2 R2

Sendo wyp — w em H'(R?), temos sg — 1, quando R — +oo. Agora, note que

Up ‘= trUR + SRWR, € M com
uE =1tRVUR € Up = SRWRy
para n € N suficientemente grande. Logo,
¢ < J(trvr + SpwWr,) = J(trvr) + J(SRWRA)-
Usando a invariancia de R? por translacoes, e passando ao limite de R — 400, obtemos
¢ < Jw)+ J(w).
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Sendo J(v) = Ji(v) =ci e J(w) = J_(w) = c_,
c<cy+ec_.

Por outro lado, é claro que ¢ > ¢, + c_. Portanto, pode-se concluir que ¢ = ¢, +c_.1H

Demonstracao do Teorema 2.4.1. Suponha por contradicao que existe u € M tal
que J(u) = ¢. Sendo assim,

ut e N, um e N_

eyt < J(uh)+J (u)=Ju)=¢=c, +c_.
Logo,
Jo(uh)y=c, e J(u)=c_.
Assim, u* e u~ sao pontos criticos dos funcionais J, e J_, respectivamente. Logo, pelo

principio do maximo, devemos ter

ut(r) >0, paratodo z € R?

u”(z) <0, paratodo x € R?
o que é impossivel. [ |
Gostariamos de finalizar este Capitulo fazendo algumas observacoes importantes
acerca dos resultados obtidos.

Observacao 2.4.3 Vimos que na Segao 2.5, existe um minimizante u € M, o qual é

um ponto critico de J sobre H'(R?). Desde que ¢ < ¢, o Teorema 2.4.1 implica que
¢ <c.
Uma desigualdade estrita similar em um dominio limitado tal como um anel em RV,

para N > 3, pode ser vista em [18] .

Observacao 2.4.4 O resultado de existéncia de solucao nodal de energia minima para
0 caso nao-auténomo, nos diz que apesar do problema auténomo nao possuir solu¢cao
nodal de energia minima, € possivel impor condicoes sobre V de modo que o problema

(P), para Q = R?, possua solugdo nodal de energia minima.

Observacao 2.4.5 Uma versao do Teorema 2.4.1 pode ser feita para N > 3, supondo
que [ tem crescimento subcritico, ou até mesmo critico com hipoteses adequadas sob a

nao-linearidade.
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Capitulo 3

Solucoes do tipo multi-bump nodal
para uma classe de problemas elipticos
em R? envolvendo crescimento critico

exponencial

Neste capitulo, motivados por [5] e [13], mostramos a existéncia de solugao do tipo
multi-bump nodal para uma classe de problemas elipticos em R? com a ndo-linearidade

tendo um crescimento critico exponencial.

3.1 Introducao

Neste capitulo, consideramos a existéncia e multiplicidade de solucoes do tipo

multi-bump nodal para a seguinte classe de problemas

—Au+ AV (x)+ Du= f(u), em R?
(P)x
u € H'(R?),

onde A € (0,00), o potencial V' : R* — R & uma fungdo continua e niao negativa tal

que o conjunto Q :=int V1 ({0}) satisfaz

(H1) Q & ndo-vazio, limitado, com fronteira 02 suave e V~1({0}) = Q;



(H2) €2 tem k componentes conexas denotadas por €25, j € {1, ..., k}, as quais verificam

dist(Q;,Q;) > 0, para i # j.
Para a fungao f admitimos as seguintes hipoteses.
(f1) Existe C' > 0 tal que

1f(s)| < Ce*™* para todo s € R;

(f2) tim 1)

s—0 8

(f3) Existe 6 > 2 tal que

0<0F(s):= 9/05 f(t)dt < sf(s), paratodo s € R\ {0}.

(f1) A fungao s — % ¢ estritamente crescente em R\ {0}.
s

(f5) Existem constantes p > 2 e C, > 0 tais que

sgn(s)f(s) > Cy|s|P~! para todo s € R,

com (22
4k0 P
Cp > m . Sp‘| s (31)
onde
Sp = max 7;, %= A ¢;(w),

Mg, ={ue Hy(): u"#0 e ¢(u")u™ =0},

1 1
o =5 [ (vt ) = [

O principal resultado demonstrado é o seguinte:

Teorema 3.1.1 Suponha que as hipdteses (Hy) — (Ha) e (f1) — (f5) sejam wvdlidas.
Entao, para qualquer subconjunto nao-vazio I' de {1, ...k}, existe \* > 0 tal que, para
A > X, o problema (P)y tem uma solug¢io nodal uy. Além disso, a familia {uy}r>x
tem a sequinte propriedade: Para qualquer subsequéncia )\, — 00, podemos extrair
uma subsequéncia Ay, tal que uy, converge forte em H'(R?) para uma func¢do u a qual
satisfaz u(zx) = 0 para x ¢ Qr = U;er§);, e a restrigio ulo, € uma solug¢do nodal com
energia minima de

—Au+u= f(u), em €, ulog, =0 para jecT.
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3.2 Notacoes e resultados preliminares

Nesta secao, fixamos algumas notacoes e apresentamos alguns funcionais que
serao usados ao longo deste capitulo.
Sabemos que as solugoes de (P), podem ser caracterizadas como sendo pontos

criticos do funcional J : H) — R dado por

Iw) =5 [ I96P + V@) + D] - [ Pl

2 B2

onde H) é o espaco de funcoes definido por

Hy = {u € H'(R?) : /R V(z)u? < oo}

munido com a seguinte norma

1/2
l|lu|lx = {/Rz [[Vul* + (\V(z) + 1)u2]} 7
a qual esta associada ao produto interno
(u,v)y = / (VuVu + V(z)uv) .
RQ

Mostra-se que (Hy, (-,)») ¢ um espaco de Hilbert, para todo A > 1.

Para um subconjunto aberto © C R?, definimos

H(O) = {u c HY(O) : /@vmu? < oo}

lullre = U@ (IVul* + (A\V(2) + 1)u2)} 1/2‘

Como consequéncia das consideracoes acima, temos o seguinte lema

Lema 3.2.1 FEzistem vg,09 >0 com 1 = dg < 1 e vy = 0 tal que para todo subconjunto
aberto © C R?

Sollulie < llulie — wlulze, Yu€ HA(O) e A= 1.
Demonstragao. Note que

2 < / V(@) + 1) ul < Jlullo.
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Assim, para dg < 1, temos
(1= do)|ulze < (1 —do)|ul}e-
Logo, para qualquer 0 < vy < (1 — dy),
volulze < (1= do)llulli e

ou equivalentemente

dollullxe < llul

i,e - V0|u|§,e~
[ |

Ao longo deste capitulo, denotamos por b, : R — R a funcao real definida por

br(s) := <e47"52 - 1) :

Segue das hipoteses (f1) e (f2) que para cada e > 0, ¢ > 1 e 7 > 1, existe uma constante

C' = C(e,q,a) > 0 tal que
1sf(s)], |F(s)| <es®+ C|s|%,(s), paratodo s¢€ R. (3.2)

O resultado seguinte é uma consequéncia da Desigualdade de Trundinger-Moser

devida a Cao (6).

Corolario 3.2.2 Seja (uy) uma familia em H'(R?) werificando sup ||uy||* < m < 1.
A>1

Entao, para cada 7,q > 1 satisfazendo Tqm < 1, existe C' = C(1,q,m) > 0 tal que
b, (uy) € LI(R?) e

sup{[b (1)} < oc.

A>1

Demonstracao. O Lema A.1 do Apéndice A, garante a existéncia de uma constante

C > 0 tal que

’bT(u)\)K]] = / <€47r7—u§\ i 1)(1 < C <647rTqu§\ . 1) )
R2 R2

Desde que m7q < 1, temos 4nTgm < 4mw. Assim, podemos usar a Desigualdade de

Trudinger Moser devida a Cao (6) para concluir que

/ (647r7'qu§ _ 1> S Cl-
R2

|b7(u>\>|q < (OCI)I/qa

Portanto,

como queriamos demonstrar. |
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3.2.1 Problemas de Dirichlet e Neumann

Nesta se¢do, denotamos por I; : Hj(Q;) — R e ®y; : H'()) — R os seguintes
funcionais energia

L =5 [ (Ve +a) - [ P

J Q;

Bs(w) =5 [ (VP + W) + 1) - | Pla)

Sabemos que I; e @, ; sdo de classe C' e seus pontos criticos sao solugoes fracas dos

problemas
—Au+u=f(u), em £,
(3.3)
u =0, sobre 0€;
e
—Au+ (AV(z)+Du= f(u), em Q
(3.4)
ou
eV 0, sobre 0,

respectivamente. Denotaremos por M, e M, ; os seguintes conjuntos
M; ={ue HY Q) : ur #0 e L(u*)u* =0},
M)\,j — {u € Hl(Q;> . u:t % O (& @AJ(Ui)ui = 0}7

e por d; e dy ; os numeros reais definidos por
d; =inf I, e d>\‘: inf CI)A‘.
J M; 7 »J My, »J

Repetindo os mesmos argumentos do Capitulo 1, mostra-se que para cada j €

{1,...,k} existem sequéncias (¢n;) C Hg() e (¢n;) C HA(Q;) verificando
/Qv |<pff’j|q7 /Q/I |1/Jf;j|q >0,>0 VneN e ¢g>1, (3.5)

Ii(pny) = d; e Ii(on;) — 0 quando n — oo

Dy j(Wny) = dr; e @\ ;(thn;) =0 quando n — oo.

Além disso, usando (f1) — (f5) é possivel mostrar que
sup [|onll6, sup [[UnllR e <1,
neN neN J
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o que implica em

©Opj —> w; em H&(Qj)

Ypj — Wy, em ’H,\(Q;)

Portanto w; € Hy(Q;) e wy; € HA(€;) com

Li(w;) =d; e Ij(w;) =0, (3.6)

<I>,\7j(w>\,j) = d)\J € @;73»(@0)\,]-) =0. (37)

Além disso, segue de (3.5) que wji % 0e wij # 0, mostranto que o problema de
Dirichlet (3.3) e o problema de Neumann (3.4) possuem solugoes nodais de energia

minima.

3.3 Um problema auxiliar

Nesta se¢ao, como em Alves [5], modificamos convenientemente a funcao f. Sejam
vy a constante dada no Lema 3.2.1, @ > 0 verificando max{ f(a)/a, f(—a)/(—a)} < vy

e f, F:R >R as seguintes funcoes

( _f(—a)s se s < —a,
a
fls) =2 f(s) se |s| < a,
f(a)s se s > a,
\

P = [ Frr,

as quais verificam

f(s) <wls|, VseR, (3.8)
ou ainda,

f(s)s < wpls?, VseR (3.9)
e

F(s) < % s|?, VseR. (3.10)
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No que segue, para cada subconjunto I' C {1, ..., k} vamos considerar

1, para z € Qf,

/ !/ r
Op = U Q, xr(z)=

jer 0, para z ¢ Qf

e as funcoes

g(z,s) = xr(x)f(s) + (1 — xr(2)) f(s)

G(z,s) = / g(x,t)dt = xr(2)F(s) + (1 — xr(2)) F(s).
0
Como consequéncia das definicbes acima, temos o seguinte lema.

Lema 3.3.1

N 1 - 1 1
F(s)— gf(s)g < (5 — 5) vols|?,  para todo s € R.

Demonstracao. Vamos dividir a demonstracao em trés casos:
1° Caso: |s| < a. Para s = 0 a desigualdade acima ¢é 6bvia. Se 0 < |s| < a, usando a

definicao de f e F e a condi¢io de Ambrosetti-Rabinowitz (f3), obtemos

F(s) 11

f(s)s = Fs) — 5 f(s)s <0 < (5 - 5) sl

|~

Mse

2° Caso: s > a. Neste caso, f(s) =

F(s) = F(a) + /S f(a)TdT = F(a) — %f(a)a + lMSQ.

a 2 a

Pela condi¢do de Ambrosetti-Rabinowitz (f3), temos

Logo,

de onde segue que

f(a)

Sendo —— < 14, obtemos
a

F(s) ~ 5(s)s < (% - g)



—f(=a)

8 Caso: s < —a. Neste caso, f(s) =
a

S e

P(s) = F—a) + [ @mr ~ Fl—a) + % f(=a)

1)

s2.
2 a

Pela condi¢do de Ambrosetti-Rabinowitz (f3), temos

F(—a)+ %f(—a)a <0.

Logo,

de onde segue que

Sendo i) < 1, obtemos
~ 1~ 1 1
F(s) — gf(s)s < (§ — 5) et
concluindo a demonstracao do lema. [ |

Agora, observe que pela defini¢do de f, temos ]f(s)] < |f(s)|, para todo s € R.
Logo, |g(z,s)| < |f(s)] para todo s € R e z € R? o que implica que g satisfaz as
hipoteses (f1) — (f2) uniformemente em x € R? e a desigualdade (3.2) uniformemente

em z € R?, ou seja,
lg(z, s)s| < e|s|* + C|s|?,(s), VseR, VzeR%: (3.11)
Assim, o funcional ®, : H), — R dado por

@A(u):%/RQ(|VU|2+(>\V(:(:)+1)U2)— Gz, u)

R2

pertence a C*(H,, R) e seus pontos criticos sao as solugoes fracas de
—Au+ AV (z) + u = g(z,u) em R (A)x

Observacao 3.3.2 Note que as solucoes nodais da ultima equacao estao relacionadas
com as solugoes nodais de (P)y no sequinte sentido, se uy € uma solugcao nodal de (A)y

verificando |uy(z)| < a em R*\ Q% entdo uy é uma solugdo nodal de (P)s.

69



No que segue, vamos estudar a convergéncia das sequéncias de Palais-Smale para

o funcional ®,, ou seja, de sequéncias (u,) C H, verificando
Py (uy) = ¢ e P\(u,) =0, (3.12)

para algum ¢ € R (abreviadamente (u,) é uma sequéncia (PS),).

Vamos comegar estudando a limitacao destas sequéncias.

Lema 3.3.3 Se (u,) € uma sequéncia (PS). para @y, entao
20c
lim sup ||, |3 < ————,
n%oopH H)\ — (50(@—2)
onde oy € dado no Lema 3.2.1.

Demonstracao. Pela definicao de sequéncia de Palais-Smale,
1.,
P (un) — éq)A(un)un = ¢+ 0(1) + €nllunl|x,

onde €, — 0 quando n — co. Usando a condigao (f3), obtemos

(% - %) a3 — /R?\Qf (F(un) - %f(w)w) < cton(l) +enflunllx- (3.13)

Portanto, pelo Lema 3.3.1,

1 1

(5 B 5) <Hu"”§\ - VOlun’%) <c+ On(l) + €"Hu””)‘

Agora, do Lema 3.2.1, ficamos com

do(0 — 2
20 23 < e+ 0ul1) + s
Logo, (u,) é limitada e
lim sup [Jun|2 < —20¢—
nﬁ\oop miA = 50(0_2)’
como queriamos demonstrar. |

No que segue, denotamos por D o seguinte ntimero real

D =Y d;.
j=1
5o(6 — 2)
49

Lema 3.3.4 Se (f1) — (fs) sao vdlidas, entao 0 < D <
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Demonstracao. Para demonstrar esta desigualdade, para cada j € {1, ..., k}, fixamos

uma funcao nodal v; € Hj(€;) tal que v; € Mg, e

¢i(v;) =75 e ¢;(v;) =0. (3.14)

O leitor pode encontrar a existéncia de tais fun¢oes em Bartsch e Weth [20]. Desde

que v;—L # 0, existem s;, t; > 0 tais que Sjvj+ + tjv; € M;. Entao,
d; < [j(Sj’Uj_ + tjvj_) = Ij(sjvf) + [j(tjvj_),

implicando em

52
<3 [ QB+t = [ Flse)

J

t3 _ _ -
2 [ @ver Pl - [ Pl
Q; £

Usando o fato que v]j-t € Mg, e a hipotese (fs), obtemos

2 p 2 p
g < {i_C’ij}/ |U+|p+{&_0pt]‘}/ v [P
— L2 p o 7 2 p Q

J

Logo,

e sendo

segue de (3.14),

Logo, de (3.1),
i 2 02
D= d;<kS, CJ7 <
j=1

Escolhendo 9§, suficientemente préoximo de 1, a dltima desigualdade implica em

5o(6 — 2)
D < .

Proposicao 3.3.5 Para A > 1, o funcional @, satisfaz a condi¢ao (PS)., para todo
¢ € (0,D]. Mais precisamente, qualquer sequéncia (u,) C Hy, (PS). para @y, tem

uma subsequéncia fortemente convergente em Hy.
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Demonstracao. Seja (u,) C H, uma sequéncia (PS). para ®, com ¢ € (0, D]. Pelo
Lema 3.3.3,

lim sup ||u, |3 < _ 20e
n—>oop miA = 50(9 - 2)

Sendo ¢ € (0, D], temos

lim sup ||u, |3 < 20D
n—>oop A= 50(0 - 2)7

o que implica, pelo Lema 3.3.4,

. 2 ].

lim sup [Ju, |5 < =,

n—o0 2
mostrando que (u,) é limitada em #H,. Como H, ¢ um espago de Banach reflexivo,
existe u € H, tal que, a menos de subsequéncia, u, — v em H,. Além disso,
utilizando a imersdao continua H, < H'(R?) e as imersoes compactas de Sobolev,
obtemos

u, ~u em H'(R?) e wu,—u em L (R?, Vs>1.

loc

Afirmacao 3.3.6 Para qualquer € > 0 dado, existe R > 0 tal que

limsup/ (IVun > + AWV (z) + 1)|ua|?) <€, para n€N. (3.15)
R2\BR(0)

n—oo
De fato, seja R > 0 suficientemente grande de tal modo que Q. C B%(O) e considere

nr € C™(R?) satisfazendo

0, se x€ Br(0)
2
77R(33) = )
1, se z€R?*\ Bg(0)

C
0<nr<lel|Vngl < = onde C' > 0 independe de R. Tem-se

Lo = [ (9w + OV @) + Dlwnf) e

= @ (un)(unnr) —/ unVunVnR+/ [z, up)unnp.
RQ

R2\B g (0)
3z

De (3.10) e da desigualdade de Schwarz,

C
L, < ®\(u,)(u,ngr) + E/ [un|[Vu,| + 1/0/ [ |* 5.
R2 R2

\Br (0)
2

Pela desigualdade de Holder e a limitagio das sequéncias (uy,) e (|Vu,|) em L*(R?),

C
Ln S 0n<1) =+ E + I/OLna
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e como podemos escolher vy < 1,

C

L, <o,(1)+ R =)

Em consequéncia

lim sup/ (IVu, > + AV (2) + 1)|u,[?) < limsup L, <
R\ BR(0)

n—00 n—00 R(l - VO) '
Portanto, dado € > 0, escolhendo se necessario um R > (0 ainda maior, obtemos
< €, 0 que demonstra a afirmagao.

_Cc
R(1—wp)

Afirmacao 3.3.7 Os seguintes limites sao vdlidos
@ [ s~ [ gz
R2 R2
(b) / g(z,un)v = [ glx,u)v, Vv &€ H,y.
R2 R2
De fato, dado € > 0, considere R > 0 como na Afirmacao 3.3.6 e

Ln,l = / g(xvun)un _/ g(x,u)u
Br(0) Br(0)

Ln,2 = / ‘9(337 un)un - g(xv U)Ul
RZ\BR(0)

Segue de (3.11) que

19(z, wn ) un| < lunl® + Cpltn|br(uy), Vo € R* neN.
Considere h,, h € H'(Bgr(0)) definidas por

o 5= 1lunl? + Colinlbr () € B nful + Cyulor ().
Assim, |g(z, up)un| < hy(z), e como u,, — u em Li (R?), Vs > 1, temos

up(x) = u(x) q.t.p. em Bg(0).

Consequentemente,

9(, un(2))un(x) = gz, u(z))u(z)  q.t.p. em Bg(0),

ho(z) — h(z) q.t.p. em Bg(0), com h € L*(Bg(0)).
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Afirmamos que

h, —h em L'(Bg(0)).

Com efeito, sendo limsup ||u,||5 < 1/2, para m € (1/2,1) e uma subsequéncia ainda
n—oo

denotada por (u,,), temos

sup [Ju, [ < m < 1,
n>1

fixando ¢,7 > 1 suficientemente préoximos de 1, de tal modo que 7qgm < 1, pelo

Corolério 3.2.2 existe C' > 0 tal que b-(u,) € LI(R?) com
br(un)], < C, VneN.

Logo, a sequéncia (b, (uy)), é limitada em L9(Bg(0)). Como consequéncia, usando o

Lema A.9 do Apéndice A,
br(u,) — b(u) em L9(Bg(0)),

e como

lup| = |u| em LY(Bg(0)), onde 1/q+1/¢ =1,
o Lema A.8 do Apéndice A implica que
|t by (n) = |ulbr(u) em L'(Bg(0)).

Portanto h, — h em L'(Bg(0)). Usando o Teorema da convergéncia dominada gene-

ralizado de Lebesgue (TeoremaA.12 do Apéndice A), concluimos que
lim Ln,l = 0.
n—oo
Por outro lado, como R?\ Bx(0) C R? \ Q, de (3.10) deduzimos
lg(z, 0)t] = ()t < wlt]?, Vo e R\ Br(0), t € R.

Portanto

Ly < / voltnl? + 1t / uf?
R2\BR(0) R2\BRr(0)

g/ (|Vun]2+()\V(x)+1)|un|2)+1/0/ uf2.
R2\BRr(0)

Como u € L*(R?), aumentando R caso seja necessario, podemos admitir

JNES
R2\BR(0) M
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Consequentemente, pela Afirmacao 3.3.6, apds passagem ao limite superior, obtemos

limsup L, » < 2¢, Ve >0,

n—oo
implicando que

lim Ln’Q = 0.

n—o0

Deste modo, temos (a). A demonstracao de (b) segue usando o mesmo raciocinio.

Agora, note que
= ullX = unll3, — 2{un, w)x + [JullX
e como Y (u,)u, = 0,(1) e Y, (uy)u = 0,(1), ou seja,
ol = [ ot +0a(1) e G = [ glauaut o)

R2

temos

um — ull3 = / gl ) / g un)u+ on(1) + Jull ~ (.

Por outro lado,

leal2 = {um, ) = / |l - / YVt / V@) + Duu-u,).

Agora, observamos que o funcional linear ¥, : H), — R definido por

a(w) = /RQ()\V(a?) + 1uw,

satisfaz, pela desigualdade de Holder,

on(w < | [ i)+ e - [ v+ ne?] "

Desta maneira, se ||w|[y < 1, entdo

[/R2(Av(x) + 1)w21 2 <l <1,

implicando que

1/2
s | [ Wwe@ne] . veen, fuli<t

)

(3.16)

(3.17)



ou seja, ¥, é um funcional limitado. Assim, pela convergéncia fraca de u, para u em

Ha, ¥a(un) = ¥a(u) quando n — oo, ou equivalentemente,

/RQ(AV(m) F1)u(u — uy) = on(1),

o que implica, por (3.17),
[ull} = (tn, u)r = 0n(1). (3.18)

Usando (3.18) em (3.16), deduzimos que

o =l = [ gt = [ g+ o)
R2 R2
o que juntamente com a Afirmacao 3.3.7, implica em
u, —u em Hy e H'(R?),

mostrando que o funcional ®, satisfaz a condi¢ao (PS)., para ¢ € (0, D]. |

Nosso proximo objetivo é estudar o comportamento de uma sequéncia de Palais-
Smale generalizada correspondente a uma sequéncia de funcionais. No que segue,
dizemos que uma sequéncia (u,) em H'(R?) é dita uma sequéncia (PS). . para a
familia de funcionais (®,),>1 se existe uma sequéncia A, C [1,400) com A, — 00

quando n — oo, tal que

Proposicao 3.3.8 Seja (u,) uma sequéncia (PS)s. com ¢ € (0,D]. FEntdo, para

alguma subsequéncia, ainda denotada por (uy,), existe u € H'(R?) tal que
u, —u em H'(R?).
Além disso,
(1) u=0 em R*\ Qr e ulg, € uma solugdo de
—Au+u=f(u), em €
u=0, sobre 0Q;
para cada j € I';

(@) [lun = ullx, =0
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(1ii) A sequéncia (u,) também satisfaz

)\n /R2 V(l‘)’un’Q — 07 HUn|’§\7“R2\QF — 0

||un]|§2\9/_ — / (|Vul* +u?®) para todo jeT.
J
Q;

Demonstracao. Como na demonstracao da Proposicao 3.3.5, mostra-se que, a menos
de subsequéncia,

sup |Ju,||* < 1. (3.19)
1

n>

Sendo assim, podemos assumir que, para algum u € H'(R?),

u, = u em H'(R?) (3.20)

Up(7) = u(z) q.t.p. em R2

No que segue, para cada m € N, denotamos por C,, o conjunto dado por

Cm:{xeRQ: V(:c)zi}.

m

Assim,

n n

m m
|l <5 [ V@l < F i,

A desigualdade acima combinada com o Lema de Fatou implica em
/ lul* =0, VmeN.

Logo,
u(z) =0 sobre U Cp = R?\ Qr,

m=1

o que implica em
ulo, € Hy(Y), Vje{l,..k}
Uma vez que ®) (u,)p — 0 quando n — oo para cada ¢ € C5°(£);), segue de (3.19) e
(3.20) que
/ VuVe + up — / g(x,u)p =0, (3.21)
Q, Q

J
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de onde segue que u|g; é uma solugdo de (P);, para cada j € {1,...,k}. Além disso,

para cada j € {1,...,k}, usando ¢ = ulg, em (3.21), obtem-se

L}WM”HM%—%;ﬂwuza

e, = [ Frupu

ou equivalentemente,

Sendo

f(s)s < wpls|?, Vs eR,

pelo Lema 3.2.1,

dollulli e, < llulliq, = volulza, < lluliq, —/ﬂ f(u)u = 0.
J

Portanto, u = 0 em §2;, para j € {1,...,k} \ I, e a demonstracao de (i) esta completa.

(7i) Repetindo o argumento utilizado na Proposi¢ao 3.3.5,

Jan =l = [ V(@) + Dl — )+ 0,01
R2
e como u =0 em R?\ Qr,
|, —ul|}, — 0, quando n — oco.

Para demonstrar (iii), observe que
0< / AV (@) = / AV ()t — uf? < Cllun — ull2,.
R2 R?
o que implica, pelo item (i7), em
/ AV () [ug)® =0, n— oo,
RQ

Os outros limites também seguem imediatamente do limite em (7). n

Na proxima proposi¢ao, usamos o método de Iteragdo de Moser [43| e adaptamos
as idéias contidas em Li Gongbao [36], ver também Alves e Souto [13]. Este resultado
serd fundamental para mostrarmos que as solu¢oes nodais que encontramos para (A))

sao também solugoes nodais de (Py), para A suficientemente grande.

Proposicao 3.3.9 Seja {uy}r>1 uma familia de solugies nodais de (A)y verificando
|uxll* < m < 1, para todo X\ > 1. Entdo, existe K > 0 tal que
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Demonstracao. Para cada A > 1, L > 0 e 8 > 1, definimos

uy, se wuy <L,

+
Up\ =
L, se wuy>1L,
+ o+ \2B8-1), + + A4 \B-1
27y = (ugy) Uy e wy = uy (ug )

Usando zzr ), como funcao teste na definicao de solucao fraca,
/ Vu,Vzi —i—/ (AV(x) + Dupzf —/ g(x,up\)zf (3.22)
R2 ' R2 ’ R2 ’
o que implica
Lt o0t = <26 -1) [ a0 va,
"‘/ gl wduy (uf )Y
R2
- [ OV(a)+ Dl Pl o0
R2 £
Desde que
[t vt vug, = [ ez o
R2 [u/\<L]
e \V(z) +1 > 1, para todo = € R?, temos
[ oot < [ gloata @200 - [ Pt 623)
R2 ’ R2 ’ R2 ’
Agora, vamos precisar da seguinte estimativa envolvendo g:
g(z,uf) < euf + Ceby(ui)u, (3.24)
onde b, (u}) € LY(R?) para algum ¢ > 1, g~ 1e
b, (ui)], < C, VA>1. (3.25)
Usando (3.24) em (3.23), ficamos com
ke 0t < e 1) [ a0 [ b P, 2. (320
R2 ’ R2 ’ R2
Por outro lado, das imersoes continuas de Sobolev,
wis <€ [ (VhaP + ) (3.27)

79



para qualquer v > 2. Desde que

va,A =V (uj\r(uJLr,A)ﬁ_l)

= (UJLF,A)BAVU;\r + (8 — 1)“;(“;)\)/572VU;/\7
temos
|V7~UZL,)\|2 = (UJLF,,\)Z(&WVU;\FP"'Z( —1u (“+A)2’H SVuy VUZ,A
(3.28)
+H(B = 12 (ug )2 Vg, .
Usando (3.28) em (3.27),
Wik <G, [ v
+2(8 - 1)C, (UZA)QB Svuj\rvuLA
(3.29)
B —1)%C, / lul | (uf 5_2)|Vu2“7/\|2
e / (O,
Note que
[t v ug, = [ (v
R2 ux<Z] (3.30)
< [ v
RQ
e
[Pt v, = [ ) v
R hur<Z] (3.31)

(

u
R2

Wil <08 [ (WP
R (3.32)

e / | (uf )20,

Substituindo (3.26) em (3.32), ficamos com

L)YV,

IA

Usando (3.30) e (3.31) em (3.29), obtemos

w2 < [(e— DF +1C /\u up )2

+08° [ bolula Pl 0.
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Fixando 0 < € < 1 —1/3% temos (e — 1)3% + 1 < 0. Portanto,

il < €8 [ bl Pt )20

ou equivalentemente,
il < €8 [ bahlu,

Da Desigualdade de Holder,

) , 1/q . 1/q
<o | [ r] | [ ]
R2 R2

onde 1/¢+ 1/¢' = 1. Logo, por (3.25)

1/q
i< cor| [ wp|

ou ainda,

wial3 < CBwf 50, VAL

para qualquer L > 0, § > 1 e v > 2, onde a constante C' > 0 depende somente de 7.

Observe que por imersdes continua de Sobolev |u)|? € L2 (R?). Logo,

1/q 1/q
jwi 2 < OB (/R2 !uj(ub)ﬁlﬁq) < CpB? (/]R2 |2 6) < 4o0.

Aplicando o Lema de Fatou na variavel L, deduzimos que
2q' /v
+ 2q' nR2¢' +12¢
(/ |u/\|“/ﬁ> chﬁq/ ‘u/\|qﬁ7
R2 R2

|u;\r|57 < Cl/ﬁﬁl/ﬁluj\r’&q" (3.33)

de onde segue que

Agora, fixe v > 2¢’ e considere y = % Note que v = x2¢' e 5x2¢ = B, para todo
q
g > 1.
1° Passo: Considere § = % > 1 e observe que |uj|? € L?'(R?). Portanto, por (3.33)
q

|U;\r|72/2q’ < Cl/ﬁﬁl/ﬁluﬂ%

o que implica

‘u;r | (x2¢')2/2q < Cl/ﬁﬁl/ﬁ \u; ‘77

ou ainda,

|uj\“|ngq/ < C’I/X><1/X|uj\’|7 (3.34)
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mostrando que

lu}|072) e L2 (R?), (3.35)

2
2° Passo: Considerando § = (%) > 1, por (3.35)
q

| € L ().
Portanto, por (3.33)
|uj|73/(2q/)2 < Cl/ﬁﬁl/ﬁ|ui_|72/2q/,
o que implica
2 2
|"L‘§|(x2q/)3/(2q’)2 < c/x (XQ)l/X |U;\r|x22q’7 VA > 1,
ou seja,
2 2
Uy o2 < C/x (XQ)l/X U |y 20q0- (3.36)

Usando (3.34) em (3.36)
Ut |\ 20g < Cl/XQ(X2>1/XQCl/XX1/XK’ VA1,
ou equivalentemente,
’u;\r|x22q’ < Cl/x+1/x2xl/x+2/x2K’ YA> 1,

com

|u;\L|(7/QQ’)3 c L% (RQ)’

por (3.35) e (3.36).

Pelo principio de inducao finita,

Y

|U§|X<n+1>2q/ < (=l X =1 K, VA>1. (3.37)

Desde que as séries que aparecem em (3.37) sao convergentes com

2

- —i 1 - o —i
;X :F e ;ZX :§—1)27

(x

pelo Lema A.4 do Apéndice A,

Uil < K, VA>1. (3.38)
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Analogamente, se para cada A > 1, L > 0 e 8 > 1, definimos u, = max{—uy,0},
uy, se uy>—L,

L, se wuy<-L,

1

)21 e Wy 5, = “X(Uz,x)ﬁf ;

Rpoa = Uy (uL,)\
podemos mostrar que

luy | < K paratodo A>1. (3.39)

Portanto, de (3.38) e (3.39),
lurxloo < K paratodo A >1, (3.40)

concluindo a demonstrando da proposicao. |

A proxima proposi¢do nos garante que toda solugao nodal de (A,) é uma solucdo

nodal de (P,), para A suficientemente grande.

Proposigao 3.3.10 Seja {u)}r>1 uma familia de solug¢oes nodais do problema (A),
com |up|> <m <1 euy—0em H(R*\ Qr) quando A — oco. Entao, existe \* > 1
tal que

[Ur|oor2\0p S @, VA > AT,

e portanto, uy € uma solugcdo nodal de (P)y, para todo X > \*.

Demonstragao. Sejam 1, ...,x; € 00, R > 0e 0 <r < R/2 tais que

l
00 C N(09%) = | Bryr(x:)
=1

BRJrT(l'i) C RQ \ QF, Vi € {1, ,l}

Usaremos argumentos similares aos utilizados na demonstracao da Proposicao

3.3.9 para demonstrar que
[urloonaap) <a, VA =AY, (3.41)

para algum A\* > 1.

Considere 7; € C*(R?), 0 <n; < 1 com
I, se |r—z| <R
0, se |zx—xz|>R+r
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e |Vn;| <2/r, para cada i € {1,...,(}.
Agora, para cada A > 1, L > 0 e § > 1, definimos
uy, se uy <L,
L, se wuy,>1L,
VS 77@'2“;(“2,,\)2(671) ¢ WL i = niui(uzx)ﬂfl-

Usando o fato que uy é uma solu¢ao nodal para (A,),

VuVala b [ V) + Duncta = [ gz,

R?2 R2 R2
Note que
sz_,/\,i =V (UEUI(UZ,AV“*”)
= 2npu{ (uz \)* PV + 07 (uf )V
+2(8 = Dnfug (uf ,)**Vug 5,
logo,

VUAVZZF,M = 2niUI(UZ,A)2(5’1)VUXVni + n?(UZ,A)Z(ﬁ’” |Vuj\’|2
+2(8 — 1)7]1;215((uz,)\)Qﬁ_SVUXVUJL;\.
Usando (3.43) em (3.42), obtemos
[V = <203 -1) [t )P va,
[ oty (a7
- [ V@) + 1ttt Prag )20
R
2 [ w7Vt v,
- [

Vamos estimar cada uma das integrais acima separadamente.

[ <L]
[V DAL < = [ P
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usando a desigualdade de Schwarz,

-2 /]R i (u )TV <2 /R i (u )V V[V,

e pela desigualdade de Young
2 [ w2Vl < [ a0 v
R R
4G5 [ P )
para qualquer § > 0. Logo
=2 [ IV Ve <6 [ a0 VP
R R

+Cs | Ju{[*(ug )70 V.
R2

Usando a estimativa de g dada em (3.24) e as desigualdades (3.45), (3.46) e

igualdade em (3.44), obtemos
[t 2Ot < o= [ Pl 20
R2 R?
+C [ byt Paf 70
R2 ’
HE-1) / it )
+Cs [ Pt 0 O
Fixando ¢ < 1, ficamos com
|t et < o= 1) [ P 20
R2 R2
+C [ bt |2<uz,x>2<ﬁ-”
e / it ? DTy
Por outro lado, das imersoes continuas de Sobolev,
win <O [ V0l o+ lop ).
para qualquer v > 2. Desde que

szr,x,z' =V (mui(uzx)ﬁ_l)

(3.47)

(3.47) na

(3.48)

(3.49)

(3.50)

= uy (ug )7V 4 mi(ug )7Vl + (8 = Dy (ug, ) >V,
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temos
IVw) 1P = [uf P )PPl 4+ n? (uf )20Vl ]?

+(8 = 1Py [P (uf )2 Vg,
+2(6 = V)miluf [*(uf )P 3Vui \Vn, (3.51)
+2(8 = Dnjuy (ug ) Vuy Vg,

+2muf{(uJLi/\)Q(B_l)Vuij.
Usando (3.51) em (3.50),

il = [ WEPUEPOITnE O [t v P
(3= 170, [t Pl 0V

128 - 1)C, / il 2 ud )53Vt \ Vi,

(3.52)
A5 =1)C, [tttV v,
+2C, / muj(uzA)Q AV TR V7
+C / ,r]zlu)\ z, 2(B 1)
Note que
J R N e G B AV C NGl
< [ a0 v
RQ
[Vt Vag, = [ v
R hur<Z] (3.54)
= RN
R2
/ 77@|U,\| (uf, i )25‘3VUZ,AV7% :/+ Uiuj\r(uJLr,,\)Q(ﬂ_l)vuJLr,Avni
- iy <t (3.55)
< | w7 Vg 1V
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e usando a desigualdade de Young em (3.55),

/R milut P(uf )P0Vl Vi <6 / n(uf )26Vt 2

(3.56)
+C5/ |u |VT]Z|2.
Usando (3.53) — (3.56) em (3.52),
Wi <G [t Plup POV
R2
O 405 [ Rl )T (3.57)
R?

+0, [t Pl 020

Usando (3.49) em (3.57) e fixando e < 1 — 1/3?,

il < €0 | [ PO, 9+ [ b, )

Usando a Proposi¢do 3.3.9, temos |b,(u})]|e < C, para todo A > 1 e alguma
constante C' > 0. Sendo assim, da denigao de n; e de (3.58),

2/
([ rtuare) <co [
BR($Z) BR+T'(;L',L-)

Passando ao limite de L — oo na desigualdade anterior e usando o Lema de Fatou,

2/~
([ ) soe [ e (3.59)
Br(x;) Brir(a;)

(t—1) v 2t
—_ t = ——— t >1, — <
5 com 2<7_2),ena05 1 v e

uy € LP/=D(Bp,.(z;)). Segue de (3.60) e da desigualdade de Holder com expoentes

t/(t—1) et que
2/ (t—1)/t 1/t
([ wr) <co|f |u§|2“/<f—”] [ / 1] ,
Br(z;) BRryr(z:) Brr(z:)
5 052|UA |

Agora, note que se 5 =

ou equivalentemente,

it (3.60)

|L7ﬂ (Br(z L26t/(t=1)(Bgr, . (z;))’

de onde segue que
|U;\F|L~/B(BR(%)) S Cl/ﬂﬁl/ﬂ|Uj\_|L2ﬁt/(t—1)(BR+7‘(xi)). (361)
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t—1 2t
il 5 >, s = e a desigualdade em (3.61), aplicando o

t—1
método de Iteracao de Moser, obtemos

Considerando y =

[ |t By < CF= Y X2 U o (Bag. (o)) (3.62)

o que implica |uf |1y < Clux|v(Ba,.(z))- Desde que uf — 0 em H'(R?*\ Qr)
quando A — 0o e Bry.(z;) C R?\ Qr, por (3.62) e as imersdao compacta de Sobolev,

para cada € > 0, existe A.; > 1 tal que

[uY | Loo(Brz)) < € YA > A,

em particular, considerando € = a e tomando A\, = {gag(l{)\a,i}, deduzimos que
AN
|uy |sonay) < @ paratodo A > A" (3.63)
Analogamente, se para cada A > 1, L > 0 e § > 1, definimos u, = max{—u,, 0},
uy, se uy>—1L,
L, se wuy<-—L,

)2(6—1) e

Zpai T 7712“; (UZ,A Wrai = 771‘“;(“2,,\)6_17

podemos mostrar que
Uy |oonr0y) < @ paratodo A > A" (3.64)
Portanto, de (3.63) e (3.64),
[Ur[oo a0y <@ paratodo A > AT, (3.65)

mostrando a afirmacao feita em (3.41).

Agora, para A > \*, definimos vy : R? \ Q. — R por

oa(x) = (ux(z) —a)".

De (3.63), tem-se vy € Hg(R?\ Q). Nosso proximo objetivo é mostrar que vy = 0 em
R?\ Q. Isto implica em

uy < a.
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Prolongando a fungao vy = 0 em Qf e tomando vy como fungao teste, obtemos

/ Vu,Vuy —1—/ AV (z) + Dupvy = / g(x, uy)vy.
R\, R\ R2\2.

Sendo
/ VUAV’U,\ :/ |V1))\|2,
R2\Q R2\Ql.
/ AV (z) + Dupvy = / (AV(z) 4+ 1) (vx + a) vy
RAQL RAQp)+
e
T,U
/ g(x,up)vy = / g A (vx + a)vy,

R2\Qf, R\, Ux

onde
(R2\ Q) = {2 € R\ O wn(a) > al,
tem-se
/ NG +/ [()\V(x) 1) = I@ I L e =0,
R2\Q, (R2\2))+ ux

Sendo

OV() +1) = 2@ flus) >0 em (R*\ Q)

Ux U\

deduzimos que vy = 0 em (R?\ Qf),. Obviamente, vy = 0 nos pontos onde u, = 0.

Consequentemente, vy := (uy —a)™ = 0 em R? \ Q.. Trabalhando com a fungao

(uy +a)~, é possivel demonstrar que uy(z) > —a para z € R?\ Q. Logo, |ur(z)] < a

para z € R?\ Qf. Portanto, pela Observagdo 3.3.2, a proposi¢ao estd demonstrada. B

3.4 Um valor critico especial de O,.

No que segue, vamos fixar € > 0 e ( = ((e) > 0 tais que

L((l—ewy), L((1+ew) < Li(wy)—¢, Vjel.

J

Além disso, sem perda de generalidade, vamos assumir que I' = {1,....1} (I

Denotaremos por @ = (1 — ¢, 1 + €)% e definimos 7y : Q — H, por

—
t

)(@) = (5,1) - (@ (2), 7" («))

70(?7

onde (5,1) = (51, ..., 50, t1, ..., 1) e



e 0 nimero

Sar = inf  max ®,(v(5,1))
’YEZA (§,£)€Q

onde

Xy = {7 € C(Q,H,) : vi\% #£0, VjeT e (5 f) € Q,~y = sobre 8@}.
Como v € Xy, entdo Xy # () e S\ estd bem definido.

‘ ==
Lema 3.4.1 Para qualquer v € Xy existe (?*, t,) € Q tal que

—

)\, (L)) (YR(ELE)) =0

para todo j € {1,...,1}.

Demonstragao. Basta usar os mesmos argumentos desenvolvidos na demonstragao
da Afirmacao 1.1.15, feita no Capitulo 1. Para isto, para cada v € X, definimos agora

as funcoes H, Hy : Q C R? — R? por

H= (@ (v )" @, (7, (v )y, (v ) )

Ho = (25,0670 - P50 )70 Pha (00 )70 5 - @5 (0 ) )-

Por (fy) e pela Teoria do Grau de Brouwer, temos d(Hy, @,0) = 1. Sendo
H = H, sobre 0Q,

usando o grau topologico, obtemos d(H, @,0) = 1, e portanto o Lema 3.4.1 ocorre. B

!
No que segue, denotamos por Dr o niimero Dr = E d;.
j=1

Proposicao 3.4.2 Os numeros Dr e Sy verificam as sequintes relagoes
l
(a) Zd’\’j < Sxr < Dr para todo X > 1 e;

J=1

(b) Sxr — Dr quando A — oc.
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Demonstracao. (a) Sendo 7y definido em (3.67) pertecente a Xy, temos

Syr < max ®y(70(5,1))

(5,1
max I s;w! )+ max I; t Wy
se[l €,1+¢]! Z / te[1— 61+6]ZZ

Da deﬁnigao de w]', Saben’los que
_] X Zt' — T. Zt' d y I
[ma?( } ](Zw] ) = Z] (w )7 para cada j - 5

logo,

Agora, para v € X, seja (?*, 7*) € @ dado no Lema 3.4.1, temos
®x;(1(5, 1)) > drg, VjET.

Por outro lado,

1
CI)%RQ\Q%(U) = éHu”i,ﬂV\ﬂf - /)\RQ\Q/ F(u)7

~ 1
e sendo F(s) < §V0]s]2 para todo s € R, temos pelo Lema 3.2.1,

1
Py r2\ar(u) > B} <||u||§\,]R2\Qf - VO|U|§,R2\Q’F)

50
||u||,\R2\Q'

de onde segue que @y p2\or (u) > 0, para todo u € H'(R*\ Qr). Logo,

l
A5, 1)) 2> @y ,(4(5
j=1

o que implica em

Da defini¢ao de Sy r, podemos concluir que

!
Sar > Zdz\,ju
=1

finalizando a demonstracao de (a).
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(b) Observe que se, para cada j € {1, ..., k},
dy; — d; quando \ — oo, (3.69)

entao

l
de — Dr, quando X — oo.

j=1
O ultimo limite junto com (a) implica que (b) ocorre. Sendo assim, resta mostrar que
o limite em (3.69) ¢ valido.
Observe que para cada j € {1,...,k} fixado, a aplicacdo A — d, ; ¢ estritamente
crescente e limitada superiormente por d;. De fato, considere a aplicagao w; € Hl(Q;)

(extensao nula de w; € H}(Q2;) dada em (3.6)) e observe que

’/\’j(wjj-t)w;E = IJ’(w]jE)w;E =0.

Logo, wj € M, ; para todo A > 1, o que implica
d>\7j = ,/\lxtnf @)\J‘ S <I>,\7j(wj) == ]j(wj) == dj, \V//\ Z 1,
Aj

mostrando a limitagao superior da aplicacao A\ — d,; por d;. Para demonstrar a
monotonicidade estrita, considere Ay < Ay e wy,; € H'(Q)) satisfazendo (3.7) com

A = Xg. Sejam s,t € (0,400) tais que swj\;j +twy, ; € My, ;. Sendo Ay < Ay, temos

— 3 . . + -
d>\17j - j\}[?f ] (b)\lvﬂ S ¢/\17] (Sw)\Q,j + tw/\g,j)
1.7

< Oy, j(swy, ;4 twy, ;) = Py, j(swy, ;) + Do, (twy, ).

! + + . . ~
Desde que CID)\M( /\27j)w/\27j = 0, temos as seguintes caracterizacoes

P, (W), ;) = max Dy, ;(rwy, ;).
Logo,
dr,j < Oayj(wy, ;) + oy j(wy, ;) = Py, (W, ) = d,

mostrando a monotonicidade estrita.
Seja (\,) uma sequéncia estritamente crescente tal que \, — +o00. Pelo que

vimos no inicio da demonstracao, temos

dy j <dy; <..<dy,;<..<dj,
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de onde segue que d := lim d, ; < d;.
n—oo
Para cada A\, > 1, considere a solu¢ao wy, ; € Ha, (Q;) do problema de Neumann

em (3.3) com A = \,. Observe que

Dy, j(wr, ) = dx,; —d e [P (wx, )N, =0,
de onde segue que (w,, j), ¢ uma sequéncia (PS)s 4 para a sequéncia de funcionais
(®y,.;), com d € (0, D].

Afirmacao 3.4.3 A sequéncia (wy,;)n ¢ limitada em H'(Q;) com

2 <L <1
HY (@) :

@

l|lwa,.;

De fato, usando a Condi¢do de Ambrosetti-Rabinowitz (f3), obtemos

dr,i = D, 5(wn, 5) — gq)&n,j(wxmj)wmj

1 1 1
> (5 ) lonliog = [ (Flons) = ftwnon.y)

11 )
> 577 HwAn,jHAn,Q;.

de onde segue que

I H H2 < 2d60 < 2d;0 < 1 <1
11m su w i ’ —_— - .
naoop Anod A, 2 = 0—2—0-2 £?

A afirmagao segue observando que Hw,\ij%{l(Q,) < lwx, ;113 o, para todo n > 1.
J ot

Assim, podemos assumir que para algum wg € Hl(Q}),
Wy, j — Wy em HI(Q;»),

wy, ; — wo em L°(Q), para s>1

Wy, ;(r) = wo(x) q.t.p. em €.

Seguindo os mesmos argumentos utilizados na demonstracao da Proposicao 3.3.8,
mostra-se que

Wy, ; — Wy em Hl(Q;),
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wy = 0 em )\ ;e wolo, é uma solugao de
—Au+u=f(u), em €,
u =0 sobre 0€);.

Para mostrar que w(jf = 0, basta observar que
s, oy < N B = [ 05,k
J

Agora, é s6 usar argumentos similares aos do Lema 1.1.11 do Capitulo 1, para mostrar
que

/Q, |wfn’j|q >0, >0, VneN,
J

Passando ao limite de n — oo na tltima desigualdade, obtemos

/ Wt > 8, > 0,
Q;

de onde segue que wy # 0. Portanto, wy € M; e

> ®y, j(wo) = Ij(wo) > dj

d; > lim dy
I = e AnsJ

mostrando que lim dy, ; = d;. [
n—o0

3.5 Uma familia especial de solugoes nodais para (A),

Nesta secao, mostramos a existéncia de uma familia especial de solucoes nodais
para (A),, para A suficientemente grande. Estas solu¢bes nodais sdo exatamente as

solucoes enunciadas no Teorema 3.1.1.

No que segue, EY ; € B ; denotam o cone das fungoes nao negativas e nao positivas

pertencentes a H,(();), respectivamente, isto &,
Ef;={uweH\): u(z) >0qtp. em Q},

Ey;= {ue HAY) © u(r) <0q.t.p. em Q;}

Segue da definicao de vy e das imersoes compactas de Sobolev que existem constantes

positivas 7 e A* tais que
disty (70(§,f>,Efj) >7 paratodo (5,) €@, j€T e XA > N\,
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onde disty; (K, F') denota a distancia entre conjuntos em #,(2;). Considerando o

ntmero 7 obtido na ultima desigualdade, definimos
O = {ue M) : distr; (u, Ex,) >7 VjeT}.
Além disso, para qualquer ¢, > 0e 0 < § < min{{, 7/2}, consideramos os conjuntos
S={ueHA(Q): ®r(u) <c} e Byy={u€BOp: [Pr(u)—Srr| <pul},
onde ¢ é dado em (3.66) e, para r > 0, ©, denota o conjunto
O, = {u € HA(Q)) : disty; (u,0) <r}.

Note que para cada pu > 0, existe A* = A*(u) > 0 tal que

1
w = ij € B,,, paratodo A > A"

j=1
pois w € ©, ®)(w) = Dr e Syr — Dr quando A — oco. Logo, By, # 0 para A
suficientemente grande.

Observe também que para ¢ > 0 suficientemente pequeno, temos

S 20D
.
oG DL < @+ D wy| <M==+ <1,
j=1 A
com a constante M independente de .
No que segue, para r > 0, denotamos por
Br(0) :=={ueHy: [lullx <7}
e por u* o seguinte nimero real positivo
M+1 6
w* :min{ 2+ ,5} (3.70)

Proposicao 3.5.1 Para cada pn > 0 fizo, existem 0, = o,(pn) > 0 e Ay = A(p) > 1

mdependentes de X tais que

| @4\ (w)|[y > 0o para X\ > A, etodo u € (Byau\ Bay) HP(M+3)/4(O) N q)fr.

Demonstragao. Suponhamos, por contradicao, que existe uma sequéncia A\, — oo e

U € (B, 21 \ Ba) N Barssy4(0) N @ tal que
@) (un)][y, =0 quando n — oo.
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Sendo u,, € By, 2, € Sx,,r — Dr quando n — oo, segue que a sequéncia (P, (u,)) é

também limitada. Assim, podemos assumir que
(I))\n(un) — CE (0, DF],

apoés extrairmos uma subsequéncia se necessario. Aplicando a Proposicao 3.3.8, pode-
mos extrair uma subsequéncia u,, — u em H'(R?), onde u € H}(Qr) é uma solugio de

(P,) com

lem — alls, =0, A, /R V@)l = 0 ¢ [funlln,zor0p — 0.
Uma vez que u, € Oy, para todo n € N, temos

Hu,f”,\mgj -+ 0, paratodo jeTl.

De fato, sendo u,, € Ey ., temos

[ ey = llun = uylln,.0p > disty, j(un, B ), VAn > A7
como uy, € Oqs, temos

disty, j(un, E5, ;) > 7 —20 > 0.

Logo

Analogamente,

lugllag, =7 =20 >0, VA, > A"

Sendo assim, HuiHQJ # 0 para todo 7 € I'. Logo, para todo j € I', u é uma solugao

nodal de (FP;) e
! !

24 <) Ti(ulo,) < Dr.

=1 i=1
Este fato implica em I;(ulq,) = d; para todo j € I', logo

o, (u,) = Dr quando n — 0.
Usando novamente a convergéncia Sy, r — Dr quando n — oo, podemos concluir que
Uy € By, N 0L,

para n suficientemente grande, o que é uma contradicao. |
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Proposicao 3.5.2 Para cada p € (0, p*), existe A* = A*(n) > 1 tal que para todo

A > A* o funcional ®y tem um ponto critico em By, N E(M+3)/4(O) N CIDSF.

Demonstragdo. Suponhamos, por contradi¢ao, que existe p € (0, u*) e uma sequéncia
An — 00, tal que ®, nao tem pontos criticos em By, , N E(M+3)/4(0) N @fnr. Pela
Proposigao 3.3.5 o funcional &, satisfaz a condi¢do (PS). para todo ¢ € (—o0, D],

logo existe uma constante dy, > 0 tal que
194, (W, = dr,,  Yu € By, N Barysya N O
Além disso, pela Proposicao 3.5.1, também temos
19, (W5, =00, Yu € (Br,2u\ Ba,u) N Boarsaya(0) N 0L,
onde o, > 0 é independente de )\, para n suficientemente grande. No que segue,
U, :Hy, =R e H,: 0¥ — H,,

sao funcoes continuas verificando

U,(u) =1, para u € By, 3./2MN0O; OE(MH)/Q(O),

U, (u) =0, para u ¢ By, 3.2 M 0Os HE(MH)/Q(O),

0< lIIn(u) <1, para u € Hy,,

=W, (u) [[Yn (u) ||~ Yo (u), para ue B, 2u mE(MJrB)M(O)a
Hn(u) =

0, para u ¢ B)\n,2,u QE(M+3)/4(O),
onde Y;, é um campo pseudo-gradiente para ¥y, sobre M,, = {u € H,, : @) (u) # 0}.

Pela definicao de H,,, para cada n € N temos
|H,(u)|]| <1, paratodo u € ¢’f\)£>

consequentemente, existe uma deformacao 7, : [0,00) x @fnr — (I>/\Dnr definida por

/L

i Hy(mn),  1a(0,u) =u € OV

Esta deformacao satisfaz as seguintes propriedades béasicas:

%%n(%(tw) < =W (mn(, W) [P, (7 (£, w))[| <0, (3.72)

97



dnn,
— = ||Hn(0n <1 3.73
H Tl | Ha (), (3.73)
nn(t,u) = Uu, Vit Z O, u ¢ B>\n72“ QE(M+3)/4(O) (374)

o Os caminhos v,,(5,t) := n,,(t,70(5,1)), n € N:
Segue da definicao do caminho vy que

Y(5,1) ¢ By, 24, paratodo (5,f) € 0Q.

Portanto,
nn(t770(§7£>) = 70(5”{)7 para todo (§7 E} < aQ

Vamos mostrar que as aplicacoes v, : Q — H,, pertencem a classe ¥, para n
suficientemente grande. Para tal, comecamos observando que 7, é uma aplicacao

continua em . Uma vez que u € (0, %), (3.66), (3.68), e (3.70) implicam em
@y, (10(5,1)) = Dr| > ¢ >8> 2u", V(3,1) €0Q, neN.

Assim, usando novamente o fato que Syr — Dr quando A — oo, existe n, > 0

tal que
|(I))‘"L(70(§’£>) - S/\n7F| > 2,&, V(«iﬂ S an n > N,

o que implica em (5, t) ¢ By, 2, Para todo (S, t) € 9Q e n > n,. Logo,

Yn = Y0, Sobre 0Q, Vn >mn,.

Assim, resta mostrar que
(3, 8)F € H'()\ {0},
para todo j € T' e todo (5,%) € Q.
Sendo 7,(8, f} = nn(Tn,%(ST,f}) € Oy para todo n, tem-se
distxn,j(%(sﬁ,f},Eid) >7—26>0.

Assim, ﬁ\gj # 0 para todo j € I', e podemos concluir que v, € X, para n

suficientemente grande
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e O caminho vy(5,1):

Note que supt v(5,t) C Qr para todo (5,%) € Q e que ®5(70(5,%)) nio depende
de A > 1. Além disso, observe que

(I))\(’YO(E’JS) < DF7 para todo (gaﬂ S @

®5(7(5,1)) = Dr,  se, e somente se  s;

Portanto, o nimero real
mi = sup{@x, (1) : u € 70(Q)\ (Ba, N Bas (0)}:
é independente de \,, e verifica

limsupmg < Dr.
n—o0

L, . . N . n;
De fato, caso contrario, existe uma subsequéncia (n;) C N tal que m,” — Dr,

quando n; — oo com
/70(§nj7fnj) ¢ B)\nj N N E% (O)a

mOJ - n_ S ®>\nj (fyo(snju tTLJ>> S DF (375)
J

@,\nj ('yo(§nj,fnj)) — Dr, quando n; — oo.

Desde que 75(Q) C E#(O), devemos ter

Vﬂ(gnja E;lj) ¢ B)\nj o

ou seja,

|(I)/\nj (Wo(gnj,t_;lj)) — S,\nj7p| > 0> 0, \V/TLJ' € N. (376)

Mas pelo item (b) da Proposicao 3.4.2 e por (3.75),
]QD,\nj (70(§nj,fnj)) — SAnd] — 0, quando n; — oo,

o que contradiz (3.76).
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Afirmacgao 3.5.3 Para cada n € N, existe uma constante K,, > 0 verificando
[Dx, (1) = Py, (v)| < K[ — vl

para todo u,v € E(M+3)/4(O).
De fato, Pelo Teorema do Valor Médio, temos

D, (1) — Py, (v)] < Sl[lp} @, (tu + (1 = ))[I3, [lu = v|x,,
tel0,1

onde

1@}, (tu+ (1 =1)0)[5, = sup (@3, (tu + (1 = t)v), w)l.

wEHA'nﬂ ”w”)\ngl

Assim, basta mostrar que existe K, > 0 tal que
(@), (tu+ (1 —t)v),w)| < K,, YweHy, [[w| <1, Vu,ve E(MJF;),)/LL(O)‘

Ora,

(@), (tu + (1 — t)v), w)] < M2+3+/RQ\f(tu+(1—t)v)w\.

Sendo assim, resta mostrar a limitagao da integral acima. Usando o crescimento de f,

temos

1- 1—- C dnrlter (=00 1) (3,77
[t =tppl < [ jtusa=elful+c [ ol (e ). @7)

Usando a desigualdade de Holder e o Lema A.1 do Apéndice A, obtemos

/ ’w’ <e47r7-|tu+(1fz‘/)v|2 _ 1) < Cl/ <€47rt27‘\tu+(17t)v|2 o 1) . (378)
R2 R2

Por outro lado, para u,v € B(yr43)/4(0), temos

M+ 3

[tu+ (1 — t)o||, < <1

Sendo assim, podemos fixar t5 > 1 suficientemente préoximo de 1 de tal modo que
Aty |tu + (1 — t)v||3, < 1. Logo, usando a Desigualdade de Trudinger-Moser devida
a Cao (6),

/ 2 (e“twlt“ﬂl*ﬂvﬁ . 1) < Cy,  Yu,v € Buisa(0), V€ [0,1]. (3.79)
R
Portanto, de (3.77), (3.78) e (3.79), obtemos
|f(tu+ (1 —t)v)w| < C,  Yu,v € Bayay(0), Vt €[0,1],
R2

concluindo a demonstracao da Afirmacao 3.5.3.
Usando as informacoes apresentadas até o presente momento, podemos afirmar

0 seguinte.
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Afirmagao 3.5.4 Existe T, =T(\,) >0 e € > 0 independente de n tal que

hmﬁm{HMX@MWAﬂﬁm@5»}<L%—3-
(

n—o00 §,£}€Q

De fato, defina u := (5, 1), dy, = min{d,, 0.}, T\ = poo/2dy, e i(t) = nu(t, ).
Seu ¢ By, N E(M—i—l)/Z(O) N O, pela definicao de my temos

Dy, (Mu(t,u)) < Py, (u) <my, Vt>0.
Por outro lado, se u ¢ B, , N E(M+1)/2(0) N Os, devemos analisar os seguintes casos:
Caso 1. 7,(t) € By, 3u/2 HE(MH)/Q(O) N O, para todo t € [0,T,];
Caso 2. 7 (to) & B, 3u/2 N Bars1)/2(0) N O, para algum ¢, € [0, T,,).

Analise do caso 1:

Neste caso, temos U, (7i,(t)) = 1 e |[|®, (7.(1))]| > d, para todo t € [0,T,,].

Portanto por (3.72),

Tnd ~

Tn
B, (1(T) = @, () + [ 50 Gi(o)ds < Do~ [ s
0 0

ou seja,

a 7 1
5, (iin(Tn)) < Dr = dy, T, = Dr = oot

de onde segue a afirmacao.
Analise do caso 2:

Para este caso, temos as seguintes situagoes
(a) Existe ty € [0,T),] tal que 7,(t2) ¢ Os; note que para t; = 0,
170 (t2) — ()]l = 0 > p,
pois 7,(0) = u € ©.

(b) Existe ty € [0,T,] tal que 7,(t2) ¢ E(MH)/Q(O); neste caso, para t; = 0,

i _ M+1
7 (t2) = 7in (t1)]] =

> 4,

pois 7,(0) = u € B(ar41)2(0).

101



(c) n(t) € O5 HE(MH)/Q(O) para todo t € [0,7T,,], e existem 0 < ¢; <ty < T, tal que
n(t) € By, 3u/2 \ B, para todo t € [tq,t,] com

@A, (Tn(t1)) = Sx,pl =1 e [Pr,(n(t2)) — S, r| = 3u/2.

Usando a definicao de K,,, obtemos

7
2K,

Hﬁn(t2) - ﬁn(tl)” >

As estimativas mostradas em (a) — (¢) implicam na existéncia de uma constante

C > 0 tal que t; —t; > Clu, e assim

D, (1n(T0)) < i, (u) —/O 0 (70 (3)) 194, () s

implicando nas desigualdades

to
By, (i1a(T0) < Dy — / oods < Dr— ay(ts — 1)

t1
ou seja,

(I)An<ﬁn(Tn)> < Dr — C’O'Olu,7

demonstrando que a afirmacao ocorre.
Pelo estudo feito, fica estabelecida a desigualdade

limsup Sy, r < Dr — €,

n—oo

o que contradiz a Proposicao 3.4.2, concluindo a demonstracao da Proposicao 3.5.2. B

3.6 Demonstracao do Teorema 3.1.1

Pela Proposicao 3.5.2, para cada p € (0, %) fixo, existe A* = A*(u) > 1 tal que
o problema auxiliar (A), tem uma solugao nodal uy € By, OE(M+3)/4(O) para A > A*
com

distyj(ux, Ey;) >7—26 >0 VjeTl. (3.80)
Repetindo o mesmo argumento usado na demonstragao da Proposicao 3.3.8, obtemos
uy —0 em H'(R?*\Qr) quando \ — oo.
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Esta convergéncia junto com a Proposicao 3.3.9, implica que u) é uma solu¢ao nodal
de (P),, para A suficientemente grande.

Fixando A\, — oo e u, — 0, a sequéncia (uy,) verifica
D) (ur,) =0 e Dy (ur,) =Sy +on(l)
Pela Proposicao 3.4.2,
Py (upr,) =0 e @y (uy,) = Dr+oy(1).

Portanto, (uy,) ¢ uma sequéncia (PS)s p,. para (®,,). Sendo Dr € (0,D], pela
Proposicao 3.3.8 existe u € H}(Qr) tal que, para alguma subsequéncia ainda denotada

por (uy,),
uy, — v HY(R?), )\n/ V(z)|uy,|* =0 e ||u,\n]|§mRz\QF — 0.
R2

De onde segue que
l
Ii(u) =0 paratodo jel e Z]j(u) = Dr. (3.81)
j=1

Como consequéncia, temos o seguinte resultado

Afirmacgao 3.6.1 FEuxiste k, > 0 tal que
/ﬂ. uy |7 >k, VA, > A% VjET, (3.82)
para algum ¢ > 1.
De fato, fixe j € ' e considere n; € C*°(R?,R) verificando
n=1em Q e n=0 em R*\ (Q))s e (()s\Q)) CR*\ Qr.
Tomando v; = r]jujn como funcao teste, obtemos

Var, V(nud ) + AV (@) + sy, = / Flun gt

R2 R2

de onde segue que
LVt Py OV @)+ Dl g = [ fan e, +on(). (389
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Usando o crescimento de g, obtemos

flun, )njuy < 6/ ul [, +C/ nyuy, br(ux,),
R2 R2 R2

e pela Desigualdade de Hélder

1/¢
fun,)njuy < 6/ uf [*n; + C (/ |77juirn|q) b7 (ux,)|q
R2 R2 R2

onde 1/g+ 1/¢" = 1. Fixando ¢ > 1, com ¢ suficientemente proximo de 1 e usando o

Corolario 3.2.2, obtemos

1/q
flun, )njuy, < 6/ uf [*n; +C (/ |njuy, q) : (3.84)
R2 R2 R2

De (3.83) e (3.84),

1/q
10 |w:n|2nj+<xnv<x>+1>|u§n|2msc( [ s, ) +on(l).
R2 R2

Logo, fixando € < 1 e usando (3.71), obtemos

1/q
0 < (1— )7 —26) < (1— &) Juf, 3, sc( / |u;n|q’> +0u(1),
Q/

J
de onde segue que

/ |u;\“n]q/ > ko >0, VA, > A
o

J
para algum k, positivo. Analogamente, temos

/ uy |7 > ko >0, VA, > A7,
Q.

J
mostrando que a afirmacao é verdadeira.

Passando ao limite de n — oo em (3.82), obtemos
= [tz e
Q) Q,
Assim, v muda de sinal em 2 para todo j € I', o que implica em
Ii(u) >d;, VjeTl. (3.85)

Segue de (3.81) e (3.85) que [;(u) = d; para todo j € I'. Isto mostra que, para
cada j € I, u|g, é uma solucdo nodal de energia minima para o problema (3.3), e a

demonstracao do Teorema 3.1.1 esta completa. [
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Capitulo 4

Infinitas solucoes nodais em bolas

Neste capitulo, estabelecemos a existéncia de infinitas solucoes nodais para o

problema

—Au = f(u), em B,
(P)
u =0, sobre 0B,

onde B ¢ a bola unitaria em R? e f é uma funcdo fmpar com crescimento critico
exponencial. Dividindo B em setores angulares e usando o Teorema do Passo da
Montanha, mostramos a existéncia de uma solucao positiva em um dos setores de B.
A partir desta solucao e de um processo de continuacao anti-simétrica desenvolvido por
Comte-Knaap [31] mostraremos a existéncia de infinitas solugées nodais em B. Aqui,

vamos assumir as hipoteses:
(f1) Existe C' > 0 tal que
1£(s)] < Ce*™F para todo s € R;

(f2) lim® =0

s—0 8

e as seguintes hipoteses adicionais

(Hy) Existem sy > 0e M > 0 tais que

0< F(s):= /s f(t)dt < M|f(s)| para todo [s| > sq.
0



Nosso principal resultado é o seguinte:

Teorema 4.0.2 Seja f uma funcdo impar satisfazendo (f1) — (f2) e (Hy) — (Hs).
Entao, o problema (P) tem infinitas solugdes nodais.

Para cada m € N, definimos o conjunto

An = {x = (x1,29) € B: cos (2%) |z1| < sen (%) xg},

ver figura 4.1. Assim, A; é um semi-circulo; Ay é um quarto do circulo (setor angular
de angulo 7/2); Az é um quarto do circulo (setor angular de angulo 7/4), e assim

sucessivamente.

Figura 4.1: Setor angular A,,.

Primeiro consideramos o problema

—Au= f(u), em A,,
(P)m
u =0, sobre 0A,,.

Usaremos o Teorema do Passo da Montanha (Teorema A.18 do Apéndice A) para obter
uma solugao positiva de (P),, e a partir desta solu¢ao, vamos construir uma solugao

nodal para o problema (P).
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De acordo com Figueiredo, Miyagaki e Ruf [34], para obter uma solugao positiva

de (P),, basta que o limite em (Hj) verifique

(Hy)  lim sf(s)e ™™ >8>

s—+00 27Td,2n7
onde d,, é o raio da maior bola contida em A,,. Conforme demonstramos a seguir,
supondo (Hj) no lugar de (Hj3)', temos a existéncia de uma solugao positiva de (P),,,

para cada m € N. Este é o contetido do nosso proximo resultado.

Teorema 4.0.3 Sob as hipdteses (f1) — (f2) e (Hy) — (H3), o problema (P),, possui

uma solucao positiva, para cada m € N.

4.1 Demonstracao do Teorema 4.0.3.

Como estamos interessados em solugoes positivas para o problema (P),,, vamos
supor ainda que

f(s)=0, Vs<O0.

Associado ao problema (P),,, temos o funcional energia I : H}(A,,) — R dado

”W:%[;WMP_Am”W'

No nosso caso, 0A,, nao é de classe C'. No entanto, o funcional I esta bem definido.

por

De fato, para u € H}(A,,), considere u* € H}(B) a extensao nula de u em B, definida

por

u(z), se z€A,
0, se xz€B\A,.
Claramente

[l = llu]l 5

Logo, por (f1) e pela Desigualdade de Trudinger-Moser (1)

/ F(u) !/w |<c/4mﬁ<m.
A’NL

Além disso, mostra-se que o funcional I é de classe C' com

I'(u)v = / VuVov — fw)v, Vu,ve Hy(A).

A m

O proximo lema garante que o funcional I tem a geometria do passo da montanha.
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Lema 4.1.1 (a) Ezistem r,p > 0 tais que
I(u) > p>0, paratodo |u|a, =7
(b) Eriste e € H}(A,,) tal que

llella,, >r e I(e) <O.

Demonstracao. Usando a definicao de I e o crescimento de f,

1 2
rwyz g [ ViP5 [ oo jupet
2 J Am 2 Jam A

1 .
I(u) > —/ |Vu*]2—£/ |u*|2—C’/ |u* |2
2J/B 2JB B

Usando a Desigualdade de Poincaré,

1 € *|2
I(u 2—/ Vu*g——/ Vu*Q—C'/ u*| 2P
Wy [wep- o [vep-c [

onde \; é o primeiro autovalor de (—A, H}(B)). Fixando € > 0 suficientemente pe-

€
queno, temos C7 := — — — > 0, de onde segue que
2 2\

ou ainda,

I(u) > Cl/ |Vu*? —C/ u*[aeP .
B B
Note que, pela Desigualdade de Trudinger-Moser (2)
e e 12(B)

e por imersao continua

w*|7 € LX(B).

Logo, pela Desigualdade de Holder,

1/2
/”tﬂqeﬁ'“*'2 < (/ \u*IQq) (625“*|2)1/2
B B
1/2
< |3, 5 </ 625|“*2)
’ B
1/2
<cely ([ )
B

pois H}(B) < L?!(B), para todo q > 1.
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Afirmamos que para r > 0 suficientemente pequeno, tem-se

*|2
sup /e%'“l < 00.
B

l[u*]|g=r

. 2 (] )2
/ezmu 2 :/625”“*“3(u*|3) :
B B

Escolhendo 0 < r ~ 0 de maneira que o := 28r% < 47 e usando a Desigualdade de

De fato, note que

Trudinger-Moser (2), obtemos

* |2 2
sup / I < sup / e < 0.
lw*|lg=r /B lvll<1JB

Portanto,

I(u) > Cillw’|[ — Coflu”||%.
Fixando ¢ > 2, obtemos
I(u) > Cyr* — Cor® = p > 0,

para r = ||u||4,, = ||u*|| p suficientemente pequeno, mostrando que a afirmacao em (a)
é verdadeira.
Para demonstrar a afirmagao em (b), observe primeiro que

Afirmacao 1. Para cada ¢ > 0, existe 5. > 0 tal que
F(s) <ef(s)s, paratodo x € A, |s| > 3.

De fato, basta ver que por (H;)
F(s) M
sf(s)| — Is|’

Para p > 2, a Afirmacdo 1 com ¢ = 1/p > 0, garante a existéncia de 5. > 0 tal que

V|s| > so.

que por sua vez implica na existéncia de constantes C7,Cy > 0 tais que
F(s) > Cy|s|P = Cy, Vs >0.
Sendo assim, fixando ¢ € C§°(A,,) com ¢ > 0e ¢ # 0. Para t > 0, temos
| P = [ @il -
Am Am

zcwh/\@—@ma,
A’fn
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de onde segue que
/A F(tp) > C3lt|" — Cy. (4.1)
Por (4.1),set >0, ,
1(t9) < S llellh,, = Colt? +Ci.
Sendo p > 2,

I(tp) - —o0, quando t — +o0.

Fixando tg ~ +o00 e definindo e = typ, concluimos que
lel|a,, =7 e I(e)<0. W

O proximo lema é crucial para mostrar que o funcional satisfaz a condicao de
Palais-Smale abaixo de um certo nivel e sua demonstracao pode ser encontrada em

Figueiredo, Miyagaki e Ruf [34].

Lema 4.1.2 Sejam Q C RY limitado e (u,) uma sequéncia em LY(Q) tal que uy,
converge para uma funcdo u € L'(Q) em quase todo ponto de 2. Seja f: R — R uma
funcgdo continua tal que f(u,), f(u) € L'(Q), para todo n € N. Se existe C > 0 tal

que

/ |f (un)un| < C,  para todo n €N,
Q
entdo f(u,) converge para f(u) em L*(Q).

Lema 4.1.3 O funcional I verifica a condi¢ao (PS)q, para todo d € (0,1/2).

Demonstragao. Sejam d < 1/2 e (u,) uma sequéncia (PS), para o funcional I, isto
e,
I(u,) —=d e I'(u,) >0, quando n — +oo.

Escrevendo, para cada n € N, ¢, = sup {|I'(u,)v|}, temos
llv]>1

|1’ (tn)v] < €nl|v]|m,

para todo v € H}(A,,), onde €, = 0,(1), ou ainda,

1/ |Vun|2—/ F(u,)=d+o0,(1), VYneN. (4.2)
2 Jan, Am

< HUHmEna VneN, ve H&(Am) (4'3)

Vuan—/A fup)v

Arn m
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Por (4.2) e pelo item (ii) da Afirmacdo 1, para cada € > 0, existe ng € N tal que

1 1
—||un||,2n = —/ |Vu,|* < 6+d—|—/ F(u,) <C.+ e/ £ (un)up,
2 2 Ja,, A Am

sempre que n > ng, ¢ usando (4.3) com v = u,,, obtemos

1
(5 — 6) lunll?, < Ce + €lltnllm, ¥n > no.

Portanto, a sequéncia (u,) ¢ limitada. Sendo H}(A,,) um espaco de Banach reflexivo,

existe u € H}(A,,) tal que, a menos de subsequéncia,
u, = u em Hj(A,).
Além disso, pelas imersoes compactas de Sobolev, temos

u, >u em LYA,), ¢>1

up(z) = u(z) qt.p. em A,

Por outro lado, usando (4.3) com v = u,, obtemos

Am Am

ou ainda
| Hanin <l = allunlln < €. V€.
A’UL
Logo, pelo Lema 4.1.2; temos f(u,) — f(u) em L'(A,,). Assim, existe h € L'(A,,) tal

que, a menos de subsequéncia, temos

|[f(un(x))] < h(x), qt.p.em Ay,

e por (Hy), temos

|F(un)| < Mh(z), q.t.p. em A,,.

Além disso,

F(up(x)) = F(u(x)) qt.p. em A,,.

Sendo assim, pelo Teorema da Convergéncia Dominada de Lebesgue,

[ pe - [ Fw=ou
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Logo, por (4.2),
1
sl = [ Pl = d=o,(),
A’VV'L

ou seja,

Tim[un |2, =2 (d+/Am F(u)). (4.4)

Usando novamente (4.3) com v = u,, obtemos

< on(1),

a2, — / £ (2t

o que implica em

[ o -2(a [ )| <

+

lunllf = [ f(un)un
Am

lwn|2, — 2 (d+ /Am F(u)) ‘ :

lim fup)u, =2 (d +/ F(u)) :
n—00 J 4 A
Além disso, por (Hs)

Logo,

2/ F(u) <2 lim F(uy,)

n—oo A
m

< lim fup)u, = 2d + 2/A F(u),

n—oo A
m

de onde segue que d > 0.

Afirmacgao 2. Para qualquer v € Hj(A,,), temos

/Am VuVo — /Am Flu).

De fato, fixe v € Hj(A,,) e note que

/ Vqu—/ f(u)v / Vuan—/ VuVu
m A7n m A’UL

/ Vuan—/ f(up)v|.
Am Am

Usando o Lema 4.1.2, a convergéncia fraca u, — u em Hj(A,,) e a estimativa em (4.3),

/mVqu—/mf(u)v

concluindo assim a demonstracao da Afirmacao 2.

< +

. fup)v — /A fu)v

+

obtemos

< on(1) + [[vflon(1),
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Note que por (Hs) e a Afirmacio 2,

1 , 1 B
J(u) > é/Am |Vul —é/Amf(u)u—O.

Vamos dividir a demonstracao em trés casos:

Caso 1. O nivel d = 0. Pela semicontinuidade inferior da norma, temos
l|w|l s < liminf ||wy,||m,
n—oo

logo

1 1
Sl < Sl

Usando (4.4), obtemos

1
0<I(u) < §liminf | | —/ F(u),

m

o que implica em

ogqug/épwy—/mey:a

Am
de onde segue que I(u) = 0, ou seja,

=2 [ P
Am
Usando novamente (4.4), concluimos que
lunll, = llully, = 0n(1),
sendo H{(A,,) um espago de Hilbert, obtemos
u, —u em H)(A,).

Portanto, I verifica a condi¢ao de Palais-Smale no nivel d = 0.
Caso 2. O nivel d # 0 e o limite fraco u = 0.

O que faremos é mostrar que este fato nao ocorre para sequéncias Palais-Smale
do funcional I.

Afirmacgao 3. Existem ¢ > 1 e uma constante C' > 0 tais que
/ Flun)l? <C, VneN.
Am

De fato, por (4.4), para cada € > 0, existe ny € N, de modo que
unllZ, < 2d+€,  Vn > n.
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Além disso, usando (f1), obtemos

/ [ f (un)|* < C/ eldmaun — c/Be4w||u;2(|1i£|>2

de onde concluimos pela Desigualdade de Trudinger-Moser (2), que a tltima integral na
expressao acima ¢ limitada, se 47g||lu’||*> < 47 e isto de fato ocorre quando tomamos ¢ >
1 suficientemente proximo de 1 e e suficientemente pequeno, pois d < 1/2. Mostrando
a afirmacao.

Assim, usando (4.3) com v = u,,, obtemos

/ IV - / Sl

un]2 < 0n(1) +/A Flun)un,  Wn €N, (4.5)

< éenllun|m < e.C, VneN.

Logo,

Além disso, pela Desigualdade de Holder, podemos estimar a segunda integral acima

como segue abaixo

[ s < ([ 1) Y/ ) mrq')l/ql Ve,

e como u, — 0 em L7 (A,,), temos

/Am Flun)in = on(1).

Portanto, por (4.5),

|un|l?, =0, quando n — oo, (4.6)

encontrando uma contradicao com (4.4), pois
l|unl?, — 2d # 0, quando n — oo,

mostrando que d # 0 e u = 0 nao ocorre.
Caso 3. O nivel d # 0 e o limite fraco u # 0.

Primeiro, observe que I(u) < d, visto que

1 1
= gl [P < st (Sl - [ F)) =

Afirmacao 4. I(u) = d.
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De fato, suponha por contradigdo que I(u) < d, pela defini¢ao de I, temos

ull2, < 2 (d+ /Am F(u)) . (4.7)

Por outro lado, considerando as funcoes

u*

vy, = — neN

- I
k
|

v =u* [2 <d+ /B F(u*))} 71/2,

tem-se ||v,||lp =1 e ||v]|p < 1. Além disso,
v, ~v em H(B),

pois, para cada ¢ € C5°(B),

-1/2
/anVgOZ HunH_l/ Vu, Vo — [2 (d—i—/ F(u*))} /VuV@z/VUch,
B A B B B

ou seja,
/anVga— / VoV = 0,(1).
B B

Afirmacao 4.1.4 Existem q > 1 e ng € N tais que

/ Fu)? < C, Vn > mo.
Am

Para demonstrar esta afirmacao, vamos precisar do seguinte resultado devido a
P.L. Lions [40].
Proposigao 4.1.5 Seja (u,) uma sequéncia em H}(Q) tal que |Vuy,|a = 1 para todo
n € N. Além disso, suponha que u, — u em H}(Q) com |Vu|y < 1. Se u # 0, entdo

1
ara cada 1 < p < ————, temos
b P=1z |Vul3

2
sup/ el™Pin < o0,
neN JQ

Da hipotese (f1),

/ | F(up)|? < C/ edmauy, C’/ edmallun|*of (4.8)
Am Am B

A qltima integral na expressao anterior é limitada. De fato, pelo Proposicao 4.1.5,

basta mostrar que existem ¢, p > 1 e ng € N tais que

. 1
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Para ver que (4.9) ocorre, observe que I(u) > 0 e d < 1/2, implicando em

d—I(u)’

de onde segue que

2(d+/BF(u*)) <d+/BF(u*) B

d—1I(u) — 1—]vl

Sendo assim, para ¢ > 1 suficientemente proximo de 1, temos

2% (d+/BF(u)> < m

o que implica, por (4.4), que existem p > 1 e nyg € N tais que

gllus]* <p < ¥n > ng,

1
1= oll3’
mostrando que (4.9) ocorre. Portanto a Afirmagao 4.1.4 é verdadeira.

Agora, vamos mostrar que u, — u em Hj(A,,). Para isto, observe primeiro que

pela desigualdade de Holder e por (4.1.4),

1/q
)~ < | <rf<un>\q>”q(/ \un—urq’) < Clun — tlyn.

Am

onde 1/q+1/¢' = 1. Como u,, — u em L7 (A,,), temos

fup)(uy —u) = o,(1). (4.10)

Am
Usando (4.3) com v = u,, — u e (4.10), obtemos (u,, — u,u,) = 0,(1), e como u, — u

em H}(A,,), temos
|, — u||2m = (Up, — U, up) — (U, — u,u) = o, (1).

O que implica em ||u,|?, — |lu|/?, e isto juntamente com (4.4) contradiz (4.7). Mos-

trando que I(u) = d, ou seja,
lul|?, =2 (d—l—/ F(u)) .
Am
Além disso, por (4.4), temos ||u,||m — ||ul» quando n — oco. Portanto

u, —u em Hj(A,). B
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Em vista do Lema 4.1.1 e do Teorema do Passo da Montanha sem condicoes de
compacidade (Teorema A.18 do Apéndice A), existe uma sequéncia (PS) no nivel do

passo da montanha de I, ou seja, existe (u,) C H}(A,,) tal que
I(up) = ¢ e I'(u,) — 0,
onde

- —inf T(~(t
¢m = inf max (v())

I'={y€C(0,1], Hy(An)) : 7(0) =0 e I(y(1)) <O0}.

Para concluir a demonstracao da existéncia de solugao positiva de (P),,, resta mostrar
que ¢, € (—00,1/2).

Para tal, consideramos as seguintes fungoes introduzidas em Moser [45]:

[ (In()"?, 0<|z|<1/n

Wale) = =1 — < <
n

0, lz] > 1

Sejam d,, > 0 e x,, € A, tais que By, (z,,) C A,,. Definindo

wn(2) = Wy, (x ;mxm) ,

tem-se que w, € H}(An), |[walla, =1 e supp w, C Ba,, (Tm)-

Afirmamos que existe n € N tal que

N

max [ (tw,) <
>0

De fato, suponha por contradi¢ao que este méaximo é maior do que ou igual a 1/2, para
todo n € N. Seja t,, > 0 tal que

= >
max I(twy,) = I(tyw,) >

. (4.11)

DN | —

Segue de (4.11) e (H;) que
t2 > 1. (4.12)



Além di —
ém disso, o

o que implica em

t

I(twy,) |t=t, =0, ou seja,

Am

2> / f(tpwy ),
Bdm/n(xm)

No que segue, fixamos uma constante positiva 3, de tal modo que

Segue da hipotese (H3) que existe s, = s, (5,,) > 0 verificando

f(s)s > Bret™

1
o2md?

m

B >

Vs > s,,.

Usando (4.16) em (4.14) e a defini¢do de w,, em By, /,(0), obtem-se

t2 > dzn 2t2In(n)
w2 OnTp €

para n suficientemente grande, ou equivalentemente,

ti > Bmﬁdfne%”(")(ti_l)

de onde segue que (¢,) é limitada. Além disso, de (4.18) e (4.12),

Agora, defina

2 — 1,

quando n — oo.

Cn ={z € By, () : thwp(x) > s}

Com as notagoes acima e usando (4.13),

Bdm/n(l'm)

e por (4.16),

>

Dn,

Chn

f(town)thwy, + B, /

Chn
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f(thwn)thw, +

Dn,

e47rt721w%

f(towy)tywy,

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)



ou equivalentemente,

2> [ fltawn)taw, + B /

Dy, B

6471'1‘/72110721 o Bm/ e47‘rt%w,21. (419)
(xm) n

dm,
Observe que

wy(z) = 0 qt.p. em By, (),

Xp, () =1 qtp. em By ()

vy, < T € DBy (5).

Logo, pelo Teorema da convergéncia dominada de Lebesgue

lim [ e = lim ety p, = / 1 =nd>, (4.20)
Bdm (Im)

Além disso,

f(tpwy)thwnxp, < C’tnwne“t%w% < Csme47r53" € Ll(Bdm (Tm))

f(trhwn(2))thwn(x)xp, () = 0 q.t.p. em By, ().

Assim, usando novamente o Teorema da convergéncia dominada de Lebesgue,

lim [ f(th,w,)t,w, =0 (4.21)
n D7L

Passando ao limite de n — oo em (4.19) e usando (4.20) e (4.21),

1> 3, lim et Brmd?,
- " Bdm (l’m)

Sendo t2 > 1,
1 > By, lim [/ ( )64”’%] — Bmdz,. (4.22)
" Bdm Tm

Desde que
1 [n(1/r)])?

1
2 2 ™ 1 4wl
/ 647rwn _ dgn/ 647rwn _ d?n{ 2647r27rln(n) + 27_‘_/ I Tn(n) T’d?“},
Bayy, (zm) B1(0) n 1/n

fazendo a mudanca de variaveis s = In(1/r)/In(n),

dm

1
/ 647rw3,/ — ﬂ_dfn + 27Tdilln(n)/ 6252ln(n)72sln(n)7
By, (xm) 0
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e como

1
lim {2ln(n)/ 621"(”)(325)ds} =2,
0

n—oo

temos

lim et = rd?, + 2wd2, = 3nd>,.
n—oo Bdm (x’m.)

Usando este ultimo limite em (4.22), obtemos
1 > 3B, wd?, — prd>, = 2B7d?,,

o que implica em
1
<
= 2rd2,’

contradizendo a escolha de 3, feita em (4.15). Portanto

)

N |

max I (tw,) <
>0

mostrando que ¢,, < 1/2, para qualquer m € N fixado arbitrariamente. [

4.2 Demonstracao do Teorema 4.0.2.

Para demonstrar o Teorema 4.0.2, vamos usar a seguinte proposicao.

Proposicao 4.2.1 Seja A um setor angular contido no semi-plano positivo de R? tal
que uma de suas fronteiras retas estd no eixo o, € denote tal fronteira de A por
By = {z = (x1,22) € A: x9 = 0}. Considere A" a reflexao de A com respeito ao eizo

xo (ver figura 4.2). Suponha que u é uma solu¢do do seguinte problema:

—Au = f(u), em A,
(P)
u =0, sobre By,

onde f € uma funcdao continua e impar. Entdo, a funcdo u tal que u = u sobre A e
€ antisimétrica com respeito ao eiro To,

u(zy, xg), em A
w(xy,x2) = —u(ry, —19), em A
0, sobre By

satisfaz
—Au=f(a) em AUA.
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Figura 4.2: Reflexao de A em relagao ao eixo ;.
Demonstracao. Sendo u uma solucao de (P), temos

/AVuVsaz/Af(U)% Vo € C(A).

Queremos demonstrar que

/ ViV = f@)p, Vo e Cy(AUA).
AUA/ AUA!
Para qualquer ¢ € Cg°(AU A'),

f(ﬁ)cb:Af(u($1,$2))¢($1,$2)+A,f(—u($1:—$2))¢($1,$2)-

AUA’

Sendo f impar, temos

» ) = /A Flu(zy, 22)p(x1, 22) + /A flulen, —a2))p(a, 22)
— [ fuloran)otarm) ~ [ futo, ~z)otae)
= [ tatran)otarm) = [ flator oo, o)
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Logo
[ s [ . (.23

onde ¥ (xq,x2) = ¢(x1, 22) — ¢p(x1, —x2). Por outro lado,

VuVeo :/AVU($17$2)V¢($1>$2)— Vu(zy, —22)VP(x1,29)

AUA’ A’

:/AVu(xl,xg)ng(ﬁchﬂCQ)—AVU($17$2)V(¢($17_x2))
:/Avu<:1,’17])2)V(¢(x1,IQ)_(b('rly_'rQ))'
Assim,

/A Vv /A Vuvi. (4.24)

A funcao ¢ em geral nao pertence ao espago C§°(A), e portanto nao pode ser usada
como funcao teste (na defini¢ao de solugao fraca em H'(A)). No entanto, considerando

a sequéncia de fungoes (1) em C*°(R), definidas por
me(t) =n(kt), teR, keN,

onde n € C*(R) é uma funcao tal que

77(75){ 0, se t<1/2,

1, se t>1.
Tem-se
pr (w1, w2) = Mr(2)Y (21, 22) € C°(A),
logo
/AVquok:/Af(u)@k, k € N. (4.25)
De (4.23), (4.24) e (4.25), podemos concluir a demonstragdo, visto que os seguintes
limites
(1) /Vquok — [ VuVy
A A
e

(11) /f sow/f

quando k£ — oo, sao validos. Para ver que (I) ocorre, note que

ou

/VuV@k:/nkVuvw—i—
A A 85[‘2

——kn (k).
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Claramente,

/mVUVw%/VuVQ/J, quando &k — oo.
A A

Assim, resta mostrar que

ﬁkn’(lmg)l[} — 0 quando k — oc. (4.26)
A Oz
Com efeito,
[ o) <we [\ ncme [ |2,
A 0o O<za<1/k | OT2 0<za<1/k | OT2

onde C'= sup |n/(t)] e M > 0 ¢ tal que
t€[0,1]

|¢($1;l’2)| S M|x2’7 v<$1,x2> € AUA/?

/0<a:2<1/k

o limite em (4.26) ocorre. O item (/) ¢ uma consequéncia imediata do Teorema da

€ como

0
au — 0, quando k — oo,
61'2

convergéncia dominada de Lebesgue.

Agora, para cada m € N, aplicamos a Proposicao 4.2.1 & solu¢do u do problema
(P)m. Seja Al a reflexdo de A,, em relagdo a uma de suas fronteiras retas. Sobre
A, UA! podemos definir a funcdo @ tal que @ = u sobre A,,, e @ é antisimétrica com
respeito a reta de reflexdo. Agora, seja A a reflexdo de A,, U A] em uma de suas
fronteiras retas e @ a fungao definida sobre A,,UA’ UA” tal que & = i sobre A,,UA! e
¢ antisimétrica com respeito a reta de reflexao. Repetindo este procedimento, apos um
numero finito de reflexoes, finalmente obtemos uma funcao, denotada novamente por
u, definida em toda a bola B. Claramente, ela safisfaz a condicao de Dirichlet sobre
a fronteira 0B. Tem-se que u é positiva sobre m componentes conexas e negativas
sobre m componentes conexas. Desde que, para cada m € N, o problema (P),, admite
uma solugao positiva, podemos concluir que existem infinitas solug¢oes nodais para o

problema (P) e a demonstracao do Teorema 4.0.2 esta completa. |
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Observacao 4.2.2 Representamos na figura 4.3 o sinal de trés solugoes, correspon-
dentes aos casos m = 1, m = 2 e m = 3, respectivamente. A cor azul representa a

regiao onde a solucao € negativa e a cor vermelha, a regiao onde a solucao € positiva.

Figura 4.3: Sinal das solugoes

Por fim, mostramos na Figura 4.4 o perfil da solugao para o caso m = 2:

Figura 4.4: Caso m = 2
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Apéndice A

Resultados gerais

1. Desigualdades
Lema A.1 Sejam o > 0 e r > 1. Entao, para cada B > r, existe uma constante
C =C(p) >0 tal que ,

(e“‘s‘2 - 1)7 <C (eﬁa‘s‘2 - 1) ;

para todo s € R.

Demonstragao. Note que para demonstrar o lema, é suficiente mostrar que a fungao

h:R\ {0} — R*, definida por

eols? 1)
h(s) := ( 1>

o 6/804|5|2 —1 ’

é limitada superiormente. Para isto, observe que

2 1\ 1\
erals (1 L oL
. . 60‘|S|2 . @C’l|5|2
lim A(s) = lim = lim

|s|—o0 |s]—o0 Balsi2 [ 1 1 |s]—o0 ea(B—r)|s|? . 1
‘ T epaliP  Gpalp

pois 8 —r > 0. Por outro lado, usando a Regra de L’Hopital,

< 00,

r—1
2asr (eo“s‘Q — 1) eolsl?

r 2 r—1 2
lim h(s) = li = = Qim (B 1) oAk g,
Jim h(s) = lim Sas BT 5 (e ¢

Pelo estudo feito acima, concluimos que h é limitada. [



Teorema A.2 (Desigualdade de Holder, ver [25].) Sejam f € LP(Q) eg € LI(Q)
coml<p<ooel/p+1/q=1. Entio, fg € L*(Q) com

‘f9’1 < ’f|p|9|q-

Teorema A.3 (Desigualdade de Interpolagao, ver [25].)
Se fe LP(QUNLIQ) com1 <p<q<oo, entio f € L (Q) para todop <r <gq
com

[l < 1FIRIFI

1 1-—
onde—:g a,comOSaSl.

r . p

Lema A.4 Sejam Q C RY um conjunto mensurdvel, p, > 1 e u € LP(Q), para todo
p > p,. Se existe K > 0 tal que

lulpo <K, Vp>p,,

entao u € L>=(8) com
"U/|OO7Q S K.

Demonstracao. De fato, fixe € > 0 de forma arbitraria e considere o conjunto
E={xeQ: |ulx)] > K +¢€}.

Devemos mostrar que a medida de Lebesgue de E é nula. Primeiramente, observe que

a medida de Lebesgue de E ¢ finita. De fato, sendo E C ),

(K + e[ B < /

< [ JuP < K7 < 40,
E Q

de onde segue também que

(K +¢)|E|'? < K.

Suponhamos por contradicao que a medida de F é positiva. Passando ao limite de
p — oo na desigualdade acima, obtemos
(K +¢€) = lim (K + ¢)|E|'? < K,
pP—00

o que é um absurdo. Logo E tem medidad nula, e portanto

’u‘ooyg < K n
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Teorema A.5 (Desigualdade de Poincaré, ver [25].) Seja Q2 um dominio limitado

em relacdo a alguma direcio do espaco RN . Entdo, existe C > 0 tal que

/|u|2 < C/ [Vul?, Yu € Hy(9).
Q Q
Lema A.6 (Desigualdade de Strauss, ver [38].) Para cada u € H!(R?),

[u(@)] < (2m) 2|72 - Jlulli, @ # 0.

2. Resultados de convergéncia

Lema A.7 Seja (u,) uma sequéncia de fun¢ées mensurdveis contida e limitada em

L*(Q), para cada s > 2. Se existe sg > 2 tal que
[Up sy = 0, n — 00.

Entao,

lunls = 0, n — oo,

para todo s > 2.

Demonstracao. De fato, primeiro considere o caso s > s, > 2. Fixando ¢ > s, pela

desigualdade de Interpolacao com « € (0, 1),

|un‘s,ﬂ < ‘Un‘goyﬂ’un t};}a’

mas por hipotese, existe uma constante C; > 0 tal que

Logo,

U 5,0 < |un|(;0’QC£1_a — 0, quando n — oo.

Agora, considere o caso 2 < s < sp. Fixando 2 < t < s e usando novamente a
desigualdade de Interpolacao com « € (0, 1),

1—
Jtnls.0 < [unlfoltnls 0,

mas por hipotese, existe uma constante C7 > 0 tal que

|Un|t’7Q < O{, Vn € N.
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Logo,

[tnlso < C?!un@;g — 0, quando n — oo.

Pelo estudo feito acima, concluimos que
[unlso =0, n— oo,

para todo s > 2, concluindo a demonstracao do lema. [ |

Lema A.8 (ver [38].) Sejam p > 1, (f,) C LP(Q) e (gn) C LP' (), onde p’ > 1 € tal
que 1/p+1/p" = 1. Suponha que

fo— f em LP(Q)

gn — g €em Lp/(Q),

para algum f € LP(Q) e g € LP(Q). Entdo,

/Q JnGn — /Q /9.

Lema A.9 (ver [38].) Sejam p > 1, (f,) C LP() uma sequéncia limitada em LP(Q)

e convergente em quase todo ponto de 2 para uma funcao f. Entao, f, — f em LP(Q).

Lema A.10 (Fatou, ver [25].) Seja (f,) uma sequéncia de funcoes de L*(SY) tal que

(i) fu(xz) >0 qt.p. em Q, para cada n € N;
(i1) Supn/ fn(z) < o0.
Q
Defina f(z) = liminf, ,o fn(7), para cada v € Q. Entao f € L'(Q) e

/Q f() < liminf / fula).

Teorema A.11 (Teorema da convergéncia dominada de Lebesgue, ver [25].)
Suponha que (f,) C L*(Q) satisfaz

(i) fu(x) — f(z) ¢.t.p. em Q;

(i) existe uma fungao g € L'(Q) tal que

|fu(®)| < g(x) qtp. em Q, VYnéeN.
Entao, f € L*(Q) e|f, — fl1 — 0.
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Teorema A.12 (Teorema da convergéncia dominada generalizada de Lebes-
gue, ver [52].) Sejam (f,) uma sequéncia de fungées mensurdveis e (g,) C LY(Q)

satisfazendo
(i) fo(x) — f(z) ¢.t.p. em Q;
(ii) gn(x) — g(x) g.t.p. em Q, com g € L*(Q);
(151) |fo(2)] < gu(x) gt.p. em Q, VneN;
(iv) |gn — gli — 0, quando n — 0.
Entao, f € LY(Q) e |f, — fl1 — 0.

Teorema A.13 (Lema de compacidade de Strauss [54]) Sejam P, Q : R — R

duas funcgoes continuas satisfazendo

P(s)

——= — 0 quando |s| — +o0.

Q(s)

Seja (u,) uma sequéncia de fungoes mensurdveis de RY em R tal que

sup /]RN |Q(uy)| < +o0

n

P(un(z)) = v(z) qtp. em RY, quando n — +oo.

Entao, para qualquer conjunto de Borel limitado B, temos
/ |P(u,) —v| = 0 quando n — +o0.
B

Se além disso, assumirmos que

P(s)

——= — 0 quando |s| =0

Q(s)

up(x) = 0 quando |x| — 400,
uniformemente em n € N, entdo P(u,) converge para v em L'(RY), quando n — +oc.
3. Resultados de Imersao

Lema A.14 (Imersdao compacta, ver [25]) Seja Q C R? um dominio limitado
com fronteira suave. Entdo, H*(Q) estd imerso compactamente em L(QY), para todo
q € [1,00).

Lema A.15 (Imersdo continua, ver [25]) Seja Q2 C R? um dominio reqular. Entdo,

HY(Q) estd imerso continuamente em L(Q), para todo q € [2,00).
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4. Teoria dos Pontos Criticos

Teorema A.16 (Teorema de Deformacao, ver [32].) Seja [ : X — R um funci-
onal de classe C* no espaco de Banach X. Suponha que S C X, c€ R e €,6 > 0 sio
tais que

11 (w)|| = 4e/d

para todo u € 7' ([c — 2¢,c+ 2¢]) N Sos. Entao, existe n € C([0,1] x X, X) tal que
para todo u € X et € 0,1], tem-se:

(i) 1(0,u) = u,

(ii) n(t,u) =u seu ¢ I ([c — 2¢, ¢+ 2¢]) N Say,
(1it) n(1,I°T*NS) C I°°°N Ss,
(iv) n(t,-) : X — X é um homeomorfismo.

Defini¢ao A.17 Sejam X um espaco de Banach, I € C*(X,R) e c € R. Diz-se que
(un) C X € uma sequéncia de Palais-Smale para I no nivel ¢, abreviadamente (PS).,

quando
I(u,) =0 e I'(u,) — 0.

Diz-se que o funcional I satisfaz a condi¢ao (PS). quando toda sequéncia de Palais-

Smale para I no nivel ¢ possui uma subsequéncia convergente em X.

Teorema A.18 (Teorema do Passo da Montanha sem a condigao de Palais-
Smale, ver [56].) Sejam X um espago de Banach e I € C*(X,R) com 1(0) = 0.
Suponha que:

(i) Ezistem b,r > 0 tais que
I(u) > b, para |u|| =r;
(ii) Existe e € X tal que ||e|]| > p e I(e) < 0.
FEntao, existe uma sequéncia (PS). para o funcional I, onde

= inf I(~(t
¢ := inf max (v(t))

F:={yeC(0,1],X):7(0) =0 e ~(1) =e}.

130



Referéncias Bibliograficas

1]
2]

13l

4]

[5]

6]

7]

18]

19]

Adams, R.A. Sobolev Space, Academic Press. New York, 1975.

Adimurthi. Fzistence of positive solutions of the semilinear Dirichlet problem with

critical growth for the N-Laplacian, Ann. Sc. Norm. Super. Pisa 17 (1990) 393-413.

Adimurthi, A.; Yadava, S. L., Critical ezponent problem in R? with Neumann
boundary condition, Comm. Partial Differential Equations, 15 (1990), 461-501.

Adimurthi, A.; Yadava, S.L. Multiplicity results for semilinear elliptic equations
in bounded domain of R? involving critical exponent, Ann. Sc. Norm. Super. Pisa

17 (1990) 481-504.

Alves, C. O. Multiplicity of multi-bump type nodal solutions for a class of elliptic
problems in RY, Topol. Methods Nonlinear Anal. 34 (2009), 231-250.

Alves, C. O. Multiplicity of solutions for a class of elliptic problem in R? with
Neumann conditions, J. Differential Equations 219 (2005), 20-39.

Alves, C. O.; Pereira, D.S. Ezxistence and nonezxistence of least energy nodal solu-

tions for a class of elliptic problem in R, to appear in Topol. Methods Nonlinear

Anal.

Alves, C. O.; Soares, S. H. M. On the location and profile of spike-layer nodal
solutions to nonlinear Schridinger equations. J. Math. Anal. Appl. 296 (2004),
563-577.

Alves, C. O.; Soares, S. H. M.; Souto, M. A. S. Three solutions for a class of

quast-critical Schrédinger equations. Preprint.



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

20]

Alves, C. O.; Soares, S. H. M. Nodal solutions for singularly perturbed equations
with critical exponential growth. J. Differential Equations 234 (2007), 464-484.

Alves, C. O.; do O, J. M.; Miyagaki, O. H. On nonlinear perturbations of a periodic
elliptic problem in R? involving critical growth, Nonlinear Anal. 56 (2004), 781-791.

Alves, C. O.; Carriao, P. C.; Medeiros, E. S. Multiplicity of solution for a class
of quasilinear problem in exterior domain with Neumann conditions, Abstr. Appl.

Anal. 3 (2004), 251-268.

Alves, C. O.; Souto, M. A. S. Multiplicity of positive solutions for a class of pro-
blems with exponential critical growth in R?, J. Differential Equations 244 (2008),
1502-1520.

Alves, C. O.; de Morais Filho, D.C.; Souto, M. A. S. Multiplicity of positive
solutions for a class of problems with critical growth in RY, Proc. Edinb. Math.

Soc., 52 (2009), 1-21.

Bartsch, T.; Pankov, A.; Wang, Z. Q. Nonlinear Schridinger equations with steep
potential well. Comm. Contemp. Math. 4 (2001), 549-569.

Bartsch, T.; Liu, Z.; Weth, T. Sign changing solutions of superlinear Schrédinger
equations. Comm. Partial Differential Equations 29 (2004), 25-42.

Bartsch, T. Critical point theory on partially ordered Hilbert spaces. J. Funct. Anal.
186 (2001), 117-152.

Bartsch, T.; Weth, T.; Willem, M. Partial symmetry of least energy nodal solutions
to some variational problems, J. Anal. Math. 96 (2005), 1-18.

Bartsch, T.; Weth, T. Three nodal solutions of singularly perturbed elliptic equa-
tions on domains without topology. Ann. Inst. H. Poincaré Anal. Non Linéaire. 22

(2005), 259-281.

Bartsch, T.; Weth, T. A note on additional properties of sign changing solutions
to superlinear elliptic equations, Topol. Methods Nonlinear Anal. 22 (2003), 1-14.

132



21

22]

23]

[24]

25]

26]

27]

28]

[29]

30]

31]

Barstch, T.; Willem, M. Infinitely many radial solutions of a semilinear elliptic

problem on RY | Arch. Ration. Mech. Anal. 124 (1993), 261-276.

Bartsch, T.; Wang, Z. Q. Enistence and multiplicity results for some superlinear
elliptic problems on RY. Comm. Partial Differential Equations 20 (1995), 1725-
1741.

Bartsch, T.; Wang, Z. Q. Sign changing solutions of nonlinear Schrodinger equa-
tions, Topol. Methods Nonlinear Anal. 13 (1999), 191-198.

Bartsch, T.; Clapp, M.; Weth, T. Configuration spaces, transfer and 2-nodal solu-
tions of a semiclassical nonlinear Schrédinger equation, Math. Ann. 338(1) (2007),
147-185.

Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations.

Universitext. Springer. New York, USA. 2010.

Cao, D. M. Nontrivial solution of semilinear elliptic equation with critical exponent

in R?, Comm. Partial Differential Equations 17 (1992),407-435.

Cao, D. M.; Noussair, E.S. Multiplicity of positive and nodal solutions for a nonli-
near elliptic problem in RY | Ann. Inst. H. Poincaré Anal. Non Linéaire, 5 (1996),
567-588.

Castro, A.; Cossio, J.; Neuberger, J. A sign-changing solution for a superlinear

Dirichlet problem, Rocky Mountain J. Math. 27 (1997), 1041-1053.

Cerami, G.; Solimini, S.; Struwe, M. Some existence results for superlinear elliptic
boundary value problems involving critical exponents, J. Funct. Anal. 69 3 (1986),

289-306.

Clapp, M.; Ding, Y. H. Mwnimal nodal solution of a Schrodinger equations with
critical nonlinearity, Differential Integral Equations 16 (2003), 981-992.

Comte, M.; Knaap, M. C. Solutions of elliptic equations involving critical Sobolev
exponents with Neumann boundary conditions, Manuscripta Math. 69 (1990), 43-
70.

133



32|

[33]

[34]

[35]

[36]

137]

38

[39]

[40]

[41]

[42]

43

Costa, D. G.  An Invitation to Variational Methods In Differential Fquations.
Birkhauser, 2006.

Ding, Y. H.; Tanaka, K. Multiplicity of positive solutions of a nonlinear Schridin-
ger equation, Manuscripta Math. 112 (2003), 109-135.

de Figueiredo, D.G.; Miyagaki, O.H.; Ruf, B. Elliptic equations in R? with non-
linearity in the critical growth range, Calc. Var. Partial Differential Equations 3

(1995), 139-153.

de Figueiredo, D.G.; do O, J. M. B.; Ruf, B. On an Inequality by N. Trudinger
and J. Moser and related elliptic equations, Comm. Pure. Appl. Math. 55 (2002),
135-152.

Gongbao, L. Some properties of weak solutions of nonlinear scalar field equation,

Ann. Acad. Sci. Fenn. Math., series A, 14 (1989), 27-36.

Gui, C. Emstence of multi-bump solutions for nonlinear Schrodinger equations via

variational method, Comm. Partial Differential Equations 21 (1996), 787-820.

Kavian, O. Introduction a la Théorie des Points Critiques et applications aux

Probléemes Elliptiques. Springer Verlag, Nancy, 1993.

Li, G.; Yan, S. Eigenvalue problems for quasilinear elliptic equations on RV,

Comm. Partial Differential Equations (14) (1989), 1291-1314.

Lions, P.L. The concentration-compactness principle in the calculus of variations.
The limit case, parte 1, Revista Mateméatica Iberoamericana. Vol. 1, n. 1 (1985),

145-201.

Miranda, C. Un’osservazione sul teorema di Brouwer, Boll. Un. Mat. Ital. Ser. II,

Anno IIT n. 1 19 (1940), 5-7.

Miiller, E.; Pfeiffer. On the number of nodal domain for elliptic differential opera-
tors, J. London Math. Soc. (2) 31 (1985), 91-100.

Moser, J. A new proof de Giorgi’s theorem concerning the regularity problem for
elliptic differential equations, Comm. Partial Differential Equations, 13 (1960),
457-468.

134



|44]

[45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

de Morais Filho, D.C; Miyagaki, O.H.; Faria, L.F.O. Infinitely many sign-changing
solutions for a class of critical elliptic systems with Neumann conditions. Proc.

Roy. Soc. Edinburgh, 144 A (2014), 53-69.

Moser, J. A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J.
20 (1971), 1077-1092.

Noussair, E.S.; Wei, J. On the effect of domain geometry on the existence of nodal
solutions in singular perturbations problems, Indiana Univ. Math. J. 46 (1997),

1255-1271.

Noussair, E.S.; Wei, J. On the location of spikes and profile of nodal solutions for
a singularly perturbed Neumann problem, Comm. Partial Differential Equations

23 (1998), 793-816.

Pohozaev, S. Eigenfunctions of the equations Au + Af(u) = 0. Dokl. Math. 6
(1965), 1408-1411.

del Pino, M.; Felmer, P. L. Local mountain passes for semilinear elliptic problems

in unbounded domains, Calc. Var. Partial Differential Equations 4 (1996), 121-137.

Rabinowitz, P. H. Minimaz methods in critical point theory with application to

differential equations, CBMS. 65 (1984).

Rabinowitz, P.H. On a class of nonlinear Schriodinger equations. Z. Angew. Math.

Phys. 43 (1992), 1019-1029.
Royden, H.L. Real Analysis, 2 ed. The Macmillan Company, 1988.

Séré, E. FErxistence of infinitely many homoclinic orbits in Hamiltonian systems,

Math. Z. 209 (1992), 27-42.

Strauss, W.A. FEzistence of solitary waves in higher dimensions. Comm. Math.

Phys. 55 (1977), 149-162.

Trudinger, N. On imbedding into Orlicz space and some applications, J. Math.
Mech. 17 (1967), 473-434.

135



[56] Willem, M. Minimaz Theorems, Progress in nonlinear differential equations and

their applications; v. 24 Birkh&user, 1996.

[57] Zou, W. Sign-Changing Critical Point Theory. Springer, Berlin, 2008.

136



