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Resumo

Neste trabalho, estudamos resultados de existência, não existência e multiplicidade de

soluções nodais para a equação de Schrödinger não-linear

(P ) −∆u+ V (x)u = f(u) em Ω,

onde Ω é um domínio suave em R2 não necessariamente limitado, f é uma função que

possui crescimento crítico exponencial e V é um potencial contínuo e não-negativo.

Na primeira parte, mostramos a existência de soluções nodais de energia mínima em

ambos os casos, domínio limitado e ilimitado. Mostramos ainda um resultado de não

existência de solução nodal de energia mínima para o caso autônomo em todo o R2. Na

segunda parte, estabelecemos a multiplicidade de soluções do tipo multi-bump nodal.

Finalmente, para V ≡ 0, mostramos um resultado de existência de in�nitas soluções

nodais em uma bola. As principais ferramentas utilizadas são Métodos Variacionais,

Lema de Deformação, Lema de Lions, Método de penalização e um processo de conti-

nuação anti-simétrica.

Palavras-chave: Equação de Schrödinger, Crescimento crítico exponencial, Soluções

nodais, Métodos variacionais, Desigualdade de Trudinger-Moser.
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Abstract

In this work, we study existence, non-existence and multiplicity results of nodal solu-

tions for the nonlinear Schrödinger equation

(P ) −∆u+ V (x)u = f(u) in Ω,

where Ω is a smooth domain in R2 which is not necessarily bounded, f is a continuous

function which has exponential critical growth and V is a continuous and nonnegative

potential. In the �rst part, we prove the existence of least energy nodal solution in

both cases, bounded and unbounded domain. Moreover, we also prove a nonexistence

result of least energy nodal solution for the autonomous case in whole R2. In the

second part, we establish multiplicity of multi-bump type nodal solutions. Finally, for

V ≡ 0, we prove a result of in�nitely many nodal solutions on a ball. The main tools

used are Variational methods, Lions's Lemma, Penalization methods and a process of

anti-symmetric continuation.

Keywords: Schrödinger equation, Exponential critical growth, Nodal solutions, Vari-

ational Methods, Trudinger-Moser inequality.
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Notação e terminologia

• Se f é uma função integrável, denotaremos por
∫

Ω

f a seguinte integral
∫

Ω

f(x)dx.

• Denotaremos por H1(Ω) o espaço de Sobolev

H1(Ω) :=

{
u ∈ L2(Ω) :

∂u

∂xi
∈ L2(Ω); i = 1, 2

}
e por

‖u‖1,Ω =

(∫
Ω

|u|2 +

∫
Ω

|∇u|2
)1/2

,

a norma usual em H1(Ω).

• Denotaremos por C∞0 (Ω) o espaço de todas as funções u ∈ C∞(Ω) com suporte,

supp u, compactamente contido em Ω, por H1
0 (Ω) o fecho de C∞0 (Ω) na norma

de H1(Ω) e por

‖u‖Ω =

(∫
Ω

|∇u|2
)1/2

,

a norma usual em H1
0 (Ω).

• Para um subconjunto aberto Ω ⊂ R2, os símbolos |u|q,Ω (q > 1) e |u|∞,Ω denotam

as normas usuais nos espaços Lq(Ω) e L∞(Ω), respectivamente.

• O símbolos ‖u‖1, |u|q (q > 1) e |u|∞ denotam as normas usuais nos espaços

H1(R2), Lq(R2) e L∞(R2), respectivamente.

• u+(x) = max{u(x), 0} e u−(x) = min{u(x), 0}.



• Denotaremos por

sgn(s) =


1, se s > 0,

0, se s = 0,

−1, se s < 0.

• Para um intervalo (a,b) e l ∈ N, denotamos por (a, b)l o produto cartesiano

(a, b)× (a, b)× · · · × (a, b)︸ ︷︷ ︸
l vezes

• Para um conjunto A ⊂ RN , denotamos por ∂A, Ā, |A| e Ac, a fronteira, o fecho,

a medida de Lebesgue e o complementar de A em RN , respectivamente.

• A abreviação q.t.p. signi�ca quase todo ponto, ou seja, a menos de um conjunto

com medida de nula.

• A notação (PS)c, signi�ca sequência de Palais-Smale no nível c.

• on(1) denota uma sequência de números reais convergindo para 0, quando n→∞.

• As setas → e ⇀, denotam convergência forte e convergência fraca em espaços de

Banach, respectivamente.



Introdução

A proposta deste trabalho é estudar resultados de existência, não existência e

multiplicidade de soluções nodais, ou seja, soluções que mudam de sinal, para a equação

de Schrödinger não-linear

(P ) −∆u+ V (x)u = f(u) em Ω,

onde Ω ⊂ R2 é um domínio suave e não necessariamente limitado, V : Ω → R é um

potencial contínuo e a não-linearidade f é uma função contínua tendo crescimento

crítico exponencial, o qual de�nimos a seguir: Dizemos que f tem crescimento crítico

exponencial em ±∞ quando existe α0 > 0 tal que

lim
s→±∞

|f(s)|
eαs2

=


0, para todo α > α0

+∞, para todo α < α0.

Uma vez que iremos trabalhar com o crescimento crítico exponencial, algumas versões

da Desigualdade de Trudinger-Moser são cruciais em nossos argumentos. A primeira

versão que gostaríamos de relembrar é a versão devida a Trudinger e Moser, ver [55] e

[45], a qual diz que se Ω é um domínio limitado em R2 com fronteira ∂Ω suave, então

para qualquer u ∈ H1
0 (Ω), tem-se∫

Ω

eα|u|
2

< +∞, para todo α > 0. (1)

Além disso, existe uma constante C = C(α, |Ω|) > 0 tal que

sup
||u||Ω≤1

∫
Ω

eα|u|
2 ≤ C, ∀α ≤ 4π. (2)



Uma versão em H1(Ω) foi provada por Adimurthi e Yadava [3], e diz que se Ω é

novamente um domínio limitado com fronteira suave, então para qualquer u ∈ H1(Ω),∫
Ω

eαu
2

< +∞, para todo α > 0. (3)

Além disso, existe uma constante positiva C = C(α, |Ω|) tal que

sup
||u||H1(Ω)≤1

∫
Ω

eαu
2 ≤ C, ∀α ≤ 2π. (4)

A terceira versão que usaremos é devida a Cao [26], a qual é uma versão da

Desigualdade de Trudinger-Moser em todo o espaço R2 e tem o seguinte enunciado:∫
R2

(eα|u|
2 − 1) < +∞, para todo u ∈ H1(R2) e α > 0. (5)

Além disso, se α < 4π e |u|2 ≤ M , então existe uma constante C1 = C1(M,α) > 0 tal

que

sup
|∇u|2≤1

∫
R2

(eα|u|
2 − 1) ≤ C1. (6)

Nos últimos anos, observamos um crescente interesse no estudo da existência e

multiplicidade de soluções nodais para problemas elípticos. Em [29], Cerami, Solimini

e Struwe mostraram a existência de múltiplas soluções nodais para a seguinte classe de

problemas elípticos com crescimento crítico
−∆u− λu = |u|2∗−2u, em Ω,

u = 0, sobre ∂Ω,

(P1)

onde Ω = BR(0) ⊂ RN , N ≥ 7, 2∗ = 2N
N−2

e λ ∈ [0, λ1], onde λ1 é o primeiro autovalor

de (−∆, H1
0 (Ω)). Em Bartsch e Willem [21], os autores estabeleceram a existência de

in�nitas soluções nodais radiais para o problema
−∆u+ u = f(|x|, u), em RN ,

u ∈ H1(RN),

(P2)

onde f é uma função contínua com crescimento subcrítico do tipo Sobolev: |u|p−2u

com 2 < p < 2∗. Em [27], Cao e Noussair relacionaram o número de soluções positivas

e nodais da seguinte classe de problemas
−∆u+ u = Q(x)|u|p−2u, em RN ,

u ∈ H1(RN),

(P3)
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onde 2 < p < 2∗, com o número de pontos de máximo da função Q.

Em [28], Castro, Cossio e Neuberger consideraram o problema
−∆u = f(u), em Ω,

u = 0, sobre ∂Ω,

(P4)

onde Ω ⊂ RN é um domínio suave e f ∈ C1 tem um crescimento superlinear e subcrítico

com f ′(0) < λ1. Os autores estabeleceram a existência de uma solução w que muda de

sinal apenas uma vez, i.e., w−1(R \ {0}) possui exatamente duas componentes.

Em Noussai e Wei [46, 47], foi provada a existência e concentração de soluções

nodais para o problema 
−ε2∆u+ u = f(u), em Ω,

Bu = 0, sobre ∂Ω,

(P5)

quando ε → 0, onde Ω é um domínio limitado e suave, com condição de fronteira

Bu = u em [46] e Bu = ∂u
∂η

em [47].

Em [23], Bartsch e Wang consideraram a existência e concentração de soluções

nodais para a seguinte classe de problemas
−∆u+ (λa(x) + 1)u = f(u), em RN ,

u ∈ H1(RN),

(P6)

quando λ → +∞, supondo que f tem crescimento subcrítico e a : RN → R é uma

função contínua e não negativa com a−1({0}) sendo não vazio e veri�cando

|{x ∈ RN ; a(x) ≤M0}| < +∞ para algum M0 > 0.

Em [16], Bartsch, Liu e Weth mostraram a existência de solução nodal com

exatamente duas regiões nodais para o problema
−∆u+ a(x)u = f(u), em RN ,

u ∈ H1(RN),

(P7)

onde a é uma função não negativa veri�cando:

|{x ∈ Br(y) : a(x) ≤M}| → 0 quando |y| → +∞ para qualquer M, r > 0.
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O leitor pode encontar mais resultados envolvendo soluções nodais nos artigos de

Bartsch, Weth and Willem [18], Bartsch e Weth [19], Alves e Soares [8], Bartsch, Clapp

e Weth [24], Zou [57] e em referências contidas em todos os trabalhos citados acima.

Depois de uma revisão na literatura, observamos que existem poucos trabalhos

onde a existência de solução nodal tem sido considerada para o caso em que a não-

linearidade f tem um crescimento crítico exponencial. Conhecemos apenas os trabalhos

de Adimurthi e Yadava [4], Alves [6] e Alves e Soares [10]. Em [4], os autores provaram

a existência de in�nitas soluções radiais para o problema (P4) quando Ω = BR(0) ⊂ R2.

Em [6], o autor mostrou a existência de solução nodal para uma classe de problemas

em domínio exterior com condição de fronteira de Neumann, e em [10], a existência de

solução nodal foi estabelecida para problemas do tipo
−ε2∆u+ V (x)u = f(u), em RN ,

u ∈ H1(RN),

para ε su�cientemente pequeno e V veri�cando algumas condições técnicas. Motivados

por este fato, nosso objetivo na presente tese é, a partir de um conjunto especí�co de

hipóteses sobre V , f e Ω, analisar as questões de existência, não existência e multipli-

cidade de soluções nodais para o problema (P ).

No Capítulo 1, estudamos a existência de soluções nodais de energia mínima para

o problema (P ), ou seja, soluções que atingem o nível de menor energia dentre todas

soluções que mudam de sinal, no caso em que Ω é um domínio limitado, V : Ω→ R é

um potencial contínuo e não-negativo e f satisfaz as seguintes hipóteses:

(f1) (Crescimento crítico exponencial)

Existe C > 0 tal que

|f(s)| ≤ Ce4π|s|2 para todo s ∈ R;

(f2) (Comportamento próximo da origem)

lim
s→0

f(s)

s
= 0;

(f3) (Condição de Ambrosetti-Rabinowitz)
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Existe θ > 2 tal que

0 < θF (s) := θ

∫ s

0

f(t)dt ≤ sf(s), para todo s ∈ R \ {0}.

(f4) A função s→ f(s)

|s|
é estritamente crescente em R \ {0}.

(f5) Existem constantes p > 2 e Cp > 0 tais que

sgn(s)f(s) ≥ Cp|s|p−1, para todo s ∈ R.

Como sabemos, a aplicabilidade do método variacional depende da geometria do fun-

cional associado ao problema e de alguma condição de compacidade, por exemplo, a

condição de Palais-Smale. No caso de problemas com crescimento crítico exponencial,

o funcional energia não satisfaz, em geral, a condição de Palais Smale. A constante

Cp da hipótese (f5) desempenha um papel importante para contornar a falta de com-

pacidade. Neste capítulo, mostramos que o conjunto de hipóteses dado acima e uma

limitação inferior adequada para a constante Cp são su�cientes para garantir a existên-

cia de solução nodal de energia mínima para o problema (P ) com condição de fronteira

Bu = 0 sobre ∂Ω, para os dois casos seguintes:

• Bu = u, u ∈ H1
0 (Ω) (Condição de Dirichlet);

• Bu =
∂u

∂ν
, u ∈ H1(Ω) (Condição de Neumann).

Este capítulo complementa o estudo feito em [29], pois estamos considerando o

caso em que a não-linearidade f tem crescimento crítico exponencial. Além disso, nos

nossos argumentos não necessitamos supor que f é ímpar, fato que desempenhou um

papel fundamental nos argumentos usados em [29] para garantir a existência de solução

nodal de energia mínima para (P1). A hipótese (f5) é uma generalização natural, para o

contexto de funções que mudam de sinal, da hipótese inicialmente considerada em Cao

[26], a qual foi posteriormente utilizada em outros trabalhos envolvendo crescimento

crítico exponencial (ver [11] e [6]).

No Capítulo 2, consideramos o problema (P ) no caso em que Ω = R2. Obtemos

dois resultados para o problema autônomo (V ≡ constante): o primeiro é um resul-

tado de não existência de solução nodal de energia mínima e o segundo é um resultado
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de existência de solução nodal radial de energia mínima, i.e., solução de menor ener-

gia dentre todas as soluções nodais radiais. Posteriormente, mostramos a existência

de solução nodal de energia mínima para um problema não autônomo. Neste caso,

assumimos as seguintes hipóteses sobre o potencial V :

(V1) Existe uma constante V0 > 0 tal que V0 ≤ V (x), para todo x ∈ R2;

(V2) Existe uma função contínua e Z2-periódica V∞ : R2 → R satisfazendo

V (x) ≤ V∞(x) ∀x ∈ R2

e

lim
|x|→∞

|V (x)− V∞(x)| = 0.

(V3) Existem µ < 1/2 e C > 0 tais que

V (x) ≤ V∞(x)− Ce−µ|x|, para todo x ∈ R2.

Assumiremos que f é uma função ímpar veri�cando as mesmas hipóteses (f1) − (f5)

utilizadas no primeiro capítulo. Em todos os resultados deste capítulo, assim como no

Capítulo 1, vamos precisar de uma limitação inferior adequada para a constante Cp

dada na hipótese (f5).

Os resultados obtidos nos Capítulos 1 e 2 fazem parte do artigo Alves e Pereira [7],

o qual foi aceito para publicação na revista Topological Methods in Nonlinear Analysis

(TMNA).

No Capítulo 3, consideramos a seguinte classe de problemas elípticos
−∆u+ (λV (x) + 1)u = f(u), em RN ,

u ∈ H1(RN),

(P )λ

onde λ ∈ (0,∞), V : RN → R é uma função contínua com V (x) ≥ 0 para todo x ∈ RN .

Existem diversos artigos relacionados com a existência e multiplicidade de solu-

ções positivas para (P )λ em RN , onde o comportamento da função V desempenha um

papel importante no estudo das soluções. Para o caso N ≥ 3, ver por exemplo, os

artigos de Bartsch e Wang [22], Clapp e Ding [30], Bartsch, Pankov e Wang [15], Gui

[37], Ding e Tanaka [33] e Alves, de Morais Filho e Souto [14].
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Em [33], Ding e Tanaka consideraram o problema (P )λ assumindo que o conjunto

Ω = int V −1({0}) tem k componentes conexas e f(s) = |s|q−2s com 2 < q < 2∗, eles

mostraram que (P )λ tem pelo menos 2k−1 soluções multi-bump positivas para valores

grandes de λ, que são essenciamente funções que tem uma quantidade �nita de máximos

locais, levando em consideração a quantidade de componentes conexas do conjunto Ω.

Alguns argumentos explorados em [33] foram adaptados de argumentos encontrados

nos trabalhos de del Pino e Felmer [49] e Séré [53]. O mesmo tipo de resultado foi

obtido por Alves, de Morais Filho e Souto em [14] e Alves e Souto [13], assumindo que

f tem crescimento crítico para o caso N ≥ 3 e crítico exponencial para o caso N = 2,

respectivamente.

Em [5], Alves motivado por [30] e [33] considerou a existência e multiplicidade

de soluções do tipo multi-bump nodal para (P )λ explorando também o número de

componentes conexas do conjunto Ω := int V −1{0}, assumindo que a não-linearidade

f tem crescimento subcrítico.

Motivados por [13] e [5], mostramos a existência e multiplicidade de soluções do

tipo multi-bump nodal para (P )λ quando f tem crecimento crítico exponencial em

R2. O principal resultado deste capítulo completa os estudos feitos em [13] e [5] nos

seguintes pontos:

• Em [13], apesar do crescimento da não-linearidade ser o mesmo assumido aqui,

as soluções encontradas são positivas;

• Em [5], as soluções encontradas são do tipo multi-bump nodal, mas a não linea-

ridade tem um crescimento subcrítico.

• A construção minimax é diferente do caso das soluções multi-bump positivas.

No Capítulo 4, estudamos o problema
−∆u = f(u), em B,

u = 0, sobre ∂B,

(P )

onde B é uma bola em R2 e f é uma função ímpar satisfazendo as condições (f1)−(f2),

e as seguintes hipóteses adicionais:
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(H1) Existem s0 > 0 e M > 0 tais que

0 < F (s) :=

∫ s

0

f(t)dt ≤M |f(s)|, para todo |s| ≥ s0.

(H2) 0 < F (s) ≤ 1

2
f(s)s, para todo s ∈ R \ {0}.

(H3) lims→∞ sf(s)e−4πs2 = +∞

Dividindo B em setores angulares e usando o Teorema do Passo da Montanha,

mostramos a existência de uma solução positiva em um dos setores de B. A partir

desta solução e de um processo de continuação anti-simétrica mostramos a existência

de in�nitas soluções nodais em B. Estas soluções diferem-se umas das outras pelo

número de regiões em que elas mudam de sinal.

A hipótese (H3) foi inicialmente considerada em Adimurthi [2], ver também [34].

Esta hipótese será fundamental para garantirmos não só a existência, mas também a

in�nidade de soluções nodais.

Citamos a seguir dois artigos que nos motivaram a estudar o problema (P ).

Em [31], Comte e Knaap desenvolveram um processo de continuação anti-simétrica

para provar a existência de in�nitas soluções nodais para o problema com crescimento

crítico 
−∆u = λu+ |u|2∗−1u, em B,

∂u

∂η
= 0, sobre ∂B,

(P∗)

onde λ ∈ R e B ⊂ RN é uma bola, com N ≥ 3.

Este resultado foi extendido ou complementado por de Morais Filho, Miyagaki e

Faria em [44], onde os autores mostraram que o sistema elíptico


−∆U = ∇

(
1

2
(AU,U)R2 + F (U)

)
, em B,

∂U

∂η
= 0, sobre ∂B,

(S∗)

onde B ⊂ RN é uma bola, U = (u, v) ∈ H1(Ω) × H1(Ω), ∆U = (∆u,∆v), ∇ é o

operador gradiente,

A =

 a b

b c

 ∈M2×2(R),

9



(·, ·)R2 é o produto interno canônico e

F (u, v) =
2

2∗
(
|u|α|v|β + |u|2∗ + |v|2∗

)
com α, β > 1 tais que α + β = 2∗, possui in�nitas soluções nodais, desde que b ≥ 0.

Nosso principal resultado neste capítulo complementa os estudos feitos em [31]

e [44], pois extendemos o processo de continuação anti-simétrica de Comte e Knaap

para não-linearidades f sendo apenas contínua e ímpar, e por considerarmos o caso em

que f tem crescimento crítico exponencial. É importante observar que em ambos os

trabalhos citados acima, foi considerada a condição de fronteira de Neumann, tendo

em vista que a Identidade de Pohozaev [48] garante que o problema (P∗), com condição

de fronteira de Dirichlet, não possui soluções para λ < 0 e N ≥ 3.
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Capítulo 1

Solução nodal minimal em um

domínio limitado

Neste capítulo, estudamos a existência de soluções nodais de energia mínima para

o problema (P ) quando Ω é um domínio limitado em R2 com condição de Dirichlet e de

Neumann sobre a fronteira. Nossa motivação vem do trabalho de Cerami, Solimini e

Struwe [29], no entanto, desenvolvemos aqui um novo método para obter uma sequência

de Palais-Smale de funções nodais associada com o nível nodal de energia mínima.

1.1 Problema de Dirichlet

Nesta seção, consideramos a existência de solução nodal de energia mínima para

o problema de Dirichlet 
−∆u+ V (x)u = f(u), em Ω,

u = 0, sobre ∂Ω,

(D)

onde Ω ⊂ R2 é um domínio limitado com fronteira suave, V : Ω → R é um potencial

contínuo e não negativo e f é uma função contínua veri�cando as seguintes condições:

(f1) Existe C > 0 tal que

|f(s)| ≤ Ce4π|s|2 para todo s ∈ R;

(f2) lim
s→0

f(s)

s
= 0;



(f3) Existe θ > 2 tal que

0 < θF (s) := θ

∫ s

0

f(t)dt ≤ sf(s), para todo s ∈ R \ {0};

(f4) A função s→ f(s)

|s|
é estritamente crescente em R \ {0};

(f5) Existem constantes p > 2 e Cp > 0 tais que

sgn(s)f(s) ≥ Cp|s|p−1 para todo s ∈ R.

O principal resultado nesta seção é o seguinte.

Teorema 1.1.1 Seja V : Ω→ R um potencial contínuo e não-negativo e suponha que

(f1) − (f5) são válidas. Então, o problema (D) possui uma solução nodal de energia

mínima, desde que a constante Cp veri�que

Cp >

[
2θβp
θ − 2

](p−2)/2

, onde βp = inf
Mp

Ip, (1.1)

Ip(u) =
1

2

∫
Ω

(
|∇u|2 + V (x)u2

)
− 1

p

∫
Ω

|u|p

e

Mp =

{
u ∈ H1

0 (Ω) : u± 6= 0 e

∫
Ω

|∇u±|2 + V (x)|u±|2 =

∫
Ω

|u±|p
}
.

No que segue, denotamos por E o espaço de Sobolev H1
0 (Ω) munido da norma

‖u‖2
V =

∫
Ω

(
|∇u|2 + V (x)|u|2

)
.

Tem-se que E é um espaço de Hilbert com produto interno de�nido por

〈u, v〉V =

∫
Ω

(∇u∇v + V (x)uv) .

Além disso, a norma ‖ · ‖V é equivalente a norma usual ‖ · ‖Ω de H1
0 (Ω) de�nida por

‖u‖2
Ω =

∫
Ω

|∇u|2,

pois

‖u‖2
Ω ≤ ‖u‖2

V ≤ (1 + V1/λ1) ‖u‖2
Ω, ∀u ∈ H1

0 (Ω), (1.2)

onde λ1 é o primeiro autovalor de (−∆, H1
0 (Ω)) e V1 = max

x∈Ω
V (x).
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Segue das hipóteses (f1) e (f2) que, dados ε > 0, q ≥ 1 e α > 4π, existe uma

constante C = C(ε, q, α) > 0 tal que

|f(s)| ≤ ε|s|+ C|s|q−1eαs
2

, para todo s ∈ R. (1.3)

Consequentemente,

|F (s)| ≤ ε
s2

2
+ C|s|qeαs2 , para todo s ∈ R. (1.4)

Assim, pela Desigualdade de Trudinger-Moser (2), F (u) ∈ L1(Ω) para todo u ∈ E.

Usando argumentos padrão, mostra-se que o funcional energia I : E → R associado

com (D), dado por

I(u) =
1

2
‖u‖2

V −
∫

Ω

F (u),

está bem de�nido sendo de classe C1(E;R) com

I ′(u)v = 〈u, v〉V −
∫

Ω

f(u)v, ∀u, v ∈ E.

Portanto, pontos críticos de I são soluções fracas do problema (D). Sabemos que todo

ponto crítico não trivial de I pertence a variedade de Nehari

N = {u ∈ E \ {0} : I ′(u)u = 0}.

Como estamos interessados em solução nodal de energia mínima, de�nimos o conjunto

M = {u ∈ E : u± 6= 0, I ′(u±)u± = 0},

e o número real

c∗ = inf
u∈M

I(u).

Interpretamos uma solução nodal de energia mínima, como sendo uma função

u ∈M satisfazendo

I(u) = c∗ e I ′(u) = 0.

No que segue, estabelecemos alguns resultados necessários para demonstrar o

Teorema 1.1.1. O primeiro deles, já é clássico na literatura, e sua demonstração pode

ser encontrada em Willem [56, Lema 4.1].

Lema 1.1.2 Sob as condições (f1) − (f4), para qualquer u ∈ H1
0 (Ω) \ {0}, existe um

único t = t(u) > 0 tal que t(u)u ∈ N . Além disso,

max
s≥0

I(su) = I(t(u)u).
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Observação 1.1.3 O leitor pode perceber que no Lema 4.1 de [56] a não-linearidade

tem um crescimento subcrítico, no entanto, a demonstração do Lema 1.1.2 (onde a

não-linearidade tem crescimento crítico exponencial) é essencialmente a mesma.

Corolário 1.1.4 Sob as condições (f1) − (f4), para qualquer u ∈ H1
0 (Ω) veri�cando

u± 6= 0, existem únicos s = s(u) > 0 e t = t(u) > 0 tais que s(u)u+ + t(u)u− ∈M.

O próximo resultado estabelece uma limitação superior para a constante c∗ que

será explorada ao longo do trabalho.

Lema 1.1.5 Seja θ o número de�nido pela condição (f3). Tem-se

c∗ <
θ − 2

2θ
.

Demonstração. Seja ũ ∈Mp veri�cando

Ip(ũ) = βp e I ′p(ũ) = 0. (1.5)

O leitor pode encontrar a demonstração da existência de ũ em Bartsch and Weth [20].

Segue de (1.5) que

βp =
1

2

∫
Ω

(|∇ũ|2 + V (x)|ũ|2)− 1

p

∫
Ω

|ũ|p, (1.6)

∫
Ω

(|∇ũ|2 + V (x)|ũ|2) =

∫
Ω

|ũ|p (1.7)

e ∫
Ω

(|∇ũ±|2 + V (x)|ũ±|2) =

∫
Ω

|ũ±|p. (1.8)

Substituindo (1.7) em (1.6), obtemos

βp =

(
1

2
− 1

p

)∫
Ω

|ũ|p. (1.9)

Sendo ũ ∈ H1
0 (Ω) com ũ± 6= 0, pelo Corolário 1.1.4, existem únicos s, t > 0 tais

que sũ+ + tũ− ∈M. Logo,

c∗ ≤ I(sũ+ + tũ−) = I(sũ+) + I(tũ−),

o que implica em

c∗ ≤ s2

2

∫
Ω

(
|∇ũ+|2 + V (x)|ũ+|2

)
−
∫

Ω

F (sũ+)
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+
t2

2

∫
Ω

(
|∇ũ−|2 + V (x)|ũ−|2

)
−
∫

Ω

F (tũ−).

Usando a hipótese (f5) e (1.8) �camos com

c∗ ≤
(
s2

2
− Cps

p

p

)∫
Ω

|ũ+|p +

(
t2

2
− Cpt

p

p

)∫
Ω

|ũ−|p,

de onde segue que

c∗ ≤ max
r≥0

{
r2

2
− Cpr

p

p

}∫
Ω

|ũ|p.

Um cálculo simples mostra que

max
r≥0

{
r2

2
− Cpr

p

p

}
= C

2
2−p
p

(
1

2
− 1

p

)
,

e portanto por (1.9)

c∗ ≤ C
2

2−p
p

(
1

2
− 1

p

)∫
Ω

|ũ|p = C
2

2−p
p βp. (1.10)

A desigualdade em (1.10), juntamente com (1.1), implica em

c∗ <
θ − 2

2θ
,

como queriamos demonstrar. �

O próximo lema estabelece dois importantes limites envolvendo a função f .

Lema 1.1.6 Seja (un) uma sequência em E satisfazendo

(1) b := sup
n∈N
‖un‖2

V < 1;

(2) un ⇀ u em H1
0 (Ω) e;

(3) un(x)→ u(x) q.t.p. em Ω.

Então,

lim
n

∫
Ω

f(un)un =

∫
Ω

f(u)u (1.11)

e

lim
n

∫
Ω

f(un)v =

∫
Ω

f(u)v, (1.12)

para qualquer v ∈ E.
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Demonstração. Segue da hipótese (f1) que

|f(un)un| ≤ C|un|e4π|un|2 , ∀n ∈ N.

A�rmamos que

|un|e4π|un|2Ω → |u|e4π|u|2 em L1(Ω), quando n→∞. (1.13)

De fato, desde que ‖un‖2
Ω ≤ ‖un‖2

V ≤ b, para t > 1 temos∫
Ω

(
e4π|un|2

)t
=

∫
Ω

e
4πt‖un‖2Ω

(
|un|
‖un‖Ω

)2

≤
∫

Ω

e
4πtb

(
|un|
‖un‖Ω

)2

.

Sendo b < 1, podemos �xar t > 1 com t ≈ 1 de tal modo que tb < 1. Sendo assim,

pela Desigualdade de Trudinger-Moser (2),

sup
n

∫
Ω

(
e4π|un|2

)t
≤ sup
‖v‖Ω≤1

∫
Ω

e4πtb|v|2 <∞.

Logo, a sequência (e4π|un|2) é limitada em Lt(Ω) e

e4π|un(x)|2 → e4π|u(x)|2 q.t.p. em Ω.

Assim, pelo Lema A.9 do Apêndice A,

e4π|un|2 ⇀ e4π|u|2 em Lt(Ω). (1.14)

Por outro lado, usando a compacidade da imersão H1
0 (Ω) ↪→ Lt

′
(Ω),

|un| → |u| em Lt
′
(Ω), onde 1/t+ 1/t′ = 1. (1.15)

Segue de (1.14), (1.15) e do Lema A.8 do Apêndice A, que o limite em (1.13)

ocorre. Portanto, a demonstração do limite em (1.11) é obtida usando o Teorema da

Convergência Dominada Generalizada de Lebesgue (Teorema A.12 do Apêndice A). A

demonstração de (1.12) segue usando o mesmo argumento. �

O resultado abaixo é bem conhecido para problemas em RN com N ≥ 3. Aqui,

decidimos escrever sua demonstração porque estamos trabalhando com crescimento

crítico exponencial.

Lema 1.1.7 Existe uma constante m0 > 0 tal que

0 < m0 ≤ ‖u‖2
V , ∀u ∈ N .
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Demonstração. Começamos �xando q > 2 em (1.3). Suponha por contradição que a

desigualdade acima não ocorra. Sendo assim, existe uma sequência (un) ⊂ N tal que

‖un‖2
V → 0, quando n→∞. Sendo un ∈ N , temos

‖un‖2
V =

∫
Ω

f(un)un,

o que implica por (1.3) em

‖un‖2
V ≤ ε|un|22,Ω + C

∫
Ω

|un|qeα|un|
2

.

Pelas imersões de Sobolev e desigualdade de Hölder,

‖un‖2
V ≤ C1ε‖un‖2

V + C|un|q2q,Ω
(∫

Ω

e2α|un|2
)1/2

.

Usando as imersões contínuas de Sobolev,

(1− C1ε)‖un‖2
V ≤ C2‖un‖qV

(∫
Ω

e2α|un|2
)1/2

.

Escolhendo ε > 0 su�cientemente pequeno, de modo que C3 :=
1− C1ε

C2

> 0, encontra-

mos

0 < C3 ≤ ‖un‖q−2
V

(∫
Ω

e2α|un|2
)1/2

. (1.16)

Sendo ‖un‖2 → 0, quando n→∞, existe n0 ∈ N tal que

2α‖un‖2 ≤ 4π, ∀n ≥ n0.

Usando novamente a Desigualdade de Trudinger-Moser (2),∫
Ω

e2α|un|2 =

∫
Ω

e
2α‖un‖2Ω

(
|un|
‖un‖Ω

)2

≤
∫

Ω

e
4π
(
|un|
‖un‖Ω

)2

≤ C, ∀n ≥ n0.

Logo, por (1.16),

0 <

(
C3√
C

)1/(q−2)

≤ ‖un‖V , ∀n ≥ n0,

o que contradiz o fato que ‖un‖V → 0, quando n→∞. �

Como uma consequência do Lema 1.1.7, temos os seguintes resultados.

Corolário 1.1.8 Para todo u ∈M,

0 < m0 ≤ ‖u±‖2
V ≤ ‖u‖2

V .
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Corolário 1.1.9 Existe δ2 > 0 tal que

I(u), I(u±) ≥ 2δ2 ∀u ∈M.

Demonstração. Note que se v ∈ N , então

I(v) = I(v)− 1

θ
I ′(v)v =

(
1

2
− 1

θ

)
‖v‖2

V −
∫

Ω

(
F (v)− 1

θ
f(v)v

)
.

Logo, de (f3) e do Lema 1.1.7,

I(v) ≥
(

1

2
− 1

θ

)
‖v‖2

V ≥
(

1

2
− 1

θ

)
m0 := 2δ2, ∀v ∈ N .

O resultado segue observando que se u ∈M, então u, u± ∈ N . �

No que segue, mostraremos alguns resultados relacionados com o conjunto

S̃λ := {u ∈M : I(u) < c∗ + λ},

onde λ > 0 é uma constante a ser �xada convenientemente.

Lema 1.1.10 Para todo u ∈ S̃λ, tem-se

0 < m0 ≤ ‖u±‖2
V ≤ ‖u‖2

V ≤ mλ,

para alguma constante mλ ∈ (0, 1) e λ > 0 su�cientemente pequeno.

Demonstração. Sendo S̃λ ⊂ M, em vista do Corolário 1.1.8, precisamos apenas

mostrar que existe mλ > 0 tal que

‖u‖2
V ≤ mλ < 1, ∀u ∈ S̃λ.

Para tal �m, note que se u ∈ S̃λ,

c∗ + λ ≥ I(u) = I(u)− 1

θ
I ′(u)u =

(
1

2
− 1

θ

)
‖u‖2

V −
∫

Ω

(
F (u)− 1

θ
f(u)u

)
.

Logo, pela condição de Ambrosetti-Rabinowitz (f3),

c∗ + λ ≥
(
θ − 2

2θ

)
‖u‖2

V .

Tendo em vista o Lema 1.1.5, podemos �xar λ > 0 su�cientemente pequeno de tal

modo que

c∗ + λ <

(
θ − 2

2θ

)
,
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e portanto

‖u‖2
V ≤

2θ(c∗ + λ)

θ − 2
:= mλ < 1, ∀u ∈ S̃λ.

Assim completamos a prova do lema. �

O próximo lema é fundamental para garantir que o limite fraco de uma sequência

de Palais-Smale em S̃λ é uma função nodal.

Lema 1.1.11 Para cada q > 2, existe δq > 0 tal que

0 < δq ≤
∫

Ω

|u±|q ≤
∫

Ω

|u|q, ∀ u ∈ S̃λ.

Demonstração. Sendo u ∈ S̃λ ⊂M,

‖u±‖2
V =

∫
Ω

f(u±)u±,

e por (f1),

‖u±‖2
V ≤ C

∫
Ω

|u±|e4π|u±|2 .

Usando imersões contínuas de Sobolev e a Desigualdade de Hölder,

‖u±‖2
V ≤ C|u±|t1,Ω

(∫
Ω

e4πt2|u±|2
)1/t2

,

onde 1/t1 + 1/t2 = 1. Pelo Corolário 1.1.8,

m0 ≤ C|u±|t1,Ω

(∫
Ω

e
4πt2‖u±‖2Ω

(
|u±|
‖u±‖Ω

)2)1/t2

,

e pelo Lema 1.1.10,

m0 ≤ C|u±|t1,Ω

(∫
Ω

e
4πt2mλ

(
|u±|
‖u±‖Ω

)2)1/t2

.

Sendo mλ < 1, podemos �xar 1 < t2 próximo de 1 de tal modo que t2mλ < 1 e t1 > 2.

Pela Desigualdade de Trudinger-Moser (2), existe uma constante C̃ > 0 tal que∫
Ω

e
4πt2mλ

(
|u±|
‖u±‖Ω

)2

≤ C̃, ∀ u ∈ S̃λ.

Logo, para alguma constante C1 > 0,

C1 ≤ |u±|t1,Ω, ∀ u ∈ S̃λ. (1.17)
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Agora, suponha por contradição que existe q0 > 2 e uma sequência (un) ⊂ S̃λ tal que

|u±n |q0,Ω → 0, quando n→∞.

Pelo Lema 1.1.10 e por imersões contínuas de Sobolev, (u±n ) é limitada em Ls(Ω), para

cada s > 2. Logo, pelo Lema A.7 do Apêndice A,

|un|s,Ω → 0, quando n→∞,

para todo s > 2, o que contradiz (1.17). Portanto, o Lema 1.1.11 ocorre. �

No que segue, para um conjunto Θ ⊂ E e r > 0, denotamos por

Θr := {u ∈ E : dist(u,Θ) < r}.

O próximo lema será crucial para garantirmos que, para uma escolha adequada

de um número real R > 1, o conjunto

S :=

{
sRu+ + tRu− : u ∈ S̃λ e s, t ∈

[
1

R2
, 1

]}
,

tem uma sequência (PS)c∗ de funções nodais para o funcional I.

Lema 1.1.12 Existe R > 0 tal que

I(R−1u±), I(Ru±) <
1

2
I(u±), ∀u ∈ S̃λ.

Demonstração. Sejam u ∈ S̃λ e R > 0. Pela de�nição de I e por (f3),

I(R−1u±) =
1

2R2
‖u±‖2

V −
∫

Ω

F (R−1u±) ≤ 1

2R2
‖u±‖2

V .

Usando o Lema 1.1.10,

I
(
R−1u±

)
≤ mλ

2R2
< δ2,

para R > 0 su�cientemente grande. Assim, pelo Corolário 1.1.9,

I
(
R−1u±

)
< δ2 ≤

1

2
I(u±), ∀u ∈ S̃λ.

Segue da condição de Ambrosetti-Rabinowitz (f3), que existem constantes b1, b2 > 0

tais que

F (t) ≥ b1|t|θ − b2, ∀t ∈ R,
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de onde segue que

I(Ru±) =
R2

2
‖u±‖2

V −
∫

Ω

F (Ru±) ≤ R2mλ

2
− b1R

θ

∫
Ω

|u±|θ + b2|Ω|.

Pelo Lema 1.1.11, existe δθ > 0 tal que∫
Ω

|u±|θ ≥ δθ.

Logo,

I(Ru±) =
R2

2
‖u±‖2

V −
∫

Ω

F (Ru±) ≤ R2mλ

2
− b1R

θδθ + b2|Ω|.

Sendo θ > 2, concluimos que

I(Ru±) < 0 < δ2 ≤
1

2
I(u±), ∀u ∈ S̃λ,

para R > 0 su�cientemente grande. �

Seja P o cone das funções não-negativas de�nido por

P = {u ∈ E : u ≥ 0 q.t.p. em Ω}

e considere o conjunto

Λ = P ∪ (−P ),

formados pelas funções com sinal de�nido.

O resultado seguinte garante que a distância entre os conjunto Λ e S é positiva.

Lema 1.1.13

d0 := dist(S,Λ) > 0.

Demonstração. Suponha por contradição que dist(S,Λ) = 0. Então, existem sequên-

cias (vn) ⊂ S e wn ⊂ Λ tais que

‖vn − wn‖Ω → 0, quando n→∞. (1.18)

Podemos supor sem perda de generalidades que wn(x) ≥ 0, para todo x ∈ Ω e todo

n ∈ N. Sendo vn ∈ S, existem un ∈ S̃λ e sn, tn ∈
[

1

R2
, 1

]
tais que vn = snRu

+
n +tnRu

−
n .

Pelo Lema 1.1.10, un é limitada em E. Logo, podemos assumir que

vn(x)→ s0Ru
+
0 (x) + t0Ru

−
0 (x) q.t.p. em Ω,
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para algum u0 ∈ E e s0, t0 ∈
[

1

R2
, 1

]
. Por outro lado, por (1.18) e pelo fato que (vn)

é limitada em E, tem-se que (wn) é também limitada em E. Por unicidade de limite,

temos

wn(x)→ s0Ru
+
0 (x) + t0Ru

−
0 (x) q.t.p. em Ω.

Mas pelo Lema 1.1.11 e por imersões compacta de Sobolev, u±0 6= 0. O que contradiz

o fato que wn(x) ≥ 0, para todo x ∈ Ω e todo n ∈ N. �

A próxima proposição garante a existência de uma sequência (PS)c∗ de funções

nodais para o funcional I. No que segue, para r > 0, denotamos

Sr := {u ∈ E : dist(u, S) ≤ r}

Proposição 1.1.14 Dados ε, δ > 0, existe u ∈ I−1([c∗ − 2ε, c∗ + 2ε]) ∩ S2δ veri�cando

‖I ′(u)‖ < 4ε

δ
.

Demonstração. De fato, caso contrário, existem εo, δo > 0 tais que

‖I ′(u)‖ ≥ 4εo
δo
, ∀u ∈ I−1([c∗ − 2εo, c

∗ + 2εo]) ∩ S2δo .

Assim, para cada n ∈ N,

‖I ′(u)‖ ≥ 4εo/n

δo/n
, ∀u ∈ I−1([c∗ − 2εo, c

∗ + 2εo]) ∩ S2δo .

Sendo

I−1([c∗ − 2εo/n, c
∗ + 2εo/n]) ∩ S2δo/n ⊂ I−1([c∗ − 2εo, c

∗ + 2εo]) ∩ S2δo ,

tem-se

‖I ′(u)‖ ≥ 4εo/n

δo/n
, ∀u ∈ I−1([c∗ − 2εo/n, c

∗ + 2εo/n]) ∩ S2δo/n.

Logo, podemos �xar n ∈ N su�cientemente grande de tal modo que

ε̄ :=
εo
n
< min

{
2δ2

5
, λ

}
, δ̄ :=

δo
n
<
d0

2
(1.19)

e

‖I ′(u)‖ ≥ 4ε̄

δ̄
, ∀u ∈ I−1([c∗ − 2ε̄, c∗ + 2ε̄]) ∩ S2δ̄.

Logo, pelo Teorema de Deformação (Teorema A.16 do Apêndice A), existe uma apli-

cação contínua η : E → E satisfazendo:
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(i) η(u) = u, ∀u /∈ I−1([c∗ − 2ε̄, c∗ + 2ε̄]) ∩ S2δ̄;

(ii) ‖η(u)− u‖Ω ≤ δ ∀u ∈ E;

(iii) η
(
Ic
∗+ε̄ ∩ S

)
⊂ Ic

∗−ε̄ ∩ Sδ̄;

(iv) η é um homeomor�smo.

Pela de�nição de c∗, para tal ε̄ > 0, existe u∗ ∈M veri�cando

I(u∗) < c∗ +
ε̄

2
. (1.20)

Agora, de�na Q =

(
1

R2
, 1

)2

e considere γ : Q→ E de�nida por

γ(s, t) = η(sRu+
∗ + tRu−∗ ).

Uma vez que u±∗ ∈ N , temos

I(sRu+
∗ + tRu−∗ ) = I(sRu+

∗ ) + I(tRu−∗ ) ≤ I(u+
∗ ) + I(u−∗ ) = I(u∗).

Logo, pela escolha de ε̄ feita em (1.19) e por (1.20),

I(sRu+
∗ + tRu−∗ ) ≤ I(u∗) < c∗ +

ε̄

2
< c∗ + ε̄ < c∗ + λ,

para todo (s, t) ∈ Q. Assim, u∗ ∈ S̃λ, e pela de�nição de S,

sRu+
∗ + tRu−∗ ∈ Ic

∗+ε̄ ∩ S,

e pelo item (iii),

I(γ(s, t)) = I(η(sRu∗
+ + tRu∗

−)) < c∗ − ε̄, ∀(s, t) ∈ Q. (1.21)

Segue do item (ii) que

‖γ(s, t)− (sRu+
∗ + tRu−∗ )‖Ω ≤ δ̄,

e pela escolha de δ̄ feita em (1.19), para v ∈ Λ, temos

‖γ(s, t)− v‖Ω = ‖γ(s, t)− (sRu+
∗ + tRu−∗ ) + (sRu+

∗ + tRu−∗ )− v‖Ω

≥ ‖(sRu+
∗ + tRu−∗ )− v‖Ω − ‖γ(s, t)− (sRu+

∗ + tRu−∗ )‖Ω

≥ d0 − δ̄ > d0 −
d0

2
=
d0

2
> 0,
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para todo (s, t) ∈ Q. Portanto,

γ(s, t)± 6= 0, ∀(s, t) ∈ Q. (1.22)

A�rmação 1.1.15 Existem (s0, t0) ∈ Q tal que

I ′(γ(s0, t0)±)(γ(s0, t0)±) = 0.

Suponha, por um momento, que a A�rmação 1.1.15 seja verdadeira. Por (1.22),

γ(s0, t0)± 6= 0. Logo, γ(s0, t0) ∈M, de onde segue que

I(γ(s0, t0)) ≥ c∗,

o que contradiz (1.21), demonstrando a Proposição 1.1.14.

Para demonstrar que a A�rmação 1.1.15 é verdadeira, usaremos a Teoria do Grau

de Brouwer (ver [38, Capítulo 2]). De�na as funções H,G : Q→ R2 por

H(s, t) := (I ′(γ(s, t)+))(γ(s, t)+), I ′(γ(s, t)−))(γ(s, t)−))

e

G(s, t) := (I ′(sRu∗
+)(sRu+

∗ ), I ′(tRu−∗ )(tRu−∗ )).

Desde que as aplicações g1, g2 :

[
1

R2
, 1

]
→ R dadas por

g1(s) = I ′(sRu+
∗ )(sRu+

∗ ) e g2(t) = I ′(tRu−∗ )(tRu−∗ )

são contínuas, pela Fórmula Produto para o Grau de Brouwer em dimensão dois, temos

d(G,Q, (0, 0)) = d

(
g1,

(
1

R2
, 1

)
, 0

)
· d
(
g2,

(
1

R2
, 1

)
, 0

)
.

Agora, vamos calcular d

(
g1,

(
1

R2
, 1

)
, 0

)
. Para isto, relembremos a de�nição do Grau

Topológico em dimensão um:

Seja g : [a, b]→ R uma função contínua tal que g(a) 6= y e g(b) 6= y. De�nimos

d(g, (a, b), y) :=
1

2
[sgn(g(b)− y)− sgn(g(a)− y)] .

Assim,

d(g1, (1/R
2, 1), 0) :=

1

2

[
sgn(g1(1))− sgn(g1(1/R2))

]
.
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Segue da condição (f4) que o máximo

max
s≥0

I(sRu+
∗ )

é atingido em s = 1/R. Sendo 0 < 1/R2 < 1/R < 1, pela geometria do funcional I,

temos

g1(1/R2) = I ′(
1

R
u+
∗ )

1

R
u+
∗ > 0

e

g1(1) = I ′(Ru+
∗ )Ru+

∗ < 0.

Logo,

d(g1, (1/R
2, 1), 0) =

1

2
[−1− 1] = −1

Analogamente, mostra-se que

d(g2, (1/R
2, 1), 0) = sgn(−g2(1/R2)) = −1.

Portanto,

d(G,Q, (0, 0)) = (−1).(−1) = 1.

Agora , observe que

γ(s, t) = η(sRu+
∗ + tRu−∗ ) = sRu+

∗ + tRu−∗ , ∀(s, t) ∈ ∂Q. (1.23)

De fato, sejam s = 1/R2 e t ∈
[

1

R2
, 1

]
. Pelo Lema 1.1.12,

I(sRu∗
+ + tRu∗

−) = I(
1

R
u∗

+) + I(tRu∗
−)

<
I(u∗

+)

2
+ I(u∗

−) = I(u∗)−
I(u∗

+)

2
.

Por (1.20), Corolário 1.1.9 e pela escolha de ε̄ > 0 feita em (1.19),

I(sRu∗
+ + tRu∗

−) < c∗ +
ε̄

2
− δ2 < c∗ − 2ε̄,

ou seja,
1

R
u∗

+ + tRu∗
− /∈ I−1([c∗ − 2ε̄, c∗ + 2ε̄]) ∩ S2δ̄,

para todo t ∈
[

1

R2
, 1

]
. Logo, pelo item (i),

γ

(
1

R2
, t

)
= η

(
1

R
u∗

+ + tRu∗
−
)

=
1

R
u∗

+ + tRu∗
−.
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Os outros casos são similares. Assim,

γ(s, t)+ = sRu+
∗ e γ(s, t)− = tRu−∗ , ∀(s, t) ∈ ∂Q,

e portanto H ≡ G sobre ∂Q. Consequentemente, pela Propriedade de dependência

na fronteira do Grau de Brouwer,

d(H,Q, (0, 0)) = d(G,Q, (0, 0)) = 1 6= 0

Sendo assim, da Propriedade de existência de solução, existe (s0, t0) ∈ Q tal que

H(s0, t0) = (0, 0), ou seja,

I ′(γ+(s0, t0))γ+(s0, t0) = 0 e I ′(γ−(s0, t0))γ−(s0, t0) = 0.

Portanto,

γ(s0, t0) ∈ η(g(Q)) ∩M,

concluindo a demonstração da A�rmação 1.1.15.

�

Demonstração do Teorema 1.1.1.

Para cada n ∈ N, considere ε =
1

4n
e δ =

1√
n
. Pela Proposição 1.1.14, existe

un ∈ S2/
√
n veri�cando

un ∈ I−1([c∗ − 1/2n, c∗ + 1/2n])

e

‖I ′(un)‖ ≤ 1√
n
.

Sendo un ∈ S2/
√
n, por continuidade, existe (vn) ⊂ S satisfazendo

I(vn)→ c∗ e I ′(vn)→ 0,

em outras palavras, (vn) é uma sequência (PS)c∗ de funções nodais para I.

A�rmação 1.1.16 A sequência (vn) é limitada em E e, para uma subsequência de

(vn), ainda denotada por (vn),

lim sup
n→∞

‖vn‖2
V < 1.

26



De fato, sendo (vn) ⊂ S, é simples ver que (vn) é limitada em E. Logo,

I ′(vn)vn = on(1)

e

c∗ + on(1) = I(vn)− 1

θ
I ′(vn)vn =

(
1

2
− 1

θ

)
‖vn‖2

V −
∫

Ω

[F (vn)− 1

θ
f(vn)vn].

A igualdade acima, junto com (f3) e o Lema 1.1.5, implica em

lim sup
n→∞

‖vn‖V ≤
2θc∗

θ − 2
< 1.

Agora, seja v0 ∈ E o limite fraco de (vn) em E. Combinando a A�rmação 1.1.16 com

o Lema 1.1.6, deduzimos que v0 é uma solução fraca do problema (D). Finalmente,

para concluir a demonstração, devemos mostrar que v±0 6= 0. Sabemos que

vn ⇀ v0 em E;

vn(x)→ v0(x) q.t.p. em Ω; e

vn → v0 em Lq(Ω).

Por outro lado, sendo vn ∈ S, existem constantes sn, tn ∈
[

1

R2
, 1

]
e un ∈ S̃λ, tais que

vn = snRu
+
n + tnRu

−
n . Logo, a menos de subsequência,

vn(x) = snRu
+
n (x) + tnRu

−
n (x)→ s0Ru

+
0 (x) + t0Ru

−
0 (x) q.t.p. em Ω,

para algum par s0, t0 ∈
[

1

R2
, 1

]
, onde u0 ∈ E é o limite fraco da sequência (un) ⊂ S̃λ.

Por unicidade do limite,

v0(x) = s0Ru
+
0 (x) + t0Ru

−
0 (x) q.t.p. em Ω.

Usando o Lema 1.1.11, para q > 2 escolhido arbitrariamente, existe δq > 0 tal que∫
Ω

|u±n |q ≥ δq

Passando ao limite de n → ∞ na desigualdade acima e usando a compacidade da

imersão H1
0 (Ω) ↪→ Lq(Ω), deduzimos que∫

Ω

|u±0 |q ≥ δq > 0,

mostrando que u±0 6= 0. Portanto,

v+
0 = s0Ru

+
0 6= 0 e v−0 = t0Ru

−
0 6= 0,

completando a demonstração do Teorema 1.1.1.
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Observação 1.1.17 Usando os mesmos argumanetos da Seção 1.1, trabalhando agora

com a Desigualdade de Trudinger-Moser dada em (3) e (4), é possível mostrar a exis-

tência de solução nodal de energia mínima para a equação de Schrödinger com condição

de fronteira de Neumann
−∆u+ V (x)u = f(u), em Ω,

∂u

∂ν
= 0, sobre ∂Ω,

(N)

onde Ω é um domínio em R2 com fronteira suave, e V : Ω → R é um potencial

contínuo veri�cando V (x) ≥ V0 > 0, para todo x ∈ Ω. Mais precisamente, temos o

seguinte resultado:

Teorema 1.1.18 Suponha que as hipóteses (f1)− (f5) são válidas. Então, o problema

(N) possui uma solução nodal de energia mínima, desde que a constante Cp veri�que

Cp >

[
4θβp

V ∗0 (θ − 2)

](p−2)/2

, onde V ∗0 = min{1, V0}.
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Capítulo 2

Solução nodal minimal em R2

Neste capítulo, mostramos que o caso autônomo (V ≡ V0 > 0) do problema (P ),

quando Ω = R2, não possui solução nodal de energia mínima. Mostramos ainda que é

possível obter a existência de solução nodal de energia mínima para o problema não-

autônomo (P ) em R2, no caso em que V é limitado inferiormente por uma constante

positiva e que no in�nito se aproxima de um potencial Z2-periódico. Ainda sobre o

problema autônomo, mostramos um resultado de existência de solução nodal radial

minimal, i.e., solução nodal radialmente simétrica e de menor energia dentre todas as

soluções radiais.

2.1 Existência de solução nodal de energia mínima

para o problema não-autônomo.

Nesta seção, mostramos um resultado de existência de solução nodal de energia

mínima para o problema não-autônomo:
−∆u+ V (x)u = f(u) em R2,

u ∈ H1(R2),

(P )

onde V : R2 → R é um potencial contínuo satisfazendo

(V1) Existe uma constante V0 > 0 tal que V0 ≤ V (x), para todo x ∈ R2;



(V2) Existe uma função contínua e Z2-periódica V∞ : R2 → R satisfazendo

V (x) ≤ V∞(x), ∀x ∈ R2

e

lim
|x|→∞

|V (x)− V∞(x)| = 0.

(V3) Existem µ < 1/2 e C > 0 tais que

V (x) ≤ V∞(x)− Ce−µ|x|, para todo x ∈ R2.

Vamos supor que a não-linearidade f seja uma função contínua e ímpar, satisfa-

zendo as mesmas hipóteses (f1)− (f5), enunciadas no Capítulo 1.

O nosso principal resultado para o problema não-autônomo é o seguinte.

Teorema 2.1.1 Suponha que as hipóteses (V1) − (V3) são válidas e que f seja uma

função ímpar satisfazendo as hipóteses (f1)− (f5). Então, o problema elíptico

(P )

{
−∆u+ V (x)u = f(u), in R2,

u ∈ H1(R2),

possui uma solução nodal de energia mínima, desde que a constante Cp veri�que

Cp >

[
2θγp

V ∗0 (θ − 2)

](p−2)/2

, (2.1)

onde

V ∗0 = min{1, V0}, γp = inf
MB1(0)

Jp,

Jp(u) =
1

2

∫
B1(0)

(
|∇u|2 + V1|u|2

)
− 1

p

∫
B1(0)

|u|p, V1 = max
x∈R2

V∞(x)

e

Mp
B1(0) = {u ∈ H1

0 (B1(0)) : u± 6= 0 e J ′p(u
±)u± = 0}.

A idéia para demonstrar o Teorema 2.1.1 foi inspirada em Alves, Soares e Souto [9]

e consiste no seguinte: Usaremos o Teorema 1.1.1 para obter uma solução nodal de

energia mínima un ∈ H1
0 (Bn(0)), para o problema de Dirichlet quando Ω = Bn(0),

n ∈ N. Em seguida, mostramos que a sequência (un) é fracamente convergente em

H1(R2) e que o seu limite fraco é uma solução nodal de energia mínima para o problema

(P ) em R2.
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No que segue, vamos considerar a seguinte norma em H1(Ω):

‖u‖ =

(∫
R2

(
|∇u|2 + V (x)|u|2

))1/2

Por (V1) e (V2), tem-se que ‖ · ‖ é equivalente a norma usual em H1(R2):

‖u‖1 =

(∫
R2

(
|∇u|2 + |u|2

))1/2

,

pois

V ∗0 ‖u‖2
1 ≤ ‖u‖2 ≤ V ∗1 ‖u‖2

1, ∀u ∈ H1(R2), (2.2)

onde V ∗1 = max{1, V1}.

Daqui em diante, denotamos por E o espaço H1(R2) munido com a norma ‖ · ‖.

Usando as hipóteses (f1) e (f2), mostra-se que para cada ε > 0, q ≥ 1 e β ≥ 4,

existe uma constante C = C(ε, q, β) > 0 tal que

f(s) ≤ ε|s|+ C|s|q−1
(
eβπs

2 − 1
)
, para todo s ∈ R, (2.3)

o que implica em

sf(s), F (s) ≤ εs2 + C|s|q
(
eβπs

2 − 1
)
, para todo s ∈ R. (2.4)

Assim, pela Desigualdade de Trudinger-Moser devida a Cao (6), temos F (u) ∈ L1(R2)

para todo u ∈ H1(R2). Portanto, o funcional energia associado com (P ), dado por

I(u) =
1

2
‖u‖2 −

∫
R2

F (u), u ∈ E,

está bem de�nido. Além disso, mostra-se que I é um funcional de classe C1 sobre E

com

I ′(u)v =

∫
R2

[∇u∇v + V (x)uv]−
∫
R2

f(u)v, ∀u, v ∈ E.

Consequentemente, pontos críticos de I são precisamente as soluções fracas de (P ).

Sabemos que toda solução não trivial de I pertence a variedade de Nehari

N := {u ∈ E \ {0} : I ′(u)u = 0}.

Dizemos que uma função u ∈ N é uma solução de energia mínima de (P ) quando

I(u) = c1 e I ′(u) = 0,
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onde

c1 = inf
u∈N

I(u).

Como estamos interessados em solução nodal de energia mínima, de�nimos o conjunto:

M = {u ∈ E : u± 6= 0, I ′(u±)u± = 0},

e o número real

c∗ = inf
u∈M

I(u).

Note que toda solução nodal de (P ) pertence aM. Dizemos que u ∈M é uma solução

nodal de energia mínima de (P ) quando

I(u) = c∗ e I ′(u) = 0.

Lema 2.1.2 O número c∗ veri�ca

c∗ <
V ∗0 (θ − 2)

2θ
.

Demonstração Ver Lema 1.1.5 do Capítulo 1.

No que segue, enunciamos alguns resultados já obtidos na literatura, os quais

serão necessários para demonstrar o Teorema 2.1.1.

O primeiro pode ser encontrado em Alves, Carrião e Medeiros [12].

Lema 2.1.3 Seja F ∈ C2(R,R+) uma função convexa e par tal que F (0) = 0 e f(s) =

F ′(s) ≥ 0, ∀s ∈ [0,+∞). Então, para todo t, s ≥ 0,

|F (t− s)− F (t)− F (s)| ≤ 2(f(t)s+ f(s)t).

Os dois resultados seguintes são devido a Alves, do Ó e Miyagaki [11]. O primeiro

resultado está relacionado com a existência de solução positiva do problema (P ) para

potenciais Z2-periódicos.

Teorema 2.1.4 Suponha que as hipóteses (V1)− (V2), (f1)− (f5) e (2.1) são válidas.

Então

(P∞)

 −∆u+ V∞(x)u = f(u), em R2,

u ∈ H1(R2),
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possui uma solução positiva de energia mínima, isto é, existe ū ∈ H1(R2) tal que ū > 0,

I∞(ū) = c∞ e I ′∞(ū) = 0, onde

I∞(u) =
1

2

∫
R2

(
|∇u|2 + V∞(x)u2

)
−
∫
R2

F (u), u ∈ H1(R2),

c∞ = inf
u∈N∞

I∞(u)

e N∞ denota a variedade de Nehari

N∞ = {u ∈ H1(R2) \ {0} : I ′∞(u)u = 0}.

O segundo resultado está relacionado com o caso assintoticamente periódico.

Teorema 2.1.5 Suponha que as hipóteses (V1)− (V2), (f1)− (f5) e (2.1) são válidas.

Então, o problema (P ) possui uma solução positiva de energia mínima, ou seja, existe

u1 ∈ H1(R2) tal que u1 > 0, I(u1) = c1 e I ′(u1) = 0.

Além disso, temos o seguinte resultado devido a Alves [6].

Teorema 2.1.6 Assuma que (f1) e (f2) são válidas. Então, qualquer solução positiva

ū do problema (P∞) satisfaz

(I) lim
|x|→∞

ū(x) = 0

e

(II) C1e
−a|x| ≤ ū ≤ C2e

−b|x| in R2,

onde C1 e C2 são constantes positivas e 0 < b < 1 < a. Além disso, podemos escolher

a = 1 + δ, b = 1 − δ, para δ > 0. O mesmo resultado vale para a função u1 dada no

Teorema 2.1.5.

Demonstração. Usando o crescimento de f dado em (2.3), temos

|f(ū)| ≤ ε|ū|+ C
(
eβπū

2 − 1
)
.

Logo, de�nindo h(x) := f(ū(x)) e usando o Lema A.1 do Apêndice A, para q > 1∫
R2

|h(x)|q ≤ (2ε)q
∫
R2

|ū|q + (2C)q
∫
R2

(
eβπū

2 − 1
)q
.

≤ (2ε)q
∫
R2

|ū|q + C

∫
R2

(
eβπqū

2 − 1
)
.

Logo, pela Desigualdade de Trudinger-Moser (5), temos h ∈ Lqloc(R2) para todo q ≥ 1.

Por argumentos Bootstrap, para x ∈ R2 e R > 0, tem-se ū ∈ W 2,q(BR(x)) com

‖ū‖W 2,q(BR(x)) ≤ C
(
|h|Lq(B2R(x)) + |ū|Lq(B2R(x))

)
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o que implica em

‖ū‖W 2,q(BR(x)) ≤ C
(
|h|Lq(B2R(x)) + |ū|L2(B2R(x))

)
.

Usando a imersão contínua W 2,q(BR(x)) ↪→ C(B̄R(x)), obtemos

‖ū‖L∞(BR(x)) ≤ C
(
|h|Lq(B2R(x)) + |ū|L2(B2R(x))

)
.

A última desigualdade implica que ū ∈ L∞(R2) e lim
|x|→∞

ū(x) = 0.

As desigualdades em (II) envolvendo as funções exponenciais seguem usando o

mesmo argumento de Li e Yan [39]. �

A próxima proposição é um ponto importante em nosso argumento para obter

solução nodal de energia mínima, uma vez que estabelece uma importante estimativa

superior para o nível c∗.

Proposição 2.1.7 Suponha que f é uma função ímpar satisfazendo (f1)− (f5) e que

as hipóteses (V1)− (V3) são válidas. Então,

c∗ < c1 + c∞.

Demonstração. Sejam ū uma solução positiva de energia mínima de (P∞) e u1 uma

solução positiva de energia mínima de (P ) dadas no Teorema 2.1.4 e Teorema 2.1.5,

respectivamente. Vamos de�nir ūn(x) = ū(x− xn), onde xn = (0, n) e para α, β > 0

h±n (α, β) =

∫
R2

(
|∇(αu1 − βūn)±|2 + V (x)|(αu1 − βūn)±|2

)
−
∫
R2

f((αu1 − βūn)±)(αu1 − βūn)±.

Usando o fato que I ′(u1)u1 = 0 e a hipótese (f4),∫
R2

(
|∇(u1/2)|2 + V (x)(u1/2)2

)
−
∫
R2

f(u1/2)(u1/2)

=

∫
R2

(
f(u1)

u1

− f(u1/2)

(u1/2)

)(u1

2

)2

> 0. (2.5)

e ∫
R2

(
|2∇(u1)|2 + V (x)|2u1|2

)
−
∫
R2

f(2u1)(2u1)

=

∫
R2

(
f(u1)

u1

− f(2u1)

2u1

)
(2u1)2 < 0. (2.6)
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Agora, observe que por uma mudança de variáveis, temos∫
R2

(
|∇(ūn/2)|2 + V (x)(ūn/2)2

)
=

∫
R2

(
|∇(ū/2)|2 + V (x+ xn)(ū/2)2

)
(2.7)

e ∫
R2

f(ūn/2)(ūn/2) =

∫
R2

f(ū/2)(ū/2). (2.8)

Segue de (V2) que

V (x+ xn)(ū(x)/2)2 → V∞(x)(ū(x)/2)2 q.t.p. em R2

quando n→∞, e

V (x+ xn)(ū/2)2 ≤ V∞(x)(ū/2)2 ∈ L1(R2), ∀n ∈ N.

Logo, Pelo Teorema da Convergência Dominada de Lebesgue,∫
R2

(
|∇(ū/2)|2 + V (x+ xn)(ū/2)2

)
→
∫
R2

(
|∇(ū/2)|2 + V∞(x)(ū/2)2

)
. (2.9)

Segue de (2.9) e (2.7) que∫
R2

(
|∇(ūn/2)|2 + V (x)(ūn/2)2

)
→
∫
R2

(
|∇(ū/2)|2 + V∞(x)(ū/2)2

)
. (2.10)

Usando a hipótese (f4), obtemos

I∞(ū/2)(ū/2) =

∫
R2

(
|∇(ū/2)|2 + V∞(x)(ū/2)2

)
−
∫
R2

f(ū/2)(ū/2) > 0.

Logo, por (2.8) e (2.10), existe n0 ∈ N tal que∫
R2

(
|∇(ūn/2)|2 + V (x)(ūn/2)2

)
−
∫
R2

f(ūn/2)(ūn/2) > 0, (2.11)

para todo n ≥ n0. Analogamente, mostra-se que∫
R2

(
|∇(2ūn)|2 + V (x)(2ūn)2

)
−
∫
R2

f(2ūn)(2ūn) < 0. (2.12)

para todo n ≥ n0.

A�rmação 2.1.8 Existe n0 > 0 tal que h+
n (1/2, β) > 0,

h+
n (2, β) < 0

(2.13)

para todo n ≥ n0, uniformemente em β ∈ [1/2, 2]. Analogamente, h−n (α, 1/2) > 0,

h−n (α, 2) < 0.
(2.14)

para todo n ≥ n0, uniformemente em α ∈ [1/2, 2].
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Demonstração da A�rmação 2.1.8. Vamos demonstrar apenas que existe n0 ∈ N

tal que h+
n (1/2, β) > 0 para todo n ≥ n0, uniformemente em β ∈ [1/2, 2], pois os

demais casos seguem usando o mesmo argumento. Note que pelo item (I) do Teorema

2.1.6, temos ūn(x) := ū(x − xn) → 0 quando n → ∞, pois |x − xn| → ∞ quando

n→∞. Assim, a idéia é mostrar que

h+
n (1/2, β) := I ′((u1/2− βūn)+)((u1/2− βūn)+)→ I ′(u1/2)(u1/2) > 0

quando n → ∞, uniformemente em β ∈ [1/2, 2]. Para isto, basta mostrar que os

seguintes limites ocorrem:

(a)
∫
R2

|∇((u1/2− βūn)+)|2 →
∫
R2

|∇(u1/2)|2;

(b)
∫
R2

V (x)((u1/2− βūn)+)2 →
∫
R2

V (x)(u1/2)2;

(c)
∫
R2

f((u1/2− βūn)+)(u1/2− βūn)+ →
∫
R2

f(u1/2)u1/2,

quando n→∞, uniformemente em β ∈ [1/2, 2].

Demonstração de (a): Observe primeiro que, para β ∈ [1/2, 2] e n ∈ N,

∫
R2

χn|∇((u1/2− βūn)+)|2 =

∫
R2

χn|∇(u1/2)|2 − β
∫
R2

χn∇u1∇ūn

+β2

∫
R2

χn|∇ūn|2,
(2.15)

onde χn(x) = χ[u1/2−βūn>0](x), x ∈ R2.

Desde que

‖χnūn‖H1(R2) ≤ ‖ūn‖H1(R2) = ‖ū‖H1(R2)

e

χn(x)ūn(x)→ 0 q.t.p. em R2,

temos,

χnūn ⇀ 0 em H1(R2),

de onde segue que∫
R2

χn∇u1∇(ūn) =

∫
R2

∇u1∇(χnūn)→ 0 quando n→∞. (2.16)
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Sendo

χn|∇(u1(x)/2)|2 → |∇u1(x)/2| q.t.p. em R2

e

χn|∇(u1/2)| ≤ |∇(u1/2)|2 ∈ L2(R2),

pelo Teorema da convergência dominada de Lebesgue, temos∫
R2

χn(x)|∇(u1/2)|2 →
∫
R2

|∇(u1/2)|2, n→∞. (2.17)

Agora, fazendo uma mudança de variável,∫
R2

χn|∇ūn|2 =

∫
R2

|∇ū|2χ[u1(x+xn)/2−βū(x)>0].

Desde que u1(x+ xn)→ 0 q.t.p. em R2,

|∇ū(x)|2χ[u1(x+xn)/2−βū(x)>0] → 0 q.t.p. em R2.

Sendo

|∇ū|2χ[u1(x+xn)/2−βū(x)>0] ≤ |∇ū|2 ∈ L1(R2),

pelo Teorema da Convergência Dominada de Lebesque,∫
R2

χn|∇ūn|2 → 0, quando n→∞. (2.18)

Usando os limites em (2.16), (2.17) e (2.18), juntamente com o fato de que β ∈

[1/2, 2], concluimos que o limite em (a) ocorre.

Demonstração de (b): Para β ∈ [1/2, 2] e n ∈ N, temos

u1/2− 2ūn ≤ u1/2− βūn ≤ u1/2− ūn/2, (2.19)

o que implica em

[u1/2− 2ūn ≥ 0] ⊂ [u1/2− βūn ≥ 0] ⊂ [u1/2− ūn/2 ≥ 0].

Logo ∫
[u1/2−2ūn≥0]

V (x)(u1/2− βūn)2 ≤
∫

[u1/2−βūn≥0]

V (x)(u1/2− βūn)2

≤
∫

[u1/2−ūn/2≥0]

V (x)(u1/2− βūn),
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e por (2.19),∫
[u1/2−2ūn≥0]

V (x)(u1/2− 2ūn)2 ≤
∫

[u1/2−βūn≥0]

V (x)(u1/2− βūn)2

≤
∫

[u1/2−ūn/2≥0]

V (x)(u1/2− ūn/2)2

ou equivalentemente∫
R2

χ′nV (x)(u1/2− 2ūn)2 ≤
∫
R2

V (x)((u1/2− βūn)+)2

≤
∫
R2

χ′′nV (x)(u1/2− ūn/2)2.

(2.20)

onde χ′n = χ[u1/2−2ūn≥0] e χ′′n = χ[u1/2−ūn/2≥0].

Desde que ūn(x)→ 0 q.t.p. em R2 e u1 > 0, temos

χ′n(x), χ′′n(x)→ 1 q.t.p. em R2.

Logo,

χ′nV (x)(u1/2− 2ūn)2 ≤ V (x)(u1/2)2 ∈ L1(R2),

χ′n(x)V (x)(u1(x)/2− 2ūn(x))2 → V (x)(u1(x)/2)2 q.t.p. em R2,

e

χ′′nV (x)(u1/2− ūn/2)2 ≤ V (x)(u1/2)2 ∈ L1(R2),

χ′′n(x)V (x)(u1(x)/2− ūn(x)/2)2 → V (x)(u1(x)/2)2 q.t.p. em R2,

pelo Teorema da Convergência Dominada de Lebesgue, temos∫
R2

χ′nV (x)(u1/2− 2ūn)2 →
∫
R2

V (x)(u1/2)2 (2.21)

e ∫
R2

χ′′nV (x)(u1/2− ūn/2)2 →
∫
R2

V (x)(u1/2)2. (2.22)

Passando ao limite de n→∞ em (2.20) e usando (2.21) e (2.22), concluimos que∫
R2

V (x)((u1/2− βūn)+)2 →
∫
R2

V (x)(u1/2)2

quando n→∞, mostranto que o limite em (b) ocorre.

Demonstração de (c): Para β ∈ [1/2, 2] e n ∈ N, temos

u1/2− 2ūn ≤ u1/2− βūn ≤ u1/2− ūn/2
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o que implica em

[u1/2− 2ūn ≥ 0] ⊂ [u1/2− βūn ≥ 0] ⊂ [u1/2− ūn/2 ≥ 0].

Logo∫
[u1/2−2ūn≥0]

f(u1/2− βūn)(u1/2− βūn) ≤
∫

[u1/2−βūn≥0]

f(u1/2− βūn)(u1/2− βūn)

≤
∫

[u1/2−ūn/2≥0]

f(u1/2− βūn)(u1/2− βūn).

Por (f4), a função t 7→ f(t)t é crescente em t ∈ [0,+∞]. Logo,∫
[u1/2−2ūn≥0]

f(u1/2− 2ūn)(u1/2− 2ūn) ≤
∫

[u1/2−βūn≥0]

f(u1/2− βūn)(u1/2− βūn)

≤
∫

[u1/2−ūn/2≥0]

f(u1/2− ūn/2)(u1/2− ūn/2),

ou equivalentemente,∫
R2

χ′nf(u1/2− 2ūn)(u1/2− 2ūn) ≤
∫
R2

f((u1/2− βūn)+)(u1/2− βūn)+

≤
∫
R2

χ′′nf(u1/2− ūn/2)(u1/2− ūn/2),

(2.23)

onde χ′n = χ[u1/2−2ūn≥0] e χ′′n = χ[u1/2−ūn/2≥0].

Usando novamente que t 7→ f(t)t é crescente em t ∈ [0,+∞] e o fato que

ūn(x)→ 0 q.t.p. em R2,

obtemos

χ′nf(u1/2− 2ūn)(u1/2− 2ūn) ≤ f(u1/2)(u1/2) ∈ L1(R2),

χ′n(x)f(u1(x)/2− 2ūn(x))(u1(x)/2− 2ūn(x))→ f(u1(x)/2)(u1(x)/2) q.t.p. em R2,

e

χ′′nf(u1/2− ūn/2)(u1/2− ūn/2) ≤ f(u1/2)(u1/2) ∈ L1(R2),

χ′′n(x)f(u1(x)/2− ūn(x)/2)(u1(x)/2− ūn(x)/2)→ f(u1(x)/2)(u1(x)/2) q.t.p. em R2.

Assim, pelo Teorema da Convergência Dominada de Lebesgue,∫
R2

χ′nf(u1/2− 2ūn)(u1/2− 2ūn)→
∫
R2

f(u1/2)(u1/2) (2.24)

e ∫
R2

χ′′nf(u1/2− ūn/2)(u1/2− ūn/2)→
∫
R2

f(u1/2)(u1/2). (2.25)

39



Passando ao limite de n→∞ em (2.23) e usando (2.24) e (2.25), deduzimos que∫
R2

f((u1/2− βūn)+)(u1/2− βūn)+ →
∫
R2

f(u1/2)(u1/2)

quando n→∞, mostranto que o limite em (c) ocorre.

Sendo a A�rmação 2.1.8 verdadeira, podemos aplicar a variante do Teorema do

valor médio devido a Miranda [41], para obter α∗, β∗ ∈ [1/2, 2] tal que h±n (α∗, β∗) = 0,

para qualquer n ≥ n0. Logo,

α∗u1 − β∗ūn ∈M, para n ≥ n0.

Assim, tendo em vista a de�nição de c∗, para demonstrar a Proposição 2.1.7 é

su�ciente mostrar que

sup
1
2
≤α,β≤2

I(αu1 − βūn) < c1 + c∞ para n ≥ n0.

Para isto, primeiro usamos o Lema 2.1.3 para obter a seguinte estimativa

I(αu1 − βūn) ≤ 1

2

∫
R2

(|∇(αu1))|2 + |∇(βūn))|2) +
1

2

∫
R2

V (x)(|αu1|2 + |βūn|2)

−αβ
∫
R2

(∇u1∇ūn + V (x)u1ūn)− A1,

onde

A1 =

∫
R2

F (αu1) +

∫
R2

F (βūn)− 2

∫
R2

[f(αu1)βūn + f(βūn)αu1] .

Sendo u1 uma solução positiva de (P ),∫
R2

(∇u1∇ūn + V (x)u1ūn) =

∫
R2

f(u1)ūn ≥ 0,

o que implica em

I(αu1 − βūn) ≤ I(αu1) + I∞(βūn) + 2α

∫
R2

f(βūn)u1 + 2β

∫
R2

f(αu1)ūn (2.26)

+
β2

2

∫
R2

(V (x)− V∞(x))ū2
n.

Pela hipótese (V3), ∫
R2

(V (x)− V∞(x))ū2
n ≤ −C

∫
R2

e−µ|x|ū2
n.
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Usando a invariância de R2 por translação e fazendo uma mudança de variável na

última integral da desigualdade acima, obtemos∫
R2

(V (x)− V∞(x))ū2
n ≤ −C

∫
R2

e−µ|x+xn||ū|2,

e como |x+ xn| ≤ |x|+ |xn| = |x|+ n,

e−µ|x+xn| ≥ e−µ|x|−µn,

o que implica em ∫
R2

(V (x)− V∞(x))ū2
n ≤ −Ce−µn

∫
R2

e−µ|x|ū2.

Sendo ∫
R2

e−µ|x|ū2 ≤
∫
R2

ū2 <∞,

deduzimos que ∫
R2

(V (x)− V∞(x))ū2
n ≤ −Ce−µn. (2.27)

Usando o crescimento de f dado em (2.3),∫
R2

f(αu1)ūn ≤ εα

∫
R2

u1ūn + C

∫
R2

(
e4πα2u2

1 − 1
)
u1ūn. (2.28)

Note que pelo Teorema 2.1.6,∫
Bn/2

u1ūn ≤ C2

∫
Bn/2(0)

u1e
−b|x−xn|.

Uma vez que |x− xn| ≥ |xn| − |x| = n− |x| e |x| ≤ n/2, encontramos |x− xn| ≥ n/2,

de onde segue que ∫
Bn/2

u1ūn ≤ C2

∫
Bn/2

u1e
−bn/2 ≤ Ce−bn/2 (2.29)

e como o Teorema 2.1.6 é também válido para u1,∫
R2\Bn/2

u1ūn ≤ C2

∫
R2\Bn/2

e−b|x|ūn ≤ C2e
−bn/2

∫
R2

ūn ≤ C2e
−bn/2

∫
R2

ū. (2.30)

De (2.29) e (2.30), ∫
R2

u1ūn ≤ Ce−bn/2. (2.31)

Por outro lado, sendo u1 ∈ L∞(R2),∫
R2

(
e4πα2u2

1 − 1
)
u1ūn ≤ C

∫
R2

u1ūn ≤ Ce−bn/2. (2.32)
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Usando as desigualdades (2.31) e (2.32) em (2.28),∫
R2

f(αu1)ūn ≤ Ce−bn/2. (2.33)

Analogamente, ∫
R2

f(βūn)u1 ≤ Ce−bn/2. (2.34)

Usando (2.33), (2.34) e (2.27) em (2.26), obtemos

I(αu1 − βūn) ≤ sup
α≥0

I(αu1) + sup
β≥0

I∞(βūn) + C(e−bn/2 − e−µn).

Sendo µ < 1/2, para n su�cientemente grande,

e−bn/2 − e−µn < 0,

o que implica em

sup
1/2≤α,β≤2

I(αu1 − βūn) < c1 + c∞.

Consequentemente

c∗ < c1 + c∞,

�nalizando a demonstração da proposição. �

O próximo resultado é uma versão do Lema de Lions (ver [56, Lema 1.21]) para

crescimento crítico exponencial em R2 devido a Alves, do Ó e Miyagaki [11].

Lema 2.1.9 Seja (un) ⊂ H1(R2) uma sequência veri�cando un ⇀ 0 em H1(R2)

quando n→ +∞ e lim sup
n→∞

‖un‖2
1 ≤ m < 1. Se existe R > 0 tal que

lim inf
n→∞

sup
y∈R2

∫
BR(y)

|un|2 = 0

e (f1)− (f3) são válidas, então∫
R2

F (un),

∫
R2

unf(un)→ 0, quando n→∞.

Usaremos a versão do Lema de Lions para crescimento crítico exponencial em R2,

para demonstrar o próximo resultado.

Lema 2.1.10 Assuma que (V1) − (V3) e (f1) − (f5) valem. Se (un) ⊂ E é tal que

I(un)→ σ, un ⇀ u em H1(R2), I ′(un)un → 0 e

lim inf
n→∞

∫
R2

f(un)un > 0,

então u 6= 0, sempre que 0 < σ < c∞.
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Demonstração. Suponha por contradição que u ≡ 0. Por (V2), dado ε > 0 existe

R = R(ε) > 0 tal que

|V (x)− V∞(x)| < ε, para |x| ≥ R.

Como uma consequência de u ≡ 0, temos∫
BR

|V (x)− V∞(x)||un|2 → 0.

A desigualdade abaixo∫
R2

|V (x)− V∞(x)||un|2 ≤
∫
BR

|V (x)− V∞(x)||un|2 + ε

∫
R2\BR

|un|2,

juntamente com a limitação de (un) em H1(R2) implica em

|I(un)− I∞(un)| → 0 quando n→∞.

Um argumento similar mostra que

|I ′(un)un − I ′∞(un)un| → 0 as n→∞.

Consequentemente,

I∞(un) = σ + on(1) e I ′∞(un)un = on(1). (2.35)

No que segue, �xamos sn > 0 veri�cando

snun ∈ N∞.

A�rmamos que, a menos de subsequência, (sn) converge para 1 quando n → ∞. De

fato, vamos primeiro mostrar que

lim sup
n→∞

sn ≤ 1. (2.36)

Suponha por contradição que existe uma subsequência de (sn), ainda denotada por

(sn), tal que sn ≥ 1 + δ para todo n ∈ N e algum δ > 0. Segue de (2.35) que∫
R2

(
|∇un|2 + V∞(x)|un|2

)
=

∫
R2

f(un)un + on(1). (2.37)

Por outro lado, sendo snun ∈ N∞,

sn

∫
R2

(
|∇un|2 + V∞(x)|un|2

)
=

∫
R2

f(snun)un,
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de onde segue que ∫
R2

(
f(snun)

snun
− f(un)

un

)
|un|2 = on(1). (2.38)

A�rmamos que existe (yn) ⊂ Z2 com |yn| → ∞, r > 0 e β > 0 tais que∫
Br(yn)

u2
n ≥ β > 0.

De fato, caso contrário, usando a versão do Lema de Lions para crescimento crítico em

R2 enunciado no Lema 2.1.9, obtemos

lim
n→+∞

∫
R2

f(un)un = 0,

o que é contrário a nossa hipótese.

Agora, seja vn(x) := un(x+ yn). Uma vez que (un) é limitada em H1(R2), tem-se

que (vn) é também limitada em H1(R2). Assim, para alguma subsequência, podemos

assumir que (vn) é fracamente convergente, e vamos denotar por ṽ seu limite fraco em

H1(R2). Observando que ∫
Br(0)

|vn|2 =

∫
Br(yn)

|un|2 ≥ β > 0,

deduzimos que ṽ 6= 0 in H1(R2). Agora, de (2.38), (f4) e do Lema de Fatou, temos

0 <

∫
R2

(
f((1 + δ)ṽ)

(1 + δ)ṽ
− f(ṽ)

ṽ

)
ṽ2 ≤ 0,

o que é impossível. Logo

lim sup
n→∞

sn ≤ 1.

Se so = lim sup
n→∞

sn < 1, podemos assumir que sn < 1 para n su�cientemente grande.

Assim, aplicando novamente o Lema de Fatou, obtemos

0 <

∫
R2

(
f(ṽ)

ṽ
− f(soṽ)

soṽ

)
ṽ2 ≤ 0 se so > 0

e

0 <

∫
R2

f(ṽ)ṽ ≤ 0 se so = 0,

o que é impossível, mostrando que lim sup
n→∞

sn = 1. Assim, para alguma subsequência

de (sn), ainda denotada por (sn), temos

lim
n→∞

sn = 1. (2.39)

Como uma consequência de (2.39), temos

44



A�rmação 2.1.11 ∫
R2

F (snun)−
∫
R2

F (un) = on(1)

e ∫
R2

f(snun)snun −
∫
R2

f(un)un = on(1).

De fato, pelo Teorema do Valor médio, existe θn(x) ∈ [0, 1] tal que

|F (snun(x))− F (un(x))| = f((θn(x)(sn − 1) + 1)un(x))|(sn − 1)un(x)|.

Logo, usando o crescimento de f ,∣∣∣∣∫
R2

F (snun)−
∫
R2

F (un)

∣∣∣∣ ≤ ∫
R2

|F (snun)− F (un)|

≤
∫
R2

f((θn(x)(sn − 1) + 1)un(x))|(sn − 1)un(x)|

≤ ε(sn − 1)[θn(x)(sn − 1) + 1]

∫
R2

|un|2

+Cε(sn − 1)

∫
R2

un

(
e4π(θn(x)(sn−1)+1)2u2

n − 1
)
.

(2.40)

Vamos estimar a última integral acima. Usando a desigualdade de Hölder e o Lema

A.1 do Apêndice A, obtemos∫
R2

un

(
e4π(θn(x)(sn−1)+1)2u2

n − 1
)
≤ C|un|q′

(∫
R2

(
e4πq(θn(x)(sn−1)+1)2u2

n − 1
))1/q

,

(2.41)

onde 1/q + 1/q′ = 1. Desde que ‖un‖2 ≤ m < 1, temos∫
R2

(
e4πq(θn(x)(sn−1)+1)2u2

n − 1
)
≤
∫
R2

(
eαnv

2
n − 1

)
, (2.42)

onde αn = 4πmq(θn(x)(sn − 1) + 1)2 e vn = un/‖un‖2. Note que sendo sn → 1,

θn(x) ∈ [0, 1] e m < 1, podemos �xar q > 1 su�cientemente próximo de 1 e n0 ∈ N,

de tal modo que αn < 4π, para todo n ≥ n0. Assim, pela Desigualdade de Trudinger-

Moser devida a Cao (6), temos∫
R2

(
eαnv

2
n − 1

)
≤ C, ∀n ≥ n0.

Logo, por (2.42), ∫
R2

(
e4πq(θn(x)(sn−1)+1)2u2

n − 1
)
≤ C, ∀n ≥ n0, (2.43)
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com 1 < q ≈ 1. Assim, de (2.41) e (2.43),

∫
R2

un

(
e4π(θn(x)(sn−1)+1)2u2

n − 1
)
≤ C|un|q′ . (2.44)

Usando (2.44) em (2.40),∣∣∣∣∫
R2

F (snun)−
∫
R2

F (un)

∣∣∣∣ ≤ ε(sn − 1)[θn(x)(sn − 1) + 1]|un|22 + C(sn − 1)|un|q′ .

Sendo (un) limitada em H1(R2), por imersões contínua de Sobolev,∣∣∣∣∫
R2

F (snun)−
∫
R2

F (un)

∣∣∣∣ ≤ Cε(sn − 1)[θn(x)(sn − 1) + 1] + C(sn − 1),

sendo sn → 1 quando n→∞,∣∣∣∣∫
R2

F (snun)−
∫
R2

F (un)

∣∣∣∣→ 0, quando n→∞,

demostrando a primeira igualdade da A�rmação 2.1.11. A demonstração da segunda

igualdade é obtida usando um argumento similar, concluindo a demonstração da A�r-

mação 2.1.11.

Agora, observe que sendo I ′∞(snun)snun = 0 e I ′∞(un)un = on(1), temos

I ′∞(snun)snun − I ′∞(un)un = on(1),

ou seja,

(s2
n − 1)

∫
R2

(|∇un|2 + V∞(x)|un|2) = on(1) +

∫
R2

f(snun)snun −
∫
R2

f(un)un,

o que implica, pela A�rmação 2.1.11, em

(s2
n − 1)

∫
R2

(
|∇un|2 + V∞(x)|un|2

)
= on(1). (2.45)

Usando (2.45) e a A�rmação 2.1.11, obtemos

I∞(snun) = I∞(un) + on(1).

Logo

c∞ ≤ I∞(snun) = σ + on(1).

Passando ao limite de n→ +∞, encontramos c∞ ≤ σ, o que é impossível, pois σ < c∞.

Esta contradição ocorreu pelo fato de assumirmos que u ≡ 0. Portanto, u 6= 0. �

O próximo lema mostra uma importante propriedade da Variedade de Nehari N .
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Lema 2.1.12 Existe uma constante η > 0 tal que

‖u‖2 ≥ η > 0,

para todo u ∈ N .

Demonstração. De fato, caso contrário, existe uma sequência (un) ⊂ E tal que

‖un‖ → 0 quando n→∞. Sendo un ∈ N , temos

‖un‖2 =

∫
R2

f(un)un

o que implica, por (2.4),

‖un‖2 ≤ ε

∫
R2

|un|2 + C

∫
R2

|un|q
(
eβπ|un|

2 − 1
)
.

Usando as imersões de Sobolev e a Desigualdade de Hölder, obtemos

‖un‖2 ≤ ε‖un‖2 + C

(∫
R2

|un|2q
)1/2(∫

R2

(
eβπ|un|

2 − 1
)2
)1/2

.

Usando novamente as imersões de Sobolev e o Lema A.1 do Apêndice A,

‖un‖2 ≤ ε‖un‖2 + C‖un‖q
(∫

R2

(
e2βπ|un|2 − 1

))1/2

.

Fixando ε < 1 e q > 2, obtemos

C ≤ ‖un‖q−2

(∫
R2

(
e2βπ|un|2 − 1

))1/2

. (2.46)

Agora, observe que∫
R2

(
e2βπ|un|2 − 1

)
=

∫
R2

(
e2βπ‖un‖2( |un|‖un‖)

2

− 1

)
e pela hipótese de contradição feita no início da demonstração,

2βπ‖un‖2 ≤ 4π, ∀n ≥ n0,

para algum n0 ∈ N. Assim, de�nindo vn :=
un
‖un‖

, temos |∇vn|2 ≤ ‖vn‖ = 1. Assim,

pela desigualdade de Trudinger-Moser devida a Cao (6), temos∫
R2

(
e2βπ|un|2 − 1

)
≤
∫
R2

(
e4πv2

n − 1
)
≤ sup
|∇v|2≤1

∫
R2

(
e4πv2 − 1

)
≤ C2 (2.47)

Usando (2.47) em (2.46), deduzimos

‖un‖ ≥ C > 0,

o que é uma contradição, pois estamos supondo que ‖un‖ → 0 quando n → ∞,

mostrando que o lema ocorre. �
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2.2 Demonstração do Teorema 2.1.1

Aplicando o Teorema 1.1.1 do Capítulo 1 com Ω = Bn(0), para cada n ∈ N,

existe uma solução nodal un ∈ H1
0 (Bn(0)) para o problema de Dirichlet

−∆u+ V (x)u = f(u), em Bn(0),

u = 0, sobre ∂Bn(0),

(P )n

no nível

c∗n = inf
Mn

I,

onde

Mn = {u ∈ H1
0 (Bn(0)) : u± 6= 0 e I ′(u±)u± = 0}.

Aqui, também denotamos por I o funcional energia associado com (P )n, pois a restrição

de I ao espaço H1
0 (Bn(0)) coincide com o funcional energia associado com (P )n.

A�rmação 2.2.1 O limite abaixo ocorre

lim
n→∞

c∗n = c∗.

De fato, claramente (c∗n) é uma sequência não crescente e limitada inferiormente por c∗.

Suponha por contradição que lim c∗n = ĉ > c∗. Pela de�nição de ín�mo, existe φ ∈ M

tal que I(φ) < ĉ. Sendo φ± 6= 0, por densidade, existe uma sequência (ωn) ⊂ C∞0 (R2)

tal que

ω±n 6= 0, ωn → φ em H1(R2).

Observe que

I(ωn) = I(ω+
n ) + I(ω−n )→ I(φ) ≥ c∗ > 0,

I(ω±n )→ I(φ±),

e

I ′(ω±n )ω±n → I ′(φ±)φ± = 0.

Agora, considere t±n > 0 os únicos números reais, dados pelo Corolário 1.1.4 do Capítulo

1, veri�cando t±nω
±
n ∈ N e de�na φn := t+nω

+
n + t−nω

−
n ∈ M. Usando argumentos

similares aos da demonstração do Lema 2.1.10, mostrar-se que

t±n → 1 e I(t±nω
±
n )→ I(φ±),
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o que implica em,

I(φn)→ I(φ).

Logo, podemos �xar n0 ∈ N tal que I(φn0) < ĉ, ∀ n ≥ n0. Por outro lado, �xando

n1 ∈ N de tal modo que φn0 ∈Mn1 , tem-se

cn1 ≤ I(φn0) < ĉ,

contradizendo a de�nição de ĉ, demonstrando a A�rmação 2.2.1. �

A�rmamos que (un) é uma sequência limitada em E. De fato, pela condição de

Ambrosetti-Rabinowitz (f3) e a A�rmação 2.2.1, temos

c∗ + on(1) = I(un)− 1

θ
I ′(un)un =

(
1

2
− 1

θ

)
‖un‖2 +

∫
R2

(
1

θ
f(un)un − F (un)

)
≥
(

1

2
− 1

θ

)
‖un‖2,

de onde segue que (un) é limitada em E. Além disso, usando a hipótese (f5) juntamente

com a condição (2.1) e um argumento similar ao usado no Lema 1.1.5 do Capítulo 1,

deduzimos que

lim sup
n→∞

‖un‖2 ≤ 2c∗θ

θ − 2
. (2.48)

No que segue, denotamos também por un ∈ H1(R2) a extensão nula de un ∈ H1
0 (Bn).

Note que de (2.48), (2.2) e do Lema 2.1.2,

lim sup
n→∞

‖un‖2
1 ≤

2c∗θ

V ∗0 (θ − 2)
< 1. (2.49)

Sendo H1(R2) um espaço de Banach re�exivo, para algum u ∈ H1(R2),

un ⇀ u em H1(R2),

quando n→∞.

A�rmação 2.2.2 O limite fraco u é uma solução fraca de (P ).

De fato, seja ϕ ∈ C∞0 (R2) e considere n0 ∈ N tal que

supp ϕ ⊂ Bn(0), ∀n ≥ n0.

Sendo un uma solução fraca de (P )n e ϕ ∈ H1
0 (Bn) para n ≥ n0,∫

Bn

∇un∇ϕ+ V (x)unϕ =

∫
Bn

f(un)ϕ, ∀n ≥ n0,
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ou ainda ∫
R2

∇un∇ϕ+ V (x)unϕ =

∫
R2

f(un)ϕ, ∀n ≥ n0. (2.50)

Tendo em vista (2.49), combinando a Desigualdade de Trudinger-Moser (6) com o

Teorema da Convergência dominada generalizada de Lebesgue, mostra-se que∫
R2

f(un)ϕ→
∫
R2

f(u)ϕ, quando n→∞. (2.51)

Por outro lado, da convergência fraca de un para u em E,∫
R2

∇un∇ϕ+ V (x)unϕ→
∫
R2

∇u∇ϕ+ V (x)uϕ, quando n→∞. (2.52)

Passando ao limite em (2.50) e usando (2.51) e (2.52), obtemos∫
R2

∇u∇ϕ+ V (x)uϕ =

∫
R2

f(u)ϕ, ∀ϕ ∈ C∞0 (R2),

e por densidade, ∫
R2

∇u∇v + V (x)uv =

∫
R2

f(u)v, ∀v ∈ H1
0 (R2),

mostrando que u é uma solução fraca de (P ).

Agora, nosso objetivo é mostrar que

u ∈M e I(u) = c∗.

A menos de subsequência, podemos assumir que

I(u±n )→ σ±, onde c∗ = σ+ + σ−.

Usando o fato que u+
n , u

−
n ∈ N , obtemos σ± ≥ c1 > 0. Esta última desigualdade,

junto com a Proposição 2.1.7, implica que σ± < c∞. Sendo

‖u±n ‖2 =

∫
R2

f(u±n )u±n ,

pelo Lema 2.1.12, temos

lim inf
n→∞

∫
R2

f(u±n )u±n ≥ η > 0,

o que implica, pelo Lema 2.1.10, em u± 6= 0. Logo, u ∈M e I(u) ≥ c∗.

Para completar a demonstração, basta notar que o Lema de Fatou conduz às

desigualdades

2c∗ = lim inf
n→∞

[2I(un)− I ′(un)un] = lim inf
n→∞

∫
R2

(f(un)un − 2F (un))

≥
∫
R2

(f(u)u− 2F (u)) = 2I(u)− I ′(u)u = 2I(u) ≥ 2c∗.

Portanto I(u) = c∗, mostrando que (P ) tem uma solução nodal. �
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2.3 Existência de solução nodal radial minimal para

o problema autônomo.

Nesta seção, combinamos o método desenvolvido no Capítulo 1 com o Princípio de

Criticalidade de Palais para demonstrar a existência de solução nodal radial de energia

mínima para uma classe de problemas elípticos autônomos envolvendo não-linearidade

com crescimento crítico exponencial.

Vamos começar fazendo algumas de�nições e enunciando alguns resultados que

serão utilizados ao longo desta seção.

De�nimos a ação de um grupo topológico G sobre um espaço vetorial normado

X, como sendo uma aplicação contínua G×X → X, (g, u) 7→ g · u tal que

(1) 1 · u = u, ∀u ∈ X;

(2) (gh) · u = g · (h · u), ∀g, h ∈ G, u ∈ X;

(3) u 7→ g · u é linear.

Dizemos que a ação é isométrica quando

‖g · u‖ = ‖u‖.

O espaço de pontos invariantes é o subespaço fechado de X de�nido por

Fix(G) = {u ∈ X : g · u = u, ∀g ∈ G}.

• Um conjunto A ⊂ X é invariante se g · A = A para cada g ∈ G;

• Um funcional J : X → R é invariante se J ◦ g = J para cada g ∈ G;

• Uma aplicação f : X → X é equivariante se g ◦ f = f ◦ g para cada g ∈ G.

O próximo resultado nos dá condições para garantir que pontos críticos de um

funcional J : X → R restrito ao Fix(G), são pontos críticos do funcional no espaço X,

ver Willem [56].

Teorema 2.3.1 (Princípio de Criticalidade de Palais) Sejam X um espaço de

Hilbert e G um grupo topológico que age isometricamente em X. Se J ∈ C1(X,R)

é um funcional invariante e u é um ponto crítico de J restrito ao Fix(G), então u é

ponto crítico de J em X.
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No que segue, vamos denotar por H1
r (R2) o seguinte subespaço de H1(R2)

H1
r (R2) = {u ∈ H1(R2) : u(x) = u(y), sempre que |x| = |y|},

formado pelas funções radialmente simétricas de H1(R2). Sabemos que

H1
r (R2) = Fix(O(2))

segundo a ação isométrica ∗ : O(2)×H1(R2)→ H1(R2) de�nida por

(g ∗ u)(x) = u(g · x),

onde O(2) é o grupo das transformações ortogonais em R2.

O próximo resultado é fundamental para que possamos usar o método desenvol-

vido no Capítulo 1, sua demonstração pode ser encontrada em Kavian [38].

Lema 2.3.2 (Strauss) As seguintes imersões são compactas

H1
r (R2) ↪→ Ls(R2),

para todo s > 2.

O principal resultado nesta seção é o seguinte.

Teorema 2.3.3 Suponha que as hipóteses (f1)−(f5) sejam válidas. Então, o problema

autônomo  −∆u+ u = f(u), in R2,

u ∈ H1(R2),
(Q)

possui uma solução nodal radialmente simétrica, desde que a constante Cp veri�que

Cp >

[
2θκp
θ − 2

](p−2)/2

, onde κp = inf
Mp

1

Ip, (2.53)

Ip(u) =
1

2

∫
B1(0)

(
|∇u|2 + |u|2

)
− 1

p

∫
B1(0)

|u|p.

e

Mp
1 = {u ∈ H1

0 (B1(0)) : u± 6= 0 e I ′p(u
±)u± = 0}

Demonstração. Considere o funcional energia

J(u) =
1

2

∫
R2

(|∇u|2 + |u|2)−
∫
R2

F (u)
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restrito ao subespaço H1
r (R2) e o nível c∗r de�nido por

c∗r := inf
u∈Mr

J(u),

onde

Mr = {u ∈ H1
r (R2) : u± 6= 0 e J ′(u±)u± = 0}.

Nosso objetivo é mostrar que o nível c∗r é atingido por um ponto crítico de J . Para

cumprir tal objetivo, como no Capítulo 1, precisamos antes de alguns resultados preli-

minares.

Lema 2.3.4 O número c∗r veri�ca

c∗r <
θ − 2

2θ
·

Demonstração. Considere wp ∈ Mp
1 radialmente simétrica tal que Ip(wp) = κp e

I ′p(wp) = 0. Tem-se

κp =
1

2

∫
B1(0)

(
|∇wp|2 + |wp|2

)
− 1

p

∫
B1(0)

|wp|p, (2.54)

∫
B1(0)

(
|∇wp|2 + |wp|2

)
=

∫
B1(0)

|wp|p (2.55)

e ∫
B1(0)

(
|∇w±p |2 + |w±p |2

)
=

∫
B1(0)

|w±p |p. (2.56)

Substituindo (2.55) em (2.54), obtemos

κp =

(
1

2
− 1

p

)∫
B1(0)

|wp|p. (2.57)

Sendo wp uma função nodal e radialmente simétrica, pela condição (f4), existem únicos

s, t > 0 tais que sw+
p + tw−p ∈Mr. Logo,

c∗r ≤ J(sw+
p + tw−p ) = J(sw+

p ) + J(tw−p ),

o que implica em

c∗r ≤
s2

2

∫
B1(0)

(
|∇w+

p |2 + |w+
p |2
)
−
∫
B1(0)

F (sw+
p )

+
t2

2

∫
B1(0)

(
|∇w−p |2 + |w−p |2

)
−
∫
B1(0)

F (tw−p ).
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Usando (2.56) e a hipótese (f5),

c∗r ≤
(
s2

2
− Cps

p

p

)∫
B1(0)

|w+
p |p +

(
t2

2
− Cpt

p

p

)∫
B1(0)

|w−p |p,

de onde segue que

c∗r ≤ max
r≥0

{
r2

2
− Cpr

p

p

}∫
B1(0)

|wp|p.

Um cálculo simples mostra que

max
r≥0

{
r2

2
− Cpr

p

p

}
= C

2
2−p
p

(
1

2
− 1

p

)
,

logo, por (2.57),

c∗r ≤ C
2

2−p
p

(
1

2
− 1

p

)∫
B1(0)

|wp|p = C
2

2−p
p κp. (2.58)

Combinando a desigualdade em (2.58) com (2.53), obtemos

c∗r <
θ − 2

2θ
,

como queriamos demonstrar. �

O próximo lema mostra dois importantes limites envolvendo a função f .

Lema 2.3.5 Seja (un) uma sequência em H1
r (R2) satisfazendo

(i) b := sup
n∈N
‖un‖2

1 < 1;

(ii) un ⇀ u em H1
r (R2) e;

(iii) un(x)→ u(x) q.t.p. em R2.

Então,

lim
n

∫
R2

f(un)un =

∫
R2

f(u)u (2.59)

e

lim
n

∫
R2

f(un)v =

∫
R2

f(u)v, (2.60)

para qualquer v ∈ H1
r (R2).

Demonstração. Usando o crescimento de f dado em (2.4) com ε > 0, β = 4 e q > 2,

temos

f(s)s ≤ ε|s|2 + C|s|q
(
e4πs2 − 1

)
, ∀s ∈ R.
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Sejam P, Q : R→ R de�nidas por

P (s) := f(s)s e Q(s) := ε|s|2 + C|s|q
(
e4πs2 − 1

)
.

Note que por (f1)

0 ≤
∣∣∣∣P (s)

Q(s)

∣∣∣∣ ≤ Ce4πs2

|s|q−1 (e4πs2 − 1)
→ 0, quando |s| → +∞.

Além disso, por (f2),

0 ≤
∣∣∣∣P (s)

Q(s)

∣∣∣∣ ≤ |f(s)|
ε|s|

→ 0 quando s→ 0.

Agora, observe que sendo∫
R2

|Q(un)| = ε

∫
R2

|un|2 + C

∫
R2

|un|q
(
e4π|un|2 − 1

)
,

pela desigualdade de Hölder e as imersões contínuas de Sobolev,∫
R2

|Q(un)| ≤ ε‖un‖2
1 + C|un|qqt1

(∫
R2

(
e4π|un|2 − 1

)t2)1/t2

,

onde 1/t1 + 1/t2 = 1. Pelo Lema A.1 do Apêndice A e a hipótese (i), temos∫
R2

|Q(un)| ≤ εb+ CC|un|qqt1
∫
R2

(
e4πt2|un|2 − 1

)
. (2.61)

Desde que ∫
R2

(
e4πt2|un|2 − 1

)
=

∫
R2

(
e

4πt2‖un‖21
(

un
‖un‖1

)2

− 1

)
≤
∫
R2

(
e

4πt2b
(

un
‖un‖1

)2

− 1

)
≤ sup
‖v‖1≤1

∫
R2

(
e4πt2bv2 − 1

) (2.62)

e como b < 1, podemos �xar t2 > 1 su�cientemente próximo de 1 de tal modo que

α := 4πt2b < 4π. Logo, por (2.62) e pela Desigualde de Trudinger Moser (6), existe

uma constante C > 0 tal que para todo n ∈ N,∫
R2

(
e4πt2|un|2 − 1

)
≤ sup
‖v‖1≤1

∫
R2

(
eαv

2 − 1
)
≤ C, (2.63)

para algum t2 > 1, su�cientemente próximo de 1. Logo, usando (2.63) em (2.61),

obtemos ∫
R2

|Q(un)| ≤ εb+ C|un|qqt1 , (2.64)
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pelas imersões contínuas de Sobolev e a hipótese (i),∫
R2

|Q(un)| ≤ εb+ C‖un‖q1 ≤ εb+ Cbq,

mostrando que

sup
n

∫
R2

|Q(un)| <∞.

Pela Desigualdade de Strauss (Lema A.6 do Apêndice A) e a hipótese (i), temos

|un(x)| ≤ (2π)−1/2|x|−1/2 · ‖un‖1

≤ (2π)−1/2|x|−1/2b1/2,

de onde segue que

un(x)→ 0 quando |x| → ∞,

uniformemente em n ∈ N.

Segue de (iii) que

P (un(x))→ v(x) q.t.p. em R2,

onde v(x) := f(u(x))u(x), x ∈ R2. Pelo Teorema A.13 do Apêndice A, concluimos que

P (un) converge para v em L1(R2), ou seja,∫
R2

f(un)un →
∫
R2

f(u)u, quando n→ +∞,

mostrando que o limite em (2.59) ocorre. A demonstração de (2.60) é obtida usando o

mesmo argumento. �

Agora, estabelecemos alguns resultados relacionados com o conjunto:

S̃τ := {u ∈Mr : J(u) < c∗r + τ},

onde τ > 0 é uma constante a ser �xada convenientemente.

Lema 2.3.6 Para todo u ∈ S̃τ , tem-se

0 < r0 ≤ ‖u±‖2
1 ≤ ‖u‖2

1 ≤ mτ < 1,

para τ > 0 su�cientemente pequeno.
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Demonstração. A demonstração é uma adaptação dos argumentos usados na de-

monstração do Lema 1.1.10, usando agora a Desigualdade de Trudinger-Moser devida

a Cao (6). �

Lema 2.3.7 Para cada q > 1, existe δq > 0 tal que

0 < δq ≤
∫
R2

|u±|q ≤
∫
R2

|u|q, ∀u ∈ S̃τ .

Demonstração. Ver Lema 1.1.11. �

Usando o Lema 2.3.7, podemos �xar R > 0 tal que

J(
1

R
u±), J(Ru±) <

1

2
J(u±), ∀u ∈ S̃τ .

De�nimos

S =

{
sRu+ + tRu− : u ∈ S̃τ e s, t ∈

[
1

R2
, 1

]}
.

A próxima proposição mostra a existência de uma sequência (PS)c∗r de funções nodais

para o funcional J .

Proposição 2.3.8 Dados ε, δ > 0, existe u ∈ J−1([c∗r − 2ε, c∗r + 2ε]) ∩ S2δ veri�cando

‖J ′(u)‖ < 4ε

δ
.

De fato, para cada n ∈ N, considere ε =
1

4n
e δ =

1√
n
. Pela Proposição 2.3.8,

existe un ∈ S2/
√
n com

un ∈ J−1([c∗r − 1/2n, c∗r + 1/2n])

e

‖J ′(un)‖ ≤ 1√
n
.

Assim, existe (vn) ⊂ S satisfazendo

J(vn)→ c∗r e J ′(vn)→ 0,

com

‖un − vn‖ ≤ 2/
√
n.

É fácil ver que (vn) é limitada em H1
r (R2) com

lim sup
n→∞

‖vn‖2
1 < 1. (2.65)
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Agora, seja v0 ∈ H o limite fraco de (vn) em H1
r (R2). Combinando (2.65) com o

Lema 2.3.5, deduz-se que v0 é um ponto crítico do funcional J restrito ao subespaço

H1
r (R2). No que segue, vamos mostrar que v±0 6= 0. Sabemos que

vn ⇀ v0 em H1
r (R2);

vn(x)→ v0(x) q.t.p. em R2

e

vn → v0 em Lq(R2), ∀q > 2.

Por outro lado, usando o fato que vn ∈ S, existem sn, tn ∈
[

1

R2
, 1

]
e un ∈Mr, tal que

vn = snRu
+
n + tnRu

−
n ⇀ s0Ru

+
0 + t0Ru

−
0 em H1

r (R2)

e

vn(x) = snRu
+
n (x) + tnRu

−
n (x)→ s0Ru

+
0 (x) + t0Ru

−
0 (x) q.t.p. em R2,

para algum s0, t0 ∈
[

1

R2
, 1

]
, onde u0 ∈ H1

r (R2) é o limite fraco da sequência (un) ⊂Mr.

Pela unicidade do limite, tem-se v0 = s0Ru
+
0 +t0Ru

−
0 . Pelo Lema 2.3.7, obtemos u±0 6= 0,

o que implica em v+
0 = s0Ru

+
0 6= 0 e v−0 = s0Ru

−
0 6= 0. Finalmente, sendo o funcional

J : H1(R2)→ R invariante sob o grupo das rotações, a demonstração do Teorema 2.3.3

segue usando o Princípio de Criticalidade de Palais.

2.4 Não existência de soluções nodais de energia mí-

nima para o problema autônomo.

Nesta seção, demonstramos um resultado de não existência de solução nodal de

energia mínima para o problema autônomo (Q), isto é, demonstramos que o nível

ĉ := inf
M
J

não é atingido, onde J é o funcional energia associado ao Problema (Q) e M é o

conjunto de Nehari nodal

M := {u ∈ H1(R2) : u± 6= 0 and J ′(u±)u± = 0}.

O nosso principal resultado nesta seção é o seguinte
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Teorema 2.4.1 Suponha que f satisfaz (f1) − (f5) e que a desigualdade em (2.53)

ocorre. Então, o problema autônomo (Q) não possui solução nodal de energia mínima.

Antes de demonstrar o Teorema 2.4.1, �xamos algumas notações e demonstramos

uma proposição. No que segue, denotamos por

f+(t) =

 f(t), t ≥ 0,

0, t ≤ 0

e o funcional J+ em H1(R2) por

J+(u) :=

∫
R2

(|∇u|2 + |u|2)−
∫
R2

F+(u),

onde F+ é a primitiva de f+ com F+(0) = 0. Segue de [11, Theorem 1.1], que o número

c+ = inf
N+

J+

onde

N+ := {u ∈ H1(R2) \ {0} : J ′+(u)u = 0},

é um valor crítico de J+. Seja v ∈ N+ o ponto crítico correspondente. Mostra-se que

v− = 0. Logo v é não-negativa e, por princípio de máximo, v > 0 sobre R2. Em

particular, v é um ponto crítico positivo de J .

Analogamente, de�nindo

f−(t) =

 0, t ≥ 0,

f(t), t < 0,

denotanto por J− o funcional correspondente e por N− a variedade de Nehari, o número

real

c− := inf
N−

J−

é um valor crítico de J−.

A próxima proposição é um ponto importante no nosso argumento para mostrar

o resultado de não existência, pois ela nos fornece uma estimativa exata para ĉ.

Proposição 2.4.2 Sob as hipóteses (f1)− (f5), tem-se

ĉ = c+ + c−.
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Demonstração. Seja v, w ∈ H1(R2) veri�cando

J+(v) = c+, J ′+(v) = 0, v(x) > 0, ∀x ∈ R2,

J−(w) = c−, J ′−(w) = 0 w(x) < 0, ∀x ∈ R2,

e considere as funções

vR(x) := ϕ
( x
R

)
v(x) e wR,n := ϕ

(
x− xn
R

)
w(x− xn),

onde ϕ ∈ C∞0 (R2) é uma função satisfazendo

supp ϕ ⊂ B2(0), 0 ≤ ϕ ≤ 1, ϕ = 1 sobre B1(0) e xn = (n, 0).

Claramente, para n su�cientemente grande,

supp vR ∩ supp wR,n = ∅.

Sejam tR, sR > 0 tais que

J ′(tRvR)tRvR = 0 e J ′(sRwR,n)sRwR,n = 0.

Sendo

t2R

∫
R2

(
|∇vR|2 + |vR|2

)
=

∫
R2

f+(tRvR)tRvR

e vR → v em H1(R2), por argumentos similares aos da demonstração do Lema 2.1.10,

mostra-se que tR → 1, quando R→ +∞. Similarmente,

s2
R

∫
R2

(
|∇wR,n|2 + |wR,n|2

)
=

∫
R2

f+(sRwR,n)sRwR,n.

Sendo wR → w em H1(R2), temos sR → 1, quando R → +∞. Agora, note que

uR := tRvR + sRwR,n ∈M com

u+
R = tRvR e u−R = sRwR,n

para n ∈ N su�cientemente grande. Logo,

ĉ ≤ J(tRvR + sRwR,n) = J(tRvR) + J(sRwR,n).

Usando a invariância de R2 por translações, e passando ao limite de R→ +∞, obtemos

ĉ ≤ J(v) + J(w).
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Sendo J(v) = J+(v) = c+ e J(w) = J−(w) = c−,

ĉ ≤ c+ + c−.

Por outro lado, é claro que ĉ ≥ c+ + c−. Portanto, pode-se concluir que ĉ = c+ + c−.�

Demonstração do Teorema 2.4.1. Suponha por contradição que existe u ∈ M tal

que J(u) = ĉ. Sendo assim,

u+ ∈ N+, u
− ∈ N−

e

c+ + c− ≤ J+(u+) + J−(u−) = J(u) = ĉ = c+ + c−.

Logo,

J+(u+) = c+ e J−(u−) = c−.

Assim, u+ e u− são pontos críticos dos funcionais J+ e J−, respectivamente. Logo, pelo

princípio do máximo, devemos ter

u+(x) > 0, para todo x ∈ R2

e

u−(x) < 0, para todo x ∈ R2,

o que é impossível. �

Gostariamos de �nalizar este Capítulo fazendo algumas observações importantes

acerca dos resultados obtidos.

Observação 2.4.3 Vimos que na Seção 2.3, existe um minimizante u ∈Mr o qual é

um ponto crítico de J sobre H1(R2). Desde que ĉ ≤ c∗r, o Teorema 2.4.1 implica que

ĉ < c∗r.

Uma desigualdade estrita similar em um domínio limitado tal como um anel em RN ,

para N ≥ 3, pode ser vista em [18] .

Observação 2.4.4 O resultado de existência de solução nodal de energia mínima para

o caso não-autônomo, nos diz que apesar do problema autônomo não possuir solução

nodal de energia mínima, é possivel impor condições sobre V de modo que o problema

(P ), para Ω = R2, possua solução nodal de energia mínima.

Observação 2.4.5 Uma versão do Teorema 2.4.1 pode ser feita para N ≥ 3, supondo

que f tem crescimento subcrítico, ou até mesmo crítico com hipóteses adequadas sob a

não-linearidade.
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Capítulo 3

Soluções do tipo multi-bump nodal

para uma classe de problemas elípticos

em R2 envolvendo crescimento crítico

exponencial

Neste capítulo, motivados por [5] e [13], mostramos a existência de solução do tipo

multi-bump nodal para uma classe de problemas elípticos em R2 com a não-linearidade

tendo um crescimento crítico exponencial.

3.1 Introdução

Neste capítulo, consideramos a existência e multiplicidade de soluções do tipo

multi-bump nodal para a seguinte classe de problemas
−∆u+ (λV (x) + 1)u = f(u), em R2,

u ∈ H1(R2),

(P )λ

onde λ ∈ (0,∞), o potencial V : R2 → R é uma função contínua e não negativa tal

que o conjunto Ω := int V −1({0}) satisfaz

(H1) Ω é não-vazio, limitado, com fronteira ∂Ω suave e V −1({0}) = Ω;



(H2) Ω tem k componentes conexas denotadas por Ωj, j ∈ {1, ..., k}, as quais veri�cam

dist(Ωj,Ωi) > 0, para i 6= j.

Para a função f admitimos as seguintes hipóteses.

(f1) Existe C > 0 tal que

|f(s)| ≤ Ce4π|s|2 para todo s ∈ R;

(f2) lim
s→0

f(s)

s
= 0;

(f3) Existe θ > 2 tal que

0 < θF (s) := θ

∫ s

0

f(t)dt ≤ sf(s), para todo s ∈ R \ {0}.

(f4) A função s→ f(s)

|s|
é estritamente crescente em R \ {0}.

(f5) Existem constantes p > 2 e Cp > 0 tais que

sgn(s)f(s) ≥ Cp|s|p−1 para todo s ∈ R,

com

Cp >

[
4kθ

θ − 2
· Sp
](p−2)/2

, (3.1)

onde

Sp = max
1≤j≤k

γj, γj = inf
u∈MΩj

φj(u),

MΩj = {u ∈ H1
0 (Ωj) : u± 6= 0 e φ′j(u

±)u± = 0},

φj(u) =
1

2

∫
Ωj

(
|∇u|2 + |u|2

)
− 1

p

∫
Ωj

|u|p.

O principal resultado demonstrado é o seguinte:

Teorema 3.1.1 Suponha que as hipóteses (H1) − (H2) e (f1) − (f5) sejam válidas.

Então, para qualquer subconjunto não-vazio Γ de {1, ..., k}, existe λ∗ > 0 tal que, para

λ ≥ λ∗, o problema (P )λ tem uma solução nodal uλ. Além disso, a família {uλ}λ≥λ∗
tem a seguinte propriedade: Para qualquer subsequência λn → ∞, podemos extrair

uma subsequência λni tal que uλni converge forte em H1(R2) para uma função u a qual

satisfaz u(x) = 0 para x /∈ ΩΓ := ∪j∈ΓΩj, e a restrição u|Ωj é uma solução nodal com

energia mínima de

−∆u+ u = f(u), em Ωj, u|∂Ωj = 0 para j ∈ Γ.
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3.2 Notações e resultados preliminares

Nesta seção, �xamos algumas notações e apresentamos alguns funcionais que

serão usados ao longo deste capítulo.

Sabemos que as soluções de (P )λ podem ser caracterizadas como sendo pontos

críticos do funcional J : Hλ → R dado por

J(u) =
1

2

∫
R2

[
|∇u|2 + (λV (x) + 1)|u|2

]
−
∫
R2

F (u),

onde Hλ é o espaço de funções de�nido por

Hλ =

{
u ∈ H1(R2) :

∫
R2

V (x)u2 <∞
}

munido com a seguinte norma

‖u‖λ =

{∫
R2

[
|∇u|2 + (λV (x) + 1)u2

]}1/2

,

a qual está associada ao produto interno

〈u, v〉λ :=

∫
R2

(∇u∇v + V (x)uv) .

Mostra-se que (Hλ, 〈·, ·〉λ) é um espaço de Hilbert, para todo λ ≥ 1.

Para um subconjunto aberto Θ ⊂ R2, de�nimos

H(Θ) =

{
u ∈ H1(Θ) :

∫
Θ

V (x)u2 <∞
}

e

‖u‖λ,Θ =

[∫
Θ

(
|∇u|2 + (λV (x) + 1)u2

)]1/2

.

Como consequência das considerações acima, temos o seguinte lema

Lema 3.2.1 Existem ν0, δ0 > 0 com 1 ≈ δ0 < 1 e ν0 ≈ 0 tal que para todo subconjunto

aberto Θ ⊂ R2

δ0‖u‖2
λ,Θ ≤ ‖u‖2

λ,Θ − ν0|u|22,Θ, ∀u ∈ Hλ(Θ) e λ ≥ 1.

Demonstração. Note que

|u|22,Θ ≤
∫

Θ

(λV (x) + 1) |u|2 ≤ ‖u‖2
λ,Θ.
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Assim, para δ0 < 1, temos

(1− δ0)|u|22,Θ ≤ (1− δ0)‖u‖2
λ,Θ.

Logo, para qualquer 0 < ν0 ≤ (1− δ0),

ν0|u|22,Θ ≤ (1− δ0)‖u‖2
λ,Θ,

ou equivalentemente

δ0‖u‖2
λ,Θ ≤ ‖u‖2

λ,Θ − ν0|u|22,Θ.

�

Ao longo deste capítulo, denotamos por bτ : R→ R a função real de�nida por

bτ (s) :=
(
e4πτs2 − 1

)
.

Segue das hipóteses (f1) e (f2) que para cada ε > 0, q ≥ 1 e τ > 1, existe uma constante

C = C(ε, q, α) > 0 tal que

|sf(s)|, |F (s)| ≤ εs2 + C|s|qbτ (s), para todo s ∈ R. (3.2)

O resultado seguinte é uma consequência da Desigualdade de Trundinger-Moser

devida a Cao (6).

Corolário 3.2.2 Seja (uλ) uma família em H1(R2) veri�cando sup
λ≥1
‖uλ‖2 ≤ m < 1.

Então, para cada τ, q > 1 satisfazendo τqm < 1, existe C = C(τ, q,m) > 0 tal que

bτ (uλ) ∈ Lq(R2) e

sup
λ≥1
{|bτ (uλ)|q} <∞.

Demonstração. O Lema A.1 do Apêndice A, garante a existência de uma constante

C > 0 tal que

|bτ (uλ)|qq :=

∫
R2

(
e4πτu2

λ − 1
)q
≤ C

∫
R2

(
e4πτqu2

λ − 1
)
.

Desde que mτq < 1, temos 4πτqm < 4π. Assim, podemos usar a Desigualdade de

Trudinger Moser devida a Cao (6) para concluir que∫
R2

(
e4πτqu2

λ − 1
)
≤ C1.

Portanto,

|bτ (uλ)|q ≤ (CC1)1/q,

como queriamos demonstrar. �
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3.2.1 Problemas de Dirichlet e Neumann

Nesta seção, denotamos por Ij : H1
0 (Ωj) → R e Φλ,j : H1(Ω′j) → R os seguintes

funcionais energia

Ij(u) =
1

2

∫
Ωj

(|∇u|2 + u2)−
∫

Ωj

F (u)

e

Φλ,j(u) =
1

2

∫
Ω′j

(|∇u|2 + (λV (x) + 1)u2)−
∫

Ω′j

F (u).

Sabemos que Ij e Φλ,j são de classe C1 e seus pontos críticos são soluções fracas dos

problemas


−∆u+ u = f(u), em Ωj,

u = 0, sobre ∂Ωj

(3.3)

e 
−∆u+ (λV (x) + 1)u = f(u), em Ω′j,

∂u

∂ν
= 0, sobre ∂Ω′j,

(3.4)

respectivamente. Denotaremos porMj eMλ,j os seguintes conjuntos

Mj = {u ∈ H1
0 (Ωj) : u± 6= 0 e Ij(u

±)u± = 0},

Mλ,j = {u ∈ H1(Ω′j) : u± 6= 0 e Φλ,j(u
±)u± = 0},

e por dj e dλ,j os números reais de�nidos por

dj = inf
Mj

Ij, e dλ,j = inf
Mλ,j

Φλ,j.

Repetindo os mesmos argumentos do Capítulo 1, mostra-se que para cada j ∈

{1, ..., k} existem sequências (ϕn,j) ⊂ H1
0 (Ωj) e (ψn,j) ⊂ Hλ(Ω

′
j) veri�cando∫

Ωj

|ϕ±n,j|q,
∫

Ω′j

|ψ±n,j|q ≥ δq > 0 ∀n ∈ N e q > 1, (3.5)

Ij(ϕn,j)→ dj e I ′j(ϕn,j)→ 0 quando n→∞

e

Φλ,j(ψn,j)→ dλ,j e Φ′λ,j(ψn,j)→ 0 quando n→∞.

Além disso, usando (f1)− (f5) é possível mostrar que

sup
n∈N
‖ϕn,j‖2

Ωj
, sup

n∈N
‖ψn,j‖2

λ,Ω′j
< 1,
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o que implica em

ϕn,j → wj em H1
0 (Ωj)

e

ψn,j → wλ,j em Hλ(Ω
′
j).

Portanto wj ∈ H1
0 (Ωj) e wλ,j ∈ Hλ(Ω

′
j) com

Ij(wj) = dj e I ′j(wj) = 0, (3.6)

e

Φλ,j(wλ,j) = dλ,j e Φ′λ,j(wλ,j) = 0. (3.7)

Além disso, segue de (3.5) que w±j 6= 0 e w±λ,j 6= 0, mostranto que o problema de

Dirichlet (3.3) e o problema de Neumann (3.4) possuem soluções nodais de energia

mínima.

3.3 Um problema auxiliar

Nesta seção, como em Alves [5], modi�camos convenientemente a função f . Sejam

ν0 a constante dada no Lema 3.2.1, a > 0 veri�cando max{f(a)/a, f(−a)/(−a)} < ν0

e f̃ , F̃ : R→ R as seguintes funções

f̃(s) =



−f(−a)

a
s se s < −a,

f(s) se |s| ≤ a,

f(a)

a
s se s > a,

e

F̃ (s) =

∫ s

0

f̃(τ)dτ,

as quais veri�cam

f̃(s) ≤ ν0|s|, ∀s ∈ R, (3.8)

ou ainda,

f̃(s)s ≤ ν0|s|2, ∀s ∈ R (3.9)

e

F̃ (s) ≤ ν0

2
|s|2, ∀s ∈ R. (3.10)
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No que segue, para cada subconjunto Γ ⊂ {1, ..., k} vamos considerar

Ω′Γ :=
⋃
j∈Γ

Ω′j, χΓ(x) =


1, para x ∈ Ω′Γ,

0, para x /∈ Ω′Γ

e as funções

g(x, s) = χΓ(x)f(s) + (1− χΓ(x))f̃(s)

e

G(x, s) =

∫ s

0

g(x, t)dt = χΓ(x)F (s) + (1− χΓ(x))F̃ (s).

Como consequência das de�nições acima, temos o seguinte lema.

Lema 3.3.1

F̃ (s)− 1

θ
f̃(s)s ≤

(
1

2
− 1

θ

)
ν0|s|2, para todo s ∈ R.

Demonstração. Vamos dividir a demonstração em três casos:

1o Caso: |s| ≤ a. Para s = 0 a desigualdade acima é óbvia. Se 0 < |s| ≤ a, usando a

de�nição de f̃ e F̃ e a condição de Ambrosetti-Rabinowitz (f3), obtemos

F̃ (s)− 1

θ
f̃(s)s = F (s)− 1

θ
f(s)s ≤ 0 ≤

(
1

2
− 1

θ

)
ν0|s|2.

2o Caso: s > a. Neste caso, f̃(s) =
f(a)

a
s e

F̃ (s) = F (a) +

∫ s

a

f(a)

a
τdτ = F (a)− 1

2
f(a)a+

1

2

f(a)

a
s2.

Pela condição de Ambrosetti-Rabinowitz (f3), temos

F (a)− 1

2
f(a)a ≤ 0.

Logo,

F̃ (s) ≤ 1

2

f(a)

a
s2,

de onde segue que

F̃ (s)− 1

θ
f̃(s)s ≤

(
1

2
− 1

θ

)
f(a)

a
s2.

Sendo
f(a)

a
< ν0, obtemos

F̃ (s)− 1

θ
f̃(s)s ≤

(
1

2
− 1

θ

)
ν0s

2.
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3o Caso: s < −a. Neste caso, f̃(s) =
−f(−a)

a
s e

F̃ (s) = F (−a) +

∫ −a
s

f(−a)

a
τdτ = F (−a) +

1

2
f(−a)a− 1

2

f(−a)

a
s2.

Pela condição de Ambrosetti-Rabinowitz (f3), temos

F (−a) +
1

2
f(−a)a ≤ 0.

Logo,

F̃ (s) ≤ −1

2

f(−a)

a
s2,

de onde segue que

F̃ (s)− 1

θ
f̃(s)s ≤

(
1

2
− 1

θ

)(
f(−a)

−a

)
s2.

Sendo
f(−a)

−a
< ν0, obtemos

F̃ (s)− 1

θ
f̃(s)s ≤

(
1

2
− 1

θ

)
ν0s

2,

concluindo a demonstração do lema. �

Agora, observe que pela de�nição de f̃ , temos |f̃(s)| ≤ |f(s)|, para todo s ∈ R.

Logo, |g(x, s)| ≤ |f(s)| para todo s ∈ R e x ∈ R2, o que implica que g satisfaz as

hipóteses (f1)− (f2) uniformemente em x ∈ R2 e a desigualdade (3.2) uniformemente

em x ∈ R2, ou seja,

|g(x, s)s| ≤ ε|s|2 + C|s|qbτ (s), ∀s ∈ R, ∀x ∈ R2. (3.11)

Assim, o funcional Φλ : Hλ → R dado por

Φλ(u) =
1

2

∫
R2

(|∇u|2 + (λV (x) + 1)u2)−
∫
R2

G(x, u)

pertence a C1(Hλ,R) e seus pontos críticos são as soluções fracas de

−∆u+ (λV (x) + 1)u = g(x, u) em R2. (A)λ

Observação 3.3.2 Note que as soluções nodais da última equação estão relacionadas

com as soluções nodais de (P )λ no seguinte sentido, se uλ é uma solução nodal de (A)λ

veri�cando |uλ(x)| ≤ a em R2 \ Ω′Γ, então uλ é uma solução nodal de (P )λ.
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No que segue, vamos estudar a convergência das sequências de Palais-Smale para

o funcional Φλ, ou seja, de sequências (un) ⊂ Hλ veri�cando

Φλ(un)→ c e Φ′λ(un)→ 0, (3.12)

para algum c ∈ R (abreviadamente (un) é uma sequência (PS)c).

Vamos começar estudando a limitação destas sequências.

Lema 3.3.3 Se (un) é uma sequência (PS)c para Φλ, então

lim sup
n→∞

‖un‖2
λ ≤

2θc

δ0(θ − 2)
,

onde δ0 é dado no Lema 3.2.1.

Demonstração. Pela de�nição de sequência de Palais-Smale,

Φλ(un)− 1

θ
Φ′λ(un)un = c+ on(1) + εn‖un‖λ,

onde εn → 0 quando n→∞. Usando a condição (f3), obtemos(
1

2
− 1

θ

)
‖un‖2

λ −
∫
R2\Ω′Γ

(
F̃ (un)− 1

θ
f̃(un)un

)
≤ c+ on(1) + εn‖un‖λ. (3.13)

Portanto, pelo Lema 3.3.1,(
1

2
− 1

θ

)
(‖un‖2

λ − ν0|un|22) ≤ c+ on(1) + εn‖un‖λ.

Agora, do Lema 3.2.1, �camos com

δ0(θ − 2)

2θ
‖un‖2

λ ≤ c+ on(1) + εn‖un‖λ.

Logo, (un) é limitada e

lim sup
n→∞

‖un‖2
λ ≤

2θc

δ0(θ − 2)
,

como queriamos demonstrar. �

No que segue, denotamos por D o seguinte número real

D =
k∑
j=1

dj.

Lema 3.3.4 Se (f1)− (f5) são válidas, então 0 < D <
δ0(θ − 2)

4θ
.
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Demonstração. Para demonstrar esta desigualdade, para cada j ∈ {1, ..., k}, �xamos

uma função nodal vj ∈ H1
0 (Ωj) tal que vj ∈MΩj e

φj(vj) = γj e φj(vj)
′ = 0. (3.14)

O leitor pode encontrar a existência de tais funções em Bartsch e Weth [20]. Desde

que v±j 6= 0, existem sj, tj > 0 tais que sjv
+
j + tjv

−
j ∈Mj. Então,

dj ≤ Ij(sjv
+
j + tjv

−
j ) = Ij(sjv

+
j ) + Ij(tjv

−
j ),

implicando em

dj ≤
s2
j

2

∫
Ωj

(|∇v+
j |2 + |v+

j |2)−
∫

Ωj

F (sjv
+
j )

+
t2j
2

∫
Ωj

(|∇v−j |2 + |v−j |2)−
∫

Ωj

F (tjv
−
j ).

Usando o fato que v±j ∈MΩj e a hipótese (f4), obtemos

dj ≤
{
s2
j

2
−
Cps

p
j

p

}∫
Ωj

|v+
j |p +

{
t2j
2
−
Cpt

p
j

p

}∫
Ωj

|v−j |p.

Logo,

dj ≤ max
r≥0

{
r2

2
− Cpr

p

p

}∫
Ωj

|vj|p

e sendo

max
r≥0

{
r2

2
− Cpr

p

p

}
= C

2
2−p
p

(
1

2
− 1

p

)
,

segue de (3.14),

dj ≤ C
2

2−p
p

(
1

2
− 1

p

)∫
Ω

|vj|p = C
2

2−p
p γj.

Logo, de (3.1),

D =
k∑
j=1

dj ≤ kSp · C
2

2−p
p <

θ − 2

4θ
.

Escolhendo δ0 su�cientemente próximo de 1, a última desigualdade implica em

D <
δ0(θ − 2)

4θ
·

�

Proposição 3.3.5 Para λ ≥ 1, o funcional Φλ satisfaz a condição (PS)c, para todo

c ∈ (0, D]. Mais precisamente, qualquer sequência (un) ⊂ Hλ, (PS)c para Φλ, tem

uma subsequência fortemente convergente em Hλ.
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Demonstração. Seja (un) ⊂ Hλ uma sequência (PS)c para Φλ com c ∈ (0, D]. Pelo

Lema 3.3.3,

lim sup
n→∞

‖un‖2
λ ≤

2θc

δ0(θ − 2)
.

Sendo c ∈ (0, D], temos

lim sup
n→∞

‖un‖2
λ ≤

2θD

δ0(θ − 2)
,

o que implica, pelo Lema 3.3.4,

lim sup
n→∞

‖un‖2
λ <

1

2
,

mostrando que (un) é limitada em Hλ. Como Hλ é um espaço de Banach re�exivo,

existe u ∈ Hλ tal que, a menos de subsequência, un ⇀ u em Hλ. Além disso,

utilizando a imersão contínua Hλ ↪→ H1(R2) e as imersões compactas de Sobolev,

obtemos

un ⇀ u em H1(R2) e un → u em Lsloc(R2), ∀s ≥ 1.

A�rmação 3.3.6 Para qualquer ε > 0 dado, existe R > 0 tal que

lim sup
n→∞

∫
R2\BR(0)

(
|∇un|2 + (λV (x) + 1)|un|2

)
≤ ε, para n ∈ N. (3.15)

De fato, seja R > 0 su�cientemente grande de tal modo que Ω′Γ ⊂ BR
2
(0) e considere

ηR ∈ C∞(R2) satisfazendo

ηR(x) =


0, se x ∈ BR

2
(0)

1, se x ∈ R2 \BR(0)

,

0 ≤ ηR ≤ 1 e |∇ηR| ≤
C

R
, onde C > 0 independe de R. Tem-se

Ln :=

∫
R2

(
|∇un|2 + (λV (x) + 1)|un|2

)
ηR

= Φ′λ(un)(unηR)−
∫
R2

un∇un∇ηR +

∫
R2\BR

2
(0)

f̃(x, un)unηR.

De (3.10) e da desigualdade de Schwarz,

Ln ≤ Φ′λ(un)(unηR) +
C

R

∫
R2

|un||∇un|+ ν0

∫
R2\BR

2
(0)

|un|2ηR.

Pela desigualdade de Hölder e a limitação das sequências (un) e (|∇un|) em L2(R2),

Ln ≤ on(1) +
C

R
+ ν0Ln,
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e como podemos escolher ν0 < 1,

Ln ≤ on(1) +
C

R(1− ν0)
.

Em consequência

lim sup
n→∞

∫
R2\BR(0)

(
|∇un|2 + (λV (x) + 1)|un|2

)
≤ lim sup

n→∞
Ln ≤

C

R(1− ν0)
.

Portanto, dado ε > 0, escolhendo se necessário um R > 0 ainda maior, obtemos

C
R(1−ν0)

< ε, o que demonstra a a�rmação.

A�rmação 3.3.7 Os seguintes limites são válidos

(a)

∫
R2

g(x, un)un →
∫
R2

g(x, u)u;

(b)

∫
R2

g(x, un)v →
∫
R2

g(x, u)v, ∀v ∈ Hλ.

De fato, dado ε > 0, considere R > 0 como na A�rmação 3.3.6 e

Ln,1 :=

∣∣∣∣∫
BR(0)

g(x, un)un −
∫
BR(0)

g(x, u)u

∣∣∣∣
e

Ln,2 :=

∫
R2\BR(0)

|g(x, un)un − g(x, u)u|.

Segue de (3.11) que

|g(x, un)un| ≤ η|un|2 + Cη|un|bτ (un), ∀x ∈ R2, n ∈ N.

Considere hn, h ∈ H1(BR(0)) de�nidas por

hn := η|un|2 + Cη|un|bτ (un) e h := η|u|2 + Cη|u|bτ (u).

Assim, |g(x, un)un| ≤ hn(x), e como un → u em Lsloc(R2), ∀s ≥ 1, temos

un(x)→ u(x) q.t.p. em BR(0).

Consequentemente,

g(x, un(x))un(x)→ g(x, u(x))u(x) q.t.p. em BR(0),

hn(x)→ h(x) q.t.p. em BR(0), com h ∈ L1(BR(0)).
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A�rmamos que

hn → h em L1(BR(0)).

Com efeito, sendo lim sup
n→∞

‖un‖2
λ < 1/2, para m ∈ (1/2, 1) e uma subsequência ainda

denotada por (un), temos

sup
n≥1
‖un‖2 ≤ m < 1,

�xando q, τ > 1 su�cientemente próximos de 1, de tal modo que τqm < 1, pelo

Corolário 3.2.2 existe C > 0 tal que bτ (un) ∈ Lq(R2) com

|bτ (un)|q ≤ C, ∀n ∈ N.

Logo, a sequência (bτ (un))n é limitada em Lq(BR(0)). Como consequência, usando o

Lema A.9 do Apêndice A,

bτ (un) ⇀ bτ (u) em Lq(BR(0)),

e como

|un| → |u| em Lq
′
(BR(0)), onde 1/q + 1/q′ = 1,

o Lema A.8 do Apêndice A implica que

|un|bτ (un)→ |u|bτ (u) em L1(BR(0)).

Portanto hn → h em L1(BR(0)). Usando o Teorema da convergência dominada gene-

ralizado de Lebesgue (TeoremaA.12 do Apêndice A), concluimos que

lim
n→∞

Ln,1 = 0.

Por outro lado, como R2 \BR(0) ⊂ R2 \ Ω′Γ, de (3.10) deduzimos

|g(x, t)t| = f̃(t)t ≤ ν0|t|2, ∀x ∈ R2 \BR(0), t ∈ R.

Portanto

Ln,2 ≤
∫
R2\BR(0)

ν0|un|2 + ν0

∫
R2\BR(0)

|u|2

≤
∫
R2\BR(0)

(
|∇un|2 + (λV (x) + 1)|un|2

)
+ ν0

∫
R2\BR(0)

|u|2.

Como u ∈ L2(R2), aumentando R caso seja necessário, podemos admitir∫
R2\BR(0)

|u|2 ≤ ε

ν0

.
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Consequentemente, pela A�rmação 3.3.6, após passagem ao limite superior, obtemos

lim sup
n→∞

Ln,2 ≤ 2ε, ∀ε > 0,

implicando que

lim
n→∞

Ln,2 = 0.

Deste modo, temos (a). A demonstração de (b) segue usando o mesmo raciocínio.

Agora, note que

‖un − u‖2
λ = ‖un‖2

λn − 2〈un, u〉λ + ‖u‖2
λ

e como Φ′λ(un)un = on(1) e Φ′λ(un)u = on(1), ou seja,

‖un‖2
λ =

∫
R2

g(x, un)un + on(1) e 〈un, u〉λ =

∫
R2

g(x, un)u+ on(1),

temos

‖un − u‖2
λ =

∫
R2

g(x, un)un −
∫
R2

g(x, un)u+ on(1) + ‖u‖2
λ − 〈un, u〉λ. (3.16)

Por outro lado,

‖u‖2
λ − 〈un, u〉λ =

∫
R2

|∇u|2 −
∫
R2

∇un∇u+

∫
R2

(λV (x) + 1)u (u− un) , (3.17)

Agora, observamos que o funcional linear ψλ : Hλ → R de�nido por

ψλ(w) :=

∫
R2

(λV (x) + 1)uw,

satisfaz, pela desigualdade de Hölder,

ψλ(w) ≤
[∫

R2

(λV (x) + 1)u2

]1/2

·
[∫

R2

(λV (x) + 1)w2

]1/2

.

Desta maneira, se ‖w‖λ ≤ 1, então[∫
R2

(λV (x) + 1)w2

]1/2

≤ ‖w‖λ ≤ 1,

implicando que

ψλ(w) ≤
[∫

R2

(λV (x) + 1)u2

]1/2

, ∀ w ∈ Hλ, ‖w‖λ ≤ 1,
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ou seja, ψλ é um funcional limitado. Assim, pela convergência fraca de un para u em

Hλ, ψλ(un)→ ψλ(u) quando n→∞, ou equivalentemente,∫
R2

(λV (x) + 1)u(u− un) = on(1),

o que implica, por (3.17),

‖u‖2
λ − 〈un, u〉λ = on(1). (3.18)

Usando (3.18) em (3.16), deduzimos que

‖un − u‖2
λ =

∫
R2

g(x, un)un −
∫
R2

g(x, un)u+ on(1),

o que juntamente com a A�rmação 3.3.7, implica em

un → u em Hλ e H1(R2),

mostrando que o funcional Φλ satisfaz a condição (PS)c, para c ∈ (0, D]. �

Nosso próximo objetivo é estudar o comportamento de uma sequência de Palais-

Smale generalizada correspondente a uma sequência de funcionais. No que segue,

dizemos que uma sequência (un) em H1(R2) é dita uma sequência (PS)∞,c para a

família de funcionais (Φλ)λ≥1 se existe uma sequência λn ⊂ [1,+∞) com λn → ∞

quando n→∞, tal que

un ∈ Hλn , Φλn(un)→ c e ‖Φ′λn(un)‖∗λn → 0.

Proposição 3.3.8 Seja (un) uma sequência (PS)∞,c com c ∈ (0, D]. Então, para

alguma subsequência, ainda denotada por (un), existe u ∈ H1(R2) tal que

un → u em H1(R2).

Além disso,

(i) u ≡ 0 em R2 \ ΩΓ e u|Ωj é uma solução de −∆u+ u = f(u), em Ωj,

u = 0, sobre ∂Ωj

(P )j

para cada j ∈ Γ;

(ii) ‖un − u‖λn → 0;
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(iii) A sequência (un) também satisfaz

λn

∫
R2

V (x)|un|2 → 0, ‖un‖2
λn,R2\ΩΓ

→ 0

e

‖un‖2
R2\Ω′j

→
∫

Ωj

(|∇u|2 + u2) para todo j ∈ Γ.

Demonstração. Como na demonstração da Proposição 3.3.5, mostra-se que, a menos

de subsequência,

sup
n≥1
‖un‖2 < 1. (3.19)

Sendo assim, podemos assumir que, para algum u ∈ H1(R2),

un ⇀ u em H1(R2) (3.20)

e

un(x)→ u(x) q.t.p. em R2.

No que segue, para cada m ∈ N, denotamos por Cm o conjunto dado por

Cm =

{
x ∈ R2 : V (x) ≥ 1

m

}
.

Assim, ∫
Cm

|un|2 ≤
m

λn

∫
R2

λnV (x)|un|2 ≤
m

λn
‖un‖2

λn .

A desigualdade acima combinada com o Lema de Fatou implica em∫
Cm

|u|2 = 0, ∀m ∈ N.

Logo,

u(x) = 0 sobre
∞⋃
m=1

Cm = R2 \ ΩΓ,

o que implica em

u|Ωj ∈ H1
0 (Ωj), ∀j ∈ {1, ..., k}.

Uma vez que Φ′λn(un)ϕ→ 0 quando n→∞ para cada ϕ ∈ C∞0 (Ωj), segue de (3.19) e

(3.20) que ∫
Ωj

∇u∇ϕ+ uϕ−
∫

Ωj

g(x, u)ϕ = 0, (3.21)
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de onde segue que u|Ωj é uma solução de (P )j, para cada j ∈ {1, ..., k}. Além disso,

para cada j ∈ {1, ..., k}, usando ϕ = u|Ωj em (3.21), obtem-se∫
Ωj

(|∇u|2 + |u|2)−
∫

Ωj

f̃(u)u = 0,

ou equivalentemente,

‖u‖2
λ,Ωj

=

∫
Ωj

f̃(u)u.

Sendo

f̃(s)s ≤ ν0|s|2, ∀s ∈ R,

pelo Lema 3.2.1,

δ0‖u‖2
λ,Ωj
≤ ‖u‖2

λ,Ωj
− ν0|u|22,Ωj ≤ ‖u‖

2
λ,Ωj
−
∫

Ωj

f̃(u)u = 0.

Portanto, u = 0 em Ωj, para j ∈ {1, ..., k} \ Γ, e a demonstração de (i) está completa.

(ii) Repetindo o argumento utilizado na Proposição 3.3.5,

‖un − u‖2
λn =

∫
R2

(λnV (x) + 1)(un − u)u+ on(1)

e como u = 0 em R2 \ ΩΓ,

‖un − u‖2
λn → 0, quando n→∞.

Para demonstrar (iii), observe que

0 ≤
∫
R2

λnV (x)|un|2 =

∫
R2

λnV (x)|un − u|2 ≤ C‖un − u‖2
λn ,

o que implica, pelo item (ii), em∫
R2

λnV (x)|un|2 → 0, n→∞.

Os outros limites também seguem imediatamente do limite em (ii). �

Na próxima proposição, usamos o método de Iteração de Moser [43] e adaptamos

as idéias contidas em Li Gongbao [36], ver também Alves e Souto [13]. Este resultado

será fundamental para mostrarmos que as soluções nodais que encontramos para (Aλ)

são também soluções nodais de (Pλ), para λ su�cientemente grande.

Proposição 3.3.9 Seja {uλ}λ≥1 uma família de soluções nodais de (A)λ veri�cando

‖uλ‖2 ≤ m < 1, para todo λ ≥ 1. Então, existe K > 0 tal que

|uλ|∞ ≤ K, ∀λ ≥ 1.
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Demonstração. Para cada λ ≥ 1, L > 0 e β > 1, de�nimos

u+
L,λ :=


u+
λ , se uλ ≤ L,

L, se uλ ≥ L,

z+
L,λ := (u+

L,λ)
2(β−1)u+

λ e w+
L,λ := u+

λ (u+
L,λ)

β−1.

Usando z+
L,λ como função teste na de�nição de solução fraca,∫

R2

∇uλ∇z+
L,λ +

∫
R2

(λV (x) + 1)uλz
+
L,λ =

∫
R2

g(x, uλ)z
+
L,λ (3.22)

o que implica∫
R2

(u+
L,λ)

2(β−1)|∇u+
λ |

2 = −2(β − 1)

∫
R2

u+
λ (u+

L,λ)
2β−3∇u+

λ∇u
+
L,λ

+

∫
R2

g(x, u+
λ )u+

λ (u+
L,λ)

2(β−1)

−
∫
R2

(λV (x) + 1)|u+
λ |

2(u+
L,λ)

2(β−1).

Desde que ∫
R2

u+
λ (u+

L,λ)
2β−3∇u+

λ∇u
+
L,λ =

∫
[uλ≤L]

|u+
λ |

2(β−1)|∇u+
λ |

2 ≥ 0

e λV (x) + 1 ≥ 1, para todo x ∈ R2, temos∫
R2

(u+
L,λ)

2(β−1)|∇u+
λ |

2 ≤
∫
R2

g(x, u+
λ )u+

λ (u+
L,λ)

2(β−1) −
∫
R2

|u+
λ |

2(u+
L,λ)

2(β−1). (3.23)

Agora, vamos precisar da seguinte estimativa envolvendo g:

g(x, u+
λ ) ≤ εu+

λ + Cεbτ (u
+
λ )u+

λ , (3.24)

onde bτ (u
+
λ ) ∈ Lq(R2) para algum q > 1, q ≈ 1 e

|bτ (u+
λ )|q ≤ C, ∀λ ≥ 1. (3.25)

Usando (3.24) em (3.23), �camos com∫
R2

(u+
L,λ)

2(β−1)|∇u+
λ |

2 ≤ (ε−1)

∫
R2

u+
λ (u+

L,λ)
2(β−1) +

∫
R2

bτ (u
+
λ )|u+

λ |
2(u+

L,λ)
2(β−1). (3.26)

Por outro lado, das imersões contínuas de Sobolev,

|w+
L,λ|

2
γ ≤ Cγ

∫
R2

(
|∇w+

L,λ|
2 + |w+

L,λ|
2
)
, (3.27)
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para qualquer γ ≥ 2. Desde que

∇w+
L,λ = ∇

(
u+
λ (u+

L,λ)
β−1
)

= (u+
L,λ)

β−1∇u+
λ + (β − 1)u+

λ (u+
L,λ)

β−2∇u+
L,λ,

temos

|∇w+
L,λ|2 = (u+

L,λ)
2(β−1)|∇u+

λ |2 + 2(β − 1)u+
λ (u+

L,λ)
2β−3∇u+

λ∇u
+
L,λ

+(β − 1)2|u+
λ |2(u+

L,λ)
2(β−2)|∇u+

L,λ|2.
(3.28)

Usando (3.28) em (3.27),

|w+
L,λ|2γ ≤ Cγ

∫
R2

(u+
L,λ)

2(β−1)|∇u+
λ |

2

+2(β − 1)Cγ

∫
R2

u+
λ (u+

L,λ)
2β−3∇u+

λ∇u
+
L,λ

+(β − 1)2Cγ

∫
R2

|u+
λ |

2(u+
L,λ)

2(β−2)|∇u+
L,λ|

2

+Cγ

∫
R2

|u+
λ |(u

+
L,λ)

2(β−1).

(3.29)

Note que

∫
R2

u+
λ (u+

L,λ)
2β−3∇u+

λ∇u
+
L,λ =

∫
[uλ≤L]

(u+
L,λ)

2(β−1)|∇u+
λ |

2

≤
∫
R2

(u+
L,λ)

2(β−1)|∇u+
λ |

2

(3.30)

e ∫
R2

|u+
λ |

2(u+
L,λ)

2(β−2)|∇u+
L,λ|

2 =

∫
[uλ≤L]

(u+
L,λ)

2(β−1)|∇u+
λ |

2

≤
∫
R2

(u+
L,λ)

2(β−1)|∇u+
λ |

2.

(3.31)

Usando (3.30) e (3.31) em (3.29), obtemos

|w+
L,λ|2γ ≤ Cγβ

2

∫
R2

(u+
L,λ)

2(β−1)|∇u+
λ |

2

+Cγ

∫
R2

|u+
λ |(u

+
L,λ)

2(β−1).

(3.32)

Substituindo (3.26) em (3.32), �camos com

|w+
L,λ|2γ ≤ [(ε− 1)β2 + 1]Cγ

∫
R2

|u+
λ |(u

+
L,λ)

2(β−1)

+Cβ2

∫
R2

bτ (u
+
λ )|u+

λ |
2(u+

L,λ)
2(β−1).
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Fixando 0 < ε < 1− 1/β2, temos (ε− 1)β2 + 1 < 0. Portanto,

|w+
L,λ|

2
γ ≤ Cβ2

∫
R2

bτ (u
+
λ )|u+

λ |
2(u+

L,λ)
2(β−1),

ou equivalentemente,

|w+
L,λ|

2
γ ≤ Cβ2

∫
R2

bτ (u
+
λ )|w+

L,λ|
2.

Da Desigualdade de Hölder,

|w+
L,λ|

2
γ ≤ Cβ2

[∫
R2

|bτ (u+
λ )|q

]1/q [∫
R2

|w+
L,λ|

2q′
]1/q′

,

onde 1/q + 1/q′ = 1. Logo, por (3.25)

|w+
L,λ|

2
γ ≤ Cβ2

[∫
R2

|w+
L,λ|

2q′
]1/q′

,

ou ainda,

|w+
L,λ|

2
γ ≤ Cβ2|w+

L,λ|
2
2q′ , ∀λ ≥ 1

para qualquer L > 0, β > 1 e γ ≥ 2, onde a constante C > 0 depende somente de γ.

Observe que por imersões contínua de Sobolev |u+
λ |β ∈ L2q′(R2). Logo,

|w+
L,λ|

2
γ ≤ Cβ2

(∫
R2

|u+
λ (u+

L,λ)
β−1|2q′

)1/q′

≤ Cβ2

(∫
R2

|u+
λ |

2q′β

)1/q′

< +∞.

Aplicando o Lema de Fatou na variável L, deduzimos que(∫
R2

|u+
λ |
γβ

)2q′/γ

≤ C2q′β2q′
∫
R2

|u+
λ |

2q′β,

de onde segue que

|u+
λ |βγ ≤ C1/ββ1/β|u+

λ |β2q′ . (3.33)

Agora, �xe γ > 2q′ e considere χ =
γ

2q′
. Note que γ = χ2q′ e βχ2q′ = βγ, para todo

β > 1.

1o Passo: Considere β =
γ

2q′
> 1 e observe que |u+

λ |β ∈ L2q′(R2). Portanto, por (3.33)

|u+
λ |γ2/2q′ ≤ C1/ββ1/β|u+

λ |γ,

o que implica

|u+
λ |(χ2q′)2/2q′ ≤ C1/ββ1/β|u+

λ |γ,

ou ainda,

|u+
λ |χ22q′ ≤ C1/χχ1/χ|u+

λ |γ (3.34)
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mostrando que

|u+
λ |

(γ/2q′)2 ∈ L2q′(R2). (3.35)

2o Passo: Considerando β =

(
γ

2q′

)2

> 1, por (3.35)

|u+
λ |
β ∈ L2q′(R2).

Portanto, por (3.33)

|u+
λ |γ3/(2q′)2 ≤ C1/ββ1/β|u+

λ |γ2/2q′ ,

o que implica

|u+
λ |(χ2q′)3/(2q′)2 ≤ C1/χ2

(χ2)1/χ2|u+
λ |χ22q′ , ∀λ ≥ 1,

ou seja,

|u+
λ |χ32q′ ≤ C1/χ2

(χ2)1/χ2 |u+
λ |χ22q′ . (3.36)

Usando (3.34) em (3.36)

|u+
λ |χ22q′ ≤ C1/χ2

(χ2)1/χ2

C1/χχ1/χK, ∀λ ≥ 1,

ou equivalentemente,

|u+
λ |χ22q′ ≤ C1/χ+1/χ2

χ1/χ+2/χ2

K, ∀λ ≥ 1,

com

|u+
λ |

(γ/2q′)3 ∈ L2q′(R2),

por (3.35) e (3.36).

Pelo princípio de indução �nita,

|u+
λ |χ(n+1)2q′ ≤ C

n∑
i=1

χ−i

χ

n∑
i=1

iχ−i

K, ∀λ ≥ 1. (3.37)

Desde que as séries que aparecem em (3.37) são convergentes com

n∑
i=1

χ−i =
1

χ− 1
e

n∑
i=1

iχ−i =
χ2

(χ− 1)2
,

pelo Lema A.4 do Apêndice A,

|u+
λ |∞ ≤ K̄, ∀λ ≥ 1. (3.38)
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Analogamente, se para cada λ ≥ 1, L > 0 e β > 1, de�nimos u−λ = max{−uλ, 0},

u−L,λ :=


u−λ , se uλ ≥ −L,

L, se uλ ≤ −L,

z−L,λ := u−λ (u−L,λ)
2(β−1) e w−L,λ,i := u−λ (u−L,λ)

β−1,

podemos mostrar que

|u−λ |∞ ≤ K para todo λ ≥ 1. (3.39)

Portanto, de (3.38) e (3.39),

|uλ|∞ ≤ K para todo λ ≥ 1, (3.40)

concluindo a demonstrando da proposição. �

A próxima proposição nos garante que toda solução nodal de (Aλ) é uma solução

nodal de (Pλ), para λ su�cientemente grande.

Proposição 3.3.10 Seja {uλ}λ≥1 uma família de soluções nodais do problema (A)λ

com ‖uλ‖2 ≤ m < 1 e uλ → 0 em H1(R2 \ ΩΓ) quando λ → ∞. Então, existe λ∗ ≥ 1

tal que

|uλ|∞,R2\Ω′Γ ≤ a, ∀λ ≥ λ∗,

e portanto, uλ é uma solução nodal de (P )λ, para todo λ ≥ λ∗.

Demonstração. Sejam x1, ..., xl ∈ ∂Ω′Γ, R > 0 e 0 < r < R/2 tais que

∂Ω′Γ ⊂ N (∂Ω′Γ) :=
l⋃

i=1

BR+r(xi)

e

BR+r(xi) ⊂ R2 \ ΩΓ, ∀i ∈ {1, ..., l}.

Usaremos argumentos similares aos utilizados na demonstração da Proposição

3.3.9 para demonstrar que

|uλ|∞,N (∂Ω′Γ) < a, ∀λ ≥ λ∗, (3.41)

para algum λ∗ ≥ 1.

Considere ηi ∈ C∞(R2), 0 ≤ ηi ≤ 1 com

ηi(x) =


1, se |x− xi| ≤ R

0, se |x− xi| ≥ R + r
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e |∇ηi| ≤ 2/r, para cada i ∈ {1, ..., l}.

Agora, para cada λ ≥ 1, L > 0 e β > 1, de�nimos

u+
L,λ :=


u+
λ , se uλ ≤ L,

L, se uλ ≥ L,

z+
L,λ,i := η2

i u
+
λ (u+

L,λ)
2(β−1) e w+

L,λ,i := ηiu
+
λ (u+

L,λ)
β−1.

Usando o fato que uλ é uma solução nodal para (Aλ),∫
R2

∇uλ∇z+
L,λ,i +

∫
R2

(λV (x) + 1)uλz
+
L,λ,i =

∫
R2

g(x, uλ)z
+
L,λ,i. (3.42)

Note que

∇z+
L,λ,i = ∇

(
η2
i u

+
λ (u+

L,λ)
2(β−1)

)
= 2ηiu

+
λ (u+

L,λ)
2(β−1)∇ηi + η2

i (u
+
L,λ)

2(β−1)∇u+
λ

+2(β − 1)η2
i u

+
λ (u+

L,λ)
2β−3∇u+

L,λ,

logo,

∇uλ∇z+
L,λ,i = 2ηiu

+
λ (u+

L,λ)
2(β−1)∇u+

λ∇ηi + η2
i (u

+
L,λ)

2(β−1)|∇u+
λ |2

+2(β − 1)η2
i u

+
λ (u+

L,λ)
2β−3∇u+

λ∇u
+
L,λ.

(3.43)

Usando (3.43) em (3.42), obtemos∫
R2

η2
i (u

+
L,λ)

2(β−1)|∇u+
λ |

2 = −2(β − 1)

∫
R2

η2
i u

+
λ (u+

L,λ)
2β−3∇u+

λ∇u
+
L,λ

+

∫
R2

g(x, u+
λ )η2

i u
+
λ (u+

L,λ)
2(β−1)

−
∫
R2

(λV (x) + 1)η2
i |u+

λ |
2(u+

L,λ)
2(β−1)

−2

∫
R2

ηiu
+
λ (u+

L,λ)
2(β−1)∇u+

λ∇ηi

−
∫
R2

η2
i (u

+
L,λ)

2(β−1)|∇u+
λ |

2.

(3.44)

Vamos estimar cada uma das integrais acima separadamente.∫
R2

η2
i u

+
λ (u+

L,λ)
2β−3∇u+

λ∇u
+
L,λ =

∫
[u+
λ≤L]

η2
i |u+

λ |
2(β−1)|∇u+

λ |
2 ≥ 0; (3.45)

−
∫
R2

(λV (x) + 1)η2
i |u+

λ |
2(u+

L,λ)
2(β−1) ≤ −

∫
R2

η2
i |u+

λ |
2(u+

L,λ)
2(β−1); (3.46)
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usando a desigualdade de Schwarz,

−2

∫
R2

ηiu
+
λ (u+

L,λ)
2(β−1)∇u+

λ∇ηi ≤ 2

∫
R2

ηiu
+
λ (u+

L,λ)
2(β−1)|∇u+

λ ||∇ηi|,

e pela desigualdade de Young

2

∫
R2

ηiu
+
λ (u+

L,λ)
2(β−1)|∇u+

λ ||∇ηi| ≤ δ

∫
R2

η2
i (u

+
L,λ)

2(β−1)|∇u+
λ |

2

+Cδ

∫
R2

|u+
λ |

2(u+
L,λ)

2(β−1)|∇ηi|2,

para qualquer δ > 0. Logo

−2

∫
R2

ηiu
+
λ (u+

L,λ)
2(β−1)∇u+

λ∇ηi ≤ δ

∫
R2

η2
i (u

+
L,λ)

2(β−1)|∇u+
λ |

2

+Cδ

∫
R2

|u+
λ |

2(u+
L,λ)

2(β−1)|∇ηi|2.
(3.47)

Usando a estimativa de g dada em (3.24) e as desigualdades (3.45), (3.46) e (3.47) na

igualdade em (3.44), obtemos∫
R2

η2
i (u

+
L,λ)

2(β−1)|∇u+
λ |

2 ≤ (ε− 1)

∫
R2

η2
i |u+

λ |
2(u+

L,λ)
2(β−1)

+Cε

∫
R2

bτ (u
+
λ )η2

i |u+
λ |

2(u+
L,λ)

2(β−1)

+(δ − 1)

∫
R2

η2
i (u

+
L,λ)

2(β−1)|∇u+
λ |

2

+Cδ

∫
R2

|u+
λ |

2(u+
L,λ)

2(β−1)|∇ηi|2.

(3.48)

Fixando δ < 1, �camos com∫
R2

η2
i (u

+
L,λ)

2(β−1)|∇u+
λ |

2 ≤ (ε− 1)

∫
R2

η2
i |u+

λ |
2(u+

L,λ)
2(β−1)

+Cε

∫
R2

bτ (u
+
λ )η2

i |u+
λ |

2(u+
L,λ)

2(β−1)

+Cδ

∫
R2

|u+
λ |

2(u+
L,λ)

2(β−1)|∇ηi|2.

(3.49)

Por outro lado, das imersões contínuas de Sobolev,

|w+
L,λ,i|

2
γ ≤ Cγ

∫
R2

(
|∇w+

L,λ,i|
2 + |w+

L,λ,i|
2
)
, (3.50)

para qualquer γ ≥ 2. Desde que

∇w+
L,λ,i = ∇

(
ηiu

+
λ (u+

L,λ)
β−1
)

= u+
λ (u+

L,λ)
β−1∇ηi + ηi(u

+
L,λ)

β−1∇u+
λ + (β − 1)ηiu

+
λ (u+

L,λ)
β−2∇u+

L,λ,
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temos
|∇w+

L,λ,i|2 = |u+
λ |2(u+

L,λ)
2(β−1)|∇ηi|2 + η2

i (u
+
L,λ)

2(β−1)|∇u+
λ |2

+(β − 1)2η2
i |u+

λ |2(u+
L,λ)

2(β−2)|∇u+
L,λ|2

+2(β − 1)ηi|u+
λ |2(u+

L,λ)
2β−3∇u+

L,λ∇ηi

+2(β − 1)η2
i u

+
λ (u+

L,λ)
2β−3∇u+

λ∇u
+
L,λ

+2ηiu
+
λ (u+

L,λ)
2(β−1)∇u+

λ∇ηi.

(3.51)

Usando (3.51) em (3.50),

|w+
L,λ,i|2γ = Cγ

∫
R2

|u+
λ |

2(u+
L,λ)

2(β−1)|∇ηi|2 + Cγ

∫
R2

η2
i (u

+
L,λ)

2(β−1)|∇u+
λ |

2

+(β − 1)2Cγ

∫
R2

η2
i |u+

λ |
2(u+

L,λ)
2(β−2)|∇u+

L,λ|
2

+2(β − 1)Cγ

∫
R2

ηi|u+
λ |

2(u+
L,λ)

2β−3∇u+
L,λ∇ηi

+2(β − 1)Cγ

∫
R2

η2
i u

+
λ (u+

L,λ)
2β−3∇u+

λ∇u
+
L,λ

+2Cγ

∫
R2

ηiu
+
λ (u+

L,λ)
2(β−1)∇u+

λ∇ηi

+Cγ

∫
R2

η2
i |u+

λ |
2(u+

L,λ)
2(β−1).

(3.52)

Note que

∫
R2

η2
i |u+

λ |
2(u+

L,λ)
2(β−2)|∇u+

L,λ|
2 =

∫
[uλ≤L]

η2
i (u

+
L,λ)

2(u+
L,λ)

2(β−2)|∇u+
λ |

2

≤
∫
R2

η2
i (u

+
L,λ)

2(β−1)|∇u+
λ |

2,

(3.53)

∫
R2

η2
i u

+
λ (u+

L,λ)
2β−3∇u+

λ∇u
+
L,λ =

∫
[uλ≤L]

η2
i (u

+
L,λ)

2(β−1)|∇u+
λ |

2

≤
∫
R2

η2
i (u

+
L,λ)

2(β−1)|∇u+
λ |

2,

(3.54)

∫
R2

ηi|u+
λ |

2(u+
L,λ)

2β−3∇u+
L,λ∇ηi =

∫
[u+
λ≤L]

ηiu
+
λ (u+

L,λ)
2(β−1)∇u+

L,λ∇ηi

≤
∫
R2

ηiu
+
λ (u+

L,λ)
2(β−1)|∇u+

L,λ||∇ηi|
(3.55)
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e usando a desigualdade de Young em (3.55),∫
R2

ηi|u+
λ |

2(u+
L,λ)

2β−3∇u+
L,λ∇ηi ≤ δ

∫
R2

η2
i (u

+
L,λ)

2(β−1)|∇u+
λ |

2

+Cδ

∫
R2

|u+
λ |

2(u+
L,λ)

2(β−1)|∇ηi|2.
(3.56)

Usando (3.53)− (3.56) em (3.52),

|w+
L,λ|2γ ≤ Cγ(1 + β2Cδ)

∫
R2

|u+
λ |

2(u+
L,λ)

2(β−1)|∇ηi|2

+Cγ(1 + δ)β2

∫
R2

η2
i (u

+
L,λ)

2(β−1)|∇u+
λ |

2

+Cγ

∫
R2

η2
i |u+

λ |
2(u+

L,λ)
2(β−1).

(3.57)

Usando (3.49) em (3.57) e �xando ε < 1− 1/β2,

|w+
L,λ,i|

2
γ ≤ Cβ2

[∫
R2

|u+
λ |

2(u+
L,λ)

2(β−1)|∇ηi|2 +

∫
R2

bτ (u
+
λ )η2

i |u+
λ |

2(u+
L,λ)

2(β−1)

]
. (3.58)

Usando a Proposição 3.3.9, temos |bτ (u+
λ )|∞ ≤ C, para todo λ ≥ 1 e alguma

constante C > 0. Sendo assim, da denição de ηi e de (3.58),(∫
BR(xi)

|u+
λ |
γ(uL,λ)

γ(β−1)

)2/γ

≤ Cβ2

∫
BR+r(xi)

|u+
λ |

2β.

Passando ao limite de L→∞ na desigualdade anterior e usando o Lema de Fatou,

(∫
BR(xi)

|u+
λ |
γβ

)2/γ

≤ Cβ2

∫
BR+r(xi)

|u+
λ |

2β. (3.59)

Agora, note que se β =
γ(t− 1)

2t
com t =

γ2

2(γ − 2)
, então β > 1,

2t

t− 1
< γ e

u+
λ ∈ Lβ2t/(t−1)(BR+r(xi)). Segue de (3.60) e da desigualdade de Hölder com expoentes

t/(t− 1) e t que(∫
BR(xi)

|u+
λ |
γβ

)2/γ

≤ Cβ2

[∫
BR+r(xi)

|u+
λ |

2βt/(t−1)

](t−1)/t [∫
BR+r(xi)

1

]1/t

,

ou equivalentemente,

|u+
λ |

2β
Lγβ(BR(xi))

≤ Cβ2|u+
λ |

2β

L2βt/(t−1)(BR+r(xi))
, (3.60)

de onde segue que

|u+
λ |Lγβ(BR(xi)) ≤ C1/ββ1/β|u+

λ |L2βt/(t−1)(BR+r(xi))
. (3.61)
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Considerando χ =
γ(t− 1)

2t
, s =

2t

t− 1
e a desigualdade em (3.61), aplicando o

método de Iteração de Moser, obtemos

|u+
λ |Lχn+1s(BR(xi))

≤ C
∑n
i=1 χ

−i
χ
∑n
i=1 iχ

−i |u+
λ |Lγ(BR+r(xi)), (3.62)

o que implica |u+
λ |L∞(BR(xi)) ≤ C|u+

λ |Lγ(BR+r(xi)). Desde que u+
λ → 0 em H1(R2 \ ΩΓ)

quando λ → ∞ e BR+r(xi) ⊂ R2 \ ΩΓ, por (3.62) e as imersão compacta de Sobolev,

para cada ε > 0, existe λε,i ≥ 1 tal que

|u+
λ |L∞(BR(xi)) ≤ ε, ∀λ ≥ λε,i,

em particular, considerando ε = a e tomando λ∗ = max
1≤i≤l
{λa,i}, deduzimos que

|u+
λ |∞,N (∂Ω′Γ) ≤ a para todo λ ≥ λ∗. (3.63)

Analogamente, se para cada λ ≥ 1, L > 0 e β > 1, de�nimos u−λ = max{−uλ, 0},

u−L,λ :=


u−λ , se uλ ≥ −L,

L, se uλ ≤ −L,

z−L,λ,i := η2
i u
−
λ (u−L,λ)

2(β−1) e w−L,λ,i := ηiu
−
λ (u−L,λ)

β−1,

podemos mostrar que

|u−λ |∞,N (∂Ω′Γ) ≤ a para todo λ ≥ λ∗. (3.64)

Portanto, de (3.63) e (3.64),

|uλ|∞,N (∂Ω′Γ) ≤ a para todo λ ≥ λ∗, (3.65)

mostrando a a�rmação feita em (3.41).

Agora, para λ ≥ λ∗, de�nimos vλ : R2 \ Ω′Γ → R por

vλ(x) = (uλ(x)− a)+ .

De (3.63), tem-se vλ ∈ H1
0 (R2 \ Ω′Γ). Nosso próximo objetivo é mostrar que vλ = 0 em

R2 \ Ω′Γ. Isto implica em

uλ ≤ a.
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Prolongando a função vλ = 0 em Ω′Γ e tomando vλ como função teste, obtemos∫
R2\Ω′Γ

∇uλ∇vλ +

∫
R2\Ω′Γ

(λV (x) + 1)uλvλ =

∫
R2\Ω′Γ

g(x, uλ)vλ.

Sendo ∫
R2\Ω′Γ

∇uλ∇vλ =

∫
R2\Ω′Γ

|∇vλ|2,∫
R2\Ω′Γ

(λV (x) + 1)uλvλ =

∫
(R2\Ω′Γ)+

(λV (x) + 1) (vλ + a) vλ

e ∫
R2\Ω′Γ

g(x, uλ)vλ =

∫
(R2\Ω′Γ)+

g(x, uλ)

uλ
(vλ + a)vλ,

onde

(R2 \ Ω′Γ)+ = {x ∈ R2 \ Ω′Γ : uλ(x) > a},

tem-se ∫
R2\Ω′Γ

|∇vλ|2 +

∫
(R2\Ω′Γ)+

[
(λV (x) + 1)− g(x, uλ)

uλ

]
(vλ + a)vλ = 0.

Sendo

(λV (x) + 1)− g(x, uλ)

uλ
> ν0 −

f̃(uλ)

uλ
≥ 0 em (R2 \ Ω′Γ)+,

deduzimos que vλ = 0 em (R2 \ Ω′Γ)+. Obviamente, vλ = 0 nos pontos onde uλ = 0.

Consequentemente, vλ := (uλ − a)+ = 0 em R2 \ Ω′Γ. Trabalhando com a função

(uλ + a)−, é possível demonstrar que uλ(x) ≥ −a para x ∈ R2 \ Ω′Γ. Logo, |uλ(x)| ≤ a

para x ∈ R2 \Ω′Γ. Portanto, pela Observação 3.3.2, a proposição está demonstrada. �

3.4 Um valor crítico especial de Φλ.

No que segue, vamos �xar ε > 0 e ζ = ζ(ε) > 0 tais que

Ij((1− ε)w±j ), Ij((1 + ε)w±j ) < Ij(w
±
j )− ζ, ∀j ∈ Γ. (3.66)

Além disso, sem perda de generalidade, vamos assumir que Γ = {1, ..., l} (l ≤ k).

Denotaremos por Q = (1− ε, 1 + ε)2l e de�nimos γ0 : Q→ Hλ por

γ0(−→s ,−→t )(x) = (~s,~t) · (~w+(x), ~w−(x)) (3.67)

onde (~s,~t) = (s1, ..., sl, t1, ..., tl) e

(~w+(x), ~w−(x)) = (w+
1 (x), ..., w+

l (x), w−1 (x), ..., w−l (x)),
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e o número

Sλ,Γ = inf
γ∈
∑
λ

max
(~s,~t)∈Q

Φλ(γ(~s,~t))

onde

Σλ =
{
γ ∈ C(Q,Hλ) : γ±|Ω′j 6= 0, ∀j ∈ Γ e (~s, ~t) ∈ Q, γ = γ0 sobre ∂Q

}
.

Como γ0 ∈ Σλ, então Σλ 6= ∅ e Sλ,Γ está bem de�nido.

Lema 3.4.1 Para qualquer γ ∈ Σλ existe (−→s ∗,
−→
t ∗) ∈ Q tal que

Φ′λ,j
(
γ±(~s∗,~t∗)

) (
γ±(~s∗,~t∗)

)
= 0

para todo j ∈ {1, ..., l}.

Demonstração. Basta usar os mesmos argumentos desenvolvidos na demonstração

da A�rmação 1.1.15, feita no Capítulo 1. Para isto, para cada γ ∈ Σλ, de�nimos agora

as funções H,H0 : Q ⊂ R2 → R2 por

H = (Φ′λ,1(γ+)γ+, ...,Φ′λ,l(γ
+)γ+,Φ′λ,1(γ−)γ−, ...,Φ′λ,l(γ

−)γ−)

e

H0 = (Φ′λ,1(γ+
0 )γ+

0 , ...,Φ
′
λ,l(γ

+
0 )γ+

0 ,Φ
′
λ,1(γ−0 )γ−0 , ...,Φ

′
λ,l(γ

−
0 )γ−0 ).

Por (f4) e pela Teoria do Grau de Brouwer, temos d(H0, Q, 0) = 1. Sendo

H = H0 sobre ∂Q,

usando o grau topológico, obtemos d(H,Q, 0) = 1, e portanto o Lema 3.4.1 ocorre. �

No que segue, denotamos por DΓ o número DΓ =
l∑

j=1

dj.

Proposição 3.4.2 Os números DΓ e Sλ,Γ veri�cam as seguintes relações

(a)
l∑

j=1

dλ,j ≤ Sλ,Γ ≤ DΓ para todo λ ≥ 1 e;

(b) Sλ,Γ → DΓ quando λ→∞.
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Demonstração. (a) Sendo γ0 de�nido em (3.67) pertecente a Σλ, temos

Sλ,Γ ≤ max
(~s,~t)∈Q

Φλ(γ0(~s,~t))

≤ max
~s∈[1−ε,1+ε]l

l∑
j=1

Ij(sjw
+
j ) + max

~t∈[1−ε,1+ε]l

l∑
j=1

Ij(tjw
−
j ).

Da de�nição de wj, sabemos que

max
z∈[1−ε,1+ε]

Ij(zw
±
j ) = Ij(w

±
j ), para cada j ∈ Γ, (3.68)

logo,

Sλ,Γ ≤
l∑

j=1

dj = DΓ.

Agora, para γ ∈ Σλ, seja (−→s ∗,
−→
t ∗) ∈ Q dado no Lema 3.4.1, temos

Φλ,j(γ(~s∗,~t∗)) ≥ dλ,j, ∀j ∈ Γ.

Por outro lado,

Φλ,R2\Ω′Γ(u) =
1

2
‖u‖2

λ,R2\Ω′Γ
−
∫
λ,R2\Ω′Γ

F̃ (u),

e sendo F̃ (s) ≤ 1

2
ν0|s|2 para todo s ∈ R, temos pelo Lema 3.2.1,

Φλ,R2\Ω′Γ(u) ≥ 1

2

(
‖u‖2

λ,R2\Ω′Γ
− ν0|u|2λ,R2\Ω′Γ

)
≥ δ0

2
‖u‖2

λ,R2\Ω′Γ
,

de onde segue que Φλ,R2\Ω′Γ(u) ≥ 0, para todo u ∈ H1(R2 \ Ω′Γ). Logo,

Φλ(γ(~s∗,~t∗)) ≥
l∑

j=1

Φλ,j(γ(~s∗,~t∗))

o que implica em

max
(~s,~t)∈Q

Φλ(γ(~s,~t)) ≥ Φλ(γ(~s∗,~t∗)) ≥
l∑

j=1

dλ,j.

Da de�nição de Sλ,Γ, podemos concluir que

Sλ,Γ ≥
l∑

j=1

dλ,j,

�nalizando a demonstração de (a).
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(b) Observe que se, para cada j ∈ {1, ..., k},

dλ,j → dj quando λ→∞, (3.69)

então
l∑

j=1

dλ,j → DΓ, quando λ→∞.

O último limite junto com (a) implica que (b) ocorre. Sendo assim, resta mostrar que

o limite em (3.69) é válido.

Observe que para cada j ∈ {1, ..., k} �xado, a aplicação λ 7→ dλ,j é estritamente

crescente e limitada superiormente por dj. De fato, considere a aplicação wj ∈ H1(Ω′j)

(extensão nula de wj ∈ H1
0 (Ωj) dada em (3.6)) e observe que

Φ′λ,j(w
±
j )w±j = I ′j(w

±
j )w±j = 0.

Logo, wj ∈Mλ,j para todo λ ≥ 1, o que implica

dλ,j = inf
Mλ,j

Φλ,j ≤ Φλ,j(wj) = Ij(wj) = dj, ∀λ ≥ 1,

mostrando a limitação superior da aplicação λ 7→ dλ,j por dj. Para demonstrar a

monotonicidade estrita, considere λ1 < λ2 e wλ2,j ∈ H1(Ω′j) satisfazendo (3.7) com

λ = λ2. Sejam s, t ∈ (0,+∞) tais que sw+
λ2,j

+ tw−λ2,j
∈Mλ1,j. Sendo λ1 < λ2, temos

dλ1,j = inf
Mλ1,j

Φλ1,j ≤ Φλ1,j(sw
+
λ2,j

+ tw−λ2,j
)

< Φλ2,j(sw
+
λ2,j

+ tw−λ2,j
) = Φλ2,j(sw

+
λ2,j

) + Φλ2,j(tw
−
λ2,j

).

Desde que Φ′λ2,j
(w±λ2,j

)w±λ2,j
= 0, temos as seguintes caracterizações

Φλ2,j(w
±
λ2,j

) = max
r>0

Φλ2,j(rw
±
λ2,j

).

Logo,

dλ1,j < Φλ2,j(w
+
λ2,j

) + Φλ2,j(w
−
λ2,j

) = Φλ2,j(wλ2,j) = dλ2,j,

mostrando a monotonicidade estrita.

Seja (λn) uma sequência estritamente crescente tal que λn → +∞. Pelo que

vimos no início da demonstração, temos

dλ1,j < dλ2,j < ... < dλn,j < ... ≤ dj,
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de onde segue que d := lim
n→∞

dλn,j ≤ dj.

Para cada λn ≥ 1, considere a solução wλn,j ∈ Hλn(Ω′j) do problema de Neumann

em (3.3) com λ = λn. Observe que

Φλn,j(wλn,j) = dλn,j → d e ‖Φ′λn,j(wλn,j)‖
∗
λn = 0,

de onde segue que (wλn,j)n é uma sequência (PS)∞,d para a sequência de funcionais

(Φλn,j), com d ∈ (0, D].

A�rmação 3.4.3 A sequência (wλn,j)n é limitada em H1(Ω′j) com

‖wλn,j‖2
H1(Ω′j)

≤ 1

ξ2
< 1.

De fato, usando a Condição de Ambrosetti-Rabinowitz (f3), obtemos

dλn,j = Φλn,j(wλn,j)−
1

θ
Φ′λn,j(wλn,j)wλn,j

≥
(

1

2
− 1

θ

)
‖wλn,j‖2

λn,Ω′j
−
∫

Ω′j

(
F (wλn,j)−

1

θ
f(wλn,j)wλn,j

)
≥
(

1

2
− 1

θ

)
‖wλn,j‖2

λn,Ω′j

de onde segue que

lim sup
n→∞

‖wλn,j‖2
λn,Ω′j

≤ 2dθ

θ − 2
≤ 2djθ

θ − 2
<

1

ξ2
< 1.

A a�rmação segue observando que ‖wλn,j‖2
H1(Ω′j)

≤ ‖wλn,j‖2
λn,Ω′j

, para todo n ≥ 1.

Assim, podemos assumir que para algum w0 ∈ H1(Ω′j),

wλn,j ⇀ w0 em H1(Ω′j),

wλn,j → w0 em Ls(Ω′j), para s ≥ 1

e

wλn,j(x)→ w0(x) q.t.p. em Ω′j.

Seguindo os mesmos argumentos utilizados na demonstração da Proposição 3.3.8,

mostra-se que

wλn,j → w0 em H1(Ω′j),
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w0 ≡ 0 em Ω′j \ Ωj e w0|Ωj é uma solução de
−∆u+ u = f(u), em Ωj

u = 0 sobre ∂Ωj.

Para mostrar que w±0 6= 0, basta observar que

‖w±λn,j‖
2
H1(Ω′j)

≤ ‖w±λn,j‖
2
λn,j =

∫
Ω′j

f(w±λn,j)w
±
λn,j

.

Agora, é só usar argumentos similares aos do Lema 1.1.11 do Capítulo 1, para mostrar

que ∫
Ω′j

|w±λn,j|
q ≥ δq > 0, ∀n ∈ N,

Passando ao limite de n→∞ na última desigualdade, obtemos∫
Ωj

|w±0 |q ≥ δq > 0,

de onde segue que w±0 6= 0. Portanto, w0 ∈Mj e

dj ≥ lim
n→∞

dλn,j ≥ Φλn,j(w0) = Ij(w0) ≥ dj

mostrando que lim
n→∞

dλn,j = dj. �

3.5 Uma família especial de soluções nodais para (A)λ

Nesta seção, mostramos a existência de uma família especial de soluções nodais

para (A)λ, para λ su�cientemente grande. Estas soluções nodais são exatamente as

soluções enunciadas no Teorema 3.1.1.

No que segue, E+
λ,j e E

−
λ,j denotam o cone das funções não negativas e não positivas

pertencentes a Hλ(Ω
′
j), respectivamente, isto é,

E+
λ,j =

{
u ∈ Hλ(Ω

′
j) : u(x) ≥ 0 q.t.p. em Ω′j

}
,

E−λ,j =
{
u ∈ Hλ(Ω

′
j) : u(x) ≤ 0 q.t.p. em Ω′j

}
.

Segue da de�nição de γ0 e das imersões compactas de Sobolev que existem constantes

positivas τ e λ∗ tais que

distλ,j
(
γ0(~s,~t), E±λ,j

)
> τ para todo (~s,~t) ∈ Q, j ∈ Γ e λ ≥ λ∗,
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onde distλ,j (K,F ) denota a distância entre conjuntos em Hλ(Ω
′
j). Considerando o

número τ obtido na última desigualdade, de�nimos

Θ =
{
u ∈ Hλ(Ω

′
j) : distλ,j

(
u,E±λ,j

)
≥ τ ∀j ∈ Γ

}
.

Além disso, para qualquer c, µ > 0 e 0 < δ < min{ζ, τ/2}, consideramos os conjuntos

Φc
λ =

{
u ∈ Hλ(Ω

′
j) : Φλ(u) ≤ c

}
e Bλ,µ = {u ∈ Θ2δ : |Φλ(u)− Sλ,Γ| ≤ µ} ,

onde ζ é dado em (3.66) e, para r > 0, Θr denota o conjunto

Θr =
{
u ∈ Hλ(Ω

′
j) : distλ,j (u,Θ) ≤ r

}
.

Note que para cada µ > 0, existe Λ∗ = Λ∗(µ) > 0 tal que

w =
l∑

j=1

wj ∈ Bλ,µ, para todo λ ≥ Λ∗,

pois w ∈ Θ, Φλ(w) = DΓ e Sλ,Γ → DΓ quando λ → ∞. Logo, Bλ,µ 6= ∅ para λ

su�cientemente grande.

Observe também que para ε > 0 su�cientemente pequeno, temos

∥∥γ0(~s,~t)
∥∥2

λ
≤ (1 + ε)2

∥∥∥∥∥
k∑
j=1

wj

∥∥∥∥∥
2

λ

≤M :=
2θDΓ

θ − 2
(1 + ε)2 < 1,

com a constante M independente de λ.

No que segue, para r > 0, denotamos por

Br(0) := {u ∈ Hλ : ‖u‖λ ≤ r}

e por µ∗ o seguinte número real positivo

µ∗ = min

{
M + 1

2
,
δ

2

}
. (3.70)

Proposição 3.5.1 Para cada µ > 0 �xo, existem σo = σo(µ) > 0 e Λ∗ = Λ∗(µ) ≥ 1

independentes de λ tais que

‖Φ′λ(u)‖∗λ ≥ σo para λ ≥ Λ∗ e todo u ∈ (Bλ,2µ \Bλ,µ) ∩B(M+3)/4(0) ∩ ΦDΓ
λ .

Demonstração. Suponhamos, por contradição, que existe uma sequência λn → ∞ e

un ∈ (Bλn,2µ \Bλn,µ) ∩B(M+3)/4(0) ∩ ΦDΓ
λn

tal que

‖Φ′λn(un)‖∗λn → 0 quando n→∞.
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Sendo un ∈ Bλn,2µ e Sλn,Γ → DΓ quando n → ∞, segue que a sequência (Φλn(un)) é

também limitada. Assim, podemos assumir que

Φλn(un)→ c ∈ (0, DΓ],

após extrairmos uma subsequência se necessário. Aplicando a Proposição 3.3.8, pode-

mos extrair uma subsequência un → u em H1(R2), onde u ∈ H1
0 (ΩΓ) é uma solução de

(Pj) com

‖un − u‖λn → 0, λn

∫
R2

V (x)|un|2 → 0 e ‖un‖λn,R2\ΩΓ
→ 0.

Uma vez que un ∈ Θ2δ, para todo n ∈ N, temos

‖u±n ‖λn,Ω′j 9 0, para todo j ∈ Γ.

De fato, sendo u−n ∈ E−λn,j, temos

‖u+
n ‖λn,Ω′j = ‖un − u−n ‖λn,Ω′j ≥ distλn,j(un, E

−
λn,j

), ∀λn ≥ Λ∗,

como uλn ∈ Θ2δ, temos

distλn,j(un, E
−
λn,j

) ≥ τ − 2δ > 0.

Logo

‖u+
n ‖λn,Ω′j ≥ τ − 2δ > 0, ∀λn ≥ Λ∗. (3.71)

Analogamente,

‖u−n ‖λn,Ω′j ≥ τ − 2δ > 0, ∀λn ≥ Λ∗.

Sendo assim, ‖u±‖Ωj 6= 0 para todo j ∈ Γ. Logo, para todo j ∈ Γ, u é uma solução

nodal de (Pj) e
l∑

j=1

dj ≤
l∑

j=1

Ij(u|Ωj) ≤ DΓ.

Este fato implica em Ij(u|Ωj) = dj para todo j ∈ Γ, logo

Φλn(un)→ DΓ quando n→∞.

Usando novamente a convergência Sλn,Γ → DΓ quando n→∞, podemos concluir que

un ∈ Bλn,µ ∩ ΦDΓ
λn
,

para n su�cientemente grande, o que é uma contradição. �
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Proposição 3.5.2 Para cada µ ∈ (0, µ∗), existe Λ∗ = Λ∗(µ) > 1 tal que para todo

λ ≥ Λ∗ o funcional Φλ tem um ponto crítico em Bλ,µ ∩B(M+3)/4(0) ∩ ΦDΓ
λ .

Demonstração. Suponhamos, por contradição, que existe µ ∈ (0, µ∗) e uma sequência

λn → ∞, tal que Φλn não tem pontos críticos em Bλn,µ ∩ B(M+3)/4(0) ∩ ΦDΓ
λn
. Pela

Proposição 3.3.5 o funcional Φλn satisfaz a condição (PS)c para todo c ∈ (−∞, D],

logo existe uma constante dλn > 0 tal que

‖Φ′λn(u)‖∗λn ≥ dλn , ∀u ∈ Bλn,µ ∩B(M+3)/4 ∩ ΦDΓ
λn
.

Além disso, pela Proposição 3.5.1, também temos

‖Φ′λn(u)‖∗λn ≥ σo, ∀u ∈ (Bλn,2µ \Bλn,µ) ∩B(M+3)/4(0) ∩ ΦDΓ
λn
,

onde σo > 0 é independente de λn para n su�cientemente grande. No que segue,

Ψn : Hλn → R e Hn : ΦcΓ
λn
→ Hλn

são funções contínuas veri�cando

Ψn(u) = 1, para u ∈ Bλn,3µ/2 ∩Θδ ∩B(M+1)/2(0),

Ψn(u) = 0, para u /∈ Bλn,3µ/2 ∩Θδ ∩B(M+1)/2(0),

0 ≤ Ψn(u) ≤ 1, para u ∈ Hλn ,

e

Hn(u) =


−Ψn(u)‖Yn(u)‖−1Yn(u), para u ∈ Bλn,2µ ∩B(M+3)/4(0),

0, para u /∈ Bλn,2µ ∩B(M+3)/4(0),

onde Yn é um campo pseudo-gradiente para Ψλn sobreMn = {u ∈ Hλn : Φ′λn(u) 6= 0}.

Pela de�nição de Hn, para cada n ∈ N,temos

‖Hn(u)‖ ≤ 1, para todo u ∈ ΦDΓ
λn
,

consequentemente, existe uma deformação ηn : [0,∞)× ΦDΓ
λn
→ ΦDΓ

λn
de�nida por

dηn
dt

= Hn(ηn), ηn(0, u) = u ∈ ΦDΓ
λn
.

Esta deformação satisfaz as seguintes propriedades básicas:

d

dt
Φλn(ηn(t, u)) ≤ −Ψn(ηn(t, u))‖Φ′λn(ηn(t, u))‖ ≤ 0, (3.72)
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∥∥∥∥dηndt
∥∥∥∥
λn

= ‖Hn(ηn)‖λn ≤ 1 (3.73)

e

ηn(t, u) = u, ∀t ≥ 0, u /∈ Bλn,2µ ∩B(M+3)/4(0). (3.74)

• Os caminhos γn(~s,~t) := ηn(t, γ0(~s,~t)), n ∈ N:

Segue da de�nição do caminho γ0 que

γ0(~s,~t) /∈ Bλn,2µ, para todo (~s,~t) ∈ ∂Q.

Portanto,

ηn(t, γ0(~s,~t)) = γ0(~s,~t), para todo (~s,~t) ∈ ∂Q.

Vamos mostrar que as aplicações γn : Q → Hλn pertencem a classe Σλn para n

su�cientemente grande. Para tal, começamos observando que γn é uma aplicação

contínua em Q. Uma vez que µ ∈ (0, µ∗), (3.66), (3.68), e (3.70) implicam em

|Φλn(γ0(~s,~t))−DΓ| > ζ ≥ δ ≥ 2µ∗, ∀(~s,~t) ∈ ∂Q, n ∈ N.

Assim, usando novamente o fato que Sλ,Γ → DΓ quando λ → ∞, existe no > 0

tal que

|Φλn(γ0(~s,~t))− Sλn,Γ| > 2µ, ∀(~s,~t) ∈ ∂Q, n ≥ no,

o que implica em γ0(~s,~t) /∈ Bλn,2µ para todo (~s,~t) ∈ ∂Q e n ≥ no. Logo,

γn = γ0, sobre ∂Q, ∀n ≥ no.

Assim, resta mostrar que

γn(~s,~t)± ∈ H1(Ω′j) \ {0},

para todo j ∈ Γ e todo (~s,~t) ∈ Q.

Sendo γn(~s,~t) = ηn(Tn, γo(~s,~t)) ∈ Θ2δ para todo n, tem-se

distλn,j(γn(~s,~t), E±λn,j) ≥ τ − 2δ > 0.

Assim, γ±n |Ωj 6= 0 para todo j ∈ Γ, e podemos concluir que γn ∈ Σλn para n

su�cientemente grande
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• O caminho γ0(~s,~t):

Note que supt γ0(~s,~t) ⊂ ΩΓ para todo (~s,~t) ∈ Q e que Φλ(γ0(~s,~t)) não depende

de λ ≥ 1. Além disso, observe que

Φλ(γ0(~s,~t)) ≤ DΓ, para todo (~s,~t) ∈ Q

e

Φλ(γ0(~s,~t)) = DΓ, se, e somente se sj = tj = 1, ∀j ∈ {1, ..., l}.

Portanto, o número real

mn
0 := sup{Φλn(u) : u ∈ γ0(Q) \ (Bλn,µ ∩BM+1

2
(0))},

é independente de λn e veri�ca

lim sup
n→∞

mn
0 < DΓ.

De fato, caso contrário, existe uma subsequência (nj) ⊂ N tal que mnj
0 → DΓ,

quando nj →∞ com

γ0(~snj ,~tnj) /∈ Bλnj ,µ
∩BM+1

2
(0),

m
nj
0 −

1

nj
≤ Φλnj

(γ0(~snj ,~tnj)) ≤ DΓ (3.75)

e

Φλnj
(γ0(~snj ,~tnj))→ DΓ, quando nj →∞.

Desde que γ0(Q) ⊂ BM+1
2

(0), devemos ter

γ0(~snj ,~tnj) /∈ Bλnj ,µ
,

ou seja,

|Φλnj
(γ0(~snj ,~tnj))− Sλnj ,Γ| > µ > 0, ∀nj ∈ N. (3.76)

Mas pelo item (b) da Proposição 3.4.2 e por (3.75),

|Φλnj
(γ0(~snj ,~tnj))− Sλnj ,Γ| → 0, quando nj →∞,

o que contradiz (3.76).
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A�rmação 3.5.3 Para cada n ∈ N, existe uma constante Kn > 0 veri�cando

|Φλn(u)− Φλn(v)| ≤ Kn‖u− v‖λn ,

para todo u, v ∈ B(M+3)/4(0).

De fato, Pelo Teorema do Valor Médio, temos

|Φλn(u)− Φλn(v)| ≤ sup
t∈[0,1]

‖Φ′λn(tu+ (1− t)v)‖∗λn‖u− v‖λn ,

onde

‖Φ′λn(tu+ (1− t)v)‖∗λn = sup
w∈Hλn , ‖w‖λn≤1

|〈Φ′λn(tu+ (1− t)v), w〉|.

Assim, basta mostrar que existe Kn > 0 tal que

|〈Φ′λn(tu+ (1− t)v), w〉| ≤ Kn, ∀w ∈ Hλn , ‖w‖λn ≤ 1, ∀u, v ∈ B(M+3)/4(0).

Ora,

|〈Φ′λn(tu+ (1− t)v), w〉| ≤ M + 3

2
+

∫
R2

|f(tu+ (1− t)v)w|.

Sendo assim, resta mostrar a limitação da integral acima. Usando o crescimento de f ,

temos∫
R2

|f(tu+(1− t)v)w| ≤
∫
R2

|tu+(1− t)v||w|+C

∫
R2

|w|
(
e4πτ |tu+(1−t)v|2 − 1

)
. (3.77)

Usando a desigualdade de Hölder e o Lema A.1 do Apêndice A, obtemos∫
R2

|w|
(
e4πτ |tu+(1−t)v|2 − 1

)
≤ C1

∫
R2

(
e4πt2τ |tu+(1−t)v|2 − 1

)
. (3.78)

Por outro lado, para u, v ∈ B(M+3)/4(0), temos

‖tu+ (1− t)v‖λn ≤
M + 3

4
< 1.

Sendo assim, podemos �xar t2 > 1 su�cientemente próximo de 1 de tal modo que

4πt2τ‖tu + (1− t)v‖2
λn
< 1. Logo, usando a Desigualdade de Trudinger-Moser devida

a Cao (6),∫
R2

(
e4πt2τ |tu+(1−t)v|2 − 1

)
≤ C2, ∀u, v ∈ B(M+3)/4(0), ∀t ∈ [0, 1]. (3.79)

Portanto, de (3.77), (3.78) e (3.79), obtemos∫
R2

|f(tu+ (1− t)v)w| ≤ C, ∀u, v ∈ B(M+3)/4(0), ∀t ∈ [0, 1],

concluindo a demonstração da A�rmação 3.5.3.

Usando as informações apresentadas até o presente momento, podemos a�rmar

o seguinte.
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A�rmação 3.5.4 Existe Tn = T (λn) > 0 e ε∗ > 0 independente de n tal que

lim sup
n→∞

{
max

(~s,~t)∈Q
Φλn(ηn(Tn, γ0(~s,~t)))

}
< DΓ − ε∗.

De fato, de�na u := γ0(~s,~t), d̃λn = min{dλn , σo}, Tn = µσo/2d̃λn e η̃(t) := ηn(t, u).

Se u /∈ Bλn,µ ∩B(M+1)/2(0) ∩Θδ, pela de�nição de mn
0 temos

Φλn(ηn(t, u)) ≤ Φλn(u) ≤ mn
0 , ∀t ≥ 0.

Por outro lado, se u /∈ Bλn,µ ∩B(M+1)/2(0) ∩Θδ, devemos analisar os seguintes casos:

Caso 1. η̃n(t) ∈ Bλn,3µ/2 ∩B(M+1)/2(0) ∩Θδ, para todo t ∈ [0, Tn];

Caso 2. η̃n(to) /∈ Bλn,3µ/2 ∩B(M+1)/2(0) ∩Θδ, para algum to ∈ [0, Tn].

Análise do caso 1:

Neste caso, temos Ψn(η̃n(t)) ≡ 1 e ‖Φ′λn(η̃n(t))‖ ≥ d̃λn para todo t ∈ [0, Tn].

Portanto por (3.72),

Φλn(η̃n(Tn)) = Φλn(u) +

∫ Tn

0

d

ds
Φλn(η̃n(s))ds ≤ DΓ −

∫ Tn

0

d̃λnds,

ou seja,

Φλn(η̃n(Tn)) ≤ DΓ − d̃λnTn = DΓ −
1

2
σoµ,

de onde segue a a�rmação.

Análise do caso 2:

Para este caso, temos as seguintes situações

(a) Existe t2 ∈ [0, Tn] tal que η̃n(t2) /∈ Θδ; note que para t1 = 0,

‖η̃n(t2)− η̃n(t1)‖ ≥ δ > µ,

pois η̃n(0) = u ∈ Θ.

(b) Existe t2 ∈ [0, Tn] tal que η̃n(t2) /∈ B(M+1)/2(0); neste caso, para t1 = 0,

‖η̃n(t2)− η̃n(t1)‖ ≥ M + 1

2
> µ,

pois η̃n(0) = u ∈ B(M+1)/2(0).
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(c) η̃n(t) ∈ Θδ ∩B(M+1)/2(0) para todo t ∈ [0, Tn], e existem 0 ≤ t1 ≤ t2 ≤ Tn tal que

η̃n(t) ∈ Bλn,3µ/2 \Bλn,µ para todo t ∈ [t1, t2] com

|Φλn(η̃n(t1))− Sλn,Γ| = µ e |Φλn(η̃n(t2))− Sλn,Γ| = 3µ/2.

Usando a de�nição de Kn, obtemos

‖η̃n(t2)− η̃n(t1)‖ ≥ µ

2Kn

.

As estimativas mostradas em (a)− (c) implicam na existência de uma constante

C > 0 tal que t2 − t1 ≥ Cµ, e assim

Φλn(η̃n(Tn)) ≤ Φλn(u)−
∫ Tn

0

Ψn(η̃n(s))‖Φ′λn(η̃n(s))‖ds

implicando nas desigualdades

Φλn(η̃n(Tn)) ≤ DΓ −
∫ t2

t1

σods ≤ DΓ − σo(t2 − t1)

ou seja,

Φλn(η̃n(Tn)) ≤ DΓ − Cσoµ,

demonstrando que a a�rmação ocorre.

Pelo estudo feito, �ca estabelecida a desigualdade

lim sup
n→∞

Sλn,Γ ≤ DΓ − ε∗,

o que contradiz a Proposição 3.4.2, concluindo a demonstração da Proposição 3.5.2. �

3.6 Demonstração do Teorema 3.1.1

Pela Proposição 3.5.2, para cada µ ∈ (0, µ∗) �xo, existe Λ∗ = Λ∗(µ) > 1 tal que

o problema auxiliar (A)λ tem uma solução nodal uλ ∈ Bλ,µ ∩B(M+3)/4(0) para λ ≥ Λ∗

com

distλ,j(uλ, E
±
λ,j) ≥ τ − 2δ > 0 ∀j ∈ Γ. (3.80)

Repetindo o mesmo argumento usado na demonstração da Proposição 3.3.8, obtemos

uλ → 0 em H1(R2 \ ΩΓ) quando λ→∞.
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Esta convergência junto com a Proposição 3.3.9, implica que uλ é uma solução nodal

de (P )λ, para λ su�cientemente grande.

Fixando λn →∞ e µn → 0, a sequência (uλn) veri�ca

Φ′λn(uλn) = 0 e Φλn(uλn) = Sλn,Γ + on(1).

Pela Proposição 3.4.2,

Φ′λn(uλn) = 0 e Φλn(uλn) = DΓ + on(1).

Portanto, (uλn) é uma sequência (PS)∞,DΓ
para (Φλn). Sendo DΓ ∈ (0, D], pela

Proposição 3.3.8 existe u ∈ H1
0 (ΩΓ) tal que, para alguma subsequência ainda denotada

por (uλn),

uλn → u H1(R2), λn

∫
R2

V (x)|uλn|2 → 0 e ‖uλn‖2
λn,R2\ΩΓ

→ 0.

De onde segue que

I ′j(u) = 0 para todo j ∈ Γ e
l∑

j=1

Ij(u) = DΓ. (3.81)

Como consequência, temos o seguinte resultado

A�rmação 3.6.1 Existe κo > 0 tal que∫
Ωj

|u±λn|
q′ ≥ κo ∀λn ≥ Λ∗, ∀j ∈ Γ, (3.82)

para algum q′ > 1.

De fato, �xe j ∈ Γ e considere ηi ∈ C∞(R2,R) veri�cando

ηj ≡ 1 em Ω′j e ηj ≡ 0 em R2 \ (Ω′j)δ e ((Ω′j)δ \ Ω′j) ⊂ R2 \ ΩΓ.

Tomando vj = ηju
+
λn

como função teste, obtemos∫
R2

∇uλn∇(ηju
+
λn

) + (λnV (x) + 1)uλnηju
+
λn

=

∫
R2

f(uλn)ηju
+
λn
,

de onde segue que∫
R2

|∇u+
λn
|2ηj + (λnV (x) + 1)|u+

λn
|ηj =

∫
R2

f(uλn)ηju
+
λn

+ on(1). (3.83)
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Usando o crescimento de g, obtemos∫
R2

f(uλn)ηju
+
λn
≤ ε

∫
R2

|u+
λn
|2ηj + C

∫
R2

ηju
+
λn
bτ (uλn),

e pela Desigualdade de Hölder∫
R2

f(uλn)ηju
+
λn
≤ ε

∫
R2

|u+
λn
|2ηj + C

(∫
R2

|ηju+
λn
|q′
)1/q′

|bτ (uλn)|q

onde 1/q + 1/q′ = 1. Fixando q > 1, com q su�cientemente próximo de 1 e usando o

Corolário 3.2.2, obtemos∫
R2

f(uλn)ηju
+
λn
≤ ε

∫
R2

|u+
λn
|2ηj + C

(∫
R2

|ηju+
λn
|q′
)1/q′

. (3.84)

De (3.83) e (3.84),

(1− ε)
∫
R2

|∇u+
λn
|2ηj + (λnV (x) + 1)|u+

λn
|2ηj ≤ C

(∫
R2

|ηju+
λn
|q′
)1/q′

+ on(1).

Logo, �xando ε < 1 e usando (3.71), obtemos

0 < (1− ε)(τ − 2δ) ≤ (1− ε)‖u+
λn
‖2
λn,Ω′j

≤ C

(∫
Ω′j

|u+
λn
|q′
)1/q′

+ on(1),

de onde segue que ∫
Ω′j

|u+
λn
|q′ ≥ κo > 0, ∀λn ≥ Λ∗,

para algum κo positivo. Analogamente, temos∫
Ω′j

|u−λn|
q′ ≥ κo > 0, ∀λn ≥ Λ∗,

mostrando que a a�rmação é verdadeira.

Passando ao limite de n→∞ em (3.82), obtemos∫
Ω′j

|u±|q′ =

∫
Ωj

|u±|q′ ≥ κo, ∀j ∈ Γ.

Assim, u muda de sinal em Ωj para todo j ∈ Γ, o que implica em

Ij(u) ≥ dj, ∀j ∈ Γ. (3.85)

Segue de (3.81) e (3.85) que Ij(u) = dj para todo j ∈ Γ. Isto mostra que, para

cada j ∈ Γ, u|Ωj é uma solução nodal de energia mínima para o problema (3.3), e a

demonstração do Teorema 3.1.1 está completa. �
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Capítulo 4

In�nitas soluções nodais em bolas

Neste capítulo, estabelecemos a existência de in�nitas soluções nodais para o

problema 
−∆u = f(u), em B,

u = 0, sobre ∂B,

(P )

onde B é a bola unitária em R2 e f é uma função ímpar com crescimento crítico

exponencial. Dividindo B em setores angulares e usando o Teorema do Passo da

Montanha, mostramos a existência de uma solução positiva em um dos setores de B.

A partir desta solução e de um processo de continuação anti-simétrica desenvolvido por

Comte-Knaap [31] mostraremos a existência de in�nitas soluções nodais em B. Aqui,

vamos assumir as hipóteses:

(f1) Existe C > 0 tal que

|f(s)| ≤ Ce4π|s|2 para todo s ∈ R;

(f2) lim
s→0

f(s)

s
= 0;

e as seguintes hipóteses adicionais

(H1) Existem s0 > 0 e M > 0 tais que

0 < F (s) :=

∫ s

0

f(t)dt ≤M |f(s)| para todo |s| ≥ s0.



(H2) 0 < F (s) ≤ 1

2
f(s)s, para todo s ∈ R \ {0}.

(H3) lims→∞ sf(s)e−4πs2 = +∞

Nosso principal resultado é o seguinte:

Teorema 4.0.2 Seja f uma função ímpar satisfazendo (f1) − (f2) e (H1) − (H3).

Então, o problema (P ) tem in�nitas soluções nodais.

Para cada m ∈ N, de�nimos o conjunto

Am =
{
x = (x1, x2) ∈ B : cos

( π
2m

)
|x1| < sen

( π
2m

)
x2

}
,

ver �gura 4.1. Assim, A1 é um semi-círculo; A2 é um quarto do círculo (setor angular

de ângulo π/2); A3 é um quarto do círculo (setor angular de ângulo π/4), e assim

sucessivamente.

Figura 4.1: Setor angular Am.

Primeiro consideramos o problema
−∆u = f(u), em Am,

u = 0, sobre ∂Am.

(P )m

Usaremos o Teorema do Passo da Montanha (Teorema A.18 do Apêndice A) para obter

uma solução positiva de (P )m e a partir desta solução, vamos construir uma solução

nodal para o problema (P ).
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De acordo com Figueiredo, Miyagaki e Ruf [34], para obter uma solução positiva

de (P )m basta que o limite em (H3) veri�que

(H3)′ lim
s→+∞

sf(s)e−4πs2 ≥ β >
1

2πd2
m

,

onde dm é o raio da maior bola contida em Am. Conforme demonstramos a seguir,

supondo (H3) no lugar de (H3)′, temos a existência de uma solução positiva de (P )m,

para cada m ∈ N. Este é o conteúdo do nosso próximo resultado.

Teorema 4.0.3 Sob as hipóteses (f1) − (f2) e (H1) − (H3), o problema (P )m possui

uma solução positiva, para cada m ∈ N.

4.1 Demonstração do Teorema 4.0.3.

Como estamos interessados em soluções positivas para o problema (P )m, vamos

supor ainda que

f(s) = 0, ∀s ≤ 0.

Associado ao problema (P )m, temos o funcional energia I : H1
0 (Am) → R dado

por

I(u) =
1

2

∫
Am

|∇u|2 −
∫
Am

F (u).

No nosso caso, ∂Am não é de classe C1. No entanto, o funcional I está bem de�nido.

De fato, para u ∈ H1
0 (Am), considere u∗ ∈ H1

0 (B) a extensão nula de u em B, de�nida

por

u∗(x) =

 u(x), se x ∈ Am
0, se x ∈ B \ Am.

Claramente

‖u‖Am = ‖u∗‖B.

Logo, por (f1) e pela Desigualdade de Trudinger-Moser (1)∣∣∣∣∫
Am

F (u)

∣∣∣∣ =

∣∣∣∣∫
B

F (u∗)

∣∣∣∣ ≤ ∫
B

|F (u∗)| ≤ C

∫
B

e4π|u∗|2 <∞.

Além disso, mostra-se que o funcional I é de classe C1 com

I ′(u)v =

∫
Am

∇u∇v −
∫
Am

f(u)v, ∀u, v ∈ H1
0 (Am).

O próximo lema garante que o funcional I tem a geometria do passo da montanha.
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Lema 4.1.1 (a) Existem r, ρ > 0 tais que

I(u) ≥ ρ > 0, para todo ‖u‖Am = r.

(b) Existe e ∈ H1
0 (Am) tal que

‖e‖Am > r e I(e) < 0.

Demonstração. Usando a de�nição de I e o crescimento de f ,

I(u) ≥ 1

2

∫
Am

|∇u|2 − ε

2

∫
Am

|u|2 − C
∫
Am

|u|qeβ|u|2 ,

ou ainda,

I(u) ≥ 1

2

∫
B

|∇u∗|2 − ε

2

∫
B

|u∗|2 − C
∫
B

|u∗|qeβ|u∗|2 .

Usando a Desigualdade de Poincaré,

I(u) ≥ 1

2

∫
B

|∇u∗|2 − ε

2λ1

∫
B

|∇u∗|2 − C
∫
B

|u∗|qeβ|u∗|2 ,

onde λ1 é o primeiro autovalor de (−∆, H1
0 (B)). Fixando ε > 0 su�cientemente pe-

queno, temos C1 :=
1

2
− ε

2λ1

> 0, de onde segue que

I(u) ≥ C1

∫
B

|∇u∗|2 − C
∫
B

|u∗|qeβ|u∗|2 .

Note que, pela Desigualdade de Trudinger-Moser (2)

eβ|u
∗|2 ∈ L2(B)

e por imersão contínua

|u∗|q ∈ L2(B).

Logo, pela Desigualdade de Hölder,∫
B

|u∗|qeβ|u∗|2 ≤
(∫

B

|u∗|2q
)1/2 (

e2β|u∗|2
)1/2

≤ |u∗|q2q,B
(∫

B

e2β|u∗|2
)1/2

≤ C‖u∗‖qB
(∫

B

e2β|u∗|2
)1/2

,

pois H1
0 (B) ↪→ L2q(B), para todo q ≥ 1.
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A�rmamos que para r > 0 su�cientemente pequeno, tem-se

sup
‖u∗‖B=r

∫
B

e2β|u∗|2 <∞.

De fato, note que ∫
B

e2β|u∗|2 =

∫
B

e
2β‖u∗‖2B

(
|u∗|
‖u∗‖B

)2

.

Escolhendo 0 < r ≈ 0 de maneira que α := 2βr2 < 4π e usando a Desigualdade de

Trudinger-Moser (2), obtemos

sup
‖u∗‖B=r

∫
B

e2β|u∗|2 ≤ sup
‖v‖B≤1

∫
B

eα|v|
2

<∞.

Portanto,

I(u) ≥ C1‖u∗‖2
B − C2‖u∗‖qB.

Fixando q > 2, obtemos

I(u) ≥ C1r
2 − C2r

q := ρ > 0,

para r = ‖u‖Am = ‖u∗‖B su�cientemente pequeno, mostrando que a a�rmação em (a)

é verdadeira.

Para demonstrar a a�rmação em (b), observe primeiro que

A�rmação 1. Para cada ε > 0, existe sε > 0 tal que

F (s) ≤ εf(s)s, para todo x ∈ Am, |s| ≥ sε.

De fato, basta ver que por (H1)∣∣∣∣ F (s)

sf(s)

∣∣∣∣ ≤ M

|s|
, ∀|s| ≥ s0.

Para p > 2, a A�rmação 1 com ε = 1/p > 0, garante a existência de sε > 0 tal que

pF (s) ≤ f(s)s, ∀s ≥ sε,

que por sua vez implica na existência de constantes C1, C2 > 0 tais que

F (s) ≥ C1|s|p − C2, ∀s ≥ 0.

Sendo assim, �xando ϕ ∈ C∞0 (Am) com ϕ ≥ 0 e ϕ 6= 0. Para t ≥ 0, temos∫
Am

F (tϕ) ≥
∫
Am

(C1|tϕ|p − C2)

≥ C1|t|p
∫
Am

|ϕ| − C2|Am|,
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de onde segue que ∫
Am

F (tϕ) ≥ C3|t|p − C4. (4.1)

Por (4.1), se t ≥ 0,

I(tϕ) ≤ t2

2
‖ϕ‖2

Am − C3|t|p + C4.

Sendo p > 2,

I(tϕ)→ −∞, quando t→ +∞.

Fixando t0 ≈ +∞ e de�nindo e = t0ϕ, concluimos que

‖e‖Am ≥ r e I(e) < 0. �

O próximo lema é crucial para mostrar que o funcional satisfaz a condição de

Palais-Smale abaixo de um certo nível e sua demonstração pode ser encontrada em

Figueiredo, Miyagaki e Ruf [34].

Lema 4.1.2 Sejam Ω ⊂ RN limitado e (un) uma sequência em L1(Ω) tal que un

converge para uma função u ∈ L1(Ω) em quase todo ponto de Ω. Seja f : R→ R uma

função contínua tal que f(un), f(u) ∈ L1(Ω), para todo n ∈ N. Se existe C > 0 tal

que ∫
Ω

|f(un)un| ≤ C, para todo n ∈ N,

então f(un) converge para f(u) em L1(Ω).

Lema 4.1.3 O funcional I veri�ca a condição (PS)d, para todo d ∈ (0, 1/2).

Demonstração. Sejam d < 1/2 e (un) uma sequência (PS)d para o funcional I, isto

é,

I(un)→ d e I ′(un)→ 0, quando n→ +∞.

Escrevendo, para cada n ∈ N, εn = sup
‖v‖≥1

{|I ′(un)v|}, temos

|I ′(un)v| ≤ εn‖v‖m,

para todo v ∈ H1
0 (Am), onde εn = on(1), ou ainda,

1

2

∫
Am

|∇un|2 −
∫
Am

F (un) = d+ on(1), ∀n ∈ N. (4.2)

e ∣∣∣∣∫
Am

∇un∇v −
∫
Am

f(un)v

∣∣∣∣ ≤ ‖v‖mεn, ∀n ∈ N, v ∈ H1
0 (Am). (4.3)
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Por (4.2) e pelo item (ii) da A�rmação 1, para cada ε > 0, existe n0 ∈ N tal que

1

2
‖un‖2

m =
1

2

∫
Am

|∇un|2 ≤ ε+ d+

∫
Am

F (un) ≤ Cε + ε

∫
Am

f(un)un,

sempre que n ≥ n0, e usando (4.3) com v = un, obtemos(
1

2
− ε
)
‖un‖2

m ≤ Cε + ε‖un‖m, ∀n ≥ n0.

Portanto, a sequência (un) é limitada. Sendo H1
0 (Am) um espaço de Banach re�exivo,

existe u ∈ H1
0 (Am) tal que, a menos de subsequência,

un ⇀ u em H1
0 (Am).

Além disso, pelas imersões compactas de Sobolev, temos

un → u em Lq(Am), q ≥ 1

e

un(x)→ u(x) q.t.p. em Am.

Por outro lado, usando (4.3) com v = un, obtemos

−εn‖un‖m ≤
∫
Am

|∇un|2 −
∫
Am

f(un)un

ou ainda ∫
Am

f(un)un ≤ ‖un‖2
m − εn‖un‖m ≤ C, ∀n ∈ N.

Logo, pelo Lema 4.1.2, temos f(un)→ f(u) em L1(Am). Assim, existe h ∈ L1(Am) tal

que, a menos de subsequência, temos

|f(un(x))| ≤ h(x), q.t.p. em Am,

e por (H1), temos

|F (un)| ≤Mh(x), q.t.p. em Am.

Além disso,

F (un(x))→ F (u(x)) q.t.p. em Am.

Sendo assim, pelo Teorema da Convergência Dominada de Lebesgue,∫
Am

F (un)−
∫
Am

F (u) = on(1).

111



Logo, por (4.2),
1

2
‖un‖2

m −
∫
Am

F (u)− d = on(1),

ou seja,

lim
n→∞

‖un‖2
m = 2

(
d+

∫
Am

F (u)

)
. (4.4)

Usando novamente (4.3) com v = un, obtemos∣∣∣∣‖un‖2
m −

∫
Am

f(un)un

∣∣∣∣ ≤ on(1),

o que implica em∣∣∣∣∫
Am

f(un)un − 2

(
d+

∫
Am

F (u)

)∣∣∣∣ ≤ ∣∣∣∣‖un‖2
m −

∫
Am

f(un)un

∣∣∣∣
+

∣∣∣∣‖un‖2
m − 2

(
d+

∫
Am

F (u)

)∣∣∣∣ .
Logo,

lim
n→∞

∫
Am

f(un)un = 2

(
d+

∫
Am

F (u)

)
.

Além disso, por (H2)

2

∫
Am

F (u) ≤ 2 lim
n→∞

∫
Am

F (un)

≤ lim
n→∞

∫
Am

f(un)un = 2d+ 2

∫
Am

F (u),

de onde segue que d ≥ 0.

A�rmação 2. Para qualquer v ∈ H1
0 (Am), temos∫

Am

∇u∇v =

∫
Am

f(u)v.

De fato, �xe v ∈ H1
0 (Am) e note que∣∣∣∣∫

Am

∇u∇v −
∫
Am

f(u)v

∣∣∣∣ ≤ ∣∣∣∣∫
Am

∇un∇v −
∫
Am

∇u∇v
∣∣∣∣+

∣∣∣∣∫
Am

f(un)v −
∫
Am

f(u)v

∣∣∣∣
+

∣∣∣∣∫
Am

∇un∇v −
∫
Am

f(un)v

∣∣∣∣ .
Usando o Lema 4.1.2, a convergência fraca un ⇀ u em H1

0 (Am) e a estimativa em (4.3),

obtemos ∣∣∣∣∫
Am

∇u∇v −
∫
Am

f(u)v

∣∣∣∣ ≤ on(1) + ‖v‖on(1),

concluindo assim a demonstração da A�rmação 2.
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Note que por (H2) e a A�rmação 2,

J(u) ≥ 1

2

∫
Am

|∇u|2 − 1

2

∫
Am

f(u)u = 0.

Vamos dividir a demonstração em três casos:

Caso 1. O nível d = 0. Pela semicontinuidade inferior da norma, temos

‖u‖m ≤ lim inf
n→∞

‖un‖m,

logo
1

2
‖u‖2

m ≤
1

2
‖un‖2

m.

Usando (4.4), obtemos

0 ≤ I(u) ≤ 1

2
lim inf ‖un‖2 −

∫
Am

F (u),

o que implica em

0 ≤ I(u) ≤
∫
Am

F (u)−
∫
Am

F (u) = 0,

de onde segue que I(u) = 0, ou seja,

‖u‖2
m = 2

∫
Am

F (u).

Usando novamente (4.4), concluimos que

‖un‖2
m − ‖u‖2

m = on(1),

sendo H1
0 (Am) um espaço de Hilbert, obtemos

un → u em H1
0 (Am).

Portanto, I veri�ca a condição de Palais-Smale no nível d = 0.

Caso 2. O nível d 6= 0 e o limite fraco u ≡ 0.

O que faremos é mostrar que este fato não ocorre para sequências Palais-Smale

do funcional I.

A�rmação 3. Existem q > 1 e uma constante C > 0 tais que∫
Am

|f(un)|q < C, ∀n ∈ N.

De fato, por (4.4), para cada ε > 0, existe n0 ∈ N, de modo que

‖un‖2
m ≤ 2d+ ε, ∀n ≥ n0.
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Além disso, usando (f1), obtemos∫
Am

|f(un)|q ≤ C

∫
Am

e4πqu2
n = C

∫
B

e
4π‖u∗n‖2( un

‖u∗n‖
)2

de onde concluimos pela Desigualdade de Trudinger-Moser (2), que a última integral na

expressão acima é limitada, se 4πq‖u∗n‖2 < 4π e isto de fato ocorre quando tomamos q >

1 su�cientemente próximo de 1 e ε su�cientemente pequeno, pois d < 1/2. Mostrando

a a�rmação.

Assim, usando (4.3) com v = un, obtemos∣∣∣∣∫
Am

|∇un|2 −
∫
Am

f(un)un

∣∣∣∣ ≤ εn‖un‖m ≤ εnC, ∀n ∈ N.

Logo,

‖un‖2
m ≤ on(1) +

∫
Am

f(un)un, ∀n ∈ N. (4.5)

Além disso, pela Desigualdade de Hölder, podemos estimar a segunda integral acima

como segue abaixo∫
Am

f(un)un ≤
(∫

Am

|f(un)|q
)1/q (∫

Am

|un|q
′
)1/q′

, ∀n ∈ N,

e como un → 0 em Lq
′
(Am), temos∫

Am

f(un)un = on(1).

Portanto, por (4.5),

‖un‖2
m → 0, quando n→∞, (4.6)

encontrando uma contradição com (4.4), pois

‖un‖2
m → 2d 6= 0, quando n→∞,

mostrando que d 6= 0 e u = 0 não ocorre.

Caso 3. O nível d 6= 0 e o limite fraco u 6= 0.

Primeiro, observe que I(u) ≤ d, visto que

I(u) =
1

2
‖u‖2

m −
∫
Am

F (u) ≤ lim inf
n

(
1

2
‖un‖2

m −
∫
Am

F (un)

)
= d.

A�rmação 4. I(u) = d.
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De fato, suponha por contradição que I(u) < d, pela de�nição de I, temos

‖u‖2
m < 2

(
d+

∫
Am

F (u)

)
. (4.7)

Por outro lado, considerando as funções

vn =
u∗n
‖u∗n‖

, n ∈ N

e

v = u∗
[
2

(
d+

∫
B

F (u∗)

)]−1/2

,

tem-se ‖vn‖B = 1 e ‖v‖B < 1. Além disso,

vn ⇀ v em H1
0 (B),

pois, para cada ϕ ∈ C∞0 (B),∫
B

∇vn∇ϕ = ‖un‖−1

∫
Am

∇un∇ϕ→
[
2

(
d+

∫
B

F (u∗)

)]−1/2 ∫
B

∇u∇ϕ =

∫
B

∇v∇ϕ,

ou seja, ∫
B

∇vn∇ϕ−
∫
B

∇v∇ϕ = on(1).

A�rmação 4.1.4 Existem q > 1 e n0 ∈ N tais que∫
Am

|f(un)|q < C, ∀n ≥ n0.

Para demonstrar esta a�rmação, vamos precisar do seguinte resultado devido a

P.L. Lions [40].

Proposição 4.1.5 Seja (un) uma sequência em H1
0 (Ω) tal que |∇un|2 = 1 para todo

n ∈ N. Além disso, suponha que un ⇀ u em H1
0 (Ω) com |∇u|2 < 1. Se u 6= 0, então

para cada 1 < p <
1

1− |∇u|22
, temos

sup
n∈N

∫
Ω

e4πpu2
n <∞.

Da hipótese (f1),∫
Am

|f(un)|q ≤ C

∫
Am

e4πqu2
n = C

∫
B

e4πq‖u∗n‖2v2
n . (4.8)

A última integral na expressão anterior é limitada. De fato, pelo Proposição 4.1.5,

basta mostrar que existem q, p > 1 e n0 ∈ N tais que

q‖u∗n‖2 ≤ p <
1

1− ‖v‖2
, ∀n ≥ n0. (4.9)
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Para ver que (4.9) ocorre, observe que I(u) ≥ 0 e d < 1/2, implicando em

2 <
1

d− I(u)
,

de onde segue que

2

(
d+

∫
B

F (u∗)

)
<

d+

∫
B

F (u∗)

d− I(u)
=

1

1− ‖v‖2
B

.

Sendo assim, para q > 1 su�cientemente próximo de 1, temos

2q

(
d+

∫
B

F (u)

)
<

1

1− ‖v‖2
B

,

o que implica, por (4.4), que existem p > 1 e n0 ∈ N tais que

q‖u∗n‖2 ≤ p <
1

1− ‖v‖2
B

, ∀n ≥ n0,

mostrando que (4.9) ocorre. Portanto a A�rmação 4.1.4 é verdadeira.

Agora, vamos mostrar que un → u em H1
0 (Am). Para isto, observe primeiro que

pela desigualdade de Hölder e por (4.1.4),∫
Am

f(un)(un − u) ≤
∫
Am

(|f(un)|q)1/q

(∫
Am

|un − u|q
′
)1/q′

≤ C|un − u|q′,Am ,

onde 1/q + 1/q′ = 1. Como un → u em Lq
′
(Am), temos∫

Am

f(un)(un − u) = on(1). (4.10)

Usando (4.3) com v = un − u e (4.10), obtemos 〈un − u, un〉 = on(1), e como un ⇀ u

em H1
0 (Am), temos

‖un − u‖2
m = 〈un − u, un〉 − 〈un − u, u〉 = on(1).

O que implica em ‖un‖2
m → ‖u‖2

m e isto juntamente com (4.4) contradiz (4.7). Mos-

trando que I(u) = d, ou seja,

‖u‖2
m = 2

(
d+

∫
Am

F (u)

)
.

Além disso, por (4.4), temos ‖un‖m → ‖u‖m quando n→∞. Portanto

un → u em H1
0 (Am). �
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Em vista do Lema 4.1.1 e do Teorema do Passo da Montanha sem condições de

compacidade (Teorema A.18 do Apêndice A), existe uma sequência (PS) no nível do

passo da montanha de I, ou seja, existe (un) ⊂ H1
0 (Am) tal que

I(un)→ cm e I ′(un)→ 0,

onde

cm = inf
γ∈Γ

max
t∈[0,1]

I(γ(t))

e

Γ = {γ ∈ C([0, 1], H1
0 (Am)) : γ(0) = 0 e I(γ(1)) < 0}.

Para concluir a demonstração da existência de solução positiva de (P )m, resta mostrar

que cm ∈ (−∞, 1/2).

Para tal, consideramos as seguintes funções introduzidas em Moser [45]:

wn(x) =
1√
2π



(ln(n))1/2 , 0 ≤ |x| ≤ 1/n

ln
1

|x|
(ln(n))1/2

, 1/n ≤ |x| ≤ 1

0, |x| ≥ 1

Sejam dm > 0 e xm ∈ Am tais que Bdm(xm) ⊂ Am. De�nindo

wn(x) = wn

(
x− xm
dm

)
,

tem-se que wn ∈ H1
0 (Am), ‖wn‖Am = 1 e supp wn ⊂ Bdm(xm).

A�rmamos que existe n ∈ N tal que

max
t≥0

I(twn) <
1

2
.

De fato, suponha por contradição que este máximo é maior do que ou igual a 1/2, para

todo n ∈ N. Seja tn > 0 tal que

max
t≥0

I(twn) = I(tnwn) ≥ 1

2
. (4.11)

Segue de (4.11) e (H1) que

t2n ≥ 1. (4.12)
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Além disso,
d

dt
I(twn) |t=tn = 0, ou seja,

t2n =

∫
Am

f(tnwn)tnwn, (4.13)

o que implica em

t2n ≥
∫
Bdm/n(xm)

f(tnwn)tnwn. (4.14)

No que segue, �xamos uma constante positiva βm de tal modo que

βm >
1

2πd2
m

. (4.15)

Segue da hipótese (H3) que existe sm = sm(βm) > 0 veri�cando

f(s)s ≥ βme
4πs2 , ∀s ≥ sm. (4.16)

Usando (4.16) em (4.14) e a de�nição de wn em Bdm/n(0), obtem-se

t2n ≥ βmπ
d2
m

n2
e2t2nln(n) (4.17)

para n su�cientemente grande, ou equivalentemente,

t2n ≥ βmπd
2
me

2ln(n)(t2n−1) (4.18)

de onde segue que (tn) é limitada. Além disso, de (4.18) e (4.12),

t2n → 1, quando n→∞.

Agora, de�na

Cn = {x ∈ Bdm(xm) : tnwn(x) ≥ sm}

e

Dn = Bdm(xm) \ Cn.

Com as notações acima e usando (4.13),

t2n ≥
∫
Bdm/n(xm)

f(tnwn)tnwn =

∫
Cn

f(tnwn)tnwn +

∫
Dn

f(tnwn)tnwn

e por (4.16),

t2n ≥
∫
Dn

f(tnwn)tnwn + βm

∫
Cn

e4πt2nw
2
n

118



ou equivalentemente,

t2n ≥
∫
Dn

f(tnwn)tnwn + βm

∫
Bdm (xm)

e4πt2nw
2
n − βm

∫
Dn

e4πt2nw
2
n . (4.19)

Observe que

wn(x)→ 0 q.t.p. em Bdm(xm),

χDn(x)→ 1 q.t.p. em Bdm(xm)

e

e4πt2nw
2
nχDn ≤ e4πt2ns

2
m ∈ L1(Bdm(xm)).

Logo, pelo Teorema da convergência dominada de Lebesgue

lim
n

∫
Dn

e4πt2nw
2
n = lim

n

∫
Bdm (xm)

e4πt2nw
2
nχDn =

∫
Bdm (xm)

1 = πd2
m. (4.20)

Além disso,

f(tnwn)tnwnχDn ≤ Ctnwne
4πt2nw

2
n ≤ Csme

4πs2m ∈ L1(Bdm(xm))

e

f(tnwn(x))tnwn(x)χDn(x)→ 0 q.t.p. em Bdm(xm).

Assim, usando novamente o Teorema da convergência dominada de Lebesgue,

lim
n

∫
Dn

f(tnwn)tnwn = 0 (4.21)

Passando ao limite de n→∞ em (4.19) e usando (4.20) e (4.21),

1 ≥ βm lim
n

∫
Bdm (xm)

e4πt2nw
2
n − βmπd2

m

Sendo t2n ≥ 1,

1 ≥ βm lim
n

[∫
Bdm (xm)

e4πw2
n

]
− βmπd2

m. (4.22)

Desde que∫
Bdm (xm)

e4πw2
n = d2

m

∫
B1(0)

e4πw2
n = d2

m

{
π

n2
e4π 1

2π
ln(n) + 2π

∫ 1

1/n

e4π 1
2π

[ln(1/r)]2

ln(n) rdr

}
,

fazendo a mudança de variáveis s = ln(1/r)/ln(n),∫
Bdm (xm)

e4πw2
n = πd2

m + 2πd2
mln(n)

∫ 1

0

e2s2ln(n)−2sln(n),
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e como

lim
n→∞

[
2ln(n)

∫ 1

0

e2ln(n)(s2−s)ds

]
= 2,

temos

lim
n→∞

∫
Bdm (xm)

e4πw2
n = πd2

m + 2πd2
m = 3πd2

m.

Usando este último limite em (4.22), obtemos

1 ≥ 3βmπd
2
m − βπd2

m = 2βπd2
m,

o que implica em

βm ≤
1

2πd2
m

,

contradizendo a escolha de βm feita em (4.15). Portanto

max
t≥0

I(twn) <
1

2
,

mostrando que cm < 1/2, para qualquer m ∈ N �xado arbitrariamente. �

4.2 Demonstração do Teorema 4.0.2.

Para demonstrar o Teorema 4.0.2, vamos usar a seguinte proposição.

Proposição 4.2.1 Seja A um setor angular contido no semi-plano positivo de R2 tal

que uma de suas fronteiras retas está no eixo x2, e denote tal fronteira de A por

B0 = {x = (x1, x2) ∈ A : x2 = 0}. Considere A′ a re�exão de A com respeito ao eixo

x2 (ver �gura 4.2). Suponha que u é uma solução do seguinte problema:

(P )

 −∆u = f(u), em A,

u = 0, sobre B0,

onde f é uma função contínua e ímpar. Então, a função ũ tal que ũ = u sobre A e ũ

é antisimétrica com respeito ao eixo x2,

ũ(x1, x2) =


u(x1, x2), em A

−u(x1,−x2), em A′

0, sobre B0

satisfaz

−∆ũ = f(ũ) em A ∪ A′.
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Figura 4.2: Re�exão de A em relação ao eixo x2.

Demonstração. Sendo u uma solução de (P ), temos∫
A

∇u∇ϕ =

∫
A

f(u)ϕ, ∀ϕ ∈ C∞c (A).

Queremos demonstrar que∫
A∪A′
∇ũ∇φ =

∫
A∪A′

f(ũ)φ, ∀φ ∈ C∞0 (A ∪ A′).

Para qualquer φ ∈ C∞0 (A ∪ A′),∫
A∪A′

f(ũ)φ =

∫
A

f(u(x1, x2))φ(x1, x2) +

∫
A′
f(−u(x1,−x2))φ(x1, x2).

Sendo f ímpar, temos

∫
A∪A′

f(ũ)φ =

∫
A

f(u(x1, x2))φ(x1, x2) +

∫
A′
f(−u(x1,−x2))φ(x1, x2)

=

∫
A

f(u(x1, x2))φ(x1, x2)−
∫
A′
f(u(x1,−x2))φ(x1, x2)

=

∫
A

f(u(x1, x2))φ(x1, x2)−
∫
A

f(u(x1, x2))φ(x1,−x2).
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Logo ∫
A∪A′

f(ũ)φ =

∫
A

f(u)ψ, (4.23)

onde ψ(x1, x2) = φ(x1, x2)− φ(x1,−x2). Por outro lado,∫
A∪A′
∇ũ∇φ =

∫
A

∇u(x1, x2)∇φ(x1, x2)−
∫
A′
∇u(x1,−x2)∇φ(x1, x2)

=

∫
A

∇u(x1, x2)∇φ(x1, x2)−
∫
A

∇u(x1, x2)∇(φ(x1,−x2))

=

∫
A

∇u(x1, x2)∇(φ(x1, x2)− φ(x1,−x2)).

Assim, ∫
A∪A′
∇ũ∇φ =

∫
A

∇u∇ψ. (4.24)

A função ψ em geral não pertence ao espaço C∞0 (A), e portanto não pode ser usada

como função teste (na de�nição de solução fraca em H1(A)). No entanto, considerando

a sequência de funções (ηk) em C∞(R), de�nidas por

ηk(t) = η(kt), t ∈ R, k ∈ N,

onde η ∈ C∞(R) é uma função tal que

η(t) =

 0, se t < 1/2,

1, se t > 1.

Tem-se

ϕk(x1, x2) := ηk(x2)ψ(x1, x2) ∈ C∞0 (A),

logo ∫
A

∇u∇ϕk =

∫
A

f(u)ϕk, k ∈ N. (4.25)

De (4.23), (4.24) e (4.25), podemos concluir a demonstração, visto que os seguintes

limites

(I)

∫
A

∇u∇ϕk →
∫
A

∇u∇ψ

e

(II)

∫
A

f(u)ϕk →
∫
A

f(u)ψ,

quando k →∞, são válidos. Para ver que (I) ocorre, note que∫
A

∇u∇ϕk =

∫
A

ηk∇u∇ψ +

∫
A

∂u

∂x2

kη′(kx2)ψ.
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Claramente, ∫
A

ηk∇u∇ψ →
∫
A

∇u∇ψ, quando k →∞.

Assim, resta mostrar que∫
A

∂u

∂x2

kη′(kx2)ψ → 0 quando k →∞. (4.26)

Com efeito,∣∣∣∣∫
A

∂u

∂x2

kη′(kx2)ψ

∣∣∣∣ ≤ kMC

∫
0<x2<1/k

∣∣∣∣ ∂u∂x2

∣∣∣∣x2 ≤MC

∫
0<x2<1/k

∣∣∣∣ ∂u∂x2

∣∣∣∣ ,
onde C = sup

t∈[0,1]

|η′(t)| e M > 0 é tal que

|ψ(x1, x2)| ≤M |x2|, ∀(x1, x2) ∈ A ∪ A′,

e como ∫
0<x2<1/k

∣∣∣∣ ∂u∂x2

∣∣∣∣→ 0, quando k →∞,

o limite em (4.26) ocorre. O item (II) é uma consequência imediata do Teorema da

convergência dominada de Lebesgue.

Agora, para cada m ∈ N, aplicamos a Proposição 4.2.1 à solução u do problema

(P )m. Seja A′m a re�exão de Am em relação a uma de suas fronteiras retas. Sobre

Am ∪A′m, podemos de�nir a função ũ tal que ũ = u sobre Am, e ũ é antisimétrica com

respeito a reta de re�exão. Agora, seja A′′m a re�exão de Am ∪ A′m em uma de suas

fronteiras retas e ˜̃u a função de�nida sobre Am∪A′m∪A′′m tal que ˜̃u = ũ sobre Am∪A′m e ˜̃u

é antisimétrica com respeito a reta de re�exão. Repetindo este procedimento, após um

número �nito de re�exões, �nalmente obtemos uma função, denotada novamente por

u, de�nida em toda a bola B. Claramente, ela sa�sfaz a condição de Dirichlet sobre

a fronteira ∂B. Tem-se que u é positiva sobre m componentes conexas e negativas

sobre m componentes conexas. Desde que, para cada m ∈ N, o problema (P )m admite

uma solução positiva, podemos concluir que existem in�nitas soluções nodais para o

problema (P ) e a demonstração do Teorema 4.0.2 está completa. �
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Observação 4.2.2 Representamos na �gura 4.3 o sinal de três soluções, correspon-

dentes aos casos m = 1, m = 2 e m = 3, respectivamente. A cor azul representa a

região onde a solução é negativa e a cor vermelha, a região onde a solução é positiva.

Figura 4.3: Sinal das soluções

Por �m, mostramos na Figura 4.4 o per�l da solução para o caso m = 2:

Figura 4.4: Caso m = 2

124



Apêndice A

Resultados gerais

1. Desigualdades

Lema A.1 Sejam α > 0 e r > 1. Então, para cada β ≥ r, existe uma constante

C = C(β) > 0 tal que (
eα|s|

2 − 1
)r
≤ C

(
eβα|s|

2 − 1
)
,

para todo s ∈ R.

Demonstração. Note que para demonstrar o lema, é su�ciente mostrar que a função

h : R \ {0} → R+, de�nida por

h(s) :=

(
eα|s|

2 − 1
)r

eβα|s|2 − 1
,

é limitada superiormente. Para isto, observe que

lim
|s|→∞

h(s) = lim
|s|→∞

 e
rα|s|2

(
1− 1

eα|s|2

)r
eβα|s|2

(
1− 1

eβα|s|2

)
 = lim

|s|→∞

1

eα(β−r)|s|2

(
1− 1

eα|s|2

)r
(

1− 1

eβα|s|2

) <∞,

pois β − r ≥ 0. Por outro lado, usando a Regra de L'Hôpital,

lim
|s|→0

h(s) = lim
|s|→0

2αsr
(
eα|s|

2 − 1
)r−1

eα|s|
2

2αsβeβα|s|2
=
r

β
lim
|s|→0

(
eα|s|

2 − 1
)r−1

eα(1−β)|s|2 = 0.

Pelo estudo feito acima, concluimos que h é limitada. �



Teorema A.2 (Desigualdade de Hölder, ver [25].) Sejam f ∈ Lp(Ω) e g ∈ Lq(Ω)

com 1 ≤ p ≤ ∞ e 1/p+ 1/q = 1. Então, fg ∈ L1(Ω) com

|fg|1 ≤ |f |p|g|q.

Teorema A.3 (Desigualdade de Interpolação, ver [25].)

Se f ∈ Lp(Ω)∩Lq(Ω) com 1 ≤ p ≤ q ≤ ∞, então f ∈ Lr(Ω) para todo p ≤ r ≤ q

com

|f |r ≤ |f |αp |f |1−αq ,

onde
1

r
=
α

p
+

1− α
q

, com 0 ≤ α ≤ 1.

Lema A.4 Sejam Ω ⊂ RN um conjunto mensurável, po ≥ 1 e u ∈ Lp(Ω), para todo

p ≥ po. Se existe K > 0 tal que

|u|p,Ω ≤ K, ∀p ≥ po,

então u ∈ L∞(Ω) com

|u|∞,Ω ≤ K.

Demonstração. De fato, �xe ε > 0 de forma arbitrária e considere o conjunto

E = {x ∈ Ω : |u(x)| ≥ K + ε}.

Devemos mostrar que a medida de Lebesgue de E é nula. Primeiramente, observe que

a medida de Lebesgue de E é �nita. De fato, sendo E ⊂ Ω,

(K + ε)p|E| ≤
∫
E

|u|p ≤
∫

Ω

|u|p ≤ Kp < +∞,

de onde segue também que

(K + ε)|E|1/p ≤ K.

Suponhamos por contradição que a medida de E é positiva. Passando ao limite de

p→∞ na desigualdade acima, obtemos

(K + ε) = lim
p→∞

(K + ε)|E|1/p ≤ K,

o que é um absurdo. Logo E tem medidad nula, e portanto

|u|∞,Ω ≤ K. �
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Teorema A.5 (Desigualdade de Poincaré, ver [25].) Seja Ω um domínio limitado

em relação a alguma direção do espaço RN . Então, existe C > 0 tal que∫
Ω

|u|2 ≤ C

∫
Ω

|∇u|2, ∀u ∈ H1
0 (Ω).

Lema A.6 (Desigualdade de Strauss, ver [38].) Para cada u ∈ H1
r (R2),

|u(x)| ≤ (2π)−1/2|x|−1/2 · ‖u‖1, x 6= 0.

2. Resultados de convergência

Lema A.7 Seja (un) uma sequência de funções mensuráveis contida e limitada em

Ls(Ω), para cada s > 2. Se existe s0 > 2 tal que

|un|s0 → 0, n→∞.

Então,

|un|s → 0, n→∞,

para todo s > 2.

Demonstração. De fato, primeiro considere o caso s > s0 > 2. Fixando t̃ > s, pela

desigualdade de Interpolação com α ∈ (0, 1),

|un|s,Ω ≤ |un|αs0,Ω|un|
1−α
t̃,Ω

,

mas por hipótese, existe uma constante Ct̃ > 0 tal que

|un|t̃,Ω ≤ Ct̃, ∀n ∈ N.

Logo,

|un|s,Ω ≤ |un|αs0,ΩC
1−α
t̃
→ 0, quando n→∞.

Agora, considere o caso 2 < s < s0. Fixando 2 < t̄ < s e usando novamente a

desigualdade de Interpolação com α ∈ (0, 1),

|un|s,Ω ≤ |un|αt̄,Ω|un|1−αs0,Ω
,

mas por hipótese, existe uma constante Ct̄ > 0 tal que

|un|t̄,Ω ≤ Ct̄, ∀n ∈ N.

127



Logo,

|un|s,Ω ≤ Cα
t̄ |un|1−αs0,Ω

→ 0, quando n→∞.

Pelo estudo feito acima, concluimos que

|un|s,Ω → 0, n→∞,

para todo s > 2, concluindo a demonstração do lema. �

Lema A.8 (ver [38].) Sejam p > 1, (fn) ⊂ Lp(Ω) e (gn) ⊂ Lp
′
(Ω), onde p′ > 1 é tal

que 1/p+ 1/p′ = 1. Suponha que

fn → f em Lp(Ω)

e

gn ⇀ g em Lp
′
(Ω),

para algum f ∈ Lp(Ω) e g ∈ Lp′(Ω). Então,∫
Ω

fngn →
∫

Ω

fg.

Lema A.9 (ver [38].) Sejam p > 1, (fn) ⊂ Lp(Ω) uma sequência limitada em Lp(Ω)

e convergente em quase todo ponto de Ω para uma função f . Então, fn ⇀ f em Lp(Ω).

Lema A.10 (Fatou, ver [25].) Seja (fn) uma sequência de funções de L1(Ω) tal que

(i) fn(x) ≥ 0 q.t.p. em Ω, para cada n ∈ N;

(ii) supn

∫
Ω

fn(x) <∞.

De�na f(x) = lim infn→∞ fn(x), para cada x ∈ Ω. Então f ∈ L1(Ω) e∫
Ω

f(x) ≤ lim inf
n→∞

∫
Ω

fn(x).

Teorema A.11 (Teorema da convergência dominada de Lebesgue, ver [25].)

Suponha que (fn) ⊂ L1(Ω) satisfaz

(i) fn(x)→ f(x) q.t.p. em Ω;

(ii) existe uma função g ∈ L1(Ω) tal que

|fn(x)| ≤ g(x) q.t.p. em Ω, ∀n ∈ N.

Então, f ∈ L1(Ω) e |fn − f |1 → 0.
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Teorema A.12 (Teorema da convergência dominada generalizada de Lebes-

gue, ver [52].) Sejam (fn) uma sequência de funções mensuráveis e (gn) ⊂ L1(Ω)

satisfazendo

(i) fn(x)→ f(x) q.t.p. em Ω;

(ii) gn(x)→ g(x) q.t.p. em Ω, com g ∈ L1(Ω);

(iii) |fn(x)| ≤ gn(x) q.t.p. em Ω, ∀n ∈ N;

(iv) |gn − g|1 → 0, quando n→ 0.

Então, f ∈ L1(Ω) e |fn − f |1 → 0.

Teorema A.13 (Lema de compacidade de Strauss [54]) Sejam P, Q : R → R
duas funções contínuas satisfazendo

P (s)

Q(s)
→ 0 quando |s| → +∞.

Seja (un) uma sequência de funções mensuráveis de RN em R tal que

sup
n

∫
RN
|Q(un)| < +∞

e

P (un(x))→ v(x) q.t.p. em RN , quando n→ +∞.

Então, para qualquer conjunto de Borel limitado B, temos∫
B

|P (un)− v| → 0 quando n→ +∞.

Se além disso, assumirmos que

P (s)

Q(s)
→ 0 quando |s| → 0

e

un(x)→ 0 quando |x| → +∞,

uniformemente em n ∈ N, então P (un) converge para v em L1(RN), quando n→ +∞.

3. Resultados de Imersão

Lema A.14 (Imersão compacta, ver [25]) Seja Ω ⊂ R2 um domínio limitado

com fronteira suave. Então, H1(Ω) está imerso compactamente em Lq(Ω), para todo

q ∈ [1,∞).

Lema A.15 (Imersão contínua, ver [25]) Seja Ω ⊂ R2 um domínio regular. Então,

H1(Ω) está imerso continuamente em Lq(Ω), para todo q ∈ [2,∞).
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4. Teoria dos Pontos Críticos

Teorema A.16 (Teorema de Deformação, ver [32].) Seja I : X → R um funci-

onal de classe C1 no espaço de Banach X. Suponha que S ⊂ X, c ∈ R e ε, δ > 0 são

tais que

‖I ′(u)‖ ≥ 4ε/δ

para todo u ∈ I−1 ([c− 2ε, c+ 2ε]) ∩ S2δ. Então, existe η ∈ C([0, 1] × X,X) tal que

para todo u ∈ X e t ∈ [0, 1], tem-se:

(i) η(0, u) = u,

(ii) η(t, u) = u se u /∈ I−1 ([c− 2ε, c+ 2ε]) ∩ S2δ,

(iii) η(1, Ic+ε ∩ S) ⊂ Ic−ε ∩ Sδ,

(iv) η(t, ·) : X → X é um homeomor�smo.

De�nição A.17 Sejam X um espaço de Banach, I ∈ C1(X,R) e c ∈ R. Diz-se que

(un) ⊂ X é uma sequência de Palais-Smale para I no nível c, abreviadamente (PS)c,

quando

I(un)→ 0 e I ′(un)→ 0.

Diz-se que o funcional I satisfaz a condição (PS)c quando toda sequência de Palais-

Smale para I no nível c possui uma subsequência convergente em X.

Teorema A.18 (Teorema do Passo da Montanha sem a condição de Palais-

Smale, ver [56].) Sejam X um espaço de Banach e I ∈ C1(X,R) com I(0) = 0.

Suponha que:

(i) Existem b, r > 0 tais que

I(u) ≥ b, para ‖u‖ = r;

(ii) Existe e ∈ X tal que ‖e‖ > ρ e I(e) < 0.

Então, existe uma sequência (PS)c para o funcional I, onde

c := inf
γ∈Γ

max
t∈[0,1]

I(γ(t))

e

Γ := {γ ∈ C([0, 1], X) : γ(0) = 0 e γ(1) = e}.
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