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Resumo

Este trabalho tem como objetivo fazer uma pesquisa bibliográ�ca sobre o tema da

representação de inteiros como soma de quadrados, para os casos onde temos soma

de dois, três e quatro quadrados. A ideia é estudar condições para que possamos

garantir quando um número inteiro positivo poderá ser representado como uma soma

de dois e quatro quadrados. O foco central está na demonstração do teorema dos

quatro quadrados de Lagrange, apesar de termos ido um pouco adiante estudando

a técnica do descenso in�nito de Fernat e o caso n=3 do último teorema de Fermat.

Por �m, trabalhamos com a elaboração de uma sequência didática que pode ser

utilizada nas séries �nais do ensino fundamental e no ensino médio, cujo conteúdo

abordado nesta sequência são os principais teoremas do capítulo 2 que remete a

representação de inteiros como soma de quadrados.

Palavras Chave: Números inteiros, último teorema de Fermat, soma de qua-

drados.
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Abstract

This paper is a survey on representation of integers as sums of squares for the

cases where we have the sum of two, three and four squares. The idea is to study

conditions so that we can ensure the representation of numbers that are written as

the sum of two and four square. The central focus is the statement of the theorem

of Lagrange four squares, although we have gone a little further studying Fermat' s

technique of in�nite descense and the case n = 3 of Fermat's last theorem. Finally, we

work with the development of a didactic sequence that can be used in the �nal grades

of elementary school and middle school, addressing Chapter 2 of this dissertation.

Keywords: Whole numbers, Fermat's last theorem, the sum of squares.
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Introdução

A ideia de representar um número natural como soma de quadrados surge na-

turalmente ao tentarmos encontrar triângulos retângulos de lados inteiros. É um

problema antigo e um dos primeiros a estudá-lo foi Diofanto de Alexandria, o qual

escreve em sua obra prima intitulada aritmética . Séculos mais tarde o matemático

chamado Bachet faz a tradução da obra de Diofanto para o latim e por isso este

problema foi inicialmente conhecido como conjectura de Bachet. Mas foi Eduard

Waring que fez várias a�rmações sobre este tema inclusive que todo número natural

pode ser representado como soma de no máximo quatro quadrados. Matemáticos de

várias épocas mostraram interesse em demonstrar este e outros resultados que Wa-

ring havia enunciado, entre eles, Fermat e Lagrange, e isto gerou muita contribuição

para a matemática da época. Mas, foi apenas no ano de 1909 que o matemático

Hilbert demonstrou que para cada inteiro positivo s, há um inteiro positivo g(s),

que independe de n, tal que n pode ser expresso como a soma de no máximo g(s)

s-ésimas potências positivas.

No primeiro capítulo faremos uma breve introdução a teoria dos resíduos qua-

dráticos, de�nindo e demonstrando resultados relevantes para o andamento desta

pesquisa.

No segundo capítulo, tratamos do tema central da pesquisa que é a representação

de inteiros como soma de quadrados. Não faremos aqui um estudo aprofundado sobre

este tema, trataremos apenas dos casos particulares para a soma de dois, três e
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quatro quadrados, visto que o caso mais geral que foi demosntrado por Hilbert foge

ao propósito. Veremos resultados importantes para caracterizar números inteiros

que podem ser representados como soma de dois e quatro quadrados. Finalmente,

falaremos dos dois resultados centrais deste trabalho que são: o teorema dos quatro

quadrados de Lagrange e o teorema da unicidade de Euler. Fomos um pouco mais

adiante e ainda �zemos duas seções bem interessantes: uma sobre a técnica do

descenso in�nito de Fermat, onde �zemos um exemplo para podermos compreender

melhor sua utilização, na outra seção, relembramos um pouco da história do útltimo

teorema de Fermat e �nalizamos fazendo um caso particular do mesmo, o caso n = 3,

para termos mais ou menos a ideia de como é a demonstração deste Teorema.

No terceiro e último capítulo elaboramos uma sequência didática baseada na

teoria exposta no capítulo 2. Ela está dividida em duas partes, a primeira aborda

os principais resultados do capítulo 2, enquanto a segunda parte é uma aplicação

a geometria destes conhecimentos. A atividade pode ser aplicada nas séries �nais

do ensino fundamental II e no ensino médio podendo ter ótimo rendimento entre os

alunos visto que ela vai de um nível mais elementar para o nível mais complexo.
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Capítulo 1

Alguns Resultados Importantes

Neste capítulo faremos uma breve introdução no estudo dos resíduos quadráticos,

enunciando e demonstrando alguns resultados importantes que servirão de base para

resultados posteriores.

1.1 Resíduos Quadráticos

O interesse maior no estudo dos resíduos quadráticos está em estudar as soluções

para a congruência x2 ≡ a (mod m). Quando m é um primo ímpar e (a,m) = 1

((a, b) é a notação para o máximo divisor comum entre a e b), a congruência, caso

tenha solução, terá exatamente duas soluções incongruentes, é o que mostraremos

no teorema abaixo.

Teorema 1.1 Para p primo ímpar e a um inteiro não divisível por p, a congruência

abaixo, caso tenha solução, tem exatamente duas soluções incongruentes módulo p.

x2 ≡ a (mod p)

Demonstração: Seja x1 solução da congruência acima, podemos concluir que

−x1 também é solução pois, (−x1)2 = (x1)
2 ≡ a (mod p). Temos que mostrar que

1



1.1. RESÍDUOS QUADRÁTICOS

estas soluções são incongruentes. Suponhamos por absurdo que x1 e −x1 sejam

congruentes módulo p, ou seja, x1 ≡ −x1 (mod p), daí x1 + x1 ≡ −x1 + x1 (mod p)

portanto, 2x1 ≡ 0 (mod p). Temos que p é ímpar e não divide x1 e sabendo que x1 é

diferente de zero, podemos concluir que não é possível ocorrer a congruência 2x1 ≡ 0

(mod p), pois p não divide a e além disso x21 ≡ a (mod p) daí podemos garantir que

p nãzo divide x21 e portanto não divide x1, assim podemos concluir que x1 e −x1
são incongruentes móduo p. A nossa meta agora é mostrar que existem apenas

estas duas soluções incongruentes módulo p. Assim, seja y uma solução de x2 ≡ a

(mod p), então y2 ≡ a (mod p), como x1 é solução teremos que x21 ≡ a (mod p),

portanto x21 ≡ y2 ≡ a (mod p) e assim, x21−y2 ≡ 0 (mod p), onde podemos concluir

(x1 + y)(x1 − y) ≡ 0 (mod p), como p é primo temos que p | x1 + y ou p | x1 − y, o

que é o mesmo que x1+y ≡ 0 (mod p) ou x1−y ≡ 0 (mod p) daí y ≡ −x1 (mod p)

ou y ≡ x1 (mod p). Portanto, caso exista soluções, só existem apenas duas soluções

incongruentes módulo p.

�

De�nição 1.1 O conjunto A = {r1, r2, . . . , rs} é um sistema de resíduos módulo p

se:

1. ri não for congruente a rj módulo p para i 6= j

2. Para todo inteiro n, existe um ri tal que n ≡ ri (mod p).

De�nição 1.2 Sejam a e p inteiros com (a, p) = 1. Dizemos que a é resíduo quadrá-

tico módulo p se a congruência x2 ≡ a (mod p) tiver solução. Caso a congruência

não tenha solução, dizemos que a não é resíduo quadrático módulo p ou que a é um

resíduo não-quadrático.

Teorema 1.2 Seja p um primo ímpar. Dentre os números {1, 2, 3, . . . , p − 1},

veja que p−1
2

são resíduos quadráticos e p−1
2

não são.

2



1.1. RESÍDUOS QUADRÁTICOS

Demonstração:

Vamos considerar os quadrados dos números de 1 a p − 1. Assim, (1)2 ≡ 1

(mod p), ou seja, 1 é resíduo quadrático da congruência x2 ≡ 1 (mod p), mas ob-

servemos que (−1)2 = (1)2 ≡ 1 (mod p), ou seja, −1 também é solução desta

congruência e, além disso, temos que −1 ≡ p + (−1) = p − 1 (mod p), onde p − 1

também é solução da congruência, pois (p− 1)2 = p2− 2p+1, portanto (p− 1)2 ≡ 1

(mod p), logo pelo teorema 1.1 concluímos que 1 e p − 1 são as únicas soluções

incongruentes de x2 ≡ 1 (mod p), entre os números 1, 2, 3, . . . , p− 1.

Consideremos agora o 22 que será congruente a algum número k diferente de

1, da mesma forma (−2)2 também o é. Observando que −2 ≡ p + (−2) = p − 2

(mod p), novamente pelo teorema 1.1 concluímos que 2 e p−2 são as únicas soluções

incongruentes de x2 ≡ k (mod p) dentre os números i = 1, 2, 3, . . . , p− 1.

Se tomarmos agora 32 e este será congruente a algum q diferente de 1 e de k,

analagomente ao que foi mostrado temos que (−3)2 também será congruente a q e

além disso, −3 ≡ p−3 (mod ) então −3 e p−3 são as únicas soluções incongruentes

de x2 ≡ q (mod p) dentre os números i = 1, 2, 3, . . . , p− 1.

Temos como resíduos quadráticos os números 1, k e q das congruências x2 ≡ 1

(mod p), x2 ≡ k (mod p) e x2 ≡ q (mod p) sendo suas respectivas soluções os pares

(1, p− 1), (2, p− 2) e (3, p− 3). Se continuarmos procedendo desta maneira teremos
p−1
2

pares de soluções

(1, p− 1), (2, p− 2), (3, p− 3), . . . ,

(
p− 1

2
,
p− 1

2

)
onde cada par é solução para uma dentre as p−1

2
congruências associadas a p−1

2

resíduos quadráticos.

�

Teorema 1.3 Para p primo, a congruência x2 ≡ −1 (mod p) tem solução se, e

somente se, p = 2 ou p ≡ 1 (mod 4).

3



1.1. RESÍDUOS QUADRÁTICOS

Demonstração:

Caso p=2: de fato, para x = 1 a congruência x2 ≡ −1 (mod 2) tem solução,

sabemos que 2 ≡ 0 (mod 2), daí adicionando −1 a congruência, obtemos 2+(−1) ≡

0+ (−1) (mod 2) assim, 1 ≡ −1 (mod 2) e daí 12 ≡ −1 (mod 2), o que nos mostra

que realmente x = 1 é solução da congruência. Resta agora mostrar que existe uma

solução para p ≡ 1 (mod 4).

Sendo p primo pelo teorema de Wilson, vide apêndice, podemos garantir que

(p − 1)! ≡ −1 (mod p), como p > 2 é primo então p − 1 é par, logo (p − 1)! tem

uma quantidade par de fatores, ou seja, p − 1 fatores exatamente. Daí poderemos

escrever o teorema de Wilson da seguinte forma

(p− 1)! = (p− 1) · (p− 2) · . . . (p− k) . . .
(
p+ 1

2

)
! ≡ −1 (mod p),

observemos que há neste momento p−1
2

fatores, de fato, observemos que os fatores

((p− 1), (p− 2), . . .), (p− k), . . . 3, 2, 1) formam uma P.A de razão −1, daí o termo

a p−1
2

= (p− 1) +

(
p− 1

2
− 1

)
(−1)

= p− 1 + 1− 1− p
2

= p− 1− p
2

=
2p+ 1− p

2

=
p+ 1

2
.

Ainda podemos escrever

(p− 1)! = (p− 1) · (p− 2) · . . . · (p− k) · . . . ·
(
p+ 1

2

)
! ≡ −1 (mod p)

como,

4



1.1. RESÍDUOS QUADRÁTICOS

((p− 1) · (p− 2) · . . . · (p− k) · . . . ·
(
p+ 1

2

)
)·

(

(
p− 1

2

)
. . . k . . . 4 · 3 · 2 · 1) ≡ −1 (mod p). (1.1)

Observemos que (p− 1)! está dividido em duas partes, onde cada uma tem p−1
2

fatores. Poderemos reescrever agrupando os fatores aos pares, daí �caremos com,

1 · (p− 1) · 2 · (p− 2) · . . . · k(p− k) · . . . · (p−1
2
) · (p+1

2
) ≡ −1 (mod p). Note que ainda

podemos escrevê-la como o produtório, abaixo:

p−1
2∏

k=1

k(p− k) ≡ −1 (mod p). (1.2)

Façamos a seguinte a�rmação, k(p− k) ≡ −k2 (mod p), que é de fácil justi�ca-

tiva, pois

n = k(p− k) = kp− k2

= kp+ (−k2)

= k(p− k) ≡ −k2 (mod p),

assim,

∏ p−1
2

k=1 k(p− k) ≡
∏ p−1

2
k=1(−k2) ≡ −1 (mod p),

portanto
∏ p−1

2
k=1(−k2) ≡ −1 (mod p), note que

5



1.1. RESÍDUOS QUADRÁTICOS

p−1
2∏

k=1

(−k2) = (−12) · (−22) . . . · (−
(
p− 1

2

)2

)

= (−1) · (−1) · . . . · (−1)(12) · (22) . . . ·
(
p− 1

2

)2

= (−1)
p−1
2

(
1 · 2 . . . · p− 1

2

)2

= (−1)
p−1
2

 p−1
2∏

k=1

k

2

≡ −1 (mod p)). (1.3)

Como p ≡ 1 (mod 4), podemos a�rmar que p−1
2

é par. De fato, sendo p ≡ 1

(mod 4) existe s inteiro tal que p = 4s+1 logo p− 1 = 4s, sendo p um primo maior

do que dois então este é impar, portanto p − 1 é, par, então ao dividirmos ambos

os membros da equação por 2 teremos p−1
2

= 2s, o que no diz que p−1
2

é par. Daí,

(−1) p−1
2 = 1, logo, (

∏ p−1
2

k=1 k)
2 ≡ −1 (mod p) o que nos diz que

x =
∏ p−1

1
k=1 = 1 · 2 · 3 · . . . · p− 1

2
=

(
p− 1

2

)
!

é uma solução de x2 ≡ −1 (mod p). Vamos supor agora que a congruência

x2 ≡ −1 (mod p) tenha solução e que p > 2, pois x2 ≡ −1 (mod 2) tem solução

x = 1. Elevando a congruência a potência p−1
2

obtemos

(x2)
p−1
2 ≡ (−1) p−1

2 (mod p)

que é o mesmo que

xp−1 ≡ (−1) p−1
2 (mod p)

.

Como x2 ≡ −1 (mod p), nós podemos dizer que p - x2 e daí p - x, portanto

pelo pequeno teorema de Fermat, vide apendice, (x)p−1 ≡ 1 (mod p), aí teremos

6



1.1. RESÍDUOS QUADRÁTICOS

(−1) p−1
2 ≡ 1 (mod p) o que nos permite a�rmar que p−1

2
é par, daí existe j inteiro

tal que p−1
2

= 2j, o que podemos ainda como p− 1 = 4j e assim termos p = 4j + 1

o que acarreta p ≡ 1 (mod 4), e assim concluímos a nossa demonstração.

�

De�nição 1.3 Para p um primo ímpar e a um inteiro não divisível por p, de�nimos

o Símbolo de Legendre (a
p
) por:

(
a

p

)
=

 1, se a é um resíduo quadrático de p;

−1, se a não é um resíduo quadrático de p.

Teorema 1.4 (Critério de Euler) Se p for um primo ímpar e a um inteiro não-

divisível por p, então: (
a

p

)
≡ a

p−1
2 (mod p)

Demonstração:

Supondo que, (a
p
) = 1, ou seja, a congruência x2 ≡ a (mod p) tem solução. Seja

y tal solução, daí teremos que y2 ≡ a (mod p) implicando em y2 − a ≡ 0 (mod p),

assim, concluímos que p divide y2−a, mas p não divide a, portanto não pode dividir

y, logo (y, p) = 1 e pelo pequeno teorema de Fermat temos que yp−1 ≡ 1 (mod p),

assim (y2)
p−1
2 ≡ a

p−1
2 (mod p) então a

p−1
2 ≡ yp−1 ≡ 1 (mod p), portanto a

p−1
2 ≡ 1

(mod p) e assim (a
p
) ≡ a

p−1
2 ≡ 1 e isto conclui o caso em que (a

p
) = 1.

Vamos considerar agora o caso em que (a
p
) = −1, isto é, tomemos a um resíduo

não-quadrático de p e seja c um dos inteiros {1, 2, 3, . . . , p−1}. Lembrando um pouco

das congruências linear, sabemos que existe uma solução c
′
de cx ≡ a (mod p), onde

c
′
está no conjunto mencionado. Observemos que c

′ 6= c, pois se c = c
′
teríamos

c2 ≡ a (mod p), mas isto nos diz que a é resíduo quadrático, o que contradiz o fato

de que (a
p
) = −1. Daí podemos dividir os inteiros de 1 até p − 1 em p−1

2
pares, c e

c
′
, onde cc

′ ≡ a (mod p), o que nos dá p−1
2

congruências.

7



1.1. RESÍDUOS QUADRÁTICOS

c1c
′

1 ≡ a (mod p)

c2c
′

2 ≡ a (mod p)

...
...

c p−1
2
c
′
p−1
2

≡ a (mod p)

Multiplicando obtemos

c1c
′
1c2c

′
2 . . . c p−1

2
c
′
p−1
2

≡ a
p−1
2 (mod p)

podemos escrever ainda da seguinte maneira

(p− 1)! ≡ a
p−1
2 (mod p)

Pelo teorema de Wilson obtemos

a
p−1
2 ≡ −1 (mod p),

como queríamos.

�

Teorema 1.5 O Símbolo de Legendre é uma função multiplicativa de a, ou seja :(
ab

p

)
=

(
a

p

)(
b

p

)
para a e b inteiros não-divisíveis por p.

Demonstração: Usando o critério de Euler, concluímos que :

8



1.1. RESÍDUOS QUADRÁTICOS

(
ab

p

)
≡ (ab)

p−1
2 (mod p)

Lembrando que

(ab)
p−1
2 = a

p−1
2 b

p−1
2

e (
a

p

)
≡ a

p−1
2 (mod p) e

(
b

p

)
≡ b

p−1
2 (mod p),

e assim, podemos concluir que

(ab)
p−1
2 = a

p−1
2 b

p−1
2 ≡

(
a

p

)(
b

p

)
(mod p).

Portanto, (
ab

p

)
=

(
a

p

)(
b

p

)
.

�

Corolário 1.1

(
a2

p

)
= 1

Demonstração:

Usando o teorema 1.5 e considerando a = b aliado ao fato de que (a
p
) = ±1,

temos (
a2

p

)
=

(
a

p

)(
a

p

)
como (a

p
) = ±1, temos que se (a

p
) = 1, então(

a2

p

)
=

(
a

p

)(
a

p

)
= 1 · 1 = 1

agora, se (a
p
) = −1, teremos

9



1.1. RESÍDUOS QUADRÁTICOS

(
a2

p

)
=

(
a

p

)(
a

p

)
= (−1) · (−1) = 1

concluindo assim a demonstração.

�

Teorema 1.6 Para p primo ímpar, temos:

(
−1
p

)
=

 1, se p ≡ 1 (mod 4);

−1, se p ≡ 3 (mod 4).

Demonstração: Sabemos do Critério de Euler que :(
−1
p

)
≡ (−1) p−1

2 (mod p)

Da expressão acima podemos concluir que (−1
p
) = 1 se p−1

2
for par e (−1

p
) = −1

quando p−1
2

ímpar. Se p for um primo ímpar, existem apenas duas possibilidades

para p, em termos de congruência módulo 4, p ≡ 1 (mod 4) ou p ≡ 3 (mod 4). Se

p ≡ 1 (mod 4), existe s inteiro tal que p = 4s + 1 onde p − 1 = 4s e assim termos
p−1
2

= 2s, ou seja, p−1
2

é par. Se p ≡ 3 (mod 4), existe k inteiro tal que p = 4k + 3

podendo ser escrito da seguinte forma p−1 = 2(2k+1) concluíndo que p−1
2

= 2k+1,

ou seja, p−1
2

é ímpar. Portanto, quando p ≡ 1 (mod 4) temos (−1
p
) = 1 e quando

p ≡ 3 (mod 4) tem-se (−1
p
) = −1.

�

Proposição 1.1 sejam a, b e m inteiros tais que m > 0 e (a,m) = d. No caso que

d - b a congruência ax ≡ b (mod m) não possui nenhuma solução e quando d | b

possui exatamente d soluções incongruentes módulo m.

Demonstração: como a e b são inteiros, ax ≡ b (mod m) se, e somente se,

existir y tal que ax = b + ym, ou seja, b = ax − ym. Sabemos que se d - b então a

10



1.1. RESÍDUOS QUADRÁTICOS

equação ax−my = b não tem solução, já se d | b teremos que a equação ax−my = b

possui in�nitas soluções que são da forma x = x0−(md )k e y = y0−(ad)k onde (x0, y0)

é uma solução particular da equação ax−my = b. Portanto, a congruência ax ≡ b

(mod m) irá possuir in�nitas soluções dadas por x = x0 − (m
d
). Desejamos saber a

quantidade de soluções incongruentes. Daí estudaremos as condições para as quais

x1 = x0 − (m
d
) e x2 = x0 − (m

d
) são congruentes módulo m. Se x1 e x2 forem

congruentes então x0 − (m
d
)k1 ≡ x0 − (m

d
)k2 (mod m), assim

x0 − x0 −
(m
d

)
k1 ≡ x0 − x0 −

(m
d

)
k2 (mod m)

daí

−
(m
d

)
k1 ≡ −

(m
d

)
k2 ⇒

(m
d

)
k1 ≡

(m
d

)
k2.

Como (m
d
) | m, de fato m = d · (m

d
), temos que (m

d
,m) = m

d
, portanto podemos

cancelar (m
d
) na congruência anterior, portanto k1 ≡ k2 (mod m).

Daí as soluções incongruentes são da forma x = x0 − (m
d
)k, onde k percorre um

sistema completo de resíduos módulo d.

�

Teorema 1.7 Para todo primo p existem inteiros a, b e c, não todos nulos, tais que

a congruência seguinte se veri�ca

a2 + b2 + c2 ≡ 0 (mod p).

Demonstração: Para p = 2, tomando a = b = 1 e c = 0, teremos 12+12+02 =

2 ≡ 0 (mod 2). Ao considerarmos p ≡ 1 (mod 4) tomaremos b = 1, c = 0 e a como

sendo uma solução da congruência x2 ≡ −1 (mod p). Daí, b2 = 12 = 1, c2 = 02 = 0

e a2 ≡ −1 (mod p), assim, a2 + b2 + c2 ≡ −1 + 1+ 0 = 0 (mod p). Agora, supondo

que p ≡ 3 (mod 4) tomaremos c = 1 e iremos mostrar que exite solução para a

congruência

11



1.1. RESÍDUOS QUADRÁTICOS

a2 + b2 ≡ −1 (mod p)

Pelo teorema 1.2, sabemos que para um número p primo ímpar teremos p−1
2

resíduos quadráticos e p−1
2

resíduos não quadráticos dentre os números 1, 2, 3, . . .,

p− 1. E ainda se q for um resíduo quadrático, então a congruência:

x2 ≡ q (mod p)

tem solução se p for primo. Iremos supor que d é o menor resíduo positivo não-

quadrático módulo p. Sabemos que 1 é resíduo quadrático pois, 2 ≡ 0 (mod 2) o

que resulta em 1 ≡ −1 (mod 2) e assim temos 12 ≡ −1 (mod 2), então d ≥ 2. Pelo

teorema 1.6 concluímos que se p ≡ 3 (mod 4) existe k1 inteiro tal que p = 4k1 +3 a

qual podemos escrever como segue p = 4k1 +3− 4+ 4 = 4(k1 +1)− 1 e daí p ≡ −1

(mod 4), então (−1
p
) = −1, sabendo que d não é resíduo quadrático então (d

p
) = −1.

Pelo teorema 1.5, (
−d
p

)
=

(
−1
p

)(
d

p

)
= (−1)(−1) = 1

A expressão acima nos informa que −d é um resíduo quadrático módulo p, ou

seja, a congruência x2 ≡ −d (mod p) tem solução. Então seja b tal que b2 ≡ −d

(mod p). Devemos encontrar a conveniente tal que a2 ≡ d−1 (mod p), daí, a2+b2 ≡

−d + d− 1 = −1 (mod p). Observemos que a2 ≡ d− 1 (mod p) tem solução, pois

d ≥ 2 e d− 1 < d sendo d o menor resíduo não quadrático positivo módulo p temos

que a2 ≡ d− 1 (mod p) tem solução pois p é primo e d− 1 é um resíduo quadrático.

Logo,

a2 + b2 ≡ −1 (mod p)

tem solução e assim, a congruência

a2 + b2 + c2 ≡ 0 (mod p)

é veri�cada.

�
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Capítulo 2

Representação de Inteiros como

Soma de Quadrados

2.1 O Problema de Waring

Um dos mais importantes matemáticos gregos, conhecido como o "Pai da Ál-

gebra"já descon�ava que todos os números inteiros positivos poderiam ser escritos

como soma de no máximo quatro quadrados. Este matemático era Diofanto de

Alexandria que nasceu em 22 de Setembro de 250 a.C e morreu 84 anos depois.

O problema �cou inicialmente conhecido como conjectura de Bachet o qual fez a

tradução para o latim do trabalho mais conhecido de Diofanto intitulado Aritmé-

tica. Muitos matemáticos se interressaram por este problema inclusive Fermat, mas

todos não tiveram êxito em demonstrá-lo. Em 1770 o matemático inglês Edward

Waring a�rmou que todo inteiro pode ser representado como soma de no máximo 4

quadrados, no máximo 9 cubos e no máximo 19 quartas potências. A pesar de não

ter demonstrado nenhuma dessas a�rmações ele, através de muitos exemplos, con-

jecturou que para todo número inteiro positivo s existe um inteiro positivo g(s), tal

que todo inteiro n positivo pode ser expresso em no máximo g(s) s-ésimas potências

13
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positivas.

O matemático italiano Joseph Louis Lagrange, em 1770 demonstra que todo

inteiro pode ser escrito como soma de no máximo quatro quadrados, em 1859 é que

foi demonstrado que o fato de que todo inteiro é soma de no máximo 9 cubos. No

ano de 1909 o matemático Hilbert demonstra que para cada s inteiro positivo existe

g(s), que não depende de n, de modo que todo inteiro n pode ser escrito como soma

de no máximo g(s) s-ésimas potências. Como foi dito, ele apenas demonstrou a

existência de g(s) não explicitou nenhuma fórmula para o mesmo.

Iremos estudar resultados que caracterizam os números inteiros que possuem

representação como soma de dois quadrados, demosntraremos o teorema de Lagrange

o qual caracteriza os inteiros que podem ser representados como soma de quatro

quadrados e falaremos um pouco sobre o resultado de Euler o qual caracteriza os

primos que podem ser representados de forma única como soma de dois quadrados,

além de estudarmos resultados que mostram quando um número não é escrito como

soma de três quadrados chegando a falar um pouco sobre a técnica do descenso

in�nito de Fermat e fazendo um caso particular do último teorema de Fermat.

2.2 Soma de dois Quadrados

Iremos estudar alguns resultados que nos permitirão caracterizar todos os inteiros

que podem ser escritos como uma soma de dois quadrados, ou seja, todos os valores

inteiros de n de modo que

x2 + y2 = n (2.1)

apresenta solução em inteiros. Mostraremos a seguir um resultado que garante

o seguinte: se dois números podem ser escritos como soma de dois quadrados o

produto entre eles também o pode.

14



2.2. SOMA DE DOIS QUADRADOS

Lema 2.1 Se u e v são cada um uma soma de dois quadrados, então o produto uv

também é.

Demonstração: Como u e v podem ser representados como soma de dois qua-

drados então existem a, b, c e d inteiros tais que u = a2 + b2 e v = c2 + d2, devemos

mostrar que uv também pode ser representado por uma soma de dois quadrados, ou

seja, que existem s e t inteiros tais que uv = s2 + t2. Daí,

uv = (a2 + b2)(c2 + d2) = a2c2 + a2d2 + b2c2 + b2d2

= a2c2 + b2d2 + a2d2 + b2c2.

Agora vamos somar e subtrair 2(ad)(bc). Obtendo,

uv = (a2 + b2)(c2 + d2)

= a2c2 + b2d2 + a2d2 + b2c2 + 2(ac)(bd)− 2(ac)(bd)

e �nalmente temos

uv = (ac)2 + 2(ac)(bd) + (bd)2 + (ad)2 − 2(ad)(bc) + (bc)2

= (ac+ bd)2 + (ad− bc)2.

Encontramos s e t de modo que uv = s2 + t2, que é justamente o que queríamos

provar.

�

O teorema abaixo nos fornece condições para identi�car primos que se represen-

tam como soma de dois quadrados.

Teorema 2.1 Sendo p um número primo a equação x2 + y2 = p possui solução

inteira se, e somente se, p = 2 ou p ≡ 1 (mod 4).
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2.2. SOMA DE DOIS QUADRADOS

Demonstração: Supondo primeiramente que p = 2 ou p ≡ 1 (mod 4), devemos

mostrar que a equação x2 + y2 = p, onde p é primo, possui solução inteira.

De fato, se x = 1 e y = 1 temos p = 2 = 12 + 12, assim p = 2 resolve o nosso

problema. Basta mostrar que p ≡ 1 (mod 4) tem que ocorrer. Sabemos que para

todo primo ímpar p, p ≡ 1 (mod 4) ou p ≡ 3 (mod 4). Lembremos do seguinte

fato, para todo inteiro a, a2 ≡ 0 (mod 4) ou a2 ≡ 1 (mod 4), este fato é fácil de ser

mostrado, sendo a um inteiro qualquer, sabemos que os possíveis restos da divisão

de a por quatro são, 0, 1, 2 e 3. Daí, a ≡ 0, 1, 2, ou 3 (mod 4), assim, a ≡ 0

(mod 4) onde obtemos a2 ≡ 02 = 0 (mod 4), da mesma forma sendo a ≡ 1 (mod 4)

teremos a2 ≡ 12 = 1 (mod 4), a ≡ 2 (mod 4) então a2 ≡ 22 = 4 ≡ 0 (mod 4)

e �nalmente,a ≡ 3 (mod 4) então a2 ≡ 32 = 9 ≡ 1 (mod 4), portanto temos que

a2 ≡ 0 ou 1 (mod 4). Sabendo que a2 ≡ 0 (mod 4) ou a2 ≡ 1 (mod 4) e x2+y2 = p

podemos concluir que p ≡ 1 (mod 4), de fato; o que devemos mostrar é que a

congrência p ≡ 3 (mod 4) sendo p primo não é possível de acontecer, supondo,

x2 ≡ y2 ≡ 0 (mod 4) teremos x2 + y2 ≡ 0 + 0 (mod 4) logo p ≡ 0 (mod 4), da

mesma forma se x2 ≡ y2 ≡ 1 (mod 4) então x2 + y2 ≡ 1+ 1 (mod 4) teremos p ≡ 2

(mod 4) e �nalmente se x2 ≡ 0 (mod 4) e y2 ≡ 1 (mod 4), assim x2 + y2 ≡ 0 + 1

(mod 4) obtemos p ≡ 1 (mod 4). Portanto, a única congruência possível de ocorrer

é p ≡ 1 (mod 4).

Supondo que p = 2 ou p ≡ 1 (mod 4) mostraremos que todo p satisfazendo p ≡ 1

(mod 4) pode ser escrito como soma de dois quadrados. Lembre que para p = 2 já

sabemos que este pode ser escrito como uma soma de dois quadrados, 2 = 12 + 12.

Tomemos agora um primo p que satisfaz p ≡ 1 (mod 4) e usando o teorema 1.3,

podemos concluir que existe x inteiro, tal que x2 ≡ −1 (mod p). Vamos de�nir a

seguinte função f(u, v) = u + xv e consideremos m = [
√
p]. Sabendo que

√
p não

é um inteiro, temos que m <
√
p < m + 1 . Tomemos os pares (u, v) de inteiros

onde 0 ≤ u ≤ m e 0 ≤ v ≤ m, onde observando os intervalos concluímos que u
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pode assumir m + 1 valores e v também. Daí o número total de pares ordenados

(u, v) é (m+ 1)2. Como m+ 1 >
√
p temos que (m+ 1)2 > (

√
p)2, dái obtemos que

(m+1)2 > p, assim o número total de pares é superior a p. Sabemos que um sistema

completo de resíduos módulo p tem exatamente p elementos, se considerarmos f(u, v)

módulo p teremos mais números do que classes de resíduos, daí pelo princípio da

casa dos pombos existem pelo memos dois pares distintos (u1, v1) e (u2, v2) com

coordenadas satisfazendo 0 ≤ ui ≤ m e 0 ≤ vi ≤ m onde (i = 1, 2), para os

quais f(u1, v1) ≡ r (mod p) e f(u2, v2) ≡ r (mod p), ou seja, f(u1, v1) ≡ f(u2, v2)

(mod p), o que é equivalente a u1 + xv1 ≡ u2 + xv2 (mod p), isto é,

u1 + xv1 − u2 ≡ u2 + xv2 − u2 (mod p)

e assim �camos com

u1 + xv1 − u2 ≡ xv2 (mod p),

daí

u1 + xv1 − u2 − xv1 ≡ xv2 − xv1 (mod p),

o que resulta em

u1 − u2 ≡ xv2 − xv1 (mod p)

logo

u1 − u2 ≡ −x(v2 − v1) (mod p)

elevando a congruência acima ao quadrado obtemos

(u1 − u2)2 ≡ (−x)2(v2 − v1)2 ≡ x2(v2 − v1)2 (mod p), (2.2)
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portanto, (u1−u2)2 ≡ −1(v2−v1)2 (mod p), pois x2 ≡ −1 (mod p). Chamando

a = u1 − u2 e b = v1 − v2, teremos a2 ≡ −b2 (mod p) adicionando b2 a congruência

teremos a2 + b2 ≡ −b2 + b2 (mod p) o que resulta em a2 + b2 ≡ 0 (mod p), assim

concluímos que p/a2 + b2. Como os pares (u1, v1) e (u2, v2) são distintos então a e b

não são ambos nulos, isto é, a2 + b2 > 0. Sendo u1 e u2 inteiros do intervalo [0,m]

temos que a = u1 − u2 pertence ao intervalo −m ≤ a ≤ m, da mesma forma b =

v1−v2 e −m ≤ b ≤ m. Como m <
√
p concluímos que |a| ≤ m <

√
p, analogamente

|b| ≤ m <
√
p. Daí |a|2 < (

√
p)2 = p da mesma forma |b|2 < (

√
p)2 = p, assim

a2 + b2 < p + p = 2p. Como p/a2 + b2 e 0 < a2 + b2 < 2p, concluímos que o único

múltiplo inteiro de p neste intervalo é ele mesmo, daí a2 + b2 = p.

�

O próximo resultado resultado mais geral do que o anterior e nos permite iden-

ti�car inteiros que podem ter representação como soma de dois quadrados.

Teorema 2.2 Um inteiro n pode ser representado como soma de dois quadrados se,

e somente se, tiver fatoração da forma.

n = 2αpα1
1 p

α2
2 ...p

αr
r q

β1
1 q

β2
2 ...q

βs
s

onde pi ≡ 1 (mod 4) e qj ≡ 3 (mod 4), i = 1, 2, ..., r, j = 1, 2, ..., s e todos

os expoentes βj são pares.

Demonstração: Supondo que n tem fatoração n = 2αpα1
1 p

α2
2 ...p

αr
r q

β1
1 q

β2
2 ...q

βs
s ,

devemos mostrar que n pode ser representado como soma de dois quadrados, ou

seja, devemos tentar escrever cada fator de n como uma soma de dois quadrados.

Observemos que o primo 2 = 12 + 12, podemos concluir que 2α também pode ser

representado como uma soma de dois quadrados, sabemos do teorema 2.1 que todos

os pi podem ser representados como soma de dois quadrados, assim, os pαi
i podem
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ser representados por uma soma de dois quadrados, consequentemente pα1
1 p

α2
2 ...p

αr
r

também. Basta mostrarmos que os qβjj podem ser representados por uma soma de

dois quadrados. Temos por hipótese que todos os βi são pares, ou seja, existe β
′
i tal

que βi = 2β
′
i, logo q

βj
j = (qj)

2β
′
i = (q2j )

β
′
i . Note que podemos escrever q2j = q2j + 02,

ou seja, podemos escrever q2j como soma de dois quadrados, daí de forma anóloga os

q
βj
j podem ser escritos como soma de dois quadrados, portando usando o lema 2.1

no produto 2αpα1
1 p

α2
2 ...p

αr
r q

β1
1 q

β2
2 ...q

βs
s , concluímos que n pode ser escrito como soma

de dois quadrados.

Agora, vamos considerar que n possa ser escrito como soma de dois quadrados

e que existe um βj que seja ímpar, sem perda de generalidade vamos considerar β1

como sendo tal ímpar. Consideremos que d = (a, b) onde a e b satisfazem a equação

a2 + b2 = n. Sendo d = (a, b) então d | a e d | b, assim, existem k1 e k2 tais que

a = k1d e b = k2d. Observemos que(
a

d
,
b

d

)
=

1

d
(a, b) =

1

d
d = 1,

logo, (
a

d
,
b

d

)
=

(
k1d

d
,
k2d

d

)
= (k1, k2) = 1.

Podemos a�rmar que d2|n, de fato, sabendo que d|a e d|b então a = k1d e b = k2d

e a e b satisfazem a equação a2 + b2 = n, logo

n = (k1d)
2 + (k2d)

2

= k21d
2 + k22d

2

= d2(k21 + k22)

= kd2,

daí podemos a�rmar que d2|n e além disso se dividirmos ambos os lados da

igualdade por d2 obtemos
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k21d
2

d2
+
k22d

2

d2
=
kd2

d2
.

o que resulta em

k = k21 + k22

Sendo β1 ímpar e tendo n = kd2 onde k =
n

d2
, concluímos que o expoente de q1

em k deve ser ímpar, pois os números k e
n

d2
têm a mesma decomposição primária.

Como o expoente de q1 é ímpar, então existe s inteiro tal que k = q2s+1
1 γ e assim

podemos escrever k = q2s1 q
1
1γ = q1q

2s
1 γ, ou seja, q1|k e sabendo que (k1, k2) = 1

podemos observar (q1, k1) = (q1, k2) = 1. Vamos veri�car que (q1, k1) = 1, temos

os seguintes dados (k1, k2) = 1 e q1|k, de (k1, k2) = 1 garantimos a existência de x

e y tais que xk1 + yk2 = 1, elevando ambos os lados desta igualdade ao quadrado,

obtemos

(xk1 + yk2)
2 = (xk1)

2 + 2(xk1)(yk2) + (yk2)
2

= x2k21 + 2xk1yk2 + y2k22

= 1.

Guardemos esta informação por enquanto, temos ainda que q1|k, ou seja, existe

s inteiro de modo que k = q1s, mas por outro lado k = k21 + k22, logo, k
2
1 + k22 = q1s

e assim segue que k22 = q1s − k21, lembremos também que b = k2d, onde d = (a, b),

por isso, k1 =
b

d
agora vamos substituir estes valores em x2k21 + 2xk1yk2 + y2k22 = 1

e obteremos que

x2k21 + 2xk1yk2 + y2k22 = x2k21 + 2xk1y

(
b

d

)
+ y2(q1s− k21)

= x2k21 + 2xk1y

(
b

d

)
+ y2q1s− y2k21

= 1,
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vamos juntar os termos que contém k1 e os que contém q1, assim �caremos com

x2k21 + 2xk1y
(
b
d

)
− y2k21 + y2q1s = 1, vamos por em evidência na expressão k1 e q1,

daí

(
x2k1 + 2xy

(
b

d

)
− y2k1

)
k1 + (y2s)q1 = 1, (2.3)

observemos que t = x2k1+2xy
(
b
d

)
−y2k1 e u = y2s são números inteiros, portanto

a expressão tk1 + uq1 = 1 no diz que q1 e k1 são prinos entre si, ou seja, (q1, k1) = 1,

analogamente podemos mostrar que (q1, k2) = 1.

Usando a proposição 1.1, garantimos que existe x de modo que k1x ≡ k2 mod q1

e como q1 | k, portanto k ≡ 0 mod q1, mas lembremos que k = k21 + k2, então

k21 + k22 ≡ k21 + k22 − k22 ≡ 0− k22 ≡ −k22 mod q1.

Como k1x ≡ k2 mod q1, temos que elevenado ao quadrado esta congrência ob-

temos k21x
2 ≡ k22 mod q1. Agora somando as congruências k21 ≡ −k22 mod q1 e

k21x
2 ≡ k22 mod q1, �camos com

k21x
2 + k21 = k21(x

2 + 1) ≡ −k22 + k22 ≡ 0 mod q1.

Façamos a seguinte a�rmação, q1 - k21, de fato, sendo (q1, k2) = 1, temos que

q1 - k1, portanto não divide k21.

Vamos mostrar este fato, para isso usaremos a demonstração pela contrapositiva,

ou seja, suponhamos que q1 | k21, dái q1 | k1k1, como q1 é primo então q1 | k1 ou

q1 | k1, portanto q1 | k1 e assim, mostramos que q1 - k21. Como q1 é primo e

q1 | k21(x2 + 1) então q1 | k21 ou q1 | (x2 + 1), mas q21 - k21 portanto, q1 | (x2 + 1), ou

seja, x2 ≡ −1 mod q1. Observemos que a equação x2 ≡ −1 mod q1 possui solução

para q1 ≡ 3 (mod 4) o que contradiz o proposição 1.1, portanto todos os β
′
js são

pares.

�
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2.3 Soma de Três Quadrados

O que faremos nesta seção é exibir dois exemplos de números que não podem ser

escritos como uma soma de três quadrados.

O primeiro exemplo que se segue nos diz que todo inteiro que deixa resto 7

quando dividido por 8 não pode ser escrito como uma soma de três quadrados.

Teorema 2.3 Todo inteiro da forma 8a + 7 com a ∈ Z não pode ser representado

como a soma de três quadrados.

Demonstração: Tomemos n inteiro. Sabemos que ao dividirmos n por 8 pode-

mos obter como resto algum dos seguintes números 0, 1, 2, 3, 4, 5, 6 ou 7, portanto,

a ≡ 0 (mod 8) ou a ≡ 1 (mod 8), a ≡ 2 (mod 8), a ≡ 3 (mod 8), a ≡ 4 (mod 8),

a ≡ 5 (mod 8), a ≡ 6 (mod 8), a ≡ 7 (mod 8).

Daí,

a2 ≡ 02 = 0 (mod 8)

a2 ≡ 12 = 1 (mod 8)

a2 ≡ 22 = 4 (mod 8)

a2 ≡ 32 = 9 ≡ 1 (mod 8)

a2 ≡ 42 = 16 ≡ 0 (mod 8)

a2 ≡ 52 = 25 ≡ 1 (mod 8)

a2 ≡ 62 = 36 ≡ 4 (mod 8)

a2 ≡ 72 = 49 ≡ 1 (mod 8).

Concluímos assim, que a2 ≡ 0, 1 ou 4 (mod 8). Agora, observemos que reali-

zando todas as combinações possíveis para as somas dos quadrados não é possível

obter a2 + b2 + c2 ≡ 7 (mod 8). De fato, vamos descrever todas as posssibilidades

para a soma a2 + b2 + c2.
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a2 + b2 + c2 ≡ 0 + 0 + 0 = 0 ≡ 0 (mod 8)

a2 + b2 + c2 ≡ 0 + 0 + 1 = 1 ≡ 1 (mod 8)

a2 + b2 + c2 ≡ 0 + 0 + 4 = 4 (mod 8)

a2 + b2 + c2 ≡ 0 + 1 + 1 = 2 (mod 8)

a2 + b2 + c2 ≡ 0 + 1 + 4 = 5 (mod 8)

a2 + b2 + c2 ≡ 0 + 4 + 4 = 8 ≡ 0 (mod 8)

a2 + b2 + c2 ≡ 1 + 1 + 1 = 3 (mod 8)

a2 + b2 + c2 ≡ 1 + 1 + 4 = 6 (mod 8)

a2 + b2 + c2 ≡ 4 + 4 + 1 = 9 ≡ 1 (mod 8)

a2 + b2 + c2 ≡ 4 + 4 + 4 = 12 ≡ 4 (mod 8).

Portanto, podemos perceber que não há como termos a2 + b2 + c2 ≡ 4 (mod 8)

ou a2 + b2 + c2 ≡ 5 (mod 8) ou a2 + b2 + c2 ≡ 6 (mod 8) ou a2 + b2 + c2 ≡ 7

(mod 8). Mas, o que nos interessa saber é que não é possível haver a congruência

a2 + b2 + c2 ≡ 7 (mod 8).

�

Proposição 2.1 Seja n ∈ N da forma n = 4k(8m + 7) com k,m > 0. Então n

jamais é soma de três ou menos quadrados.

Demonstração: Vamos demonstrar por indução em k, vejamos primeiramente

que para k = 0, teremos que n = (8m + 7), vamos supor por absurdo que existam

a0,b0 e c0 inteiros positivos tais que n = (8m+7) = a20+ b
2
0+ c

2
0. Sendo n = (8m+7)

então n ≡ 7 (mod 8) e ainda podemos dizer que n ≡ 1 (mod 2). Recordemos que

ao dividirmos a por 8 podemos obter agum desses números como resto 0, 1, 2, 3, 4,

5, 6 ou 7, assim da demonstração do teorema anterior podemos concluir que a ≡ 0,
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1, 2, 3, 4, 5, 6 (mod 8) e portanto, a2 ≡ 0, 1 ou 4 (mod 8). Assim, não é possível

termos n ≡ 7 (mod 8), daí n não pode ser escrito como soma de três quadrados.

Agora supomos que 4k−1(8m+7) não seja escrito como uma soma de três quadra-

dos, devemos mostrar que 4k(8m+ 7) não pode ser escrito como soma de três qua-

drados. Sendo k ≥ 1 e supondo que n possa escrito como soma de três quadrados, ou

seja, existem a0,b0 e c0 inteiros não positivos tais que n = 4k(8m+7) = a20+b
2
0+c

2
0, po-

demos concluir que 4 | n, ou seja, n é par, de fato, n = 4k(8m+7) = 44k−1(8m+7) =

224k−1(8m + 7). Assim, podemos concluir que a, b e c são todos pares. De fato,

sendo n par então para a soma n = a20 + b20 + c20 temos duas possibilidades :

1. Dois quadrados são ímpares e um é par;

2. Todos os quadrados são pares.

A primeira não pode ocorrer, pois n = a20+b
2
0+c

2
0 ≡ 12+12+02 = 2 (mod 4), ou

seja, dessa forma 4 não divide n o que é um absurdo. Assim, a única opção possivel

é a segunda, ou seja, todos os quadrados são pares, daí podemos concluir que a, b e c

são todos pares. De fato, sendo a2 par então a também é par, para mostrarmos isto

usaremos a demonstração por contrapositiva, se um número inteiro positivo não é

par então é ímpar ou seja, sendo a ímpar devemos mostrar que a2 é também impar e

de fato isto é verdade, portanto podemos concluir que a a�rmação feita é verdadeira.

Sendo a, b e c todos pares então existem u, v e w inteiros positivos tais que a = 2u,

b = 2v e c = 2w, logo

4k(8m+ 7) = a20 + b20 + c20

= (2u)2 + (2v)2 + (2w)2

= 4u2 + 4v2 + 4w2

= 4(u2 + v2 + w2),
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Ao dividirmos a igualdade acima por 4, obtemos

4k−1(8m+ 7) = u2 + v2 + w2 (2.4)

ora mas isto contradiz a hipótese de indução, portanto n = 4k(8m+7) não pode

ser escrito como uma soma de três quadrados.

�

2.4 Soma de Quatro Quadrados

Como foi dito no início deste trabalho o matemático inglês Waring, a�rmou que

todo número inteiro positivo é a soma de no máximo 4 quadrados. Nesta seção

iremos demonstrar esta a�rmação feita por Waring, mas antes demonstremos um

resultado análogo ao lema 2.1 da seção anterior que garante que se dois números

podem ser representados por uma soma de 4 quadrados então o produto entre eles

também o pode.

Lema 2.2 Para quaisquer a, b, c e d inteiros, temos que

(a2 + b2 + c2 + d2) · (r2 + s2 + t2 + v2) = (ar + bs+ ct+ dv)2 + (as− br − cv + dt)2

+ (at+ bv − cr − ds)2 + (av − bt+ cs− dr)2.

Demonstração: Vamos desenvolver ambos os lados da igualdade e assim obte-

remos o resultado desejado. Desenvolvendo o lado esquerdo temos que

(a2 + b2 + c2 + d2) · (r2 + s2 + t2 + v2) =

a2r2 + a2s2 + a2t2 + a2v2 + b2r2 + b2s2 + b2t2 + b2v2

+ c2r2 + c2s2 + c2t2 + c2v2 + d2r2 + d2s2 + d2t2 + d2v2. (2.5)
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Vamos agora desenvolver o lado direito da igualdade e comparar com o resultado

obtido no lado esquerdo. Vamos fazer isto em 4 etapas, desenvolvendo cada quadrado

separadamente, assim,

(ar + bs+ ct+ dv)2 =

(ar + bs)2 + 2(ar + bs)(ct+ dv) + (ct+ dv)2 =

a2r2 + 2arbs+ b2s2 + 2(arct+ ardv + bsct+ bsdv) + c2t2 + 2ctdv + d2v2 =

a2r2 + b2s2 + c2t2 + d2v2 + 2arct+ 2ardv + 2bsct+ 2bsdv + 2arbs+ 2ctdv. (2.6)

Da mesma forma,

(as− br − cv + dt)2 =

(as− br)2 + 2(as− br)(−cv + dt) + (−cv + dt)2 =

a2s2 − 2asbr + b2r2 + 2(−ascv + asdt+ brcv − brdt) + c2v2 + 2cvdt+ d2t2 =

a2s2 + b2r2 + c2v2 + d2t2 − 2ascv + 2asdt+ 2brcv − 2brdt− 2asbr + 2cvdt. (2.7)

De modo análogo,

(at+ bv − cr − ds)2 =

(at+ bv)2 + 2(at+ bv)(−cr − ds) + (−cr − ds)2 =

a2t2 + 2atbv + b2v2 + 2(−atcr − atds− bvcr − bvds) + c2r2 + 2crds+ d2s2 =

a2t2 + b2v2 + c2v2 + d2s2 − 2atcr − 2atds− 2bvcr − 2bvds+ 2atbv + 2crds. (2.8)

26



2.4. SOMA DE QUATRO QUADRADOS

E Finalmente,

(av − bt+ cs− dr)2 =

(av − bt)2 + 2(av − bt)(cs− dr) + (cs− dr)2 =

a2v2 − 2avbt+ b2t2 + 2(avcs− avdr − btcs+ btdr) + c2s2 − 2csdr + d2r2 =

a2v2 + b2t2 + c2s2 + d2r2 + 2avcs− 2avdr − 2btcs+ 2btdr − 2avbt− 2csdr. (2.9)

Agora, somando (2.6) + (2.7) + (2.8) + (2.9), obtemos

(ar+bs+ct+dv)2+(as−br−cv+dt)2+(at+bv−cr−ds)2+(av−bt+cs−dr)2 =

a2r2 + a2s2 + a2t2 + a2v2 + b2r2+

b2s2 + b2t2 + b2v2 + c2r2 + c2s2+

c2t2 + c2v2 + d2r2 + d2s2 + d2t2 + d2v2, (2.10)

portanto ambos os lados dão o mesmo resultado, daí concluímos que

(a2 + b2 + c2 + d2) · (r2 + s2 + t2 + v2) = (ar + bs+ ct+ dv)2 + (as− br − cv + dt)2

+ (at+ bv − cr − ds)2 + (av − bt+ cs− dr)2.

(2.11)

�
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Teorema 2.4 Todo inteiro positivo possui representação como soma de quatro qua-

drados.

Demonstração: Sabemos que todo primo possui tal representação. Lembremos

que 2 = 12 + 12 + 02 + 02, assim tomemos p um primo ímpar, pelo teorema 1.7,

existem a, b e c tais que a2 + b2 + c2 ≡ 0 (mod p), ou seja, existe M inteiro tal que

a2 + b2 + c2 = Mp, podemos escrever a congruência a2 + b2 + c2 ≡ 0 (mod p) da

seguinte forma a2 + b2 + c2 + d2 ≡ 0 (mod p) onde d = 0, pela equação anterior e

considerando o conjunto formado pelos números que podem ser escritos como soma

de quatro quadrados, podemos garantir pelo principio da boa ordenação que este

conjunto tem um menor elemento, pois ele não é vazio. Consideremosm tal elemento

mínimo, assim, a2 + b2 + c2 = mp. Como nas equações acima estamos trabalhando

módulo p e a, b e c estão elevados ao quadrado, podemos tomar |a|, |b| e |c| no

intervalo [0, p
2
). Logo

a <
p

2
, b <

p

2
, c <

p

2
e d <

p

2
,

daí

a2 <
(p
2

)2
, b2 <

(p
2

)2
, c2 <

(p
2

)2
e d2 <

(p
2

)2
,

somando as desigualdades acima obtemos

a2 + b2 + c2 + d2 = mp < 4
(p
2

)2
= 4

p2

4
= p2.

Mas, mp < p2 logo m < p. Sabendo que a2 + b2 + c2 = mp e m < p basta que

mostremos que m = 1, ou seja, mostrar que a2+b2+c2 = mp, daí teremos concluído

que todo primo ímpar pode ser representado como soma de quatro quadrados. Para

isto, vamos mostrar que a suposição de m > 1 irá nos conduzir a existência de um

certo m
′
, onde m

′
< m e a2 + b2 + c2 + d2 = m

′
p o que é um contradição, visto que
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m foi escolhido como elemento minimal, de modo que mp tenha representação como

soma de quatro quadrados.

Vamos supor que m > 1 teremos dois casos a considerar: m sendo par e m sendo

ímpar. Tomando m ímpar e m > 1. Podemos escolher dentro do intervalo [0, m
2
],

números a1, b1, c1 e d1 tais que a1 ≡ a (mod m), b1 ≡ b (mod m), c1 ≡ c (mod m)

e d1 ≡ d (mod m). Então, teremos a21 ≡ a2 (mod m), b21 ≡ b2 (mod m), c21 ≡ c2

(mod m) e d21 ≡ d2 (mod m) e portanto, a21 + b21 + c21 + d21 ≡ a2 + b2 + c2 + d2 ≡ 0

(mod m), assim podemos garantir que existe m
′
> 0 tal que a21+ b

2
1+ c

2
1+d

2
1 = mm

′

onde, |a1| < m
2
, |b1| < m

2
, |c1| < m

2
e |d1| < m

2
, portanto a21 <

m2

4
, b21 <

m2

4
, c21 <

m2

4

e d21 <
m2

4
e daí a21 + b21 + c21 + d21 < 4m

2

4
onde m

′
m < m2 e portanto m

′
< m. Se

�zermos m
′
= 0 então a21 + b21 + c21 + d21 = 0, a soma de quatro números positivos

dando zero só acontece se a1 = b1 = c1 = d1 = 0 assim, a ≡ b ≡ c ≡ d ≡ 0 (mod m)

o que conduz a a�rmarmos quem2 | mp. De fato, sendo a ≡ b ≡ c ≡ d ≡ 0 (mod m)

existem k1, k2, k3, k4 inteiros tais que a = k1m, b = k2m, c = k3m e d = k4m, assim

substituindo em a2 + b2 + c2 + d2 = mp, obtemos

(k1m)2 + (k2m)2 + (k3m)2 + (k4m)2 = k21m
2 + k22m

2 + k23m
2 + k24m

2

= m2(k21 + k22 + k23 + k24)

= mp.

Da equação acima podemos concluir que m2 | mp. Observemos também que

m2 | mp implica m | p, ora mas isto é uma contradição pois escolhemos 1 < m < p e

sendo p primo os únicos divisores do mesmo seriam 1 e p que estão fora do intervalo

que m pertence. Assim, concluímos que m
′ 6= 0. Tendo a2 + b2 + c2 + d2 = mp e

a21 + b21 + c21 + d21 = m
′
m teremos que
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(mp)(m
′
m) = (a2 + b2 + c2 + d2)(a21 + b21 + c21 + d21) =

(aa1 + bb1 + cc1 + dd1)
2 + (ab1 − ba1 − cd1 + dc1)

2+

(ac1 + bd1 − ca1 − db1)2 + (ad1 − bc1 + cb1 − da1)2,

pelo lema 2.2.

Sabendo que a ≡ a1, b ≡ b1, c ≡ c1 e d ≡ d1 (mod m) e a2 ≡ aa1, b2 ≡ b1, c2 ≡ e

d2 ≡ dd1, podemos a�rmar que as quatro expressões que estão elevadas ao quadrado

do lado direito da multiplicação de mpm
′
m são múltiplos de m. De fato, vamos

analisar por expresão, sendo a2 ≡ aa1, b2 ≡ bb1, c2 ≡ cc1 e d2 ≡ dd1, temos que ao

somarmos estas congruências obtemos aa1 + bb1 + cc1 + dd1 ≡ a2 + b2 + c2 + d2 ≡ 0

(mod m). Portanto (aa1 + bb1 + cc1 + dd1)
2 é um mútiplo de m. Vamos analisar

a expressão (ab1 − ba1 − cd1 + dc1)
2. Observe que a ≡ a1 (mod m), então a ≡ r1

(mod m) e a1 ≡ r1 (mod m), analogamete teremos b ≡ r2 (mod m) e b1 ≡ r2

(mod m),c ≡ r3 (mod m) e c1 ≡ r3 (mod m), d ≡ r4 (mod m) e d1 ≡ r4 (mod m).

Assim, ab1 ≡ r1r2 (mod m), −ba1 ≡ −r1r2 (mod m), −cd1 ≡ −r3r4 (mod m) e

dc1 ≡ r3r4 (mod m). Portanto, ab1 − ba1 − cd1 + dc1)
2 ≡ 0 + 0 ≡ 0 (mod m), ou

seja, (ab1 − ba1 − cd1 + dc1)
2 é um múltiplo de m. Analogamente fazemos com as

outras expressões e concluímos que são mútiplas de m. Mostrado isto, podemos

a�rmar que existem inteiros a, b, c e d, tais que

(am)2 + (bm)2 + (cm)2 + (dm)2 = a2m2 + b
2
m2 + c2m2 + d

2
m2

= m2(a2 + b
2
+ c2 + d

2
)

= m2pm
′
.

Daí, obtemos a2+a2+c2+d
2
= pm

′
onde m

′
é menor do que m. Falta provarmos

que, no caso m par poderemos encontrar m < m de modo que mp seja escrito como

30



2.4. SOMA DE QUATRO QUADRADOS

soma de quatro quadrados. De fato, sendo m par teremos que mp também é par,

pois p é um primo ímpar, assim a2+b2+c2 = mp é par, ora mas há três possibilidades

para que isto aconteça. Os inteiros a, b, c e d são todos pares, ou todos ímpares

ou dois pares e dois ímpares, sendo que em qualquer um dos casos mencionados é

possível escolhermos a, b, c e d tais que a ≡ b (mod 2) e c ≡ d (mod 2). Sabendo

que m é par temos que

a2 + b2 + c2 + d2 = mp

é par, então dividindo a equação anterior por dois temos

a2 + b2 + c2 + d2

2
=
mp

2

Podemos escrevê-la da seguinte forma

2(a2 + b2) + 2(c2 + d2)

4
=

2(a2 + b2)

4
+

2(c2 + d2)

4

=
mp

2
,

agora vamos somar e subtrair da expressão anterior 2ab
4

e 2cd
4
, �caremos com,

a2 + b2 + c2 + d2 =
2(a2 + b2)

4
+

2(c2 + d2)

4

=
a2 + b2

4
− 2ab

4
+

2ab

4
+
a2 + b2

4
+
c2 + d2

4
+
c2 + d2

4
− 2cd

4
+

2cd

4

=
mp

2
.

Portanto,

a2 − 2ab+ b2

4
+
a2 + 2ab+ b2

4
+
c2 − 2cd+ d2

4
+
c2 + 2cd+ d2

4
=(

a− b
2

)2

+

(
a+ b

2

)2

+

(
c− d
2

)2

+

(
c+ d

2

)2

=
mp

2
. (2.12)
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Se tomarmos m = m
2
< m, teremos caído em uma contradição mais uma vez pois

lembremos que tomamos m o menor inteiro positivo tal que mp é soma de quatro

quadrados. Portanto, podemos concluir que m = 1 e teremos demonstrado o que

queríamos.

�

2.5 Um Teorema de Unicidade de Euler

A nossa meta nesta seção é de mostrar que certos primos possuem represen-

tação única como soma de dois quadrados, para isso vamos ver alguns resultados

preliminares.

Proposição 2.2 Se um primo p = c2 + d2 e se existir q > 1 tal que pq = a2 + b2,

(a, b) = 1, então q é a soma dos quadrados de dois inteiros relativamente primos.

Demonstração: É claro que se tivermos p = c2 + d2, p sendo primo então

(c, d) = 1. Sendo pq = a2 + b2, temos

c2b2 − a2b2 = c2b2 + a2c2 − a2c2 − a2b2

= c2(a2 + b2)− a2(c2 + b2)

= c2pq − a2p

= p(c2q − a2) = pk.

Logo;

kp = (a2 + b2)− a2(c2 + b2) = c2a2 + c2b2 − a2c2 − a2d2

= c2b2 − a2d2

= (bc+ ad)(bc− ad).
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Daí, concluímos que p | (bc + ad)(bc − ad), como p é primo temos p | (bc + ad)

ou p | (bc − ad). Observemos que bc − ad 6= 0, de fato, se bc = ad e como (a, b) =

(c, d) = 1 temos que a = b e c = d, assim, p = 2a2 e pq = 2a2e portanto p = pq o

que implica q = 1, o que é um absurdo pois q > 1. Se p | (bc − ad) teremos que

existe t inteiro tal que bc− ad = tp. Sejam;

r = b− tc

e

s = a+ td

Ao multilpicar a primeira das equações acima por c e a segunda por d �caremos

com

cr = c(b− tc) = cb− tc2

e

ds = d(a+ td) = da+ td2.

Sutraindo as equações acima obteremos

cr − ds = c(b− tc)− d(a+ td) = (cb− tc2)− (da+ td2)

= (cb− da)− t(c2 + d2)

= tp− tp = 0.

Logo, cr = ds, ou seja, r = d s
c
. Como (c, d) = 1 e r = d

s

c
temos que n =

s

c
deve

ser inteiro. Sendo s = c
s

c
devemos ter r = dn e s = cn.

Observemos que pq = a2 + b2, a = s− td e b = r + tc temos ainda a = nc− td e

b = nd+ tc, portanto
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pq = (nc− td)2 + (tc+ nd)2 = n2c2 − 2(nc)(td) + t2d2 + t2c2 + 2(tc)(nd) + n2d2

= n2c2 + t2d2 + t2c2 + n2d2 = t2d2 + n2d2 + n2c2 + t2c2

= d2(t2 + n2) + c2(t2 + n2)

= (t2 + n2)(c2 + d2).

Lembremos que p = c2 + d2. Daí, pq = p(t2 + n2) ⇒ q = t2 + n2. Notemos que

(t, n) = 1, de fato observe que r = b− tc e s = a+ td, r = nd e s = nc. Sabendo que

(a, b) = 1, então existem x e y inteiros tais que xa+ yb = 1 e temos que a = nc− td

e b = nd+ tc, logo

x(nc− td) + y(nd+ tc) = xnc− xtd+ ynd+ ytc

= ytc− xtd+ xnc+ ynd

= (yc− xd)t+ (xc+ yd)n = 1.

Portanto (t, n) = 1. O caso p | (bc+ad) é análogo ao que �zemos anteriormente,

isto é, se bc+ ad = kp, então

r = b− kc

e

s = a− kd

Multiplicando a primeira equação por c e a segunda por d obtemos que

cr = cb− kc2

e

34



2.5. UM TEOREMA DE UNICIDADE DE EULER

ds = ad− kd2

e portanto, ao somarmos ambas as equações teremos que cr + ds = cb+ ad− kc2 −

kd2 = kp − kp = 0. Disto, concluímos que cr = −ds onde r = dn e s = −cn

tomando n = − s
c
. Substituindo estes valores em r = b− kc e s = a− kd obtemos,

pq = a2 + b2 = (−cn+ kd)2 + (dn+ kc)2

= c2n2 − 2(cn)(kd) + k2d2 + d2n2 + 2(dn)(kc) + k2c2

= c2n2 + k2d2 + d2n2 + k2c2

= d2(k2 + n2) + c2(n2 + k2)

= (k2 + n2)(c2 + d2) = p(k2 + n2),

e assim, q = k2 + n2. Para mostrarmos que (k, n) = 1 fazemos de modo análogo

ao que �zemos no cas anterior. Portanto temos mostrado o que desejávamos.

�

Proposição 2.3 Se pq é soma de dois quadrados de dois inteiros relativamente

primos e q não é a soma de dois quadrados de inteiros relativamente primos, então

p possui um fator primo que não é a soma de dois quadrados.

Demonstração: Suponhamos por absurdo que p = p1p2 . . . pn onde cada primo

pj (j = 1, 2, . . . , n) é a soma soma de dois quadrados. Como p1(p2 . . . pnq) = pq é

a soma de dois quadrados de inteiros primos entre si e pela proposição 2.2 temos a

garantia que p2 . . . pnq é a soma de dois quadrados de inteiros relativamente primos

entre si. Repetindo mais uma vez este processo temos que p2(p3 . . . pnq) = p2 . . . pnq

é a soma de dois quadrados de interios relativamente primos entre si e novamente

usando a proposição 2.2 temos a garantia que p3 . . . pnq é a soma de dois quadrados

de inteiros prims entre si. Procedendo sempre desta forma chegaremos a conclusão
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de que q é a soma de dois quadrados de interios relatiamente primos, ora, mas isto

contradiz a nossa hitótese de que q não pode ser escrito como soma de dois quadrados

de inteiros primos entre si. Este absurdo foi obtido quando supomos que todos os

fatores primos de p poderiam ser escritos como soma de dois quadrados, daí um

destes fatores não pode ser escrito como tal.

�

Proposição 2.4 Se um primo p divide a2 + b2 com (a, b) = 1, então p é a soma de

dois quadrados.

Demonstração: Suponhamos por absurdo que p não seja soma de dois qua-

drados. Sabemos que p - a e p - b, de fato, vamos supor por absurdo que p | a,

como a e b são primos entre si podemos concluir que p - b, sabemos por hipótese

que p | a2 + b2, ou seja, existe k inteiro de modo que p | a2 + b2 = pko que implica

b2 = pk − a2, como supomos que p | a, temos que existe u inteiro tal que a = pu,

daí a2 = p(pu2) e assim p | a2, daí b2 = pk − a2 = pk − p(pu2) = p(k − pu2) o que

acarreta p | a2 e assim p | a, ora mas isto é um absurdo pois sabemos que p - a.

O que nos leva a conclusão de que p - a, da mesma forma se supormos que p | b

pelos mesmo argumentos feito para o caso anterior conluíremos que p - a e de forma

análoga concluíremos que p - b. Vamos utilizar o seguinte argumento: dados a e b

inteiros com b 6= 0, mostrar que existem inteiros q e r satisfazendo a = qb± r, onde

0 ≤ r ≤ b
2
. De fato, pelo algorítmo de Euclides existem q e s de modo que a = qb+s,

onde 0 ≤ s < b. Se 0 ≤ r ≤ b
2
, daí podemos tomar r = s e teremos 0 ≤ r ≤ b

2
, agora

se s > b
2
, podemos escrever a = qb + r − b + b = qb + b + r − b = q(b + 1) + r − b,

observemos s > b
2
, ao subtrairmos b teremos o seguinte

b

2
− b ≤ s− b < b− b⇒ − b

2
≤ s− b ≤ 0⇒ 0 < −(s− b) ≤ b

2
,

chamando r = s − b, assim, poderemos escrever a = q
′
b − r. Daí, usando o

resultado que acabamos de mostrar, existem q1, q2, r1 e r2 satisfazendo
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a = q1p± r1, 0 < r1 ≤
p

2

b = q2p± r2, 0 < r2 ≤
p

2

Assim, isolando r1 e r2 e logo em seguida elevando ao quadrado obtemos:

±r1 = a− pq1 ⇒ r21 = (a− pq1)2

±r2 = a− pq2 ⇒ r22 = (a− pq2)2

Somando estas equações teremos que

r21 + r22 = a2 − 2pq1 + p2q21 + b2 − 2pq2 + p2q22

daí podemos escrevê-la da seguinte maneira

r21 + r22 = a2 + b2 + (−2pq1 + p2q21 − 2pq2 + p2q22)

= a2 + b2 + pm, (2.13)

onde m = −2q1+pq21−2q2+pq22, lembremos do fato que p | a2+b2, ou seja, existe

s inteiro de modo que a2 + b2 = ps, assim, r21 + r22 = ps + pm = p(s +m) = pM ,

lembremos ainda que r1 6
p
2
e r2 6

p
2
, daí r21 6

p2

4
e r22 6

p2

4
, portanto, r21 + r22 6

p2

4
+ p2

4
= p2

2
, agora podemos escrever que pM 6 p2

2
. Vamos mostrar que sendo r1 e

r2 menores do que p, tomando qualquer divisor comum de r1 e r2 então este divisor

comum dividirá M . De fato, seja k um divisor comum de r1 e r2 então existem

inteiros de modo que r1 = ks e r2 = kt, substituindo em r21 + r22, temos que

r21 + r22 = k2s2 + k2t2 =Mp⇒ k2(s2 + t2) =Mp⇒ k2 |Mp,

mas lembremos que k ≤ r1 < p então k < p, sendo p primo e k < p não é

possível p está na decomposição primária de k, logo k - p, assim, podemos dizer que

(k, p) = (k2, p) = 1, portanto temos k2 | Mp e (k2, p) = 1 e assim k2 | M implica

k |M . Caso seja necesário uma simpli�cação por k2 teremos
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r21 + r22 =Mp⇒ r21 + r22
k2

=
Mp

k2
⇒ a21 + b21 = np,

onde ( r1
k
, r2
k
) = 1 o que nos diz que (a1, b1) = 1. Da proposição 2.3 podemos, ter

a certeza de que n possui um fator primo o qual chamaremos de p1 de modo que

este não seja soma de dois quadrados e que p1 ≤ p
2
. Ao repetirmos este processo

tomando p1 ao invés de p obteremos um primo p2, onde p2 < p1 ≤ p
2
, que não é soma

de dois quadrados, ora mas isto é um absurdo pois np é soma de dois quadrados de

números relativamente primos como é mostrado na proposição 2.2.

�

Teorema 2.5 Todo primo da forma 4n+ 1 possui representação única como soma

de dois quadrados.

Demonstração: O teorema 1.1 diz que −1 é um resíduo quadrático de qualquer

primo p ≡ 1 (mod 4) o que quer dizer que existe um inteiro a tal que a2 ≡ −1

(mod p) para primos p ≡ 1 (mod 4). Existindo tal a inteiro de modo que a2 ≡ −1

(mod p) então a2+1 ≡ 0 (mod p) o que implica p | a2+1 e utilizando a proposição

2.4 podemos concluir que p é a soma de dois quadrados. Bem, acabamos de concluir

que de fato p é soma de dois quadrados, vamos agora mostrar que a representação de

p como soma de dois quadrados é única. Supondo que existem duas representações

distintas para p, ou seja, p = a2 + b2 = c2 + d2. Sabemos que sendo p um número

ímpar então um dos números a e b é ímpar e o outro deve ser par, da mesma forma

procedemos para c e d.

Temos que

c2 + b2 = c2 + d2 ⇒ a2 − c2 = d2 − b2 ⇒ (a+ c)(a− c) = (d+ b)(d− b).

Consideremos r = (a− c, d− b), daí existe m inteiro tal que a− c = mr e existe

n inteiro de modo que d− b = nr onde (m,n) = 1, de fato, sabendo que
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r = (a− c, d− b) = (mr, nr).

então

r = (mr, nr)⇒ 1

r
r =

1

r
(mr, nr)⇒

(mr
r
,
nr

r

)
= 1⇒ (m,n) = 1

Portanto, m(a + c) = n(d + b). Sabendo que (m,n) = 1 e considerando s =

(a + c, d + b), podemos concluir que a + c = ns e d + b = ms. Sendo a e c ambos

pares ou ímpares teremos que r e s são pares. De fato, se a e c são ambos pares

temos que a − c = mr = 2k − 2s = 2(k − s) e a + c = ns = 2t − 2y = 2(t − y),

ou seja, mr e ns são pares então há as seguintes possibilidades m e r pares e n e s

pares ou m par e r ímpar e n par e s ímpar ou m ímpar e r par e n ímpar e s par,

observemos que as duas primeiras possibilidades não podem ocorrer pois (m,n) = 1

restando então a terceira e por ela concluímos que r e s são pares. Da mesma forma,

se considerarmos a e c ímpares faremos de forma análoga ao anterior. Se apenas

um deles é par consequentemente o utro é ímpar, digamos a é par e c é ímpar então

a− c = mr = 2k− (2s+1) = 2(k− s)− 1 e a+ c = ns = 2t− (2y+1) = 2(t− y)− 1

o que nos leva a conclusão de que mr e ns são ímpares assim, m é ímpar e r é ímpar

e n é ímpar e s é ímpar daí concluímos que r e s são ambos ímpares e também

concluímos neste caso que m e n também são ímpares. Temos que

(r2 + s2)(m2 + n2) = m2r2 + n2r2 +m2s2 + n2s2

= (a− c)2 + (d+ b)2 + (d− b)2 + (a+ c)2.

Assim,

(a− c)2 + (d+ b)2 + (d− b)2 + (a+ c)2 =

a2 − 2ac+ c2 + a2 + 2ac+ c2 + d2 + 2db+ b2 + d2 − 2db+ b2 =

2(a2 + b2) + 2(c2 + d2). (2.14)
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Portanto,

(r2 + s2)(m2 + n2)

4
=
a2 + b2

2
+
c2 + d2

2

=
p

2
+
p

2
= p. (2.15)

Podemos tirar as seguintes conclusões sobre a expressão acima, sendo r e s ambos

pares p será o produto de r2+s2

2
e m2+n2

2
e estes são maiores do que 1. Agora sendo

r e s ímpares não podemos ter ambos iguais a 1, pois caso fosse possível teríamos

a− c = m, a + c = n, d− b = n e d + b = m somando as duas primeiras e as duas

últimas obtemos que a = m+n
2

e d = m+n
2

, portanto a = d, sendo a = d e subtraindo

a segunda pela primeira e a quarta pela terceira, obtemos b = m−n
2

e c = m−n
2

, o

que acarreta b = c. Mas, isto não é possível pois as duas representações de p são

distintas, ou seja, a 6= d e c 6= b. Quando r e s são ímpares p, será o produto de

r2+s2

2
e m2+n2

2
e estes fatores são diferentes de 1. Mas, observemos que p é um primo

ímpar e de modo algum poderá ser escrito como as expressões ditas anteriormente,

portanto podemos concluir que a representação de p é única.

�

2.6 Descenso In�nito de Fermat

Considerando a equação f(x1, x2, . . . , xn) = 0 o método do descenso in�nito

consiste em veri�car a não existência de soluções inteiras positivas ou mostrar sob

certas condições todas as soluções inteiras desta equação. Ao considerarmos o con-

junto solução A = {(x1, . . . , xn) ∈ Z|f((x1, . . . , xn) = 0} e supondo que este seja não

vazio, desejamos construir uma função φ : A → N e consideraremos uma solução

(x1, x2, . . . , xn) ∈ A onde φ(x1, x2, . . . , xn) é a menor possível. A partir desta encon-

traremos uma outra menor do que ela e portanto teremos assim uma contradição o

que nos levarará que o conjunto solução da equação é vazio.

40



2.6. DESCENSO INFINITO DE FERMAT

Façamos o exemplo abaixo e tentemos compreender esta técnica elaborada por

Fermat.

Exemplo: (Fermat). Demonstrar que a equação x4 + y4 = z2 não possui soluções

inteiras positivas. �

Suponhamos que x4 + y4 = z2 possui uma solução inteira onde x, y, z > 0.

Portanto, existe uma solução (a, b, c) onde podemos consirear c mínimo. Temos a

e b primos entre si. De fato, se d = (a, b) > 1 poderíamos substituir (a, b, c) por

(a
d
, b
d
, c
d2
) e este terno é solução da equação, veja que (a

d
)4 + ( b

d
)4 = a4+b4

d4
. Note que

o terno (a, b, c) é solução de x4 + y4 = z2 então (a
d
)4 + (a

d
)4 = a4+b4

d4
= c2

d4
, ou seja,

o terno (a
d
, b
d
, c
d2
) é solução da equação e c

d2
< c o que contradiz a minimilidade de

c. Sabemos que (a2)2 + (b2)2 = c2 temos assim que o terno (a2, b2, c) é um terno

pitagórico primitivo e daí existem números inteiros positivos m e n que são primos

entre si de modo que

a2 = m2 − n2, b2 = 2mn e c = m2 + n2.

Notemos que a2 + n2 = m2 satisfaz a relação de Pitágoras e portanto a terna

ordenada (a, n,m) é uma terna pitagorica primitiva e assim podemos concluir que

m é impar. De fato, note que m é ímpar pois a e n não podem ser ambos pares,

devido a e n serem primos. Portanto supomos que a é ímpar, n não pode ser ímpar

pois caso contrário

a = 2k + 1⇒ a2 = (2k + 1)2 = 4k2 + 4k + 1⇒ a2 ≡ 1 (mod 4)

e

n = 2s+ 1⇒ n2 = 4s2 + 4s+ 1⇒ n2 ≡ 1 (mod 4),

assim,

a2 + n2 = m2 ≡ 1 + 1 = 2 (mod 4)
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o que não é possível pois todo número ao quadrado quando dividido por 4 deixa

resto 0 ou 1, portanto n2 é par e consequentemente m2 é ímpar e daí podemos

concluir que m é ímpar. Assim, de b2 = 2mn concluímos que b é par e consequen-

temente n também. Observemos ainda que b2 = (2n)m é um quadrado perfeito e

(2n,m) = 1, de fato, (2n,m) = 1, pois (n,m) = 1 implica (2n,m) = (2,m) onde

(2, n) = 1 ou 2, vamos mostrar que não pode ocorrer (2,m) = 2, pois neste caso 2 | m

o que nos diz que m é par, mas sabemos que m é ímpar assim (2n,m) = (2,m) = 1.

Sendo b2 = (2n)m quadrado perfeito temos que 2n e m também o são. De fato,

suponhmamos que 2n não é um quadrado perfeito e então existe um fator primo pαi
i

de 2n que aparece uma quantidade ímpar de vezes no produto, ou seja, αi é ímpar

e como (2n,m) = 1 este fator não aparece em m, sabendo que b2 = (2n)m é um

quadrado perfeito então o fator pi deve aparecer uma quantidade par de vezes, mas

isto é um absurdo, o que nos leva a conclusão de que 2n e m são ambos quadrados

perfeitos.

Sendo então, 2n e m quadrado perfeitos então existem s e t positivos de modo

que 2n = 4s2 e m = t2. Por outro lado sabendo que a2 + n2 = m2, então existirão

inteiros positivos i e j primos entre si onde

a = i2 − j2, n = 2ij e m = i2 + j2.

Daí, s2 = n
2
= ij, logo i e j são quadrados perfeitos, digamos i = u2 e j = v2.

Portanto, teremos m = i2 + j2, i = u2, j = v2 e m = t2, assim, t2 = u4 + v4, de fato

m = (t)2 + (j)2 = (u2)2 + (v2)2 = u4 + v4 = t2, isto é, (u, v, t) é outra solução da

equação original. Porém,

t ≤ t2 = m ≤ m2 < m2 + n2 = c⇒ t < c

e lembremos que t 6= 0, pois m 6= 0.

42



2.7. O ÚLTIMO TEOREMA DE FERMAT

2.7 O Último Teorema de Fermat

Este sem dúvida alguma é um dos mais belos teoremas de todos os tempos, o

qual desa�ou matemáticos extraordinários através dos seus 300 anos em que �cou

sem uma demostração. Pierre de Fermat era considerado um matemático amador,

mesmo sendo o seu trabalho de alta qualidade. Quando Fermat morreu, seu �lho

encontra algumas anotações do pai e em uma dessas anotações estava escrito o

seguinte :"é impossível para um cubo ser escrito como a soma de dois cubos ou

uma quarta potência ser escrita como soma de duas quartas potências ou, em geral,

para qualquer número que é uma potência maior do que a segunda, ser escrito a

soma de duas potências com o mesmo expoente". Ele também escreveu que tinha

encontrado uma demonstração para esta a�rmação, porém não tinha como escrvê-la

naquelas margens. Muitos matemáticos importantes se dedicaram a solucionar este

"último teorema de Fermat", mas nenhum deles teve êxito, mas destas inúmeras

tentativas surgiram teorias importantes em matemática, como por exemplo a teoria

dos anéis comutativos, dentre outros. Este teorema virou uma lenda no mundo da

matemática, chegando a existir até um prêmio para quem o demonstrasse. A façanha

coube ao matemático Andrew Wiles um, professor da universidade de Princenton,

o qual na verdade demonstrou a conjectura de Taniyama-Shimura, �cando assim

demonstrado o último teorema de Fermat.

Para ilustrar o quanto este problema é difícil acompanharemos a demonstração

do teorema de Fermat para caso onde n = 3, que foi originalmente feita por Euler,

mas não estava completa. Assim vejamos primeiramente o lema abaixo:

Lema 2.3 Todas as soluções de s3 = a2+3b2 em inteiros positivos tais que (a, b) = 1

e s é ímpar são dadas por

s = m2 + 3n2, a = m3 − 9mn2, b = 3m2n− 3n3

com m+ n ímpar e (m, 3n) = 1.
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Demonstração: Vamos primeiramente mostrar que s, a e b assim de�nidas

satisfazem a equação s3 = a2 + 3b2, vejamos que

s3 = (m2 + 3n2)3 = (m2)3 + 3(m2)(3n2) + 3(m2)(3n2) + (3n2)3

= m6 + 9m4n2 + 27m2n4 + 27n6 (2.16)

e

a2 + 3b2 = (m3 − 9mn2)2 + 3(3m2n− 3n3)2

= (m3)2 − 2(m3)(9mn2)2 + 3((3m2n)2 − 2(3m2n)(3n3) + (3n3)2)

= m6 + 9m4n2 + 27m2n4 + 27n6. (2.17)

portanto, veri�camos que s3 = a2 + 3b2. Observemos que

(a, b) = (m3 − 9mn2, 3m2n− 3n3) = (m(m2 − 9n2), 3n(m2 − n2))

= (m2 − 9n2,m2 − n2)

= (8n2,m2 − n2). (2.18)

Podemos fazer as seguintes proposições :

• n par e m é ímpar;

• n par e m par;

• n ímpar e m par;

• n ímpar e m ímpar.

Mas, lembremos que por hipótese que m + n é par então apenas as suposições

abaixo são possíveis de ocorrer:
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• n par e m é ímpar;

• n ímpar e m par.

Em ambos os casos teremos que (8n2,m2 − n2) = 1. Suponhamos agora que a

terna (a, b, s) é uma solução da equação, consideremos então p primo de modo que

p | s, sendo (a, b) = 1 e ainda s ímpar temos p - a,p - b e p > 3. De s3 = a2 + 3b2

temos a2 = s3−3b2, note que p | s, assim a2 = p3t3−3b2 = p(p2t3)−3b2 ⇒ a2 ≡ −3b2

(mod p), temos então pela lei da reciprocidade quadrática(
−3

p

)
= 1⇔

(p
3

)
= 1⇔ p ≡ 1 (mod 6).

De fato, sendo
(
−3
p

)
= 1, temos que

(
−3

p

)
=

(
−1

p

)(
3

p

)
= 1⇔

(
−1

p

)(p
3

)
(−1)

p−1
2 = 1

⇔
(
−1

p

)(
−1

p

)
= 1

⇔
(
−1

p

)
= 1⇔ p ≡ 1 (mod 4). (2.19)

Sabemos que existem números m1 e n1 de modo que p = m2
1 + 3n2

1, assim

p3 = (m2
1+3n2

1)
3 = m6

1+9m4
1n

2
1+27m2

1+27n6
1, onde p

3 = c2+3d2 onde c = m3
1−9m1n

2
1

e d = 3m2
1n1 − 3n3

1. Sabemos que existem inteiros m1 e n1 tais que p = m2
1 + 3n2

1 e

assim, p3 = c2+3d2 onde c = m3
1−9m1n

2
1 e d = 3m2

1n1−3n3
1. Podemos observar que

(p,m1) = (p, n1) = 1 e ainda p > 3, logo (p, c) = (p, d) = 1, como na demonstração

acima de (a, b) = 1. Utilizando o método da indução sobre o número de divisores

de primos de s. Se s = 1 teremos pelo caso anterior que o problema está resolvido,

vamos supor agora que este resultado seja válido para todo s que tenha extamente k

fatores primos, digamos s = pt onde p é primo p > 3 , observemos que t3p6 = s3p3,

daí
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t3p6 = s3p3 = (a2 + 3b2)(c2 + 3d2) = (ac± 3bd)2 + 3(ad∓ bc)2

onde podemos observar que

(ad+ bc)(ad− bc) = (ad)2 − (bc)2 = d2(a2 + 3b2)− b2(c2 + 3d2) = p3(t3d2 − b2),

logo p3 | (ad+ bc)(ad− bc). Se p divide os dois fatores, temos que p | ad e p | bc.

Lembremos ainda que (p, c) = (p, d) = 1 o que acarreta p | a e p | b, ora mas isto

contradiz a hipótese (a, b) = 1, logo, p3 divide extamente um dos fatores, e tomando

adequadamente os sinais vamos ter

u =
ac± 3bd

p3
e u =

ad∓ bc
p3

como sendo números inteiros tais que t3 = u2+3v2, como t tem k fatores primos

segue por hipótese de indução que

t = m2
2 + 3n2

2 , u = m3
2 − 9m2n

2
2 e v = 3m2

2n2 − 3n3
2.

Agora, dado que a = uc + 3vd e b = ±(ud − vc), então substituindo t,u,v, c

e d em termos de mi e ni (i = 1, 2) em s, a e b e fazendo m = m1m2 + 3n1n2,

n = m1n2 −m2n1, onde obtemos o que desejávamos mostrar.

�

Proposição 2.5 A equação diofantina x3 + y3 = z3 não possui soluções inteiras

com xyz 6= 0.

O método utilizado para a demonstração deste caso particular é basicamente o

método do descenso in�nito de Fermat.

Demonstração: vamos supor que (x, y, z) é solução de x3 + y3 = z3 onde

x, y, z > 0 e de modo que xyz seja mínimo. Como qualquer fator comum de dois

destes números é também fator comum do terceiro x, y e z são primos relativos dois
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a dois e em particular um destes será par. observe que x = y não é possível de

ocorrer, pois se fosse teríamos que x3 + x3 = z3 implica 2x3 = z3, observe que do

lado direito o expoente da maior potência de 2 é um múltiplo de 3 enquanto do lado

esquerdo teremos não. Assim, vamos supor que x e y são ímpares e z é par podemos

então escrever x = p+ q e y = p− q, onde p > 0 e q > 0 primos entre si (pois x e y

também são primos entre si e de diferente paridades). Daí,

x3 + y3 = (x+ y)(x2 − xy + y2)

= 2p((p+ q)2 − (p+ q)(p− q) + (p− q)2)

= 2p(p2 + 3q2). (2.20)

Portanto, 2p | p2+3q2 é um cubo perfeito. De forma análoga supondo z ímpar e x

ou y é par, podemos supor sem a perda de generalidade que y é ímpar, e substituindo

z = q + p e y = q − p, teremos

x3 = z3 − y3 = 2p(p+ q)2 + (p+ q)(p− q) + (q − p)2

= 2p(p2 + 3q2). (2.21)

Como p2 + 3q2 é ímpar e 2p(p2 + 3q2) é um cubo perfeito, temos que p será par.

Calculando o máximo divisor comum de p e de p2 + 3q3 obtemos

(p, p2 + 3q2) = (p, 3q2) = (p, 3), assim, (p, p2 + 3q2) = 1 ou (p, p2 + 3q2) = 3.

No primeiro, existem naturais a e b tais que a3 = 2p e b3 = p2 + 3q2, neste caso

sabemos que existem inteiros m e n com paridades diferentes e primos relativos, de

modo que

b = m2 + 3n2, p = m3 − 9mn2, q = 3m2n− 3n3.

Logo, a3 = 2m(m−3n)(m+3n), observemos que os números 2m, (m−3n)(m+3n)

são primos relativos, logo existem inteiros e, f e g tais que 2m = e3, m − 3n = f 3
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2.7. O ÚLTIMO TEOREMA DE FERMAT

e m + 3n = g3. Em particular, teremos que f 3 + g3 = e3, como efg = a3 = 2p ≤

x+ y < xyz, teremos uma solução menor, o que contradiz a escolha de x, y e z. No

caso 3 | p, então p = 3r com (r, q) = 1, logo z3 = 18r(3r2+q2) ou x3 = 18r(3r2+q2)

ou x3 = 18r(3r2 + q2) e assim, existem inteiros positivos a e b tais que 18r = a3 e

3r2 + q2 = b3. Novamente existirão inteiros m e n tais que

b = m2 + 3n2 , q = m3 − 9mn2 e r = 3m2n− 3n3.

Daí, segue que a3 = 27(2n)(m−n)(m+n), de igual forma teremos que os números

2n, m − n e m + n são primos relativos, portanto existem inteiros positivos e, f e

g tais que 2n = e3, m − n = f 3, m + n = g3. Assim, e3 + f 3 = g3, que também

contradiz o fato de que (x, y, z) é mínimo.

�
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Capítulo 3

Uma Proposta de Atividade para o

Ensino Médio

Neste capítulo pretendemos fazer uma proposta de atividade para o ensino médio,

versando sobre a teoria exposta capítulo 2. Faremos primeiramente a apresentação

da atividade que está dividida em duas partes e posteriormente faremos a análise e

solução para a mesma. Essa atividade tem por objetivo fazer com que o aluno do

ensino médio compreenda os teoremas que caracterizam a representação de dois e

quatro quadrados. Através de tentativas e erros ele irá perceber que mesmo sendo

estes teoremas que aparentemente são difíceis para o nível escolar em que estão, é

possível que estes alunos possam compreender e usar os resultados destes teoremas,

até com certa facilidade em alguns casos. O que da motivação para estes alunos,

fazendo assim que percebam que mesmo teorias que até certo ponto são avançadas

para o nível escolar deles, podem produzir resultados simples e de fácil entendimento.

Isto faz com que o aluno vá perdendo o medo que tem da matemática, deixando de

considerá-la como um bicho de sete cabeças e tornando-a mais prazerosa de estudar.
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3.1. APRESENTAÇÃO DA ATIVIDADE PROPOSTA

3.1 Apresentação da Atividade Proposta

Faremos aqui a apresentação da atividade proposta, ela está baseada no teorema

2.1, Lema 2.1, teorema 2.2 e teorema 2.5, apresentados e demonstrados no capítulo

2. Os Exercícios foram retirados de [2] na página 138 e foram adptados de modo a

se encaixarem nos propósitos desta sequência didática, que é justamente fazer com

que o aluno compreenda a essência dos principais teoremas citados no capítulo 2.

Atividade Proposta

1
a

Parte

• Observe os primos 11, 17, 19, 23, 29 e 31. Quais destes podemos representar

como soma de dois quadrados. Por exemplo, podemos escrever os números

primos 5 e 13 como soma de dois quadrados da seguinte forma: 5 = 22 + 12 e

13 = 32 + 22.

• Agora façamos a divisão de cada primo acima por 4 e observemos o valor dos

restos. A partir da observação dos restos é possível dizermos alguma coisa

sobre estes números?

• Os números 6, 8, 10 , 16, 36 podem ser representados como uma soma de dois

quadrados?

• Observe que os números 13 e 29 podem ser representados por uma soma de dois

quadrados. Podemos a partir da multiplicação destes dois números produzir

um outro número que pode ser representado por uma soma de dois quadrados?

Em caso a�rmativo dê a sua representação?

• será que existe outra representação como soma de dois quadrados para os

primos 13 e 29? E para qualquer outro primo que possa ser representado por

uma soma de dois quadrados ?
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3.2. SOLUÇÃO E COMENTÁRIO DE CADA ITEM

• Será possível representar o número 29 como soma de quatro quadrados ? Em

caso a�rmativo dê esta representação.

2
a

Parte

• Dizer se existe um triângulo retângulo isósceles de lados inteiros.

3.2 Solução e Comentário de cada Item

1
a

Parte

• Observe os primos 11, 17, 19, 23, 29 e 31. Quais destes podemos representar

como soma de dois quadrados. Por exemplo, podemos escrever os números

primos 5 e 13 como soma de dois quadrados da seguinte forma: 5 = 22 + 12 e

13 = 32 + 22.

Neste exercício primeiramente é deixado o aluno livre de modo que este por

meio de tentativas vá solucionando o exercício, nesse processo acertos e erros vão

ser bastante comuns, visto que o aluno ainda não conhece o resultado do teorema

2.1. Possivelmente a maioria dos alunos não conseguirão resolver esta atividade

com êxito num primeiro momento, mas depois da apresentação do resultado geral

�cará mais simples o seu entendimento pleno por parte do aluno. Destes números

os que podem ser representados por uma soma de dois quadrados são 17 e 29, as

suas representações são 17 = 42 + 12 e 29 = 52 + 22. Este exercíco serve para que

o aluno tenha o primeiro contato com a ideia de representar um número como uma

soma de dois quadrados e preparar terreno para a introdução do resultado geral.

• Agora façamos a divisão de cada primo acima por 4 e observemos o valor dos

restos. A partir da observação dos restos é possível dizermos alguma coisa

sobre estes números?
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3.2. SOLUÇÃO E COMENTÁRIO DE CADA ITEM

Nesta etapa da atividade é necesário que o aluno divida os primos do item an-

terior por 4, e observe as coincidências entre os restos dos mesmos, observar que o

resto dos números que não puderam ser escritos como uma soma de dois quadrados

é 3 e dos que puderam ser escritos é 1, isto da margem para que os alunos possam

conjecturar algo a respeito da representação de números como soma de dois qua-

drados. Depois dos alunos tentarem e tirarem as suas próprias conclusões é hora

do professor apresentar o teorema 2.1 de modo a adequá-lo a linguagem do ensino

médio, podendo ser escrito da seguite forma "um número primo é escrito como uma

soma de dois quadrados se for dois ou deixar resto 1 ao ser dividido por 4".

• Os números 6, 8, 10 , 16, 36 e 27 podem ser representados como uma soma de

dois quadrados?

Neste item os alunos agora devem veri�car se sendo agora um número não primo

quais as condições para que estes possam ser representados por uma soma de dois

quadrados, o caminho natural a seguir por esses alunos depois das estapas passa-

das é tentar fazer por tentativas, pois os resultados anteriores não ajudam muito.

Neste caso, aparece o teorema 2.2 que fala na decomposição de um número que é

representado por uma soma de dois quadrados, neste teorema é explicitado como

é a fatoração de números dessa natureza, assim depois que os alunos tentarem por

meio de tentativas, o professor deve explicar o teorema 2.2 aos alunos, ou seja, dizer

na fatoração de um número que pode ser representado por uma soma de dois qua-

drados deve aparecer uma potência do fator primo 2, potências de fatores primos

que podem ser representados por uma soma de dois quadrados e caso apareça outro

fator primo que não seja como o dito anteriormente o expoente deste tem que ser

par.
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3.2. SOLUÇÃO E COMENTÁRIO DE CADA ITEM

Figura 3.1: Figura 3.2: Figura 3.3:

Nas �guras 3.1, 3.2 e 3.3, temos as fatorações dos números 6, 10 e 16 respecti-

vamente, observemos que nenhum destes números obedece as condições do teorema

2.2, pois na fatoração do 6, não há fator primo congruente a 1 módulo 4, analoga-

mente na fatoração do 10, já o número 16 podemos escrever a fatoração do mesmo

da seguinte forma de modo a se adequar ao teorema: 16 = 24 = 24 · 130 · 70, observe

que esta fatoração cumpre as condições do teorema 2.2, portanto podemos escrever

16, como soma de dois quadrados 16 = 42 + 02. Vamos ver agora as fatorações dos

números 8 e 36 e 27

Figura 3.4: Figura 3.5: Figura 3.6:
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3.2. SOLUÇÃO E COMENTÁRIO DE CADA ITEM

Note que os números 8 e 36 podem ser representados como uma soma de dois

quadrados pois suas fatorações se enquadram nos moldes do teorema 2.2, já o número

27 = 33 não pode ser representado pois o fator primo que é congruo a 3 módulo 4

possui expoente ímpar. Portanto, os números que podem ser escritos como soma de

dois quadrados são 8 = 22 + 22, 36 = 62 + 02 e 16 = 42 + 02.

• Observe que os números 13 e 29 podem ser representados por uma soma de dois

quadrados. Podemos a partir da multiplicação destes dois números produzir

um outro número que pode ser representado por uma soma de dois quadrados?

Em caso a�rmativo dê a sua representação?

Nesta etapa o aluno já deve conhecer O teorema 2.1 e saber de fato que os nú-

meros 13 e 29 podem ser representados por uma soma de dois quadrados, o objetivo

desta tarefa é fazer com que o aluno observe que se dois números são representados

por uma soma de dois quadrados, então podemos gerar outro número da mesma na-

tureza fazendo a multiplicação entre eles. Num primeiro momento não falamos no

resultado do lema 2.1 e deixamos os alunos tentarem veri�car este resultado, alguns

podem tentar usar o teorema 2.1 ao fazerem a multiplicação dos números 13 e 29,

mas não terão êxito pois o número gerado não é primo, então restará para eles a

tentativa de escever o resultado da multipliação como uma soma de dois quadrados

, depois deles tentarem por alguns minutos e tirarem suas própias conlusões ai é que

o professor entra com o resultado do lema 2.1 comprovando que realmente a multi-

pliação de dois números que são soma de dois quadrados é um número que é soma

de dois quadrados. É até possível que o professor caso deseje fazer a demonstração

deste lema para os alunos, pois as ferramentas matemáticas envolidas são de conhe-

cimento dos alunos do ensino médio e assim torna o entendimento deste resultado

mais simples. Portato, teremos que 13 = 32 +22 e 29 = 52 +22, assim pelo lema 2.1

temos que (29)(13) = (52+22)(32+22) = (5·3+2·2)2+(5·2−2·3)2 ⇒ 377 = 192+42.

54



3.2. SOLUÇÃO E COMENTÁRIO DE CADA ITEM

• será que existe outra representação como soma de dois quadrados para os

primos 13 e 29? E para qualquer outro primo que possa ser representado por

uma soma de dois quadrados ?

Neste momento é deixado novamente aos alunos a por tentativas veri�carem se

há como obter outra representação como soma de dois quadrados para os primos

13 e 29. Notemos que 13 = 32 + 22 e se tentarmos encontrar outra representação

para este número não teremos êxito, pois pelo teorema 2.5 os primos que deixam

resto 1 ao serem divididos por 4 possuem representação única como soma de dois

quadrados. No primeiro momento, os alunos não terão esta informação, tirarão suas

conclusões por meio de tentativas, ou seja, acertos e erros, posteriormente é que o

professor deve falar sobre este Teorema.

• Será possível representar o número 29 como soma de quatro quadrados ? Em

caso a�rmativo dê esta representação

Bem, este item visa fazer com que o aluno venha a descobrir que qualquer número

inteiro positivo pode ser representado por uma soma de quatro quadrados, que é

justamente o resultado do teorema de Lagrange, posteriormente as tentativas dos

alunos o professor faz a apresentação deste resultado. Aqui faremos por tentativas

mesmo e chegaremos que 29 = 52 + 22 + 02 + 02.

Esta é a primeira etapa da atividade, e o objetivo é fazer com que o aluno se

familiarize com os resultados básicos da teoria desenvolvida no capítulo 2.

Vamos agora para a segunda parte da atividade, que é constituida de um único

item , uma aplicação da teoria dos números a geometria.

2
a

Parte

• Dizer se existe um triângulo retângulo isósceles de lados inteiros.
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3.2. SOLUÇÃO E COMENTÁRIO DE CADA ITEM

Vamos a solução e comentários sobre este problema. Devemos veri�car se existe

um triângulo isósceles retângulo de modo que os lados do mesmo sejam inteiros, ou

seja, devemos veri�car se existem x e z inteiros de modo que z2 = x2 + x2 que é a

relação de pitágoras, veja a �gura abaixo.

Vamos supor que existam tais x e y inteiros de modo a satisfazer a relação de

pitágoras, assim, z2 = x2 + x2, notemos que z2 não pode ser primo pois, tem 1, p e

p2 como divisores. Assim temos que analisar o caso

• z2 não primo;

Se z2 não é primo e tendo z2 = x2 + x2 observemos que do lado direito temos

uma quantidade par de fatores 2 e do lado esquerdo há uma quantidade ímpar de

fatores 2, portanto temos aqui uma contradição, daí concluímos que sendo z2 um

número não primo não há como termos um triângulo retângulo isósceles de lados

inteiros.

Daí, não há possibilidade de existir um triângulo isósceles retângulo de lados

inteios. Essa etapa da atividade é mais elaborada e exige conhecimentos um pouco

mais aprofundados do aluno, fazendo-se assim uma atividade bem interressante para

se trabalhar como preparação para as olímpiadas de matemática.
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Apêndice A

Resultados Complementares

Trazemos aqui resultados de complementação do texto.

Teorema A.1 (Teorema de Wilson) Se p é primo, então (p− 1)! ≡ −1 (mod p).

Teorema A.2 (Pequeno Teorema de Fermat) Dado um número primo p, tem-se

que p divide o número ap − a, para todo a ∈ N.

Corolário A.1 Se p é um número primo e se a é um número natural não divisível

por p, então p divide ap − 1.

Teorema A.3 (Propriedade da Boa Ordem) Todo subconjunto não vazio de N pos-

sui um menor elemento.

Teorema A.4 (Princípio de Indução Matemática). Sejam a ∈ N e seja p(n) uma

sentença aberta em n. Suponha que

1. p(a) é verdade, e que

2. ∀n ≥ a , p(n)⇒ p(n+ 1) é verdade,

então, p(n) é verdade para todo n ≥ a.
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Apêndice Apêndice

Teorema A.5 (O principio da casa dos pombos) Se n+1 pombos são colocados em

n gaiolas, então pelo menos uma gaiola deverá conter 2 ou mais pombos.

Para o leitor interessado em maiores detalhes sobre a demonstração dos quatro

primeiros teoremas deste apêndice consultar [2], a demonstração do princípio de

indução matemática está em [3] e a demonstração do princípio da casa dos pombos

está em [11].
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