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Resumo

Este trabalho tem como objetivo fazer uma pesquisa bibliografica sobre o tema da
representacao de inteiros como soma de quadrados, para os casos onde temos soma
de dois, trés e quatro quadrados. A ideia é estudar condigOes para que possamos
garantir quando um ntmero inteiro positivo podera ser representado como uma soma
de dois e quatro quadrados. O foco central estd na demonstracao do teorema dos
quatro quadrados de Lagrange, apesar de termos ido um pouco adiante estudando
a técnica do descenso infinito de Fernat e o caso n=3 do tltimo teorema de Fermat.
Por fim, trabalhamos com a elaboracao de uma sequéncia didatica que pode ser
utilizada nas séries finais do ensino fundamental e no ensino médio, cujo conteiido
abordado nesta sequéncia sao os principais teoremas do capitulo 2 que remete a
representacao de inteiros como soma de quadrados.

Palavras Chave: Numeros inteiros, ultimo teorema de Fermat, soma de qua-

drados.



Abstract

This paper is a survey on representation of integers as sums of squares for the
cases where we have the sum of two, three and four squares. The idea is to study
conditions so that we can ensure the representation of numbers that are written as
the sum of two and four square. The central focus is the statement of the theorem
of Lagrange four squares, although we have gone a little further studying Fermat’ s
technique of infinite descense and the case n = 3 of Fermat’s last theorem. Finally, we
work with the development of a didactic sequence that can be used in the final grades
of elementary school and middle school, addressing Chapter 2 of this dissertation.

Keywords: Whole numbers, Fermat’s last theorem, the sum of squares.
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Introducao

A ideia de representar um numero natural como soma de quadrados surge na-
turalmente ao tentarmos encontrar tridngulos retangulos de lados inteiros. E um
problema antigo e um dos primeiros a estuda-lo foi Diofanto de Alexandria, o qual
escreve em sua obra prima intitulada aritmética . Séculos mais tarde o matematico
chamado Bachet faz a traducao da obra de Diofanto para o latim e por isso este
problema foi inicialmente conhecido como conjectura de Bachet. Mas foi Eduard
Waring que fez varias afirmacgoes sobre este tema inclusive que todo niimero natural
pode ser representado como soma de no maximo quatro quadrados. Matemaéaticos de
varias épocas mostraram interesse em demonstrar este e outros resultados que Wa-
ring havia enunciado, entre eles, Fermat e Lagrange, e isto gerou muita contribuicao
para a matemaética da época. Mas, foi apenas no ano de 1909 que o matematico
Hilbert demonstrou que para cada inteiro positivo s, ha um inteiro positivo g(s),
que independe de n, tal que n pode ser expresso como a soma de no maximo g(s)
s-ésimas poténcias positivas.

No primeiro capitulo faremos uma breve introducao a teoria dos residuos qua-
draticos, definindo e demonstrando resultados relevantes para o andamento desta
pesquisa.

No segundo capitulo, tratamos do tema central da pesquisa que é a representacao
de inteiros como soma de quadrados. Nao faremos aqui um estudo aprofundado sobre

este tema, trataremos apenas dos casos particulares para a soma de dois, trés e

viil



quatro quadrados, visto que o caso mais geral que foi demosntrado por Hilbert foge
ao propoésito. Veremos resultados importantes para caracterizar niimeros inteiros
que podem ser representados como soma de dois e quatro quadrados. Finalmente,
falaremos dos dois resultados centrais deste trabalho que sao: o teorema dos quatro
quadrados de Lagrange e o teorema da unicidade de Euler. Fomos um pouco mais
adiante e ainda fizemos duas secoes bem interessantes: uma sobre a técnica do
descenso infinito de Fermat, onde fizemos um exemplo para podermos compreender
melhor sua utilizagao, na outra secao, relembramos um pouco da historia do ttltimo
teorema de Fermat e finalizamos fazendo um caso particular do mesmo, o caso n = 3,
para termos mais ou menos a ideia de como é a demonstracao deste Teorema.

No terceiro e tltimo capitulo elaboramos uma sequéncia didatica baseada na
teoria exposta no capitulo 2. Ela esta dividida em duas partes, a primeira aborda
os principais resultados do capitulo 2, enquanto a segunda parte ¢ uma aplicacao
a geometria destes conhecimentos. A atividade pode ser aplicada nas séries finais
do ensino fundamental II e no ensino médio podendo ter 6timo rendimento entre os

alunos visto que ela vai de um nivel mais elementar para o nivel mais complexo.
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Capitulo 1

Alguns Resultados Importantes

Neste capitulo faremos uma breve introducao no estudo dos residuos quadraticos,
enunciando e demonstrando alguns resultados importantes que servirao de base para

resultados posteriores.

1.1 Residuos Quadraticos

O interesse maior no estudo dos residuos quadraticos esta em estudar as solucoes

2 = a (mod m). Quando m é um primo impar e (a,m) = 1

para a congruéncia x
((a,b) €& a notagdo para o maximo divisor comum entre a e b), a congruéncia, caso
tenha solucao, terd exatamente duas solugoes incongruentes, ¢ o que mostraremos

no teorema abaixo.

Teorema 1.1 Para p primo impar e a um inteiro nao divisivel por p, a congruéncia

abaizro, caso tenha solucao, tem exatamente duas solugoes incongruentes modulo p.

2? = a (mod p)

Demonstracao: Seja x; solucao da congruéncia acima, podemos concluir que

—x1 também é solugao pois, (—x1)%? = (21)? = a (mod p). Temos que mostrar que
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estas solugoes sao incongruentes. Suponhamos por absurdo que z; e —x; sejam
congruentes modulo p, ou seja, x1 = —z; (mod p), dai x; + 1 = —x1 +2x; (mod p)
portanto, 2oy = 0 (mod p). Temos que p é impar e nao divide z; e sabendo que z; é
diferente de zero, podemos concluir que nao é possivel ocorrer a congruéncia 2x; = 0
(mod p), pois p nao divide a e além disso z7 = a (mod p) dai podemos garantir que
p nazo divide z? e portanto nao divide x;, assim podemos concluir que z; e —x;
sao incongruentes moéduo p. A nossa meta agora é mostrar que existem apenas
estas duas solucoes incongruentes modulo p. Assim, seja y uma solugio de 2° = a
(mod p), entdo y?> = a (mod p), como z; é solugao teremos que 2 = a (mod p),
portanto 3 = y? = a (mod p) e assim, 23 —y? = 0 (mod p), onde podemos concluir
(x1 4+ y)(x1 —y) =0 (mod p), como p é primo temos que p | x1 +y oup |z —y, 0
que é¢ o mesmo que x;+y =0 (mod p) ou z; —y =0 (mod p) dai y = —x; (mod p)
ouy = z; (mod p). Portanto, caso exista solugoes, s6 existem apenas duas solugoes

incongruentes modulo p.

O

Definicao 1.1 O conjunto A = {ry,rs,...,75} é um sistema de residuos médulo p

se:
1. r; nao for congruente a r; modulo p para i # j
2. Para todo inteiro n, existe um r; tal que n = r; (mod p).

Definigao 1.2 Sejam a e p inteiros com (a,p) = 1. Dizemos que a é residuo quadrd-

tico modulo p se a congruéncia x>

= a (mod p) tiver solucdo. Caso a congruéncia
nao tenha solucao, dizemos que a nao € residuo quadrdtico modulo p ou que a € um

residuo nao-quadrdtico.

Teorema 1.2 Seja p um primo impar. Dentre os nimeros {1, 2, 3,..., p— 1},

. —1  ~ . L, -1 ~ ~
veja que P5= sao residuos quadrdticos e 5= ndo sao.
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Demonstragao:

Vamos considerar os quadrados dos ntimeros de 1 a p — 1. Assim, (1)? =
(mod p), ou seja, 1 é residuo quadratico da congruéncia z2 = 1 (mod p), mas ob-
servemos que (—1)2 = (1)2 = 1 (mod p), ou seja, —1 também ¢ solugao desta
congruéncia e, além disso, temos que —1 =p+ (—=1) = p—1 (mod p), onde p — 1
também ¢é solugao da congruéncia, pois (p—1)? = p> —2p+ 1, portanto (p— 1) =1
(mod p), logo pelo teorema 1.1 concluimos que 1 e p — 1 sdo as tunicas solugoes
incongruentes de z2 =1 (mod p), entre os nimeros 1,2,3,...,p — 1.

Consideremos agora o 2% que sera congruente a algum ntmero k diferente de
1, da mesma forma (—2)? também o é. Observando que —2 = p + (—=2) = p — 2
(mod p), novamente pelo teorema 1.1 concluimos que 2 e p—2 sao as tnicas solugoes
incongruentes de z2 = k (mod p) dentre os ntimeros i = 1,2,3,...,p — 1.

Se tomarmos agora 32 e este sera congruente a algum ¢ diferente de 1 e de k,
analagomente ao que foi mostrado temos que (—3)2 também sera congruente a q e
alem disso, —3 = p—3 (mod ) entdo —3 e p— 3 sdo as unicas solugoes incongruentes
de 22 = ¢ (mod p) dentre os ntimeros 1 = 1,2,3,...,p— 1.

Temos como residuos quadraticos os ntimeros 1, k e ¢ das congruéncias % = 1
(mod p), 22 = k (mod p) e 22 = ¢ (mod p) sendo suas respectivas solugoes os pares

1 ~
E=— pares de solucoes

(Lp=1),2p=2.B3.p=3)..... (p;l p;l)

(Lp—1), (2,p—2) e (3,p—3). Se continuarmos procedendo desta maneira teremos
.
2

2 72
onde cada par é solucao para uma dentre as p%l congruéncias associadas a p%l

residuos quadraticos.

O

2

Teorema 1.3 Para p primo, a congruéncia x* = —1 (mod p) tem solugdo se, e

somente se, p=2 oup =1 (mod 4).
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Demonstragao:

Caso p=2: de fato, para * = 1 a congruéncia > = —1 (mod 2) tem solugao,
sabemos que 2 = 0 (mod 2), dai adicionando —1 a congruéncia, obtemos 2+ (—1) =
0+ (—1) (mod 2) assim, 1 = —1 (mod 2) e dai 1> = —1 (mod 2), o que nos mostra
que realmente z = 1 é solucao da congruéncia. Resta agora mostrar que existe uma
solugdo para p =1 (mod 4).

Sendo p primo pelo teorema de Wilson, vide apéndice, podemos garantir que
(p—1)! = —1 (mod p), como p > 2 & primo entdao p — 1 é par, logo (p — 1)! tem
uma quantidade par de fatores, ou seja, p — 1 fatores exatamente. Dai poderemos
escrever o teorema de Wilson da seguinte forma

pt1

(p—l)!:(p—1)~(p—2)~...(p—k;)...( :

)!E-—l(modpL

) —1
observemos que ha neste momento = fatores, de fato, observemos que os fatores

(p—1),(p—2),...),(p—k),...3,2,1) formam uma P.A de razao —1, dai o termo

—p-1+1--2L
_,_Ll=p
_2p+1-p
B 2
_pt+1
2
Ainda podemos escrever
p+1
p-D!'=0p-1)-p-2)-...-(p—k)-...- (T)!E—l (mod p)

como,



1.1. RESIDUOS QUADRATICOS

=12 lp=0 e (T3 )

(<]%1>...k...4.3~2-1)z—1 (mod p). (1.1)

Observemos que (p — 1)! esta dividido em duas partes, onde cada uma tem ’%1

fatores. Poderemos reescrever agrupando os fatores aos pares, dai ficaremos com,
1-(p—1)-2-(p—=2)-...-k(p—Fk)-...- (55*) - (&) = =1 (mod p). Note que ainda

podemos escrevé-la como o produtoério, abaixo:

p—1

2

Hk(p —k)=-1 (mod p). (1.2)

k=1

Facamos a seguinte afirmacao, k(p — k) = —k? (mod p), que ¢ de facil justifica-

tiva, pois
n=k(p—k)=kp—k*
= kp+ (—F?)
=k(p— k)= —k* (mod p),
assim,

[T, k(p — k) = 1,7, (—k2) = —1 (mod p),

;1
portanto H,:il(—k2) = —1 (mod p), note que
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:(—1)”51<1-2...-p%1)2

2

= (-1 [[[F] =-1 (modp)). (1.3)
k=1

Como p = 1 (mod 4), podemos afirmar que ;%1 é par. De fato, sendo p = 1

(mod 4) existe s inteiro tal que p = 4s+ 1 logo p — 1 = 4s, sendo p um primo maior

do que dois entao este é impar, portanto p — 1 é, par, entao ao dividirmos ambos

os membros da equacdo por 2 teremos ’%1 = 2s, 0 que no diz que ’%1 ¢ par. Dai,
b— L71 .
(—1)T1 =1, logo, (]2, k)* = —1 (mod p) o que nos diz que
p=1 p—1 p—1
=[L,=1-2-3-...- = !
= [l ) ( 5
¢ uma solugao de 2 = —1 (mod p). Vamos supor agora que a congruéncia
2?2 = —1 (mod p) tenha solugdo e que p > 2, pois 22 = —1 (mod 2) tem solugao
x = 1. Elevando a congruéncia a poténcia ’%1 obtemos
oyP=l p=1
(z%)"2 =(-1)z (mod p)

que é 0 mesmo que

1= (=1)"2 (mod p)

Como z? = —1 (mod p), nés podemos dizer que p 1 22 e dai p { x, portanto

pelo pequeno teorema de Fermat, vide apendice, (z)P~! = 1 (mod p), ai teremos
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(—1)% =1 (mod p) o que nos permite afirmar que ’%1 ¢ par, dai existe j inteiro
tal que ’%1 = 24, o que podemos ainda como p — 1 =47 e assim termos p =45 + 1

o que acarreta p =1 (mod 4), e assim concluimos a nossa demonstragao.

O

Definicao 1.3 Para p um primo impar e a um inteiro nao divisivel por p, definimos

o Simbolo de Legendre (%) por:

p

(a) 1,  sea € um residuo quadrdtico de p;

—1, se a nao € um residuo quadrdtico de p.

Teorema 1.4 (Critério de Euler) Se p for wm primo impar e a um inteiro nao-

divisivel por p, entao:

Demonstracao:

Supondo que, (%) =1, ou seja, a congruéncia 2 = a (mod p) tem solugao. Seja
y tal solugao, dai teremos que y? = a (mod p) implicando em y?> —a = 0 (mod p),
assim, concluimos que p divide y? — a, mas p nao divide a, portanto nio pode dividir
y, logo (y,p) = 1 e pelo pequeno teorema de Fermat temos que y?~! = 1 (mod p),
assim (yz)p%1 =a'T (mod p) entado 'z =y l=1 (mod p), portanto a5 =1

(mod p) e assim () = a"z =1 e isto conclui o caso em que (3) =1

Vamos considerar agora o caso em que (%) = —1, isto é, tomemos a um residuo
nao-quadréatico de p e seja ¢ um dos inteiros {1, 2,3, ...,p—1}. Lembrando um pouco
A . . . ~ /
das congruéncias linear, sabemos que existe uma solu¢ao ¢ de cx = a (mod p), onde
/ L, . . / . / .
¢ estd no conjunto mencionado. Observemos que ¢ # ¢, pois se ¢ = ¢ terfamos

¢ = a (mod p), mas isto nos diz que a é residuo quadrético, o que contradiz o fato

de que (%) = —1. Dai podemos dividir os inteiros de 1 até p — 1 em ’%1 pares, ¢ e

/ r_ , p—l N .
c,onde cc =a (mod p), o que nos da ¥~ congruéncias.

7
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Multiplicando obtemos

/ / ’ p—1
C1C1C2Cy ... Cp-1C, 4 =a 2 (mod p)
T T

podemos escrever ainda da seguinte maneira
(p—1)!=a"T (mod p)

Pelo teorema de Wilson obtemos

como queriamos.

O

Teorema 1.5 O Simbolo de Legendre é uma funcao multiplicativa de a, ou seja :

Demonstracao: Usando o critério de Euler, concluimos que :
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p

(%) = @)= (modp

Lembrando que

Portanto,

a2
Corolario 1.1 <—> =1
b

Demonstracgao:

Usando o teorema 1.5 e considerando a = b aliado ao fato de que (%) = +1,

temos
(5)-G)6)
p p p

como (1) = +1, temos que se () = 1, entdo

2

(a_> _ (2) (2) -1

p p p

agora, se (%) = —1, teremos
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(2)-()6)-cnon-

concluindo assim a demonstracao.

Teorema 1.6 Para p primo impar, temos:

<—1) I, sep=1 (mod4);
p —1, sep=3 (mod 4).

Demonstracao: Sabemos do Critério de Euler que :

(SF) =0 tmodp

p

1

Da expressao acima podemos concluir que (‘7) =1 se L

p—1 =1y — —
for par e (—*) = —1

2

quando ’%1 impar. Se p for um primo impar, existem apenas duas possibilidades

para p, em termos de congruéncia moédulo 4, p =1 (mod 4) ou p = 3 (mod 4). Se
p =1 (mod 4), existe s inteiro tal que p = 4s + 1 onde p — 1 = 4s e assim termos
p=1 p

P5= = 2s, ou seja, %1 ¢ par. Se p =3 (mod 4), existe k inteiro tal que p = 4k + 3

podendo ser escrito da seguinte forma p—1 = 2(2k+1) concluindo que 1%1 =2k+1,

ou seja, p%l é impar. Portanto, quando p = 1 (mod 4) temos (’?1) =1 e quando

p =3 (mod 4) tem-se (_71) =—1.
U

Proposicao 1.1 sejam a, b e m inteiros tais que m > 0 e (a,m) = d. No caso que
d 1 b a congruéncia ax = b (mod m) nao possui nenhuma solugdo e quando d | b

possui exatamente d solucoes incongruentes modulo m.

Demonstragao: como a e b sao inteiros, axr = b (mod m) se, e somente se,

existir y tal que ax = b+ ym, ou seja, b = ax — ym. Sabemos que se d 1 b entdo a

10
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equagao ax —my = b nao tem solugdo, ja se d | b teremos que a equacao ax —my = b
possui infinitas solugoes que sao da forma x = 2¢— (7 )k e y = yo— (5)k onde (20, yo)
é uma solugao particular da equacao ax — my = b. Portanto, a congruéncia ax = b
(mod m) ird possuir infinitas solugdes dadas por x = ¢ — (%). Desejamos saber a
quantidade de solucoes incongruentes. Dai estudaremos as condigoes para as quais
Ty = x0 — (%) e v2 = 29 — (%) sdo congruentes modulo m. Se x; e xy forem

congruentes entao xo — (% )k1 = zo — (% )k2 (mod m), assim

o — To — (%) by = @0 — 2o — (%) ks (mod m)
dai
~()h=-(G)k=(G)k=(G)r
Como () | m, de fato m = d - (), temos que (Z,m) = ™, portanto podemos

cancelar (“7) na congruéncia anterior, portanto k; = ky (mod m).
Daf as solugdes incongruentes sao da forma r = xo — (% )k, onde k percorre um

sistema completo de residuos modulo d.
O

Teorema 1.7 Para todo primo p existem inteiros a, b e ¢, nao todos nulos, tais que

a congruéncia sequinte se verifica
a’>+ 0%+ =0 (mod p).

Demonstracao: Para p =2, tomandoa =b=1e ¢ = 0, teremos 12+ 12402 =
2 =0 (mod 2). Ao considerarmos p =1 (mod 4) tomaremos b =1, ¢ =0 e a como
sendo uma solugao da congruéncia z> = —1 (mod p). Dai, * =12 =1,2=0>=0
e a’= —1 (mod p), assim, a®> +b*> +c> = —1+1+0=0 (mod p). Agora, supondo
que p = 3 (mod 4) tomaremos ¢ = 1 e iremos mostrar que exite solu¢ao para a

congruéncia

11
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a’+b* = —1 (mod p)

Pelo teorema 1.2, sabemos que para um nimero p primo impar teremos ’%1
. R -1 . ~ 2 .
resfduos quadraticos e 5= residuos nao quadréticos dentre os ntimeros 1, 2, 3, ...,

p — 1. E ainda se ¢ for um residuo quadratico, entao a congruéncia:
r? = ¢ (mod p)

tem solucao se p for primo. Iremos supor que d é o menor residuo positivo nao-
quadratico modulo p. Sabemos que 1 é residuo quadrético pois, 2 = 0 (mod 2) o
que resulta em 1 = —1 (mod 2) e assim temos 12 = —1 (mod 2), entdao d > 2. Pelo
teorema 1.6 concluimos que se p = 3 (mod 4) existe k; inteiro tal que p = 4k; +3 a
qual podemos escrever como segue p =4k; +3 —4+4=4(k;+1)—ledaip=—1

(mod 4), entao (’71) = —1, sabendo que d ndo é residuo quadratico entdo (4) = —1.

(2)-(3) () -

A expressao acima nos informa que —d é um residuo quadratico modulo p, ou

Pelo teorema 1.5,

seja, a congruéncia > = —d (mod p) tem solugao. Entao seja b tal que b* = —d
(mod p). Devemos encontrar a conveniente tal que a®> = d—1 (mod p), dai, a®*+b* =
—d+d—1= -1 (mod p). Observemos que a*> = d — 1 (mod p) tem solugao, pois
d>2ed—1<dsendo d o menor residuo nao quadratico positivo médulo p temos
que a* =d—1 (mod p) tem solugao pois p ¢ primo e d — 1 ¢ um residuo quadratico.
Logo,
a’?+b* = —1 (mod p)
tem solucao e assim, a congruéncia
a’+ b+ =0 (mod p)

é verificada.
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Capitulo 2

Representacao de Inteiros como

Soma de Quadrados

2.1 O Problema de Waring

Um dos mais importantes matematicos gregos, conhecido como o "Pai da Al-
gebra"ja desconfiava que todos os nimeros inteiros positivos poderiam ser escritos
como soma de no maximo quatro quadrados. Este matematico era Diofanto de
Alexandria que nasceu em 22 de Setembro de 250 a.C e morreu 84 anos depois.
O problema ficou inicialmente conhecido como conjectura de Bachet o qual fez a
traducao para o latim do trabalho mais conhecido de Diofanto intitulado Aritmé-
tica. Muitos matematicos se interressaram por este problema inclusive Fermat, mas
todos nao tiveram éxito em demonstra-lo. Em 1770 o matematico inglés Edward
Waring afirmou que todo inteiro pode ser representado como soma de no méximo 4
quadrados, no méximo 9 cubos e no maximo 19 quartas poténcias. A pesar de nao
ter demonstrado nenhuma dessas afirmacoes ele, através de muitos exemplos, con-
jecturou que para todo niimero inteiro positivo s existe um inteiro positivo g(s), tal

que todo inteiro n positivo pode ser expresso em no maximo ¢(s) s-ésimas poténcias
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2.2. SOMA DE DOIS QUADRADOS

positivas.

O matematico italiano Joseph Louis Lagrange, em 1770 demonstra que todo
inteiro pode ser escrito como soma de no maximo quatro quadrados, em 1859 é que
foi demonstrado que o fato de que todo inteiro é soma de no maximo 9 cubos. No
ano de 1909 o matematico Hilbert demonstra que para cada s inteiro positivo existe
g(s), que ndo depende de n, de modo que todo inteiro n pode ser escrito como soma
de no maximo ¢g(s) s-ésimas poténcias. Como foi dito, ele apenas demonstrou a
existéncia de g(s) nao explicitou nenhuma formula para o mesmo.

Iremos estudar resultados que caracterizam os nimeros inteiros que possuem
representagao como soma de dois quadrados, demosntraremos o teorema de Lagrange
o qual caracteriza os inteiros que podem ser representados como soma de quatro
quadrados e falaremos um pouco sobre o resultado de Euler o qual caracteriza os
primos que podem ser representados de forma tinica como soma de dois quadrados,
além de estudarmos resultados que mostram quando um ntmero nao é escrito como
soma de trés quadrados chegando a falar um pouco sobre a técnica do descenso

infinito de Fermat e fazendo um caso particular do tltimo teorema de Fermat.

2.2 Soma de dois Quadrados

Iremos estudar alguns resultados que nos permitirao caracterizar todos os inteiros
que podem ser escritos como uma soma de dois quadrados, ou seja, todos os valores

inteiros de n de modo que

2+t =n (2.1)

apresenta solucao em inteiros. Mostraremos a seguir um resultado que garante
o seguinte: se dois nimeros podem ser escritos como soma de dois quadrados o

produto entre eles também o pode.
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2.2. SOMA DE DOIS QUADRADOS

Lema 2.1 Se u e v sao cada um uma soma de dois quadrados, entao o produto uv

também é.

Demonstragao: Como u e v podem ser representados como soma de dois qua-
drados entao existem a, b, ¢ e d inteiros tais que u = a? + b? e v = ¢® + d?, devemos
mostrar que uv também pode ser representado por uma soma de dois quadrados, ou

seja, que existem s e t inteiros tais que uv = s% + t2. Dal,

wv = (a® +b*) (A + d?) = a*c® + a*d* + b** + b*d®
= a’c® + B’d* + ’d® + b’
Agora vamos somar e subtrair 2(ad)(bc). Obtendo,
uv = (a® + b%)( + &%)
= a*c® + V*d* + a*d® + b*c* + 2(ac)(bd) — 2(ac)(bd)

e finalmente temos

uv = (ac)? + 2(ac)(bd) + (bd)* + (ad)* — 2(ad)(bc) + (bc)?
= (ac + bd)* + (ad — be)?.

Encontramos s e t de modo que uv = s? + t2, que é justamente o que queriamos

provar.

O

O teorema abaixo nos fornece condigoes para identificar primos que se represen-

tam como soma de dois quadrados.

Teorema 2.1 Sendo p um mimero primo a equacio x> + y*> = p possui solucdo

inteira se, e somente se, p=2 oup=1 (mod 4).
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2.2. SOMA DE DOIS QUADRADOS

Demonstrag¢ao: Supondo primeiramente que p =2 oup =1 (mod 4), devemos
mostrar que a equacao 2 + y? = p, onde p é primo, possui solucao inteira.

De fato, se x = 1 e y = 1 temos p = 2 = 12 + 12, assim p = 2 resolve 0 nosso
problema. Basta mostrar que p = 1 (mod 4) tem que ocorrer. Sabemos que para
todo primo impar p, p = 1 (mod 4) ou p = 3 (mod 4). Lembremos do seguinte
fato, para todo inteiro a, a* = 0 (mod 4) ou a® =1 (mod 4), este fato ¢ facil de ser
mostrado, sendo a um inteiro qualquer, sabemos que os possiveis restos da divisao
de a por quatro sao, 0, 1, 2 e 3. Dai, a = 0,1,2, ou 3 (mod 4), assim, a = 0
(mod 4) onde obtemos a*? = 0> = 0 (mod 4), da mesma forma sendo a = 1 (mod 4)
teremos a? = 12 = 1 (mod 4), a = 2 (mod 4) entdo a®> = 22 = 4 = 0 (mod 4)
e finalmente,a = 3 (mod 4) entdo a*> = 3> = 9 = 1 (mod 4), portanto temos que
a>=0o0ul (mod 4). Sabendo que a> =0 (mod 4) oua®? =1 (mod 4) e 2*+y* =p
podemos concluir que p = 1 (mod 4), de fato; o que devemos mostrar é que a
congréncia p = 3 (mod 4) sendo p primo ndo é possivel de acontecer, supondo,
2?2 = y?> = 0 (mod 4) teremos 22 + y?> = 0+ 0 (mod 4) logo p = 0 (mod 4), da
mesma forma se > = y> =1 (mod 4) entao 2>+ 3> =1+1 (mod 4) teremos p = 2
(mod 4) e finalmente se 2> = 0 (mod 4) e y?> = 1 (mod 4), assim 22 + y> =0 + 1
(mod 4) obtemos p = 1 (mod 4). Portanto, a tnica congruéncia possivel de ocorrer
ép=1 (mod 4).

Supondo que p =2 oup =1 (mod 4) mostraremos que todo p satisfazendo p = 1
(mod 4) pode ser escrito como soma de dois quadrados. Lembre que para p = 2 ja
sabemos que este pode ser escrito como uma soma de dois quadrados, 2 = 12 + 12

Tomemos agora um primo p que satisfaz p = 1 (mod 4) e usando o teorema 1.3,
podemos concluir que existe x inteiro, tal que z2 = —1 (mod p). Vamos definir a
seguinte funcao f(u,v) = u + xv e consideremos m = [,/p]. Sabendo que ,/p nao
¢ um inteiro, temos que m < ,/p < m + 1 . Tomemos os pares (u,v) de inteiros

onde 0 < u <me0 < v < m, onde observando os intervalos concluimos que u
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2.2. SOMA DE DOIS QUADRADOS

pode assumir m + 1 valores e v também. Dai o niimero total de pares ordenados
(u,v) & (m+1)%. Como m+1> ,/p temos que (m+1)> > (,/p)?, dai obtemos que
(m+1)2 > p, assim o nimero total de pares é superior a p. Sabemos que um sistema
completo de residuos modulo p tem exatamente p elementos, se considerarmos f(u, v)
modulo p teremos mais numeros do que classes de residuos, dai pelo principio da
casa dos pombos existem pelo memos dois pares distintos (uy,v1) e (ug,v2) com

coordenadas satisfazendo 0 < u; < m e 0 < v; < m onde (i = 1,2), para os
quais f(ur,v1) = (mod p) e f(uz,v2) = r (mod p), ou seja, fui,v1) = f(uz,v2)

(mod p), o que é equivalente a u; + xv; = us + zvy (mod p), isto é,
Uy + TV — Uy = up + vy — uy (mod p)
e assim ficamos com
uy + xv; — uy = xve (mod p),
dai
uy + xv; — uy — TV = U9 — xv7 (Mod p),

0 que resulta em
Uy — Uy = xv9 — zvy (mod p)
logo
up — ug = —x(vy — v1) (mod p)

elevando a congruéncia acima ao quadrado obtemos

(U1 — up)? = (—2)%(vy — v1)? = 2% (vy — v1)?  (mod p), (2.2)
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2.2. SOMA DE DOIS QUADRADOS

portanto, (u; —ug)* = —1(vy —v1)? (mod p), pois 22 = —1 (mod p). Chamando
a=u; —uy eb=1uv; — vy, teremos a* = —b*> (mod p) adicionando b? a congruéncia
teremos a? + b = —b* + b* (mod p) o que resulta em a? + b* = 0 (mod p), assim

concluimos que p/a® 4+ b*>. Como os pares (uy,v1) e (ug, v9) sdo distintos entdo a e b
nao sao ambos nulos, isto é, a® + b* > 0. Sendo u; e uy inteiros do intervalo [0, m)]
temos que a = u; — uy pertence ao intervalo —m < a < m, da mesma forma b =
vi—ve e —m < b<m. Comom < /P concluimos que la| <m < /D, analogamente
b < m < /p. Dai |a]* < ({/p)* = p da mesma forma [b]* < (,/p)> = p, assim
a?+b* < p+p=2p Como p/a’+b?e 0 < a®+ b* < 2p, concluimos que o tnico

multiplo inteiro de p neste intervalo é ele mesmo, daf a? + b? = p.
[l

O proximo resultado resultado mais geral do que o anterior e nos permite iden-

tificar inteiros que podem ter representacao como soma de dois quadrados.

Teorema 2.2 Um inteiro n pode ser representado como soma de dois quadrados se,
e somente se, tiwer fatoracao da forma.

n = 2“p‘f1pg‘2...pfrq1’81q§2...qfs

ondep; =1 (mod4) eq; =3 (mod 4),t=1, 2,..., r, j=1, 2,..., s e todos

0s expoentes [3; sao pares.

Demonstracao: Supondo que n tem fatoracao n = 2apf‘1pg2...pf’“qlﬁlq§2...q557

devemos mostrar que n pode ser representado como soma de dois quadrados, ou
seja, devemos tentar escrever cada fator de n como uma soma de dois quadrados.
Observemos que o primo 2 = 12 + 12, podemos concluir que 2% também pode ser
representado como uma soma de dois quadrados, sabemos do teorema 2.1 que todos

os p; podem ser representados como soma de dois quadrados, assim, os p;" podem
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2.2. SOMA DE DOIS QUADRADOS

ser representados por uma soma de dois quadrados, consequentemente p]’pg?...po"
também. Basta mostrarmos que os qjj podem ser representados por uma soma de
dois quadrados. Temos por hipdtese que todos os [3; sao pares, ou seja, existe 6; tal
que B; = 283;, logo q; = (qj)zﬁz/' = (qJQ)BI Note que podemos escrever ¢; = ¢; + 0%,
ou seja, podemos escrever qu como soma de dois quadrados, dai de forma anéloga os
qu podem ser escritos como soma de dois quadrados, portando usando o lema 2.1
no produto 20‘p‘f‘1p§2...p$7‘q’f1 q§2... B: concluimos que n pode ser escrito como soma
de dois quadrados.

Agora, vamos considerar que n possa ser escrito como soma de dois quadrados
e que existe um [; que seja impar, sem perda de generalidade vamos considerar /3
como sendo tal impar. Consideremos que d = (a,b) onde a e b satisfazem a equacao
a’>+b* = n. Sendo d = (a,b) entdo d | a e d | b, assim, existem k; e ky tais que

a = kid e b = kod. Observemos que

a b 1 1
(873) - a(awb) - ad - 17

a b . kld ]{?Qd . .
<m) - (7’7) = k) =1

Podemos afirmar que d?|n, de fato, sabendo que d|a e d|b entdo a = kyd e b = kod

logo,

e a e b satisfazem a equacdo a® + b* = n, logo

n = (kid)* + (kod)®
= kid® + kid*
— )
= kd?,
dai podemos afirmar que d?|n e além disso se dividirmos ambos os lados da

igualdade por d? obtemos
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2.2. SOMA DE DOIS QUADRADOS

R kR kd?
2 @ @

0 que resulta em
k=k?+ k3

Sendo 3, impar e tendo n = kd? onde k = concluimos que o expoente de ¢;

n
ﬁ;
n

em k deve ser impar, pois os numeros k e - tém a mesma decomposi¢ao primaria.
Como o expoente de ¢; é impar, entdo existe s inteiro tal que k = ¢**™'7 e assim
podemos escrever k = ¢**qiy = q1¢:*7, ou seja, qi|k e sabendo que (ki, ko) = 1
podemos observar (g1, k1) = (¢q1,k2) = 1. Vamos verificar que (¢, k1) = 1, temos
os seguintes dados (ki,ks) = 1 e qi|k, de (k1, k2) = 1 garantimos a existéncia de z
e y tais que xk; + yko = 1, elevando ambos os lados desta igualdade ao quadrado,

obtemos

(zky + yk2)? = (wky)? + 2(xk1) (yka) + (yk2)?
= 2%k + 2xkyyky + y2k3
=1.
Guardemos esta informagcao por enquanto, temos ainda que ¢ |k, ou seja, existe
s inteiro de modo que k = ¢;s, mas por outro lado k = k? + k3, logo, k? + k3 = 18
e assim segue que k5 = q1s — k?, lembremos também que b = kyd, onde d = (a,b),

por isso, k; = p agora vamos substituir estes valores em x?k? + 2xkiyks + y?ks = 1

e obteremos que
b

2’k + 2xkiyks + y*k; = 2°k + 20ky (E) + 2 (qus — k2)

21.2 b ) 2,9

= o k] + 2zk1y (3) +y s —yky

=1

Y
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2.2. SOMA DE DOIS QUADRADOS

vamos juntar os termos que contém ky e os que contém ¢, assim ficaremos com
22k 4+ 2xkyy (8) — 22 + Pus =1 idénci ao k
1 1Y (g Y ki +y“q1s = 1, vamos por em evidéncla na expressao ki € qi,

dai

b
(x2l€1 + 2xy (a) - y2k31) ki + (y%s)q = 1, (2.3)
observemos que t = x%k;+2xy (%) —y?k; e u = y*s sdo niimeros inteiros, portanto
a expressao tk; +uq; = 1 no diz que ¢; e ky sdo prinos entre si, ou seja, (q1, k1) = 1,
analogamente podemos mostrar que (¢, k2) = 1.
Usando a proposicao 1.1, garantimos que existe x de modo que kiz = ks mod ¢

e como ¢ | k, portanto k =0 mod ¢;, mas lembremos que k = k% + ks, entao
B2+ k2=k2+ k2 —k2=0—k2=—k? mod q.

Como kiz = ks mod ¢, temos que elevenado ao quadrado esta congréncia ob-
temos k?z* = k2 mod ¢q;. Agora somando as congruéncias k¥ = —kZ mod ¢ e

kiz? = k3 mod ¢y, ficamos com
Bia? + ki=k?(2*+1)= k3 +k3=0 mod ¢.

Facamos a seguinte afirmacao, ¢; 1 k%, de fato, sendo (qi,ks) = 1, temos que
q1 1 k1, portanto nao divide k3.

Vamos mostrar este fato, para isso usaremos a demonstragao pela contrapositiva,
ou seja, suponhamos que ¢; | k%, dai q; | kiki, como ¢, ¢ primo entao q; | ki ou
q1 | ki, portanto ¢q; | k; e assim, mostramos que ¢; { k. Como ¢, é primo e

q | k3 (#* 4+ 1) entdo q; | k? ou ¢ | (2? + 1), mas ¢? 1 k% portanto, ¢, | (2* + 1), ou

seja, 22 = —1 mod ¢;. Observemos que a equacdo x> = —1 mod ¢; possui solucao

para ¢; = 3 (mod 4) o que contradiz o proposi¢ao 1.1, portanto todos os 6;8 Sa0

pares.

21



2.3. SOMA DE TRES QUADRADOS

2.3 Soma de Trés Quadrados

O que faremos nesta secao é exibir dois exemplos de niimeros que nao podem ser
escritos como uma soma de trés quadrados.
O primeiro exemplo que se segue nos diz que todo inteiro que deixa resto 7

quando dividido por 8 nao pode ser escrito como uma soma de trés quadrados.

Teorema 2.3 Todo inteiro da forma 8a + 7 com a € Z nao pode ser representado

como a soma de trés quadrados.

Demonstracao: Tomemos n inteiro. Sabemos que ao dividirmos n por 8 pode-
mos obter como resto algum dos seguintes ntimeros 0, 1, 2, 3, 4, 5, 6 ou 7, portanto,
a=0 (mod8) oua =1 (mod 8), a =2 (mod 8), a =3 (mod 8), a =4 (mod 8),
a=5 (mod8),a=6 (mod 8),a =7 (mod 8).

Dai,

Concluimos assim, que a® = 0, 1 ou 4 (mod 8). Agora, observemos que reali-
zando todas as combinacoes possiveis para as somas dos quadrados nao é possivel
obter a®> + b* + ¢* = 7 (mod 8). De fato, vamos descrever todas as posssibilidades

para a soma a’ + b? + c2.
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A+ +=0+0+0=0=0 (mod 8)
A+ +F=0+0+1=1=1 (mod 8)
A+ +c*=0+0+4=4 (mod 8)
A+ +cF=0+1+1=2 (mod38)
A+ +F=0+1+4=5 (mod 8)
A+ +F=0+4+4=8=0 (mod 8)
A+ +c*=1+1+1=3 (mod 8)
A+ b +cF=1+1+4=6 (mod38)
A+ +F=4+4+1=9=1 (mod 8)

A+ b+t =4+4+4=12=4 (mod 8).

Portanto, podemos perceber que nao ha como termos a? + b? + ¢ = 4 (mod 8)
oua?+0+c2=5(mod8) oua?+b+c=6(mod8 oua?+b?+c*=7
(mod 8). Mas, o que nos interessa saber é que nao é possivel haver a congruéncia

a’®+b*+c* =7 (mod 8).

O

Proposigao 2.1 Seja n € N da forma n = 45(8m + 7) com k,m > 0. Entio n

jamais € soma de trés ou menos quadrados.

Demonstragao: Vamos demonstrar por indugao em k, vejamos primeiramente
que para k = 0, teremos que n = (8m + 7), vamos supor por absurdo que existam
ao,bo € ¢ inteiros positivos tais que n = (8m+7) = a3 + b3 +c3. Sendo n = (8m+7)
entdo n = 7 (mod 8) e ainda podemos dizer que n = 1 (mod 2). Recordemos que
ao dividirmos a por 8 podemos obter agum desses niimeros como resto 0, 1, 2, 3, 4,

5, 6 ou 7, assim da demonstracao do teorema anterior podemos concluir que a = 0,
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1,2,3,4,5, 6 (mod 8) e portanto, a> = 0, 1 ou 4 (mod 8). Assim, nao é possivel
termos n = 7 (mod 8), dai n nao pode ser escrito como soma de trés quadrados.
Agora supomos que 4*71(8m+7) nao seja escrito como uma soma de trés quadra-
dos, devemos mostrar que 4*(8m + 7) ndo pode ser escrito como soma de trés qua-
drados. Sendo k£ > 1 e supondo que n possa escrito como soma de trés quadrados, ou
seja, existem ag,by e ¢ inteiros nao positivos tais que n = 4%(8m+7) = aZ+b3+c2, po-
demos concluir que 4 | n, ou seja, n é par, de fato, n = 48(8m+7) = 441 (8m+7) =
224%=1(8m + 7). Assim, podemos concluir que a, b e ¢ sdo todos pares. De fato,

sendo n par entdo para a soma n = aj + by + ¢ temos duas possibilidades :

1. Dois quadrados sao impares e um ¢é par;

2. Todos os quadrados sao pares.

A primeira nao pode ocorrer, pois n = a2 +b3+ci = 12+1240% = 2 (mod 4), ou
seja, dessa forma 4 nao divide n o que é um absurdo. Assim, a tinica op¢ao possivel
é a segunda, ou seja, todos os quadrados sao pares, dai podemos concluir que a, b e ¢
sao todos pares. De fato, sendo a? par entdo a também é par, para mostrarmos isto
usaremos a demonstracao por contrapositiva, se um ntimero inteiro positivo nao é
par entdo é impar ou seja, sendo a impar devemos mostrar que a? é também impar e
de fato isto é verdade, portanto podemos concluir que a afirmacao feita é verdadeira.
Sendo a, b e ¢ todos pares entao existem u, v e w inteiros positivos tais que a = 2u,

b=2vec=2w, logo

4F8m+7) = ad + b + ¢l
= (2u)2 + (22})2 + (2w)2
= 4u® + 4% + 4w?

= 4(u® + v + w?),
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Ao dividirmos a igualdade acima por 4, obtemos

41 8m + 7) = u? + 0?4 w? (2.4)

ora mas isto contradiz a hipotese de indugao, portanto n = 4*(8m -+ 7) nao pode

ser escrito como uma soma de trés quadrados.

2.4 Soma de Quatro Quadrados

Como foi dito no inicio deste trabalho o matematico inglés Waring, afirmou que
todo numero inteiro positivo ¢ a soma de no maximo 4 quadrados. Nesta secao
iremos demonstrar esta afirmacao feita por Waring, mas antes demonstremos um
resultado andlogo ao lema 2.1 da segao anterior que garante que se dois ntimeros
podem ser representados por uma soma de 4 quadrados entao o produto entre eles

também o pode.
Lema 2.2 Para quaisquer a, b, ¢ e d inteiros, temos que

(@ + 0+ +d) - (rP+ 2+ 12 +02) = (ar + bs + ct + dv)* + (as — br — cv + dt)?

+ (at +bv — er — ds)* + (av — bt + s — dr)*.

Demonstracao: Vamos desenvolver ambos os lados da igualdade e assim obte-

remos o resultado desejado. Desenvolvendo o lado esquerdo temos que

(@ + P+ +d%) (P + 8+ +0°) =
a2r2+a232+a2t2 —f—CLQUQ +b2T2+b282+b2t2+b2U2

+ 2+ A8+ PP+ 0+ B+ PSP+ PP+ P (2.5)
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Vamos agora desenvolver o lado direito da igualdade e comparar com o resultado
obtido no lado esquerdo. Vamos fazer isto em 4 etapas, desenvolvendo cada quadrado

separadamente, assim,

(ar +bs +ct + dv)? =
(ar + bs)? + 2(ar + bs)(ct + dv) + (ct + dv)* =
a’r® + 2arbs + b°s* + 2(arct + ardv + bsct + bsdv) + *t* + 2ctdv + d*v® =

a*r? + b*s* + *t* + d*v® + 2arct + 2ardv + 2bsct + 2bsdv + 2arbs + 2ctdv.  (2.6)

Da mesma forma,

(as —br — cv + dt)? =
(as — br)* + 2(as — br)(—cv + dt) + (—cv + dt)?* =
a’s® — 2asbr + b°r® + 2(—ascv + asdt + brev — brdt) + ¢*v? + 2cvdt + d*t? =

a’s® + b°r® + *v® + d*t? — 2ascv + 2asdt + 2brev — 2brdt — 2asbr + 2cvdt.  (2.7)

De modo anélogo,

(at +bv —cr — ds)? =
(at + bv)* + 2(at + bv)(—cr — ds) + (—cr — ds)? =
a’t* + 2atbv + b*0? + 2(—ater — atds — bver — buds) + ¢*r® + 2crds + d*s* =

a*t? + b*v? + *v? + d?s* — 2ater — 2atds — 2bver — 2bvds + 2atbv + 2crds.  (2.8)
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E Finalmente,

(av — bt + cs — dr)? =
(av — bt)* + 2(av — bt)(cs — dr) + (cs — dr)* =
a®v? — 2avbt + b*t* 4 2(aves — avdr — btes + btdr) + c¢2s* — 2csdr + d*r? =

a’v? + b*t? + ?s* + d°r® + 2aves — 2avdr — 2btes + 2btdr — 2avbt — 2esdr. (2.9)

Agora, somando (2.6) + (2.7) + (2.8) + (2.9), obtemos

(ar+bs+ct+dv)* + (as—br —cv+dt)? + (at +bv —cr —ds)* 4 (av — bt +cs —dr)? =
a’r® + a?*s? + a*t* + a*v® + b+
V2s? + bt + b*0® + *r? + 257+

A2+ v dPr? 4 d2s? + AP+ dP0?, (2.10)

portanto ambos os lados dao o mesmo resultado, dai concluimos que

(A + 0+ +d) - (rP+ 2+ 12 +0) = (ar 4+ bs + ct + dv)* + (as — br — cv + dt)*
+ (at +bv — cr — ds)® + (av — bt + cs — dr)*.
(2.11)

O
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Teorema 2.4 Todo inteiro positivo possui representacao como soma de quatro qua-

drados.

Demonstracao: Sabemos que todo primo possui tal representacao. Lembremos
que 2 = 12 4+ 12 + 0% + 02, assim tomemos p um primo fmpar, pelo teorema 1.7,
existem a, b e ¢ tais que a® + b? + ¢ = 0 (mod p), ou seja, existe M inteiro tal que
a’? + > + ¢ = Mp, podemos escrever a congruéncia a® + b* + ¢ = 0 (mod p) da
seguinte forma a® 4+ b? + ¢ + d*> = 0 (mod p) onde d = 0, pela equagao anterior e
considerando o conjunto formado pelos niimeros que podem ser escritos como soma
de quatro quadrados, podemos garantir pelo principio da boa ordenacao que este
conjunto tem um menor elemento, pois ele nao é vazio. Consideremos m tal elemento
minimo, assim, a? + b 4+ ¢ = mp. Como nas equacoes acima estamos trabalhando
modulo p e a, b e ¢ estdo elevados ao quadrado, podemos tomar |al, |b| e |c| no

intervalo [0, ). Logo

dai

< (5) < (5) < (5) e (B)
a<<2, <(3) @<(3) e®<(3)"

somando as desigualdades acima obtemos

2,12, .2 2 _ ]_72_ 79_2_2
a®+b"+ct+d*=mp<4 5 —44—p.

Mas, mp < p? logo m < p. Sabendo que a? + b> + ¢ = mp e m < p basta que
mostremos que m = 1, ou seja, mostrar que a®+b?+c®> = mp, dai teremos concluido
que todo primo impar pode ser representado como soma de quatro quadrados. Para
isto, vamos mostrar que a suposicao de m > 1 ird nos conduzir a existéncia de um

certo m’, onde m’ < m e a®> 4+ b*>+ 2 + d?> = m'p o que & um contradicdo, visto que
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2.4. SOMA DE QUATRO QUADRADOS

m foi escolhido como elemento minimal, de modo que mp tenha representacao como
soma de quatro quadrados.

Vamos supor que m > 1 teremos dois casos a considerar: m sendo par e m sendo
impar. Tomando m fmpar e m > 1. Podemos escolher dentro do intervalo [0, %],
niameros ai, by, ¢; e dy tais que a; = a (mod m), by =b (mod m), ¢; = ¢ (mod m)
e di = d (mod m). Entao, teremos a? = a* (mod m), b? = b* (mod m), ¢ = ¢
(mod m) e di = d* (mod m) e portanto, a} + V3 + G +di = a®> +¥* + A +d*> =0
(mod m), assim podemos garantir que existe m' > 0 tal que a? +b? +c? +d? = mm’
onde, |a1] < 2, |by| < 2, |e1] < 2 e |di| < ™, portanto a? < T°, b < ™2 < ™
e d? <™ ¢daial+ b+ +d2 <42 onde m'm < m? e portanto m’ < m. Se
fizermos m' = 0 entdo a? + b + ¢ + d? = 0, a soma de quatro niimeros positivos
dando zero s6 acontece se a3 = by =¢; =d; =0 assim,a =b=c=d =0 (mod m)
o que conduz a afirmarmos que m? | mp. De fato, sendoa =b=c=d =0 (mod m)

existem ki, ko, k3, k4 inteiros tais que a = kym, b = kam, ¢ = ksm e d = kym, assim

substituindo em a? + b? + ¢ + d*> = mp, obtemos

(kym)? + (kam)? + (ksm)® + (kym)? = kIm?* + kim? + k3m? + k3m?
=m?(kf + k3 + k3 + k3)

= mp.

Da equagdo acima podemos concluir que m? | mp. Observemos também que
m? | mp implica m | p, ora mas isto ¢ uma contradi¢ao pois escolhemos 1 <m < pe
sendo p primo os tnicos divisores do mesmo seriam 1 e p que estao fora do intervalo
que m pertence. Assim, concluimos que m' # 0. Tendo a®> +b*> + 2 +d> = mp e

/
a3 +b? + ¢ + d¥ = m'm teremos que
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2.4. SOMA DE QUATRO QUADRADOS

(mp)(m'm) = (> + 0+ +d*) (> +0* + & +d°) =
(aay + bby + ccy + ddy)* + (aby — bay — cdy + dep)*+

(acy + bdy — cay — dby)? + (ady — bey + cby — day)?,

pelo lema 2.2.

Sabendo que a = ay, b=b;,c=cied=d;, (mod m)ea?=aay, > =b, > =e
d? = dd,, podemos afirmar que as quatro expressoes que estdo elevadas ao quadrado
do lado direito da multiplicacio de mpm'm sao multiplos de m. De fato, vamos
analisar por expresao, sendo a® = aa, b*> = bb;, ® = cc; e d*> = dd;, temos que ao
somarmos estas congruéncias obtemos aa, + bb; +cc; +ddy = a®> + 0+ +d> =0
(mod m). Portanto (aa; + bby + cc; + ddp)* ¢ um mutiplo de m. Vamos analisar

2

a expressao (ab; — ba; — cdy + dcp)?. Observe que a = a; (mod m), entdo a = 1

(mod m) e a; = r; (mod m), analogamete teremos b = ro (mod m) e by = 1y
(mod m),c =r3 (mod m) e ¢; =r3 (mod m), d=ry (mod m) e dy =ry (mod m).
Assim, ab; = riry (mod m), —ba; = —rire (mod m), —cd; = —rsry (mod m) e
decy = r3ry (mod m). Portanto, aby — bay — cdy + dcy)?* =0+ 0 = 0 (mod m), ou
seja, (aby — ba; — cdy + dep)? € um miltiplo de m. Analogamente fazemos com as

outras expressoes e concluimos que sao mitiplas de m. Mostrado isto, podemos

afirmar que existem inteiros @, b, ¢ e d, tais que
— — _2 —
(@m)? + (bm)* + (em)? + (dm)* = @®m? + b m? + &m? + d'm?
=A@+ +P+d)
= m’pm .
Dai, obtemos @ +a> +¢> —i—c_ZQ = pm’ onde m’ é menor do que m. Falta provarmos

que, no caso m par poderemos encontrar m < m de modo que mp seja escrito como
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soma de quatro quadrados. De fato, sendo m par teremos que mp também é par,
pois p é um primo impar, assim a®+b?+c? = mp é par, ora mas ha trés possibilidades
para que isto aconteca. Os inteiros a, b, ¢ e d sao todos pares, ou todos impares
ou dois pares e dois impares, sendo que em qualquer um dos casos mencionados é
possivel escolhermos a, b, ¢ e d tais que a = b (mod 2) e ¢ = d (mod 2). Sabendo

que m é par temos que

A+ +E+E=mp

é par, entao dividindo a equacgao anterior por dois temos
a® + b+ + d? _mp
2 2

Podemos escrevé-la da seguinte forma

2(a®> +0*) + 2(2+d?*)  2(a®+ b))  2(*+d?)
_l’_
4 4 4
mp

2 )

2ab

agora vamos somar e subtrair da expressao anterior =~ e %%l, ficaremos com,

22 2 22 2
R td?= (a +b)+ (c* +d?)

4 4

_a2—|—62_2ab+2ab+a2+b2+02+d2+02+d2_20d+20d

4 4 4 4 4 4 4 4
mp

2

Portanto,

a? —2ab+b*> a?+2ab+0b*> A —2cd+d*> A+ 2cd+ d?
4 + 4 + 4 + 4 -

()2 (5 (592 e
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Se tomarmos m = % < m, teremos caido em uma contradi¢ao mais uma vez pois
lembremos que tomamos m o menor inteiro positivo tal que mp é soma de quatro
quadrados. Portanto, podemos concluir que m = 1 e teremos demonstrado o que

querfamos.

2.5 Um Teorema de Unicidade de Euler

A nossa meta nesta secao é de mostrar que certos primos possuem represen-
tacao tnica como soma de dois quadrados, para isso vamos ver alguns resultados

preliminares.

Proposicao 2.2 Se um primo p = ¢ + d? e se existir ¢ > 1 tal que pg = a® + b2,

(a,b) =1, entdo q € a soma dos quadrados de dois inteiros relativamente primos.

Demonstracdo: E claro que se tivermos p = ¢® + d?, p sendo primo entdo

(¢,d) = 1. Sendo pq = a® + b*, temos

b? — a*b? = b + a’c® — a’c? — a*V?
=c*(a® +b*) — a*(c® + b?)
= c’pg — a’p
= p(c’q — a®) = pk.

Logo;

kp = (a* + V%) — a*(¢* + b*) = c*a® + A2b* — a’c® — a*d®
— 0262 o a2d2

= (bc + ad)(bc — ad).
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Dai, concluimos que p | (be + ad)(be — ad), como p é primo temos p | (be + ad)
ou p | (be — ad). Observemos que bc — ad # 0, de fato, se bc = ad e como (a,b) =
(c,d) =1 temos que a = b e ¢ = d, assim, p = 2a® e pg = 2a’e portanto p = pq o
que implica ¢ = 1, o que é um absurdo pois ¢ > 1. Se p | (bc — ad) teremos que

existe t inteiro tal que bc — ad = tp. Sejam;

r==b—tc

s=a+td

Ao multilpicar a primeira das equacoes acima por ¢ e a segunda por d ficaremos

com

cr = c(b—tc) = cb — tc?

ds = d(a + td) = da + td>.

Sutraindo as equacoes acima obteremos

cr —ds = c(b—te) — d(a + td) = (cb — tc?) — (da + td*)
= (cb —da) — t(c* + d?)

=tp—tp=0.

s S
Logo, cr = ds, ou seja, 7 = d2. Como (c,d) =1 e r = d- temos que n = — deve
c c
s
ser inteiro. Sendo s = ¢— devemos ter r = dn e s = cn.
c
Observemos que pqg = a® + 0%, a = s —td e b =1 + tc temos ainda a = nc — td e

b = nd + tc, portanto
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pq = (nc —td)? + (tc + nd)* = n*c® — 2(nc)(td) + t*d* + t*c* + 2(tc)(nd) + n*d?
=n*c + Pd® + 1° + n’d® = Pd® + n’d® + n + t°
= d*(t* +n?) + E(t* +n?)
= (12 +n?) (P + d*).

Lembremos que p = ¢ + d?. Dai, pg = p(t*> +n?) = ¢ = t* + n?. Notemos que

(t,n) =1, de fato observe que r =b—tce s = a+td, r = nd e s = nc. Sabendo que

(a,b) = 1, entdo existem x e y inteiros tais que xa + yb = 1 e temos que a = nc — td

e b=nd+ tc, logo

x(nc — td) + y(nd + tc) = xnc — xtd + ynd + ytc
= ytc — xtd + xnc + ynd

= (yc — zd)t + (zc+ yd)n = 1.

Portanto (¢,n) = 1. O caso p | (bc+ ad) é analogo ao que fizemos anteriormente,

isto é, se bc + ad = kp, entao

r=>b-—kc

s=a—kd

Multiplicando a primeira equacao por ¢ e a segunda por d obtemos que

cr = cb — kc?
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ds = ad — kd?

e portanto, ao somarmos ambas as equacoes teremos que cr + ds = cb + ad — kc? —
kd®> = kp — kp = 0. Disto, concluimos que cr = —ds onde r = dn e s = —cn

tomando n = —2. Substituindo estes valores em r = b — kc e s = a — kd obtemos,

pq=a’>+b* = (—cn + kd)® + (dn + kc)?
= n? — 2(cn)(kd) + k*d® + d*n® + 2(dn) (kc) + k*c?
= n® + B*d® + d*n® + k*c?
= d*(k* + n?) + A(n® + k*)

= (K +n?)( + d*) = p(k* + n?),

e assim, ¢ = k% + n%. Para mostrarmos que (k,n) = 1 fazemos de modo analogo

ao que fizemos no cas anterior. Portanto temos mostrado o que desejavamos.
O

Proposicao 2.3 Se pg é soma de dois quadrados de dois inteiros relativamente
primos e q nao € a soma de dois quadrados de inteiros relativamente primos, entao

p possui um fator primo que nao € a soma de dois quadrados.

Demonstracao: Suponhamos por absurdo que p = p1ps ... p, onde cada primo
p; (j =1,2,...,n) é a soma soma de dois quadrados. Como p;(p2...pnq) = pq é
a soma de dois quadrados de inteiros primos entre si e pela proposicao 2.2 temos a
garantia que ps...p,q ¢ a soma de dois quadrados de inteiros relativamente primos
entre si. Repetindo mais uma vez este processo temos que pa(ps . ..ppq) = P2 - - - Puq
é a soma de dois quadrados de interios relativamente primos entre si e novamente
usando a proposicao 2.2 temos a garantia que ps3...p,q ¢ a soma de dois quadrados

de inteiros prims entre si. Procedendo sempre desta forma chegaremos a conclusao
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de que ¢ é a soma de dois quadrados de interios relatiamente primos, ora, mas isto
contradiz a nossa hitotese de que ¢ nao pode ser escrito como soma de dois quadrados
de inteiros primos entre si. Este absurdo foi obtido quando supomos que todos os
fatores primos de p poderiam ser escritos como soma de dois quadrados, dai um

destes fatores nao pode ser escrito como tal.

O

Proposigdo 2.4 Se um primo p divide a* +b* com (a,b) = 1, entdo p é a soma de

dois quadrados.

Demonstragao: Suponhamos por absurdo que p nao seja soma de dois qua-
drados. Sabemos que p { a e p 1 b, de fato, vamos supor por absurdo que p | a,
como a e b sdo primos entre si podemos concluir que p { b, sabemos por hipotese
que p | a® + b?, ou seja, existe k inteiro de modo que p | a® + b* = pko que implica
b> = pk — a®, como supomos que p | a, temos que existe u inteiro tal que a = pu,
dai a® = p(pu?) e assim p | a?, dai b* = pk — a® = pk — p(pu?) = p(k — pu?) o que
acarreta p | a® e assim p | a, ora mas isto é um absurdo pois sabemos que p { a.
O que nos leva a conclusao de que p 1 a, da mesma forma se supormos que p | b
pelos mesmo argumentos feito para o caso anterior conluiremos que p { a e de forma
analoga concluiremos que p 1 b. Vamos utilizar o seguinte argumento: dados a e b
inteiros com b # 0, mostrar que existem inteiros ¢ e r satisfazendo a = ¢gb £+ r, onde
0<r< % De fato, pelo algoritmo de Euclides existem ¢ e s de modo que a = ¢b+s,
onde 0 <s<b Se0<r< %, dai podemos tomar r = s e teremos 0 < r < g, agora
se s > g, podemos escrever a = gb+r—b+b=qb+b+r—b=qlb+1)+r—b,

observemos s > g, ao subtrairmos b teremos o seguinte

| o

b b
§—b§s—b<b—b:>—§gs—b§0:>0<—(s—b)§

)

. / ,
chamando r = s — b, assim, poderemos escrever a = ¢ b — r. Dai, usando o

resultado que acabamos de mostrar, existem ¢y, g2, r1 e 79 satisfazendo
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a=qp=xr, 0<r <

NI oIS

b=qp=xry, 0<ry <
Assim, isolando 7 e 75 e logo em seguida elevando ao quadrado obtemos:
+r=a—pg =1 =(a—py)
+ry =a—pg = 15 = (a — pg2)®
Somando estas equacoes teremos que
i1y =a® = 2pqy + pPai + 0° — 2pge + PG5
dai podemos escrevé-la da seguinte maneira

i1y =a’ + b+ (=2pqi + PP} — 2pgs + P7G5)

=a® +b* + pm, (2.13)

onde m = —2q; +pq? —2¢>+pq3, lembremos do fato que p | a®+b?, ou seja, existe
s inteiro de modo que a? + b* = ps, assim, r} + r2 = ps + pm = p(s +m) = pM,
lembremos ainda que 11 < § e ry < &, dai r < %2 ers < %2, portanto, r? 4+ r2 <
%2 + %2 = %2, agora podemos escrever que pM < %2. Vamos mostrar que sendo 7 e
ro menores do que p, tomando qualquer divisor comum de r; e ro entao este divisor
comum dividird M. De fato, seja k um divisor comum de r; e ro entao existem

inteiros de modo que 71 = ks e roy = kt, substituindo em r? + r3, temos que
r? +r2 = k%s? + k*t? = Mp = k*(s* + t?) = Mp = k* | Mp,

mas lembremos que £ < r; < p entao £k < p, sendo p primo e kK < p nao é
possivel p estd na decomposi¢ao priméaria de k, logo k 1 p, assim, podemos dizer que
(k,p) = (k*,p) = 1, portanto temos k? | Mp e (k*,p) = 1 e assim k? | M implica

k| M. Caso seja necesario uma simplificacao por k? teremos
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r? +r2 _ Mp
k2 k2

T%+T%=Mp:> :>a%+b§:np,

onde (7, %) =1 o que nos diz que (a1, b;) = 1. Da proposigao 2.3 podemos, ter

a certeza de que n possui um fator primo o qual chamaremos de p; de modo que

este ndo seja soma de dois quadrados e que p; < £. Ao repetirmos este processo
. , . p ~ 2

tomando p; ao invés de p obteremos um primo p,, onde p; < p; < £, que nao ¢ soma

de dois quadrados, ora mas isto € um absurdo pois np é soma de dois quadrados de

numeros relativamente primos como é mostrado na proposicao 2.2.
O

Teorema 2.5 Todo primo da forma 4n + 1 possui representacao unica como soma

de dois quadrados.

Demonstracao: O teorema 1.1 diz que —1 é um residuo quadratico de qualquer
primo p = 1 (mod 4) o que quer dizer que existe um inteiro a tal que a? = —1
(mod p) para primos p = 1 (mod 4). Existindo tal a inteiro de modo que a® = —1
(mod p) entdo a®> +1 =0 (mod p) o que implica p | a® + 1 e utilizando a proposicao
2.4 podemos concluir que p é a soma de dois quadrados. Bem, acabamos de concluir
que de fato p é soma de dois quadrados, vamos agora mostrar que a representagao de
p como soma de dois quadrados é tinica. Supondo que existem duas representacoes
distintas para p, ou seja, p = a® + b> = ¢ 4+ d?. Sabemos que sendo p um nimero
impar entao um dos ntmeros a e b é impar e o outro deve ser par, da mesma forma
procedemos para c e d.

Temos que
F+P=+d=d-C=-0=(a+c)la—c)=(d+b)(d—D).

Consideremos r = (a — ¢,d — b), dai existe m inteiro tal que a — ¢ = mr e existe

n inteiro de modo que d — b = nr onde (m,n) = 1, de fato, sabendo que
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r=(a—c,d—>b)=(mr,nr).
entao

1 1 mr nr
r= (mr,nr) = -r =—(mr,nr) = <—,—) =1=(m,n)=1
r r roor

Portanto, m(a + ¢) = n(d + b). Sabendo que (m,n) = 1 e considerando s =
(a4 ¢,d +b), podemos concluir que a + ¢ =ns e d+ b = ms. Sendo a e ¢ ambos
pares ou fmpares teremos que 7 e s sao pares. De fato, se a e ¢ sdo ambos pares
temos que a —c=mr =2k —2s =2(k—s)ea+c=mns =2t —2y = 2(t — y),
ou seja, mr e ns sao pares entao ha as seguintes possibilidades m e r parese n e s
pares ou m par e r impar e n par e s impar ou m fmpar e r par e n impar e s par,
observemos que as duas primeiras possibilidades ndo podem ocorrer pois (m,n) = 1
restando entao a terceira e por ela concluimos que r e s sao pares. Da mesma forma,
se considerarmos a e ¢ impares faremos de forma anédloga ao anterior. Se apenas
um deles é par consequentemente o utro é impar, digamos a é par e ¢ é impar entao
a—c=mr=2k—(2s+1)=2(k—s)—lea+c=ns=2t—(2y+1)=2(t—y)—1
o que nos leva a conclusao de que mr e ns sao impares assim, m é impar e r é impar
e n é impar e s é impar dai concluimos que r e s sao ambos impares e também

concluimos neste caso que m e n também sao impares. Temos que

(r* + s*)(m? + n?) = m*r? + n?r? + m?s® + n’s?
=(a—c)>+ (d+b)*+ (d—b)*+ (a+c)*

Assim,

(a—c)?+(d+b)?+(d—b)*+ (a+c)* =
a?—2ac+ P +a>+2ac+F+d*+2db+ b+ d% —2db+ b? =

2(a® + b)) 4+ 2(2 + d*). (2.14)
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Portanto,

(r2+s)(m?>+n?)  a®>+b> A+ d?
- T

p p
_r.pr_ 2.15
55 =P (2.15)

Podemos tirar as seguintes conclusoes sobre a expressao acima, sendo r e s ambos

r2+52 e m? +n2

pares p serd o produto de ~—* 5~ ¢ estes sao maiores do que 1. Agora sendo

r e s impares nao podemos ter ambos iguais a 1, pois caso fosse possivel terfamos

a—c=m,a+c=n,d—b=mned+ b= m somando as duas primeiras e as duas

m

tltimas obtemos que a = 2 e d = ™ portanto a = d, sendo a = d e subtraindo

m—-n m—n

3 e CcC = 5

a segunda pela primeira e a quarta pela terceira, obtemos b = 0
que acarreta b = c. Mas, isto nao é possivel pois as duas representacoes de p sao
distintas, ou seja, a # d e ¢ # b. Quando r e s sdo impares p, serd o produto de

7“2-‘,-52 m2+n2

> >~ e estes fatores sao diferentes de 1. Mas, observemos que p ¢ um primo

impar e de modo algum poder4 ser escrito como as expressoes ditas anteriormente,

portanto podemos concluir que a representacao de p é tnica.

2.6 Descenso Infinito de Fermat

Considerando a equacao f(z1,x2,...,2,) = 0 o método do descenso infinito
consiste em verificar a nao existéncia de solugoes inteiras positivas ou mostrar sob
certas condicoes todas as solucoes inteiras desta equacao. Ao considerarmos o con-
junto solugao A = {(z1,...,2,) € Z|f((z1,...,x,) = 0} e supondo que este seja nao
vazio, desejamos construir uma funcao ¢ : A — N e consideraremos uma solucao
(x1,22,...,2,) € Aonde ¢(x1,29,...,x,) é amenor possivel. A partir desta encon-
traremos uma outra menor do que ela e portanto teremos assim uma contradi¢ao o

que nos levarara que o conjunto solucao da equacao é vazio.
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2.6. DESCENSO INFINITO DE FERMAT

Facamos o exemplo abaixo e tentemos compreender esta técnica elaborada por
Fermat.
Exemplo: (Fermat). Demonstrar que a equagao z* + y* = 22 nao possui solugoes
inteiras positivas. ¢

Suponhamos que z* 4+ y* = 22 possui uma solucao inteira onde z,y,z > 0.
Portanto, existe uma soluc¢ao (a, b, c) onde podemos consirear ¢ minimo. Temos a
e b primos entre si. De fato, se d = (a,b) > 1 poderiamos substituir (a,b,c) por
(2,2 < b4 = a*+b?

4 % %) e este terno é solugao da equacdo, veja que (2)* + (5 -7~ Note que

P ~ ~ 4 4 2 .
o terno (a,b,c) € solu¢do de z* + y* = 22 entdo (2)* + (2)' = = = £ ou seja,

o terno (9, s, ) € solugao da equagao e 3 < ¢ o que contradiz a minimilidade de
S b 2\2 b2 2 2 t 3 t 2 b2 2 t

c. Sabemos que (a”)” + = ¢” temos assim que o terno (a®,b” c) é um terno

pitagoérico primitivo e dai existem numeros inteiros positivos m e n que sao primos

entre si de modo que

a’>=m?—n? b =2mnec=m?+n%

Notemos que a? + n? = m? satisfaz a relacdo de Pitagoras e portanto a terna
ordenada (a,n, m) é uma terna pitagorica primitiva e assim podemos concluir que
m ¢é impar. De fato, note que m é impar pois a e n nao podem ser ambos pares,
devido a e n serem primos. Portanto supomos que a é impar, n nao pode ser impar

pois caso contrario

a=2k+1=0a>=02k+1)?=4k>+4k+1=a>=1 (mod 4)

n=2s+1=>n?=4s>+4s+1=n’>=1 (mod 4),
assim,

a2+n*=m?*=1+1=2 (mod 4)

41



2.6. DESCENSO INFINITO DE FERMAT

0 que nao é possivel pois todo niimero ao quadrado quando dividido por 4 deixa

2 2

resto 0 ou 1, portanto n® é par e consequentemente m-~ ¢ impar e dai podemos
concluir que m é fmpar. Assim, de b? = 2mn concluimos que b é par e consequen-
temente n também. Observemos ainda que b*> = (2n)m é um quadrado perfeito e
(2n,m) = 1, de fato, (2n,m) = 1, pois (n,m) = 1 implica (2n,m) = (2,m) onde
(2,m) = 1 ou 2, vamos mostrar que nao pode ocorrer (2,m) = 2, pois neste caso 2 | m
o que nos diz que m é par, mas sabemos que m é impar assim (2n,m) = (2,m) = 1.
Sendo b* = (2n)m quadrado perfeito temos que 2n e m também o sdo. De fato,
suponhmamos que 2n ndo é um quadrado perfeito e entdo existe um fator primo p;"
de 2n que aparece uma quantidade impar de vezes no produto, ou seja, «; ¢ impar
e como (2n,m) = 1 este fator nao aparece em m, sabendo que b = (2n)m é um
quadrado perfeito entao o fator p; deve aparecer uma quantidade par de vezes, mas
isto ¢ um absurdo, o que nos leva a conclusao de que 2n e m sao ambos quadrados
perfeitos.

Sendo entao, 2n e m quadrado perfeitos entao existem s e t positivos de modo

que 2n = 4s? e m = t2. Por outro lado sabendo que a? + n? = m?, entdo existirdo

inteiros positivos ¢ e 7 primos entre si onde

a=1i>—j% n=2ijem=1i+j>

Dai, s* = & = ij, logo i e j sao quadrados perfeitos, digamos i = u* e j = v*,
Portanto, teremos m = i? + j2, i = u?, j = v?> e m = t2, assim, t* = u* 4+ v*, de fato
m= (t)>+ (j)* = (v?)? + (v?)? = u* + v = 2, isto &, (u,v,t) é outra solugao da

equacao original. Porém,
t<t?=m<m?P<m’+ni=c=t<c

e lembremos que t # 0, pois m # 0.
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2.7 O Ultimo Teorema de Fermat

Este sem duavida alguma é um dos mais belos teoremas de todos os tempos, o
qual desafiou matematicos extraordinarios através dos seus 300 anos em que ficou
sem uma demostracao. Pierre de Fermat era considerado um matematico amador,
mesmo sendo o seu trabalho de alta qualidade. Quando Fermat morreu, seu filho
encontra algumas anotagoes do pai e em uma dessas anotacoes estava escrito o

"é impossivel para um cubo ser escrito como a soma de dois cubos ou

seguinte :
uma quarta poténcia ser escrita como soma de duas quartas poténcias ou, em geral,
para qualquer niimero que é uma poténcia maior do que a segunda, ser escrito a
soma de duas poténcias com o mesmo expoente". Ele também escreveu que tinha
encontrado uma demonstracao para esta afirmagao, porém nao tinha como escrvé-la
naquelas margens. Muitos matematicos importantes se dedicaram a solucionar este
"altimo teorema de Fermat", mas nenhum deles teve éxito, mas destas iniimeras
tentativas surgiram teorias importantes em matematica, como por exemplo a teoria
dos anéis comutativos, dentre outros. Este teorema virou uma lenda no mundo da
matematica, chegando a existir até um prémio para quem o demonstrasse. A facanha
coube ao matemético Andrew Wiles um, professor da universidade de Princenton,
o qual na verdade demonstrou a conjectura de Taniyama-Shimura, ficando assim
demonstrado o ultimo teorema de Fermat.

Para ilustrar o quanto este problema é dificil acompanharemos a demonstracao

do teorema de Fermat para caso onde n = 3, que foi originalmente feita por FEuler,

mas nao estava completa. Assim vejamos primeiramente o lema abaixo:

Lema 2.3 Todas as solugdes de s> = a>+3b* em inteiros positivos tais que (a,b) = 1

e s € impar sao dadas por
s =m?+3n?, a=m>—9mn?, b =3m?n — 3n?
com m +n impar e (m,3n) = 1.
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Demonstragao: Vamos primeiramente mostrar que s, a e b assim definidas

satisfazem a equacgdo s® = a? + 3b%, vejamos que

s* = (m* + 3n?)® = (m*)? + 3(m?)(3n?) + 3(m?)(3n?) + (3n?)?

=m® + 9m'n* + 27m*n* + 27n° (2.16)

a® + 36> = (m® — 9Imn?)* + 3(3m*n — 3n?*)?
= (m*)? — 2(m*)(9mn?)? + 3((3m>n)? — 2(3m*n)(3n*) + (3n*)?)

= m® + 9m'n* + 27m*n* + 27n°. (2.17)

portanto, verificamos que s = a? + 3b%. Observemos que

(a,b) = (m® — 9mn?, 3m*n — 3n®) = (m(m? — In?), 3n(m? — n?))
:( 2_9n2’m2_n2)

= (8n% m?* —n?). (2.18)
Podemos fazer as seguintes proposicoes :
e 1 par e m é impar;
e n par e m par;
e n impar e m par;
e n impar e m impar.

Mas, lembremos que por hipétese que m + n é par entao apenas as suposicoes

abaixo sao possiveis de ocorrer:
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e n par e m é impar;
e 1 impar e m par.

m am remos que (8n?,m? —n?) = 1. Suponham ra qu
Em ambos os casos teremos que (8n2, m? — n? 1. Suponhamos agora que a

terna (a,b, s) é uma solucdo da equagdo, consideremos entao p primo de modo que
p | s, sendo (a,b) = 1 e ainda s impar temos pf a,ptbep > 3. De s® = a* + 3b*
temos a® = s3—3b?%, note que p | s, assim a? = p3t3—30? = p(p*t3)—3b* = a® = —3b?
(mod p), temos entao pela lei da reciprocidade quadratica

<_§> —1e (g) =1 p=1 (mod6).

De fato, sendo (—%) = 1, temos que

3 1\ /3 1 p
- ()@
p p) \p p) \3
1 1
(D)
p p
1
& (——) =1 p=1 (mod4). (2.19)
p
Sabemos que existem nimeros m; e n; de modo que p = m? + 3n?, assim

P> = (m3+3n2)? = m8+-9min?+27m?+27ns, onde p* = 2+3d* onde c = m3—9mn?
e d = 3m3n; — 3n3. Sabemos que existem inteiros m; e n; tais que p = m? + 3n? e
assim, p> = 2+ 3d* onde ¢ = m3 —9mn? e d = 3m3in; —3n3. Podemos observar que
(p,mq1) = (p,n1) = 1 e ainda p > 3, logo (p,c) = (p,d) = 1, como na demonstragao
acima de (a,b) = 1. Utilizando o método da indugao sobre o niimero de divisores
de primos de s. Se s = 1 teremos pelo caso anterior que o problema esta resolvido,
vamos supor agora que este resultado seja valido para todo s que tenha extamente &
fatores primos, digamos s = pt onde p é primo p > 3 , observemos que t3p° = s3p3,

dai
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t3p® = $*p3 = (a® + 30?)(c? + 3d?) = (ac £ 3bd)* + 3(ad F bc)?
onde podemos observar que
(ad + be)(ad — be) = (ad)? — (be)? = d*(a® + 3b?) — b*(c* + 3d?) = p*(3d? — b?),

logo p? | (ad + be)(ad — be). Se p divide os dois fatores, temos que p | ad e p | be.
Lembremos ainda que (p,c) = (p,d) = 1 o que acarreta p | a e p | b, ora mas isto
contradiz a hipotese (a,b) = 1, logo, p* divide extamente um dos fatores, e tomando

adequadamente os sinais vamos ter

ac £ 3bd ad F be
T T

como sendo ntimeros inteiros tais que > = u? + 302, como t tem k fatores primos

segue por hipotese de inducao que
t =m3+3n3, u=mi—9Imyn3 e v =3miny — 3n3.

Agora, dado que a = uc + 3vd e b = £(ud — vc), entdo substituindo t,u,v, ¢
e d em termos de m; e n; (i = 1,2) em s, a e b e fazendo m = mymy + 3nino,

n = ming — maony, onde obtemos o que desejavamos mostrar.
O

3

Proposicao 2.5 A equacdo diofantina x® + y®> = 23 ndo possui solucdes inteiras

com xyz # 0.

O método utilizado para a demonstragao deste caso particular ¢ basicamente o
método do descenso infinito de Fermat.

Demonstragao: vamos supor que (z,y,z) é solucao de x® + 3> = 2% onde
x,y,z > 0 e de modo que zyz seja minimo. Como qualquer fator comum de dois

destes nimeros é também fator comum do terceiro x, y e z sao primos relativos dois
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a dois e em particular um destes serd par. observe que x = y nao ¢é possivel de

ocorrer, pois se fosse teriamos que 22 + 2% = 23 implica 22® = 23, observe que do

lado direito o expoente da maior poténcia de 2 é um miltiplo de 3 enquanto do lado
esquerdo teremos nao. Assim, vamos supor que x e y sdo impares e z é par podemos
entao escrever t = p+qey=p—q, onde p >0 e g > 0 primos entre si (pois x e y

também sao primos entre si e de diferente paridades). Dai,

2+ y* = (2 +y)(a® — 2y +y7)
=2((p+9)*— P+ —q) + (p—q)?

=2p(p® + 3¢°). (2.20)

Portanto, 2p | p*>+3¢? é um cubo perfeito. De forma analoga supondo z impar e x
ou y é par, podemos supor sem a perda de generalidade que y é impar, e substituindo

z=q-+pey=q—p, teremos

=2 =y =22+ 9+ +9)(p—q) + (¢ —p)?

= 2p(p* + 3¢°). (2.21)

Como p? + 3¢* é impar e 2p(p? + 3¢*) ¢ um cubo perfeito, temos que p sera par.

Calculando o maximo divisor comum de p e de p? + 3¢® obtemos

(p,p* + 3¢%) = (p, 3¢*) = (p,3), assim, (p, p*> + 3¢*) = 1 ou (p,p* + 3¢*) = 3.

No primeiro, existem naturais a e b tais que a® = 2p e b> = p? + 3¢>, neste caso
sabemos que existem inteiros m e n com paridades diferentes e primos relativos, de

modo que
b=m?+3n% p=m3—9mn?, ¢ = 3m?*n — 3n.

Logo, a® = 2m(m—3n)(m+3n), observemos que os nimeros 2m, (m—=3n)(m+3n)

sao primos relativos, logo existem inteiros e, f e g tais que 2m = €3, m — 3n = f3
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e m + 3n = ¢3. Em particular, teremos que f2 + ¢3 = €3, como efg = a® = 2p <
x4y < xyz, teremos uma solucao menor, o que contradiz a escolha de x, y e z. No
caso 3 | p, entdao p = 3r com (r,q) = 1, logo 2% = 187 (3r2 +¢*) ou z° = 187 (3r* + ¢?)
ou 2% = 18r(3r? 4 ¢?) e assim, existem inteiros positivos a e b tais que 18r = a® e

3r2 + ¢® = b3. Novamente existirao inteiros m e n tais que
b=m?+3n%, ¢=m3—9mn® e r = 3m?n — 3n3.

Dali, segue que a®> = 27(2n)(m—n)(m-+n), de igual forma teremos que os niimeros
2n, m —n e m + n sao primos relativos, portanto existem inteiros positivos e, f e
3

Y

g tais que 2n = €2, m —n = f3, m+n = ¢>. Assim, €3 + 2 = ¢, que também

contradiz o fato de que (z,y, z) é minimo.
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Capitulo 3

Uma Proposta de Atividade para o

Ensino Médio

Neste capitulo pretendemos fazer uma proposta de atividade para o ensino médio,
versando sobre a teoria exposta capitulo 2. Faremos primeiramente a apresentacao
da atividade que esta dividida em duas partes e posteriormente faremos a analise e
solucao para a mesma. Essa atividade tem por objetivo fazer com que o aluno do
ensino médio compreenda os teoremas que caracterizam a representacao de dois e
quatro quadrados. Através de tentativas e erros ele ird perceber que mesmo sendo
estes teoremas que aparentemente sao dificeis para o nivel escolar em que estao, é
possivel que estes alunos possam compreender e usar os resultados destes teoremas,
até com certa facilidade em alguns casos. O que da motivagao para estes alunos,
fazendo assim que percebam que mesmo teorias que até certo ponto sao avancadas
para o nivel escolar deles, podem produzir resultados simples e de facil entendimento.
Isto faz com que o aluno va perdendo o medo que tem da matematica, deixando de

considera-la como um bicho de sete cabecas e tornando-a mais prazerosa de estudar.
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3.1 Apresentacao da Atividade Proposta

Faremos aqui a apresentacao da atividade proposta, ela esta baseada no teorema
2.1, Lema 2.1, teorema 2.2 e teorema 2.5, apresentados e demonstrados no capitulo
2. Os Exercicios foram retirados de [2] na pagina 138 e foram adptados de modo a
se encaixarem nos propositos desta sequéncia didética, que é justamente fazer com

que o aluno compreenda a esséncia dos principais teoremas citados no capitulo 2.
Atividade Proposta
1* Parte

e Observe os primos 11, 17, 19, 23, 29 e 31. Quais destes podemos representar
como soma de dois quadrados. Por exemplo, podemos escrever os numeros
primos 5 e 13 como soma de dois quadrados da seguinte forma: 5 =22+ 12 ¢

13 =32+ 22,

e Agora facamos a divisao de cada primo acima por 4 e observemos o valor dos
restos. A partir da observacao dos restos é possivel dizermos alguma coisa

sobre estes niimeros?

e Os numeros 6, 8, 10, 16, 36 podem ser representados como uma soma de dois

quadrados?

e Observe que os nimeros 13 e 29 podem ser representados por uma soma de dois
quadrados. Podemos a partir da multiplicacao destes dois niimeros produzir
um outro numero que pode ser representado por uma soma de dois quadrados?

Em caso afirmativo dé a sua representacao?

e serd que existe outra representacao como soma de dois quadrados para os
primos 13 e 297 E para qualquer outro primo que possa ser representado por

uma soma de dois quadrados ?
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e Sera possivel representar o numero 29 como soma de quatro quadrados 7 Em

caso afirmativo dé esta representacao.
a
2" Parte

e Dizer se existe um triangulo retangulo is6sceles de lados inteiros.

3.2 Solucao e Comentario de cada Item
1* Parte

e Observe os primos 11, 17, 19, 23, 29 e 31. Quais destes podemos representar
como soma de dois quadrados. Por exemplo, podemos escrever os numeros
primos 5 e 13 como soma de dois quadrados da seguinte forma: 5 =22+ 12 e

13 =32+ 22,

Neste exercicio primeiramente é deixado o aluno livre de modo que este por
meio de tentativas va solucionando o exercicio, nesse processo acertos e erros vao
ser bastante comuns, visto que o aluno ainda nao conhece o resultado do teorema
2.1. Possivelmente a maioria dos alunos nao conseguirao resolver esta atividade
com éxito num primeiro momento, mas depois da apresentacgao do resultado geral
ficard mais simples o seu entendimento pleno por parte do aluno. Destes niimeros
os que podem ser representados por uma soma de dois quadrados sao 17 e 29, as
suas representacoes sao 17 = 42 + 12 e 29 = 52 + 22, Este exercico serve para que
o aluno tenha o primeiro contato com a ideia de representar um nimero como uma

soma de dois quadrados e preparar terreno para a introducao do resultado geral.

e Agora facamos a divisao de cada primo acima por 4 e observemos o valor dos
restos. A partir da observacao dos restos é possivel dizermos alguma coisa

sobre estes ntmeros?
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Nesta etapa da atividade é necesario que o aluno divida os primos do item an-
terior por 4, e observe as coincidéncias entre os restos dos mesmos, observar que o
resto dos niimeros que nao puderam ser escritos como uma soma de dois quadrados
é 3 e dos que puderam ser escritos é 1, isto da margem para que os alunos possam
conjecturar algo a respeito da representacao de niimeros como soma de dois qua-
drados. Depois dos alunos tentarem e tirarem as suas proprias conclusoes ¢ hora
do professor apresentar o teorema 2.1 de modo a adequa-lo a linguagem do ensino
médio, podendo ser escrito da seguite forma "um nimero primo é escrito como uma

soma de dois quadrados se for dois ou deixar resto 1 ao ser dividido por 4".

e Os numeros 6, 8, 10, 16, 36 e 27 podem ser representados como uma soma de

dois quadrados?

Neste item os alunos agora devem verificar se sendo agora um numero nao primo
quais as condicoes para que estes possam ser representados por uma soma de dois
quadrados, o caminho natural a seguir por esses alunos depois das estapas passa-
das é tentar fazer por tentativas, pois os resultados anteriores nao ajudam muito.
Neste caso, aparece o teorema 2.2 que fala na decomposicao de um ntmero que é
representado por uma soma de dois quadrados, neste teorema é explicitado como
é a fatoracao de ntimeros dessa natureza, assim depois que os alunos tentarem por
meio de tentativas, o professor deve explicar o teorema 2.2 aos alunos, ou seja, dizer
na fatoracao de um niimero que pode ser representado por uma soma de dois qua-
drados deve aparecer uma poténcia do fator primo 2, poténcias de fatores primos
que podem ser representados por uma soma de dois quadrados e caso apareca outro
fator primo que nao seja como o dito anteriormente o expoente deste tem que ser

par.
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16| 2
8 |2
6 | 2 412
3|3 L
1[5 2!
23 '
Figura 3.1: Figura 3.2: Figura 3.3:

Nas figuras 3.1, 3.2 e 3.3, temos as fatoragoes dos niimeros 6, 10 e 16 respecti-
vamente, observemos que nenhum destes nimeros obedece as condigoes do teorema
2.2, pois na fatoracao do 6, nao ha fator primo congruente a 1 modulo 4, analoga-
mente na fatoracao do 10, ja o niimero 16 podemos escrever a fatoracao do mesmo
da seguinte forma de modo a se adequar ao teorema: 16 = 2* = 2*.13%.7° observe
que esta fatoracao cumpre as condicoes do teorema 2.2, portanto podemos escrever
16, como soma de dois quadrados 16 = 42 4+ 0. Vamos ver agora as fatoragdes dos

numeros 8 e 36 ¢ 27

8 2 36| 2
18 | 2
4| 2 27 | 3
9 3 9
3
2 } 3 |3
3 13
3 1
2 22. 32 1 ?
Figura 3.4: Figura 3.5: Figura 3.6:
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Note que os numeros 8 e 36 podem ser representados como uma soma de dois
quadrados pois suas fatoracoes se enquadram nos moldes do teorema 2.2, j o niimero
27 = 33 nao pode ser representado pois o fator primo que é congruo a 3 moédulo 4
possui expoente impar. Portanto, os niimeros que podem ser escritos como soma de

dois quadrados sao 8 = 22 + 22, 36 = 62 + 0% e 16 = 4 + 0%

e Observe que os nimeros 13 e 29 podem ser representados por uma soma de dois
quadrados. Podemos a partir da multiplicacao destes dois ntimeros produzir
um outro namero que pode ser representado por uma soma de dois quadrados?

Em caso afirmativo dé a sua representacao?

Nesta etapa o aluno ja deve conhecer O teorema 2.1 e saber de fato que os nu-
meros 13 e 29 podem ser representados por uma soma de dois quadrados, o objetivo
desta tarefa é fazer com que o aluno observe que se dois niimeros sao representados
por uma soma de dois quadrados, entao podemos gerar outro niimero da mesma na-
tureza fazendo a multiplicacao entre eles. Num primeiro momento nao falamos no
resultado do lema 2.1 e deixamos os alunos tentarem verificar este resultado, alguns
podem tentar usar o teorema 2.1 ao fazerem a multiplicacao dos nimeros 13 e 29,
mas nao terao €xito pois o nimero gerado nao ¢ primo, entao restara para eles a
tentativa de escever o resultado da multipliagao como uma soma de dois quadrados
, depois deles tentarem por alguns minutos e tirarem suas propias conlusoes ai é que
o professor entra com o resultado do lema 2.1 comprovando que realmente a multi-
pliagao de dois niimeros que sao soma de dois quadrados é um niimero que é soma
de dois quadrados. E até possivel que o professor caso deseje fazer a demonstracao
deste lema para os alunos, pois as ferramentas matemaéaticas envolidas sao de conhe-
cimento dos alunos do ensino médio e assim torna o entendimento deste resultado
mais simples. Portato, teremos que 13 = 32 +22 e 29 = 52 + 22, assim pelo lema 2.1

temos que (29)(13) = (524+22)(3%2+22) = (5:3+2-2)2+(5-2—2-3)2 = 377 = 192 +42
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3.2. SOLUCAO E COMENTARIO DE CADA ITEM

e serd que existe outra representacao como soma de dois quadrados para os
primos 13 e 297 E para qualquer outro primo que possa ser representado por

uma soma de dois quadrados 7

Neste momento é deixado novamente aos alunos a por tentativas verificarem se
h& como obter outra representacao como soma de dois quadrados para os primos
13 e 29. Notemos que 13 = 32 + 22 e se tentarmos encontrar outra representacao
para este nimero nao teremos éxito, pois pelo teorema 2.5 os primos que deixam
resto 1 ao serem divididos por 4 possuem representacao tnica como soma de dois
quadrados. No primeiro momento, os alunos nao terao esta informacao, tirarao suas
conclusoes por meio de tentativas, ou seja, acertos e erros, posteriormente é que o

professor deve falar sobre este Teorema.

e Sera possivel representar o nimero 29 como soma de quatro quadrados 7 Em

caso afirmativo dé esta representacao

Bem, este item visa fazer com que o aluno venha a descobrir que qualquer ntimero
inteiro positivo pode ser representado por uma soma de quatro quadrados, que é
justamente o resultado do teorema de Lagrange, posteriormente as tentativas dos
alunos o professor faz a apresentacao deste resultado. Aqui faremos por tentativas
mesmo e chegaremos que 29 = 52 4 22 4+ 02 + 02,

Esta ¢ a primeira etapa da atividade, e o objetivo ¢ fazer com que o aluno se
familiarize com os resultados béasicos da teoria desenvolvida no capitulo 2.

Vamos agora para a segunda parte da atividade, que ¢é constituida de um tnico

item , uma aplicacao da teoria dos nimeros a geometria.
a
2" Parte

e Dizer se existe um triangulo retangulo isosceles de lados inteiros.
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3.2. SOLUCAO E COMENTARIO DE CADA ITEM

Vamos a solucao e comentarios sobre este problema. Devemos verificar se existe
um triangulo isosceles retangulo de modo que os lados do mesmo sejam inteiros, ou
. d .ﬁ . t . t . d d 2 — 2 2 ,
seja, devemos verificar se existem x e z inteiros de modo que 2° = z° + 2~ que ¢é a

relacao de pitdgoras, veja a figura abaixo.

20

Vamos supor que existam tais x e y inteiros de modo a satisfazer a relagao de

2

pitagoras, assim, 22 = 22 + 22, notemos que 22 nao pode ser primo pois, tem 1, p e

p? como divisores. Assim temos que analisar o caso
e 22 ndo primo;

2 observemos que do lado direito temos

Se 22 nao é primo e tendo 22 = 2? + x
uma, quantidade par de fatores 2 e do lado esquerdo ha uma quantidade impar de
fatores 2, portanto temos aqui uma contradicdo, dai concluimos que sendo z? um
nimero nao primo nao ha como termos um triangulo retangulo isosceles de lados
inteiros.

Dai, nao h& possibilidade de existir um triangulo is6sceles retangulo de lados
inteios. Essa etapa da atividade ¢ mais elaborada e exige conhecimentos um pouco

mais aprofundados do aluno, fazendo-se assim uma atividade bem interressante para

se trabalhar como preparacao para as olimpiadas de matematica.
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Apéndice A
Resultados Complementares

Trazemos aqui resultados de complementagao do texto.
Teorema A.1 (Teorema de Wilson) Se p é primo, entao (p —1)! = —1 (mod p).

Teorema A.2 (Pequeno Teorema de Fermat) Dado um nimero primo p, tem-se

que p divide o numero aP — a, para todo a € N.

Corolario A.1 Se p é um numero primo e se a € um numero natural nao divisivel

por p, entao p divide a? — 1.

Teorema A.3 (Propriedade da Boa Ordem) Todo subconjunto nao vazio de N pos-

sut um menor elemento.

Teorema A.4 (Principio de Indugao Matemdtica). Sejam a € N e seja p(n) uma

sentenc¢a aberta em n. Suponha que
1. p(a) é verdade, e que
2.¥n>a, p(n) = pn+1) € verdade,
entao, p(n) é verdade para todo n > a.
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Apéndice APENDICE

Teorema A.5 (O principio da casa dos pombos) Se n+1 pombos sio colocados em

n gaiolas, entao pelo menos uma gaiola deverd conter 2 ou mais pombos.

Para o leitor interessado em maiores detalhes sobre a demonstracao dos quatro
primeiros teoremas deste apéndice consultar [2|, a demonstragdo do principio de
indugdo matemética esta em [3] e a demonstragao do principio da casa dos pombos

estd em [11].
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