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Resumo

Neste trabalho, mostramos um pouco a teoria sobre os chamados nimeros transfi-
nitos e sua aritmética cardinal. Para tanto, trabalhamos também alguns resultados
envolvendo conjuntos, bem como equipoténcia, conjuntos finitos, infinitos, conjuntos
enumeraveis e nao-enumeraveis.

Palavras-chave: Cantor, Teoria dos Conjuntos, Nimeros Cardinais, Nimeros
Transfinitos, Aritmética Cardinal



Abstract

In this work, we show basic results about the so-called transfinite numbers and their
cardinal arithmetic. For these purpose, we also show some results involving the set
theory, as well as equinumerosity, finite sets, infinite sets, countable sets and un-
countable sets.

Keywords: Cantor, Set Theory, Cardinal Numbers, Transfinite Numbers, Cardinal
Arithmetic.
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Introducao

Os gregos sempre evitaram lidar com o infinito, pois esse conceito lhes trazia dificul-
dades que eles nunca souberam resolver, e por isso eles nunca trataram os conjuntos
infinitos. Nem eles nem seus sucessores das civilizacoes helenistica, arabe e da Eu-
ropa medieval. Foi s6 no século XIX que os matematicos comecaram a estudar
conjuntos infinitos de maneira sistematica. E o primeiro a fazer isso foi Bernhard
Bolzano(1781-1848), que nasceu, viveu e morreu em Praga. Era sacerdote cato-
lico que, além de se dedicar a estudos de Filosofia, Teologia e Matemética, tinha
grandes preocupacgoes com os problemas sociais de sua época. Seu ativismo em
favor de reformas educacionais, sua condenacao do militarismo e da guerra, sua de-
fesa de liberdade de consciéncia e em favor da diminuicao das desigualdades sociais
custaram-lhe sérios embaracos com o governo. As ideias de Bolzano em Matematica
nio foram menos avancadas. E até admiravel que, vivendo em relativo isolamento
em Praga, afastado do principal centro cientifico da época, que era Paris, ele tenha
tido sensibilidade para problemas de vanguarda no desenvolvimento da Matematica.
Infelizmente, seus trabalhos permaneceram praticamente desconhecidos por varias
décadas apos a sua morte. (ver [2])

Figura 1: Bernhard Bolzano

Bolzano produziu varios trabalhos mateméticos importantes, mas aqui vamos nos
limitar apenas a mencionar seu pioneirismo no tratamento de conjuntos infinitos.
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Ele escreveu um livro sobre os paradoxos do infinito, publicado postumamente em
1859, no qual aborda varias questoes de natureza filoséfica e matematica acerca
dos conjuntos infinitos. Depois de Bolzano, devemos mencionar Richard Dedekind
(1831-1916), um grande nome da Matemética do século XIX. Ele foi mais longe que
Bolzano, utilizando a nocao de conjunto na construcao dos ntimeros reais.

Figura 2: Richard Dedekind

Mas foi Georg Cantor (1845-1918) quem mais avangou no estudo dos conjun-
tos. No capitulo 1 deste nosso trabalho, apresentamos resultados os quais julgamos

preliminares envolvendo a teoria dos conjuntos que serao muito tteis nos capitulos
subsequentes.

Figura 3: Georg Cantor

Em 1872 Cantor estava iniciando sua carreira profissional e se ocupava do estudo
da representagao das fungoes por meio de séries trigonométricas. Nessa ocupacao
ele foi levado a investigar os conjuntos de pontos de descontinuidade de tais funcoes,
os mais simples dos quais sao os conjuntos com apenas um numero finito de pontos.
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Mas o aparecimento de conjuntos cada vez mais complicados acabou levando Cantor
a investigar conjuntos infinitos em sua generalidade. Nesse estudo ele introduziu um
conceito simples, que logo se revelaria da maior importancia, qual seja, o conceito
de equipoténcia de conjuntos, que serd abordado no capitulo 2 deste nosso trabalho.

No caso de conjuntos finitos, serem equipotentes corresponde a terem o mesmo
nimero de elementos. E no caso dos conjuntos infinitos? Bem, nesse caso nao
faz sentido falar em numero de elementos do conjunto, pois tais conjuntos sempre
tem infinitos elementos. Mas como o conceito de cardinalidade é valido tanto para
conjuntos finitos como para conjuntos infinitos, e como tal conceito corresponde
exatamente ao conceito de niimero de elementos no caso de conjuntos finitos, é esse
conceito que estende, para conjuntos infinitos, a nocao de numero de elementos do
conjunto.

Assim, de um modo geral, diz-se que dois conjuntos quaisquer A e B sao equi-
potentes se eles tiverem a mesma cardinalidade. A cardinalidade de um conjunto
corresponde ao numero de elementos que este conjunto possui. Essa definicao, no
caso dos conjuntos finitos, nao traz nada de novo. Mas, como veremos, estende,
para conjuntos infinitos, a nocao de nimero de elementos de um conjunto. Tais
nimeros sao os chamados numeros transfinitos, o qual abordaremos no capitulo 3
deste trabalho.

Chama-se conjunto enumerdvel todo conjunto equipotente a N. Assim, o con-
junto dos nimeros pares positivos é enumeravel, pois, como mostraremos no capi-
tulo 2, ele é equipotente a N. Nao deixa de ser supreendente, para quem adquire
esse conhecimento pela primeira vez, constatar que existem subconjuntos proprios
de N que sao equipotentes a N. Nao apenas o conjunto dos pares positivos, mas
também o conjunto dos nimeros impares, o conjunto dos quadrados dos inteiros
{1,4,9, 16,25, 36, ...} e muitos outros mais, todos equipotentes a N. Esse fenomeno
é uma peculiaridade dos conjuntos infinitos e pode ser usado para caracterizar tais
conjuntos.

Serd que todos os conjuntos infinitos sao enumeraveis? Ou seja, equipotentes a
N? Veremos que nao é assim. Estabeleceremos, no capitulo 2, a enumerabilidade dos
nimeros racionais, um resultado ja em si surpreendente. Verificaremos no capitulo
2 deste trabalho, que o conjunto dos niimeros reais R é nao enumeravel. E, diante
deste resultado, Cantor mostrou que existem pelo menos dois tipos de infinito: o
conjunto dos numeros naturais e o conjunto dos ntimeros reais.

No tocante aos niimeros cardinais, que serd abordado no capitulo 2, temos que a
utilizacao da nocao de funcao bijetiva entre conjuntos é a abordagem adequada para
comparar o tamanho de dois conjuntos. Esta abordagem também foi introduzida
por Cantor e, surpreendentemente, conduz a existéncia de diferentes tamanhos de
infinitos. Motivamos este trabalho levantando as seguintes questoes: Que conjunto
seria mator, o conjunto N dos ntmeros naturais, ou o conjunto Q dos ntmeros
racionais? O que se pode dizer quanto ao conjunto dos ntimeros reais e o intervalo



(0,1)7 Os reais seriam maiores do que o intervalo (0,1)? O conjunto Z dos nimeros
inteiros é infinito e o conjunto dos ntimeros reais também, mas, ha alguma relacao
entre eles com respeito a quantidade de elementos?

Cantor provou outro fato nao menos pertubador: Dado um conjunto qualquer,
é sempre possivel construir outro conjunto maior ainda, maior no sentido de que
ele contém o primeiro conjunto como parte prépria e nao é equipotente a essa sua
parte propria. Sendo assim, esses dois conjuntos tém cardinalidades diferentes. Isso
permite ordenar as cardinalidades dos conjuntos criando o que chamamos de nimeros
transfinitos. Um tal nimero nada mais é que a cardinalidade de um conjunto.
Abordaremos esse assunto no capitulo 3 deste trabalho.

Ainda, no capitulo 3, destacamos a chamada Aritmética Cardinal. Ja existe uma
aritmética cardinal para os ntimeros cardinais finitos. Por exemplo, se x e y sdo dois
nimeros cardinais finitos, temos que a soma x+y e o produto xy tem seus significados
tradicionais. Neste capitulo, além de abordar a aritmética dos cardinais finitos,
generalizamos estes conceitos de modo a cobrir os nimeros cardinais transfinitos
também. Ou seja, uma aritmética que se aplica a todos os niimeros cardinais, finitos
e infinitos, que preserve os significados e propriedades tradicionais da aritmética dos
ntmeros cardinais finitos.

No apéndice deste trabalho, apresentamos, de uma forma breve, a Hipdtese do
Continuo. A hipotese do continuo é uma conjectura proposta por Georg Cantor.
Esta conjectura consiste no seguinte:

Nao existe nenhum conjunto com mais elementos do que o conjunto dos nimeros
wnteiros e menos elementos do que o conjunto dos numeros reais.

Aqui mais elementos e menos elementos tem um sentido muito preciso. Esta
hipotese foi o nimero um dos 23 Problemas de Hilbert apresentados na conferéncia
do Congresso Internacional de Matematica de 1900, o que levou a que fosse estudada
profundamente durante o século XX.

xi



Capitulo 1

Resultados Preliminares de Teoria
dos Conjuntos

A Teoria dos Conjuntos foi desenvolvida de forma rigorosa e moderna no final o
século dezenove por Georg Cantor (1845-1918) para abordar certas questoes sutis
da teoria das fungoes. As ideias revolucionarias de Cantor, de inicio incompreendidas
por serem demasiado abstratas para a época, foram rapidamente se impondo como
elemento unificador de véarios ramos da matemaética, a ponto de se tornarem o meio
pelo qual é formalizada toda a matematica contemporanea.

A teoria contribuiu decisivamente para que se passasse a encarar sob outra pers-
pectiva os problemas da matematica, desde os que surgem nos fundamentos da
disciplina até os que sao tipicos de ramos especializados da algebra, da andlise e da
geometria.

As aplicagoes da teoria dos conjuntos a solucao de questoes relativas a estrutura
algébrica de varios tipos de conjuntos e a questoes relativas as suas propriedades
operatorias abriram novos rumos para os matematicos, ressaltando, entre outras
aplicagoes, a extensao dos conceitos de medida e de integral, a introdugao das no¢oes
de espaco abstrato, definido como conjuntos de elementos com dadas propriedades,
e bem assim notéveis inovacoes no campo da integracao e no do estudo das fungoes,
examinadas a luz da correspondéncia entre conjuntos.

Neste primeiro capitulo deste trabalho, procuramos apresentar, de uma maneira
clara e objetiva, alguns resultados que julgamos importantes da teoria dos conjuntos,
em alguns momentos sem o rigor matemético apropriado, com o objetivo de fazer
com que o leitor venha a compreender, além destes resultados preliminares, outros
importantes conceitos para que, finalmente, venhamos a abordar as chamadas No-
coes Bdsicas de Infinito e Numeros Cardinais.
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1.1 A Linguagem dos Conjuntos

Esta secao foi elaborada a partir das seguintes referéncias bibliogréaficas:
[1], [3], [7], [11].

Os termos conjunto e elemento e a relagdo de um elemento pertencer a um
conjunto sao conceitos primitivos; ou seja, nao serao definidos. Usamos o termo
colecdo como sinénimo de conjunto. A afirmacdo que um elemento x pertence ao
conjunto A é simbolizada por = € A e a sua negacao é simbolizada por = ¢ A.

Definicao 1.1.1 Dois conjuntos sao considerados iguais, se eles tém o0s mesmos
elementos. Mais precisamente, temos que A = B se, e somente se, todo elemento
de A € elemento de B e todo elemento de B € elemento de A.

A condicao de que todo elemento de um conjunto A pertence a um conjunto B,
estabelece uma relacdo entre A e B, chamada relacio de inclusdo. Quando existir
uma tal relacao entre A e B escreveremos A C Bou B D A, que se & A esta contido
em B ou A é subconjunto de B, ou ainda, B contém A.

Proposicao 1.1.1 A relacio de inclusdo possui as sequintes propriedades:
(1) A C A, para todo conjunto A;
(2) A= B se, e somente se, AC B e B C A;
(3) Se AC BeBCC, entio ACC.

A negacao de A C B, ou seja, o fato de A nao ser subconjunto de B, é sim-
bolizada por A ¢ B e significa que existe pelo menos um elemento de A que nao
pertence a B. Se A C B e A # B, diremos que A é subconjunto proprio de B. Neste
caso, escrevemos A ;Ct B. No que se segue, admitiremos o leitor familiarizado com o
conjunto dos nimeros naturais N = {0,1,2,3,4---} e com o conjunto dos niimeros
inteiros: Z = {---—-3,-2,—1,0,1,2,3,--- }.

O conjunto Q, dos niimeros racionais, ¢ formado pelas fragoes §= onde p e q
pertencem a Z, sendo ¢ # 0. Em simbolos, temos que

Q={p/;peZ,qeZ,q#0}.

Leé-se: "Q é o conjunto das fragdes p/q tais que p pertence a Z, q pertence a Z e
q é diferente de zero".
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A maioria dos conjuntos encontrados em matematica nao sao definidos especificando-
se, um a um, os seus elementos. O método mais frequente de definir um conjunto
é por meio de uma propriedade comum e exclusiva dos seus elementos. Mais preci-
samente, parte-se de uma propriedade P. Ela define um conjunto X, assim: se um
elemento x goza da propriedade P, entdo z € X; se ndo goza de P, entao x € X.
Escreve-se

X = {x; goza da propriedade P}.
Lé-se: "X é o conjunto dos elementos x tais que = goza da propriedade P".
Muitas vezes a propriedade P se refere a elementos de um conjunto fundamental
A. Neste caso, escreve-se
X = {z € A;x goza da propriedade P}.

Por exemplo, seja N o conjunto dos ntimeros naturais e consideremos a seguinte
propriedade, que se refere a um elemento genérico x € N:

"x é maior do que 5".

A propriedade P, de um niimero natural ser maior do que 5, define o conjunto
X =1{6,7,8,9---}, ou seja,

X ={reN;z> 5}
Lé-se: "X é o conjunto dos x pertencentes a N tais que x é maior do que 5".
As vezes, ocorre que nenhum elemento de A goza da propriedade P. Neste caso,

o conjunto {x € A; x goza de P} nao possui elemento algum. Isto é o que se chama
um conjunto vazio. Para representa-lo, usaremos o simbolo (.

Portanto, o conjunto vazio é definido assim: Qualquer que seja z, tem-se = & ().

Alguns exemplos:
o {reAjx#ua} =0
o {reN; 1 <u <2} =10
o {r;x#ux}=10.
Definicao 1.1.2 Afirmamos que ) C A, para qualquer que seja o conjunto A.

Esta afirmacao parece estranha & primeira vista, mas vejamos como é natural
a falsidade de sua negagao (isto é, sua veracidade). A afirmagdo ) ¢ A, para
algum conjunto A, significa que existe pelo menos um x € ) tal que x € A e isto é
claramente falso, visto que o conjunto () nao possui qualquer elemento.
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1.1.1 Operagoes com Conjuntos

Dada uma colecao qualquer de conjuntos, admitiremos a existéncia de um conjunto
tal que cada um de seus elementos pertence a pelo menos um dos conjuntos da
colecao. Tal conjunto serd chamado de uniago dos conjuntos da colecao.

Definicao 1.1.3 Dados dois conjuntos A e B, a unido de A e B é o conjunto
AUB ={z;x € A oux € B}.

As propriedades a seguir decorrem imediatamente das definicoes.

Proposicao 1.1.2 Para todos os conjuntos A, B e C, temos que:
(1) AUl=Ae AUA=A;
(2) ACAUB e BC AUB;
(3) AUB=BUA;
(4) (AUB)UC =AU (BUCQC).

Proposicao 1.1.3 Dados conjuntos A,A',B e B', com A C B e A C B, entdo
AUA' C BUB.

Prova. Se AU A’ = (), a asser¢ao é verdadeira. Suponha que AU A" # (. Se
x € AUA temos que x € Aouzxz € A, e como A C Be A" C B, segue-se que
x € Boux € B Isto posto, v € BU B’. Portanto, provamos que AUA" C BUB'.
[

Corolario 1.1.1 AU B = A se, e somente se, B C A.

Prova. Suponhamos que AU B = A. Como B C AU B, segue-se que B C A.
Reciprocamente, suponha que B C A. Como A C A, segue-se da proposicdo que
AUB C AUA = A. Logo, AUB C A. Como A C AU B, segue-se que AUB = A.
[ |

Definicao 1.1.4 Dados dois conjuntos A e B, a intersecio de A e B € o conjunto
ANB={x;x € A ex € B}. Quando AN B =10, dizemos que os conjuntos A e B
sao disjuntos.

As propriedades a seguir decorrem das definigoes:
Proposicao 1.1.4 Para todos os conjuntos A, B e C, temos que:

(1) ANB=0 e ANA=A;
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(2) ANBeANBC B;
(3) ANB=DBNA;
(4) (ANB)NC=AN(BNC).

Proposicao 1.1.5 Dados conjuntos A, B e C quaisquer, temos que AN (BUC) =
(ANB)U(ANC).

Prova. Inicialmente, provemos a inclusdo AN (BUC) C (AN B)U(ANC). Se
AN (BUC) = 0, nada temos a provar. Suponha que AN (BUC) # (). Seja z
um elemento qualquer de AN (B U C). Logo, temos que z € Ae x € BUC. Seja
x € B,entdo xr € ANB. Se x € C, entdao x € ANC. Em qualquer caso, temos que
r € (ANB)U(ANC). Agora, provemos a inclusao (ANB)U(ANC) C AN(BUC). Se
o conjunto da esquerda for vazio, a inclusao é verificada. Suponha que tal conjunto
é nao vazio, e seja r um elemento qualquer dele. Logo, z € AN Boux e ANC.
Em qualquer caso, z € A e temos que z € B ou z € C. Isto posto, z € AN(BUC).
|

Proposicao 1.1.6 Dados conjuntos A, B e C, quaisquer, temos que AU(BNC) =
(AUB)N(AUC).

Definicao 1.1.5 Dados dois conjuntos A e B, a diferenca A menos B, € o conjunto
A—B={z;z € Aex & B}. Quando B C A, a diferenca A — B € denotada por
CA(B) e é chamada de complementar de B em A.

Por exemplo, se A = {a,b,c} e B={b,c,d}, entao A — B = {a}.
Proposicao 1.1.7 Para todos os conjuntos A e B, temos que:
(1) A—D=AeA—-A=1;
(2) Se ANB =10, entio A—B=AeB—A=DB;
(3) Ca(0) = A eCa(A) =0.

Proposicdo 1.1.8 Sejam B e B’ subconjuntos de A. Se B C B', entdo C4(B') C
CA(B).

Prova. Suponha que B C B’. Se C4(B’) = ), nada temos a provar. Se Cs(B’) # ()
e seja © um elemento qualquer de C4(B’). Isto posto, x ¢ B’. Segue-se que v ¢ B
pois, caso contrario, como B C B, teriamos z € B’. Consequentemente, z € C4(B).
[
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Proposicao 1.1.9 Sejam B e B’ subconjuntos de A. Temos que C4,(B U B') =
EA(B) N CA(B,).

Prova. A proposicao decorre da seguinte cadeia de equivaléncias:
1€l (BUB) & 1rZ¢BUB ©rv¢ZBex g B < xc04(B)nCa(B),
para todo elemento x de A. [

Proposigdo 1.1.10 Sejam B e B’ subconjuntos de A. Temos que C,(B N B') =
Ca(B) UCA(B).

1.1.2 Conjunto de Partes e Produto Cartesiano

Definicao 1.1.6 Dado um conjunto A qualquer, admitiremos a existéncia de um
conjunto p(A), cujos elementos sao todos subconjuntos de A, chamado conjunto das
partes ou conjunto poténcia de A.

Definicao 1.1.7 Um par ordenado (a,b) de elementos de A é o elemento de p(p(A))
dado por {{a},{a,b}}. Nao € dificil convencer-se que (a,b) = (a’,V') se, e somente
se,a=ad eb=1".

Definicao 1.1.8 Dados dois conjuntos A e B, o produto cartesiano de A e B € o
conjunto A X B de todos os pares ordenados (a,b) de elementos de AU B tais que
a € A ebe B. Simbolicamente, escrevemos A x B ={(a,b);a € A eb € B}.

Por exemplo, se A = {a,b} e B = {c,d}, temos que AxB = {(a, ¢), (a,d), (b,¢c), (b,d)}
e Bx A={(c,a),(cb),(da),(db)}.

Note que, em geral, Ax B # B x A. Temos também que A x B = () se, e somente
se, A=0ou B = 0.

1.1.3 Familia de Conjuntos

Definicao 1.1.9 Seja [ um conjunto nao vazio qualquer. Uma familia indexada
por I € uma colegcao de conjuntos A; com i € I. Uma tal familia serd denotada por

(14i)i61-

Definicao 1.1.10 A uniao dos elementos de uma familia é UA" ={z;z € A; para
iel
algum i € I} e a sua intersecao é ﬂAi = {z;z € A; para todo i € I}.
iel

De fato, para todo j € I, temos que A; C UA" e ﬂAi C Aj.

el icl
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1.2 Funcoes

Esta secao foi elaborada a partir das seguintes referéncias bibliogréaficas:
3], [11], [12].

Definicao 1.2.1 Dados dois conjuntos nao vazios X €Y, uma relagao de X emY
(ou entre X e Y, nessa ordem), é um subconjunto R do produto cartesiano X XY,
isto €, R € um conjunto de pares ordenados do tipo (z,y), comx € X ey €Y. Se
R € uma relacao de X em X, diremos stmplesmente que R € uma relagao em X.

No exemplo que se segue, dados X = {1,2,3} e Y = {2,3,4,5}, o conjunto R =
{(z,y) € X xY;x >y} é arelacao de X em Y dada por R = {(2,2), (3,2),(3,3)};
de fato, esses sdo os tinicos pares ordenados (z,y) com = € {1,2,3},y € {2,3,4,5}
e tais que x > y. Se R é uma relacao de X em Y, entdao R C X X Y por defini¢ao.

Reciprocamente, escolhido um par ordenado (z,y) € X x Y, pode ocorrer que
(x,y) € Rou (z,y) € R (isto &, que z e y sejam relacionados ou nao por R). No
primeiro caso, vamos denotar por zRy. Temos que: xRy < (z,y) € R.

Definicao 1.2.2 Uma relagcio bindria em um conjunto X # (0 é uma sentenca
aberta xRy no conjunto X x X.

Sao exemplos de relacoes bindrias a igualdade z = y entre elementos de um
conjunto X e a relacao de desigualdade x < y em Z.

Proposicao 1.2.1 Uma relagao bindria xRy em um conjunto X # () serd chamada
relacao de equivaléncia, se possuir as sequintes propriedades:

(i) xRx é verdadeira para todo x € X (Propriedade Reflexiva);
(i) Se xRy € verdadeira, entao yRx € verdadeira (Propriedade Simétrica);

(iii) Se xRy e yRz sdo verdadeiras, entio xRz € verdadeira (Propriedade Tran-
sitiva).

Definicao 1.2.3 Dada uma relagao de equivaléncia = em um conjunto X, defi-

nimos a classe de equivaléncia de um elemento a € X como sendo o conjunto

[a] = {x € X;2 = a} e o elemento a serd chamado de representante da classe

a].

Por exemplo, se a relagao de equivaléncia ¢ a igualdade entre os elementos de
um conjunto X, temos que [a] = {a}, para todo a € X.
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Definicao 1.2.4 Sejam dados dois conjuntos nao vazios X e Y. Uma funcao [ de
X emY € uma regra que associa a cada v € X um unicoy € Y. Os conjuntos X e
Y sao chamados respectivamente de dominio e contradominio da funcao. Denomi-
naremos X = D(f),Y = CD(f) e f(X) como sendo a imagem da funcdo f. Temos
que f(X)CY.

As trés defini¢oes a seguir explicitam alguns tipos extremamente tteis de funcoes.

Definicao 1.2.5 Dados conjuntos nao vazios X e Y, e fixado um elemento c € Y,
a funcao constante ¢ de X em'Y € a funcio f: X — Y tal que f(z) = ¢ para todo
r e X.

No caso extremo da funcao constante e igual a ¢, definida acima, todo x € X
estd associado a um mesmo y € Y, a saber, y = ¢. Contudo, as condi¢oes impostas
na definicao sao plenamente satisfeitas, isto é, todo z € X esta associado a um unico
yey.

Definicao 1.2.6 Dado um conjunto nao vazio X, a funcao identidade de X,
denotada por Idx : X — X, é a fun¢ao dada por Id(x) = x para todo x € X.

Definicao 1.2.7 Duas funcoes f : X — Y eg: W — Z sao iguais se X = W)Y =
Z e f(x) = g(z) para todo x € X.

Se duas fungoes f : X — Y e g: W — Z forem iguais, escrevemos f = g. A
definicao acima significa a igualdade dos dominios, X = W, e dos contradominios,
Y = Z, assim como a validade da funcao f(z) = g(x) para todo x € X. Se fungoes
f e g nao forem iguais, escrevemos f # g e diremos que f e g sao fungoes diferentes
ou distintas.

1.2.1 Composicao de Funcoes

Dadas duas funcoes f: X - Y e g:Y — Z, temos, em tltima anélise, regras bem
definidas partindo de x € X via f, obter y = f(x) € Y e, via g, obter g(z) € Z.
Parece muito razoavel que possamos formar uma funcao que nos permita sair de X
diretamente para Z. Este é de fato o caso, e a funcao resultante é denominada a
funcao composta de f e g, de acordo com o seguinte:

Definicao 1.2.8 Dadas as fungoes f: X —Y eqg:Y — Z, a fungcao composta
de f e g, nessa ordem, € a fun¢ao go f : X — Z definida, para cada v € X, por
(go f)(z) =g(f(x)). De uma forma geral, basta que tenhamos f(X) CY para que
a funcao go f faca sentido.
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Apesar de nao ser comutativa, a operagao de composicao de funcoes é associativa,
conforme segue:

Proposicao 1.2.2 Dadas fungoes f: X =Y, g:Y = Z eh:Z — W, temos que
ho(gof)=(hog)of.

Prova. Veja primeiro que as ambas ho (go f) e (hog)o f sao fungoes de X em W.
Portanto, para serem iguais, ¢ suficiente que associem cada r € A em um mesmo
elemento de W. Para ver isto, basta notar que (ho (go f))(x) = h((go f)(z)) =

h((g(f(x))) = (hog)(f(x)) = ((hog)o f)(x). u

A proposicao acima é muito importante pois, se tivermos funcoes f, g e h e
pudermos compd-las (nessa ordem), podemos denotar a fungao composta por hogo f
simplesmente, nao nos preocupando com qual composicao efetuar primeiro.

Definicao 1.2.9 Uma funcio f: X — Y € dita:

(a) Ingetora, injetiva ou ainda uma injegdo, se para quaisquer xry,xs € X tais

que x1 # T3 = f(21) # f(22);

(b) Sobrejetora, sobrejetiva ou ainda uma sobreje¢do, se sua imagem for todo
o conjunto Y, isto é, f(X) =Y,

(c) Bijetora, bijetiva ou ainda uma bije¢do se for ao mesmo tempo injetiva e
sobrejetiva.

Teorema 1.2.1 Se X C R é um conjunto ndo vazio e f : X — X € uma funcao
tal que f(f(x)) =z para todo x, entao f € bijetiva.

Prova. Sejam x; e xo nimeros reais tais que f(x;) = f(x2). Para mostrarmos
que f é injetiva é suficiente provar que x; = xo. Para tanto, observe que f(x;) =
f(z2) = f(f(z1)) = f(f(x2)). Logo, 1 = x2 por hipGtese. A sobrejetividade de
f é imediata. Fixado y € X e tomando f(y) € X, temos f(f(y)) = y. Isto posto,
concluimos que y € f(X). |

A proposicao a seguir ensina como se comportam funcoes injetivas, sobrejetivas
e bijetivas em relacao a composicao.

Proposicao 1.2.3 Sejam f: X —Y eg:Y — Z duas funcoes dadas. Entao:
(a) go f injetiva = [ injetiva, mas a reciproca nem sempre é verdadeira.

(b) go f sobrejetiva = g sobrejetiva, mas a reciproca nem sempre é verdadeira.
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(¢) g, f injetivas = g o f injetiva.
(d) g, f sobrejetivas = g o f sobrejetiva.

(e) g, [ bijetivas = g o f bijetiva.

Prova.
(a) Para 1 e 29 em X, temos que f(z1) = f(x2) = g(f(x1)) = g(f(x2)) =
(go f)(x1) = (go f)(za) = 1 = z2, onde na ultima passagem usamos o fato

de g o f ser injetiva. Temos agora que dar um exemplo no qual f seja injetiva mas

go f nao o seja. Para tanto, basta tomarmos X =Y = Z =R, f(z) =z e g(z) = 2%

(b) Dado arbitrariamente z € Z, a sobrejetividade de g o f garante a existéncia
de pelo menos um z € X tal que z = (go f)(x). Mas ai, z = g(f(z)) e g tam-
bém é sobrejetiva. Para o exemplo necessario a segunda parte, tomemos novamente

X=Y=Z=R,gx)=ze f(z)=12>

(c) Usando sucessivamente as injetividades de g e de f, temos para z; e x5 em

X que (go f)(z1) = (go f)(z2) = g(f(z1)) = g([(22)) = f(21) = f(22) = 21 = 22,

e g o f também é injetiva.

(d) Dado arbitrariamente z € Z, a sobrejetividade de g garante a existéncia de
y € Y tal que z = g(y). Por outro lado, a sobrejetividade de f assegura a existéncia
de x € X tal que f(x) = y. Entdo, temos que (go f)(x) = g(f(z)) = g(y) = z,
donde g o f também é sobrejetiva.

(e) Segue dos itens (c) e (d) que g e f bijetoras = g e f s@o injetivas e sobrejetivas
= g o f injetiva e sobrejetiva = g o f bijetiva. ]

1.2.2 Inversao de Funcoes

Consideremos uma funcao f : X — Y bijetiva. Temos que os elementos de X e Y
estao em correspondéncia biunivoca, ou seja, a cada elemento de X corresponde um
e s6 um elemento de Y via f, e vice-versa. Quando tal ocorrer, podemos obter uma
outra func¢ao g : Y — X, simplesmente exigindo que f(z) =y < g(y) = =.

Definicao 1.2.10 Diremos que uma funcao g : Y — X € uma inversa a esquerda
de f sego f=1dx e g € uma inversa o direita de f se fog= Idy.

Uma pergunta natural a esta altura é por que nao podemos usar a declaracao

acima para definir a inversa de uma funcao bijetiva. De um ponto de vista intuitivo,
se f nao fosse sobrejetiva, existiria um elemento y de Y que nao seria imagem por

10
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f de nenhum elemento de X. Assim, nao teriamos uma maneira natural de definir
g(y) a partir de f. Por outro lado, se f ndo fosse injetiva, existiriam elementos
distintos z; e x5 em X com uma mesma imagem y € Y via f. Quando tentassemos
definir g por meio de f, também nao haveria maneira natural de decidirmos quem,
dentre 7 e xo, deveria ser igual a g(y).

Voltando ao caso em que f é bijetiva, nao é dificil ver que g, definida como
acima, é de fato uma fungao, e ademais tal que (g o f)(z) = x para todo z € X e
(fog)(y) =y para todo y € Y. De outro modo, temos go f = Idx e fog = Idy.
Reciprocamente, se f : X — Y e g : Y — X sao funcgoes tais que go f = Idx e
fog = Idy, entao f deve ser, de fato uma bijecao, e g é a tinica funcao que satisfaz
tais igualdades de composicao.

Definigao 1.2.11 Seja f: X — Y uma bijecao dada. A fungao inversa de f € a
fungio g : Y — X tal que, para x € X,y € Y, temos que g(y) =z <y = f(x).

Daqui em diante, denotaremos a inversa de uma bijecao f : X — Y por f~!:
Y — X. Observe que o expoente —1 na notacao da funcao inversa nao tem nenhum
significado aritmético. Ele simplesmente chama atencdo para o fato de que f~! faz
o caminho inverso de f, isto é, aplica Y em X em vez de X em Y, revertendo as
setas das associacoes feitas por f.

Proposicao 1.2.4 Uma funcao € sobrejetiva se, e somente se, ela admite inversa
a direita.

Prova. Seja f : X — Y uma funcao sobrejetiva. Entao, para cada y € Y é possivel
escolher pelo menos um = € X tal que y = f(z). Fixe um tal x para cada y. Defina
g:Y — X tal que g(y) = = (note que em geral toda fun¢do g nao é unicamente
determinada, ela o serd se f é injetiva). Segue-se entdo que, para todo y € Y,
fogly) = f(g(y)) = f(z) = y. Isto posto, fog = Idy e, portanto, g é uma inversa
a direita de f. Reciprocamente, suponha que f o g = [dy para alguma funcao
g:Y — X. Como Idy é sobrejetiva, segue-se que f é também sobrejetiva. ]

Proposicao 1.2.5 Uma funcao € injetiva se, e somente se, ela admite uma inversa
a esquerda.

Prova. Seja f : X — Y uma funcdo injetiva. Entao, cada y € f(X) determina um
tnico z € X tal que y = f(z). Defina g : Y — X como a seguir:

_ [ ose ye f(X)

9v) { a, se y¢ f(X)
onde a é um elemento qualquer fixado de X. Note que em geral g nao é unicamente
determinada, ela o sera se f for sobrejetiva. Segue-se entao que go f(z) = g(f(x)) =

11
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g(y) = z, para todo x € X. Isto posto, go f = Idx e, portanto, g & uma inversa a
esquerda de f. Suponha reciprocamente que existe g : Y — X tal que go f = Idy.
Como Idx é injetiva, segue-se que [ é injetiva. ]

Proposicao 1.2.6 Se uma funcao admite uma inversa & esquerda e uma inversa a
direita, entao estas sao iguais.

Prova. Sejam g1, g, : Y — X, respectivamente, uma inversa a direita e uma inversa
a esquerda de uma funcgdo f: X — Y. Segue-se que g; = Idx 091 = (g0 f) o g1 =
g20(fog) =gaoldy = go. =

Lema 1.2.1 Sejam A e B conjuntos nao vazios. Eriste uma uma fun¢ao sobrejetiva
f:A— B se, e somente se, existe uma funcao injetiva g : B — A.

Prova. Com efeito, se existe uma sobrejecao f : A — B, segue-se que, para cada
r € B, podemos escolher um tnico y € A tal que f(y) = z. Entdo, definimos
g : B — A tal que g(z) = y. Note que isso é, evidentemente, uma injegao.
Reciprocamente, se existe g : B — A injetiva, fixando um a € B qualquer, define-se
f:A— Btal que f(x) =g '(z),se xz € g(B) e f(x) =a, se z & g(B). Note que f
é evidentemente sobrejetiva. [ ]

Proposicao 1.2.7 Uma funcdao admite inversa se, e somente se, ela € bijetiva.

Prova. Seja f uma funcao bijetiva. Logo, f admite uma inversa a esquerda e uma
inversa & direita. Logo, estas sao iguais, definindo uma funcao inversa para f. A
reciproca segue do explicitado acima. [

Proposicao 1.2.8 Se f: X =Y eg:Y — Z sao funcoes bijetivas, entao go f :
X — 7 é bijetiva e (go f)™t = ftog™h

Prova. J4 sabemos que go f é bijetiva. Por outro lado, como (gof)™'e f~log™! sdo
ambas fungoes de Z em X, a fim de verificar que (gof)™' = f~log™! & suficiente, pela
unicidade da inversa, notar que (f~tog=')o(gof) = Idx e (gof)o(f tog™) = Idy.
n

1.2.3 Conjunto de Funcgoes

Defini¢ao 1.2.12 Dados dois conjuntos nao vazios X eY . Denotaremos por F(X,Y)
o conjunto de todas as funcoes de X em Y.

12
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A composicao de duas fungdes determina em F (X, X) uma operagio que ji vi-
mos, é associativa. Esta operacao tem o elemento neutro /dx e nao é comutativa,
se X tem dois ou mais elementos.

De fato, sejam a,b € X, com a # b, e definamos f : X — X, tal que f(z) = a,
para todo z € X e g : X — X, tal que g(z) = b, para todo x € X. Agora, observe
que f(g(a)) = a e g(f(a)) = b e, portanto, fog#go f.

Em matemaética, frequentemente, um mesmo objeto pode vir apresentado de
varios modos distintos. Por exemplo, quando X = {1,2} e Y # (), o conjunto
F(X,Y) pode ser naturalmente identificado com o conjunto Y? =Y x Y. De fato,
para cada fungdo f : {1,2} — Y, associamos o par (f(1), f(2)). Esta associacdo
estabelece uma bijegao natural entre F(X,Y) e Y2,

1.3 Boa Ordenacao

Definicao 1.3.1 Seja X um subconjunto de numeros naturais. Diz-se que um nai-
mero p € X € o menor elemento de X (ou elemento minimo de X ) quando se tem
p <n para todon € X.

Por exemplo, 1 é o menor elemento do conjunto N de todos os ntimeros naturais.
Com maior razao, qualquer que seja X C N com 1 € X, 1 é o menor elemento de
X.

Definicao 1.3.2 Dado X C N, sep € X e q € X sao ambos os menores elementos
de X entiop < qeq<p, donde p=q. Assim o menor elemento de um conjunto

€ unico.

Definicao 1.3.3 Analogamente, se X C N, um numero p € X chama-se o maior
elemento de X (ou elemento mdzimo de X )quando se tem p > n para todo n € X.

Nem todo conjunto de niimeros naturais possui um elemento maximo. Por exem-
plo, o préprio N nao tem o maior elemento ja que, para todon € N tem-se n+1 > n.

Corolario 1.3.1 Se existir o elemento mdzimo de um conjunto X C N, ele € unico.

Prova. Com efeito, se p € X e ¢ € X sao ambos maximos entao p > q e ¢ > p,
donde p = gq. [

Um resultado de grande importancia, até mesmo como método de prova, é o fato
de que todo conjunto nao vazio de ntimeros naturais possui um menor elemento. Este

13
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fato é conhecido como Principio da Boa Ordenagdo. Para tanto, utilizaremos em
sua prova o seguinte axioma:

(Principio da Indugao) Se X C N ¢ um subconjunto tal que 1 € X e, para todo
n € X tem-se também s(n) € X, entdo X = N. Definamos s(n) como o sucessor
de n.

Teorema 1.3.1 (Principio da Boa Ordenagao) Todo conjunto nao vazio A C N
possui um menor elemento.

Prova. Usando a notacao I, = {p € N;1 < p < n}, consideremos o conjunto
X C N, formado pelos ntimeros n € N tais que I, C N — A. (Assim, dizer que
n € X significa afirmar que n € A e que todos os nimeros naturais menores do que
n também ndo pertencem a A). Se tivermos 1 € A, o teorema estara demonstrado
pois 1 serd o menor elemento de A. Se, porém, for 1 € A entao 1 € X. Por outro
lado, temos X # N. (Pois X C N— A e A # (. Assim, X cumpre a primeira parte
da hipoétese de inducao (contém 1) mas nao satisfaz & conclusao (nao ¢ igual a N).
Logo, nao pode cumprir a segunda parte da hipotese. Isto quer dizer: deve existir
algum n € X tal que n+1 ¢ X. Seja a = n+ 1. Entao todos os inteiros desde 1 até
n pertencem ao complementar de A mas a = n + 1 pertence a A. Desta maneira, a
é o menor elemento do conjunto A, o que prova o teorema. [

Do Principio da Boa Ordenacao decorre uma proposi¢ao conhecida como o Se-
gundo Principio da Indug¢ao, que provaremos agora.

Teorema 1.3.2 (Segundo Principio da Indug¢do) Seja X C N um conjunto
com a sequinte propriedade: Dado n € N, se X contém todos os nimeros naturais
m tais que m < n, entao n € X. Nestas condi¢oes, X = N.

Prova. Seja Y = N — X. Afirmamos que Y = (). Com efeito, se Y nao fosse vazio,
existiria um menor elemento p € Y. Entao, para todo ntimero natural m < p, seria
m € X. Pela hipotese feita sobre X, terfamos p € X, o que gera uma contradi¢ao.
[ |

O Segundo Principio da Indugao constitui um método tutil para demonstracao de
proposicoes referentes a ntimeros naturais. Ele também pode ser anunciado assim:

Teorema 1.3.3 Seja P uma propriedade relativa a nimeros naturais. Se, dado
n € N, do fato de todo nimero natural m < n gozar da propriedade P puder ser
inferido que n goza da propriedade P, entdo todo numero natural goza de P.

Um nimero natural chama-se primo quando p # 1 e ndo se pode escrever p = m-n
comm < pen <p. Ochamado Teorema Fundamental da Aritmética diz que todo

14
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ntimero natural se decompode, de modo tnico, como produto de fatores primos. A
prova utiliza o Segundo Principio da Inducao. Com efeito, dado n € N, suponhamos
que todo nimero natural menor do que n possa ser decomposto como produto de
fatores primos. Entao, ou n é primo (e neste caso n é, de modo trivial, um produto
de fatores primos) ou entdao n = m-k, com m < n e k < n. Pela hipotese de indugao,
m e k sao produtos de fatores primos. Segue-se que n também o é. Pelo Segundo
Principio da Indugao, concluimos que todo niimero natural é produto de ntimeros
primos.
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Capitulo 2

Definicoes e Propriedades Basicas
dos Numeros Cardinais

Quando comparamos dois conjuntos finitos, dizemos que sua equipoténcia se da
quando ambos tém o mesmo nimero de elementos. Nao se pode dizer o mesmo de
conjuntos infinitos, e quando falamos de conjunto de niimeros infinitos nos referimos
a sua correspondéncia biunivoca, ou que pode nos transmitir uma ideia de justa
propor¢ao entre estes conjuntos.

Mas com a descoberta de Cantor de que os niimeros reais sao mais infinitos que
0s nimeros naturais, percebemo-nos em trés niveis de enumerabilidade, ou seja: os
conjuntos finitos propriamente, enumeréveis pelos seus proprios termos, os nimeros
infinitos enumeraveis, que podem ser justapostos como os nimeros naturais, e fi-
nalmente o conjunto dos niimeros que extrapolam esta correspondéncia, que seriam
os enfim os conjuntos nao-enumerdveis. E interessante esta maneira cantoriana de
desvendar o infinito, e ¢ talvez nesta perspectiva que se esconde grande parte do
valor da teoria de Cantor dos ntimeros transfinitos. Ele nos mostra que o conjunto
infinito, tal como o conjunto finito segue uma mesma regra, e que, ao contrario do
que pensam alguns restricionistas, nos é passivel de compreensao.

A intuicdo que se esconde por tras disso é o que o infinito enumeréavel é um
infinito que se atualiza aos nossos olhos, isto é, nao importa em que ponto de seu
desenrolar estejamos, ele sempre seguird as mesmas regras. Nao se intimidando com
o tamanho do infinito, Cantor postula uma tese de geracao do infinito, tomando cada
infinito como uma unidade e somando a este mais para obter um segundo infinito. A
mesma maneira com que somamos um nimero ao outro, Cantor nos demonstra que é
possivel se fazer com o infinito enumeravel em uma sucessao algoritmica inesgotavel.

Por isso e apesar disso, Cantor postula uma terceira lei de geracdao em comple-
mento as duas anteriores que ficam subentendidas na geracao do infinito enumerével
e na sucessao enumeravel do mesmo.

Um infinito absoluto nao pode ser provado matematicamente, porém os demais,
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e quaisquer infinitos de diferente poténcia podem, sem restricao alguma, ser bem
ordenados, no sentido de que seus elementos estejam relacionados entre si por uma
sucessao; ha um primeiro elemento no conjunto, todo elemento, exceto o iltimo, tem
um antecessor, e finalmente, para cada elemento do dado conjunto bem ordenado,
infinito ou nao, ha um determinado elemento que é o sucessor imediato de todos os
elementos que compoem o conjunto.

Neste capitulo, apresento resultados importantes envolvendo equipoténcia, con-
juntos finitos e infinitos, bem como conjuntos enumeraveis e nao-enumeraveis. Os
resultados precedentes sobre ntimeros cardinais nos fornecem uma visao inicial, intui-
tiva, porém incompleta do conceito de cardinais. Agora, formalizaremos o conceito
de maneira a preservar o que foi visto, ampliando as possibilidades de entendimento
para contextos mais ricos, ou mais especificamente, para um conjunto com muito
mais elementos.

2.1 Conjuntos Equipotentes

Esta secao foi elaborada a partir das seguintes referéncias bibliogréaficas:
[1], [4], [5], [6], [8], [11].

Definicao 2.1.1 Dizemos que um conjunto A € equipotente a um conjunto B se

existir uma bijecao de A em B. Denotaremos por A ~ B (lemos: A é equipotente a
B).

Teorema 2.1.1 ~ ¢ uma relacao de equivaléncia.

Prova. Com efeito, a funcao identidade Id : A — A, definida por Id(a) = a, para
todo a € A é uma funcao bijetiva e, assim, A ~ A. Se A ~ B, existe uma fungdo
bijetiva f : A — B que admite uma inversa f~!: B — A, também bijetiva. Logo,
B~ A. Se A~ Be B ~ (C, entao existem funcoes f : A — Beg: B — C bijetivas.
A composta de (go f) : A — C é também bijetiva e assim A ~ C. [ ]

O conceito de cardinalidade de conjuntos advém naturalmente do conceito de
equipoténcia e tem a incumbéncia, na teoria dos conjuntos, de indicar a quantidade
de elementos desse conjunto. Para conjuntos finitos essas concepcoes sao bastante
intuitivas, mas para o mesmo nao se da para os chamados conjuntos transfinitos,
que vao além do infinito.

Definicao 2.1.2 Para cada conjunto A wvamos associar um elemento x que cha-

maremos de nimero cardinal do conjunto A, o qual denotaremos por |A|. Dois
conjuntos A e B sao equipotentes se |A| = |B|.
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Defini¢ao 2.1.3 z € um nimero cardinal se existir um conjunto A tal que x = |A|.

Os ntimeros cardinais associados a conjuntos sao denotados como se segue: 0 =
0],1 = |{0}],2 = [{0,{0}}],... e, dando continuidade, podemos associar de uma
maneira recursiva aos algarismos que definem os ntimeros naturais de conjuntos de
tal forma que, um conjunto tem n elementos se e somente se seu nimero cardinal
for exatamente n.

Definicao 2.1.4 Sejam x e y dois numeros cardinais. x < y se houver conjuntos
A e B tais que x = |A| e y = |B| tal que A € equipotente a um subconjunto de B ,
para uma escolha particular de A e B.

Definicao 2.1.5 Para qualquer conjunto A, indicamos por
24 ={f;f: A= {0,1}}.

Proposigdo 2.1.1 Se A ¢ um conjunto, tal que A # 0, entio p(A) ~ 24, em que
©(A) € o conjunto das partes de A.

Prova. Para B C A, seja fg: A — {0, 1} a fungdo caracteristica de B, isto €,

] 0, se a¢B
fB(a)_{l, se a€B
A funcao g : p(A) — 24 definida por g(B) = fp ¢ bijetiva. |

Teorema 2.1.2 Sejam A e B conjuntos quaisquer. Se |A| = |B|, entao |p(A)| =

9(B)].

Prova. Se |A| = |B|, entao existe uma bijecao f: A — B. Seja g : p(A) — o(B),
dada por ¢(X) = f(X)(a imagem do conjunto X pela funcao f). Vamos, agora,
mostrar que g é bijetiva.
(i) Injetividade: Se g(X) = g(Y), entdo f(X) = f(Y). Dai como f é bijetiva,
temos que X = f(f(X)) = [ (f(V)) = V.

(ii) Sobrejetividade: Seja Y € p(B) e consideremos a imagem inversa de Y
como f7H(Y) € p(A).

Entao, g(f~Y(Y)) = f(f)(Y) =Y pois f é bijetiva. Isto posto, p(A) — p(B) é
bijetiva.

Teorema 2.1.3 (Cantor) Seja A um conjunto ndo vazio qualquer e denotemos
©(A) o conjunto das partes de A. Temos que |A| < |p(A)].
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Prova. Sabemos que a aplicacdo f : A — p(A), tal que f(a) = {a} é injetiva,
entdo, de maneira imediata, |A| < |p(A)|. Para mostrar que, adicionalmente, se
tem |A| # |p(A)| é necesséario provar agora que nao existe nenhuma bije¢ao entre A
e p(A). Logo, basta mostrar que nao ha nenhuma funcdo de A em p(A) que seja
sobrejetiva ou, dito de outro modo, que para toda a fungao f : A — p(A) existe um
subconjunto X de p(A) que ndo é imagem de f de nenhum elemento de A. Tal prova
devemos a Cantor, que introduziu o conjunto X = {x € A;x ¢ f(z)} provando em
seguida que nao existe qualquer b € A para o qual se tenha f(b) = X. De fato, seja
x € A qualquer. Entao ou z ¢ X oux € X. Se x ¢ X, da definicao de X resulta
que x € f(z) e, portanto, f(z) # X. Consequentemente, f(z) ndo é uma funcdo
sobrejetiva, como foi afirmado. [ ]

Vimos que p(A) é o conjunto das partes de um conjunto A. Considerando o
conjunto de dois elementos {0, 1}, veremos agora que existe uma bijecao h : p(A) —
F(A;{0,1}). A cada X € p(A), associamos a fun¢ao hy : A — {0,1} chamada
funcao caracteristica do conjunto X. Temos que:

1, se reX
hX(I)_{O, se & X

A correspondéncia X +— hy é uma bijecao de p(A) sobre F(A;{0,1}). Sua
inversa associa a cada fun¢ao f : A — {0,1} o conjunto X dos pontos = € A tais
que f(z) = 1. Como {0, 1} tem dois elementos, temos que nenhuma fun¢ao r : A —
F(A;{0,1}) é sobrejetiva. Consequentemente, nenhuma fun¢ao s : A — p(A) é
sobrejetiva. (Se fosse, r = hos: A — F(A;{0,1}) também seria sobrejetiva). Mas
existe uma fungao injetiva evidente f : A — p(A), definida por f(z) = {z}. De
fato, como provado no teorema anterior, temos que |A| < |p(A)| para todo conjunto

A.

Definicao 2.1.6 Quando hd uma funcao injetiva de A em B indicamos por A X B
e quando hd funcao injetiva e A nao € equipotente a B, indicamos por A < B. Isto
posto, para cada conjunto A vale A < p(A).

Lema 2.1.1 Se C C Ae A=<C, entio A~ C.

Prova. Seja f : A — C uma funcao injetiva e consideremos Ay = A — C, A; =
f(Ao), ..., Apy1 = f(A,). Definamos uma funcao g : A — C e provemos que g é
bijetiva:

B a, se a¢&J,enAn
CORS Ay s

Mostremos que g é bijetiva:
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(a) g é injetiva:

Sejam a,b € A com a # b.

Se a € UpenAn € 0 & U, ey An, entao g(a) = a e g(b) = b. Isto posto,
g(a) = g(b).

Se a & UpenAn € b € U ey An, entao g(a) = a e g(b) = f(b). Dali,
g(a) =a & U,eny An € g(b) = f(b) € U, en An- Isto posto, g(a) # g(b).

Se a € U,eny An € b € U, ey An, entdo g(a) = f(a) e g(b) = f(b). Uma vez que
f seja injetiva, entdo g(a) # g(b) e g também é injetiva.

(b) g é sobrejetiva:
Seja c € C. Se ¢ € |, e An, entao g(c) = c.

Se ¢ € U, ey Ans como ¢ € A—C = Ay, entao c € Aj, para algum j > 1. Logo,
existe b € A;_; tal que ¢ = f(b) = g(b).

Portanto, g é sobrejetiva e, como também ¢ injetiva, concluimos que g é bije-
tiva.

Segue uma proposicao que servira de apoio para a prova do teorema de Cantor-
Schroder-Bernstein:

Proposicao 2.1.2 Se B C A e |A| < |B|, entiao |A| = |B|, ou seja, se B C A,
existe uma funcgao injetiva f : A — B, entao |A| = |B|.

Teorema 2.1.4 (Cantor-Schroder-Bernstein) Dados dois conjuntos A e B, se
|A| < |B| e também |B| < |A|, entdo |A| = |B| = A~ B.

Prova. Com efeito, tomando as funcoes injetivas f : A — Be g: B — A, tem-se
que f*: A — f(A), onde f*(x) = f(z), € uma bijecao entre A e f(A) C B. Logo,
(ffog): B — f(A) éuma funcdo injetiva. Como f(A) C B, temos que |f(A)| = |B|
ou, em outras palavras, existe uma func¢do bijetiva h : f(A) — B. Notemos, entdo
que (ho f*): A — B é composicao de fungoes bijetivas e, portanto, é uma funcao
bijetiva. Portanto, A ~ B. ]
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-

Proposicao 2.1.3 (Principio da Casa dos Pombos) Se a cardinalidade de A é
estritamente maior do que a cardinalidade de B, entdo ndo existe injecao de A em
B.

Prova. Basta ver que se |A| < |B| e se houvesse uma inje¢do f: A — B, f: A —
f(A) seguiria que |A| < |B| e, pelo Teorema de Cantor-Schroder-Bernstein, isso
implicaria que |A| = |B], o que prova a nossa proposicao. [ |

2.2 Conjuntos Finitos e Infinitos

Esta secao foi elaborada a partir das seguintes referéncias bibliograficas:
[1], [4], [11].

Pelo que ja foi explicitado neste trabalho, é imediato constatar que a relacao
de equipoténcia entre conjuntos é uma relacao de equivaléncia. Como ja vimos na
secao anterior, escrevemos A ~ B para representar que A e B sdo equipotentes.

Podemos agora formalizar a definicao de conjunto finito do seguinte modo:

Definigao 2.2.1 Um conjunto A é chamado finito se for vazio ou existir um nimero
m € N tal que A ~ I, = {1,2,3,...,m}. Um conjunto que nao é finito é chamado
infinito.

A questao que se coloca naturalmente é saber se o niumero natural m ¢é univo-
camente determinado por A e pela existéncia de uma bijecao de I,, em A. Bem, a
resposta ¢ positiva e decorre do resultado a seguir:

Definicao 2.2.2 Se A for um conjunto finito, o nimero m € I, tal que A ~ I, €,
como se sabe, o cardinal do conjunto A que se denota por |A|.

O objetivo agora é darmos um significado a nogao de cardinalidade no caso de
conjuntos infinitos. Antes, porém, consideremos o seguinte resultado:

Teorema 2.2.1 Sejam m e n dois nimeros naturais. Se m > n > 0, entao nao
existe nenhuma funcao injetiva de I, em I,.

Prova. Afirmamos que basta provar o teorema quando m = n+1. De fato, suponha
que a assercao do teorema valida para m =n 4+ 1. Se m > n + 1 e se existisse uma
funcao injetiva de I, em I, a sua restricao a [,; também seria injetiva, o que
seria uma contradicdao. Para provar o teorema, usemos inducao em n. A afirmacao
é valida para n = 1 e suponha que é valida para n. Provemos, entao, que é valida
para n + 1. Suponha, por absurdo, que a afirmacao para n + 1 ¢ falsa. Logo, existe
f Lo — I, injetiva. Duas possibilidades podem ocorrer:
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(a) n+ 1 ¢ f(I,42). Nesse caso, a fungao g : I,,11 — I, definida por g(z) = f(z)
para todo x € [, é injetiva, o que ¢ uma contradicao.

(b) n+ 1 € f(I42). Seja 2’ o unico elemento de I,o tal que f(z') = n + 1.
Consideraremos, agora, dois subcasos:

(b") &' = n + 2. Neste caso, g : I,+1 — I, definida por g(z) = f(z), Vo € I,41 é
bem definida e injetiva, absurdo.

(b”) 2’ #n+ 2. Como f é injetiva, temos que f(n +2) # f(a') =n+ 1.

Isto posto, a funcao g : I,,11 — I,, definida por

g(x):{ “ f(z), se z&a

n+2), se xe€a

é bem definida e injetiva, o que também é uma contradicao. [

Suponha agora que dado um conjunto A, existam niimeros naturais m e n com
m > n > 0 e duas bijegoes f : I, - Ae g : I, — A. Segue-se entao que
g tof: I, — I, & uma bijecio, portanto, injetiva o que ndo é possivel pelo teorema.

Consequentemente, dado um conjunto finito A, o nimero natural m para o qual
existe uma bijecao de I, — A é univocamente determinado por A e é chamado de
cardinalidade de A. Diremos, neste caso, que A tem m elementos. A cardinalidade
do conjunto vazio () é zero, por defini¢ao.

Corolario 2.2.1 (Principto de Dirichlet) Dados dois conjuntos X e Y respec-
tivamente com m e n elementos, se m > n > 0, entdo nao exriste nenhuma funcao
mjetiva de X em Y.

Prova. Existem bijecoes f: [,, - X e g: [, = Y. Se existisse uma funcao injetora
h:X — Y, terfamos que f~oho f: I, — I, é injetiva, o que nao seria possivel
pelo teorema. [

Corolario 2.2.2 Seja X um conjunto com m elementos e Y um conjunto com n
elementos. Se m < n, entao nao existe nenhuma funcao sobrejetiva de X em Y.

Prova. Suponha m > 0 e que exista uma funcao sobrejetiva de f : X — Y.
Logo, sabemos do capitulo anterior que a funcao f admitiria uma inversa a direita
g : Y — X. Portanto, f o g = Idy. Segue-se entao que g admite uma inversa a
esquerda. Isto posto, temos que g ¢ injetiva, o que contradiz o Principio de Dirichlet.
Se m = 0, o resultado vale por vacuidade, pois nao existem sequer funcoes de () em
Y. [
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Corolario 2.2.3 Sejam X eY dois conjuntos finitos de mesma cardinalidade. Uma
funcao f: X — 'Y € injetiva se, e somente se, ela € sobrejetiva.

Prova. Suponha que f seja injetiva e suponha, por absurdo, que nao é sobrejetiva.
Seja ' € Y nao pertencente a f(X). Logo, a fungdo:

fliX—> Y
r — f(z)

é bem definida e injetiva, o que é uma contradi¢ao pelo Principio de Dirichlet.
Suponha agora que f seja sobrejetiva e mas nao injetiva. Logo, existem z’ e z” tais
que f(z') = f(z"). Isto posto a fungao:

fo: X—{2} > Y

¢ bem definida e sobrejetiva, o que também gera uma contradicao pelo corolario
anterior. ]

Teorema 2.2.2 Todo o conjunto infinito contém um subconjunto equipotente a N.

Prova. Seja A um conjunto infinito qualquer. A é nao vazio e, portanto, possui
um elemento a; € A. O conjunto A\ {a1} é nao vazio pois se nao fosse A seria
o conjunto finito {a;}. Consequentemente existird as € A\ {a1}. Analogamente,
o conjunto A\ {a1,as} ndo pode ser vazio e, portanto, existird ag € A\ {a,as}.
Procedendo assim sucessivamente obteremos um subconjunto {aq, as, ..., } de A que
é equipotente a N, [

Este teorema revela que o conjunto N é, de certo modo, o menor conjunto in-
finito, ja que cada conjunto infinito possui um subconjunto equipotente a N. Com
base no teorema anterior podemos agora definir conjunto finito a partir da nocao de

conjunto infinito sem exigir o conhecimento prévio do conjunto N. Tal definicao se
deve a Dedekind.

De acordo com este resultado todos os subconjuntos infinitos de N sao equipo-
tentes a N. Estao neste caso, por exemplo, os conjuntos dos ntimeros pares positivos,
dos nuimeros impares positivos, dos ntmeros primos, etc.

Proposicao 2.2.1 O conjunto dos nimeros inteiros Z € infinito.

Prova. Se existissem um nimero natural m e uma bijecao f : I,, — Z teriamos
uma funcao injetiva f~! : Z — I,,, e, portanto a funcao restricao g : I,,+1 — I,, seria
injetiva, o que é impossivel. Portanto, Z é infinito. [
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2.2.1 O Paradoxo do Hotel Infinito de Hilbert

David Hilbert foi um grande entusiasta das descobertas de Cantor, chegando a
afirmar que ninguém nos expulsard do paraiso que Cantor criou para nds. Para
ilustrar o conceito de infinitude e enumerabilidade, Hilbert imaginou um hotel de
infinitos quartos. Vamos explorar a ideia de Hilbert com uma dose extra de ficgao.

O Hotel de Hilbert fica ao bordo do Mar Mediterraneo, em Saint Tropez, na
badalada Cote d’Azur. Seu edificio, cinza e branco, construido em 1925 é um belo
exemplo de estilo art-decor dos anos 20 e 30 do século XX. Grande e confortavel, o
hotel tem uma infinidade enumeréavel de quartos suficientes para hospedar clientes
dos mais diversos gostos. Desde aqueles em busca de dias tranquilos e ensolarados
aos que preferem noites em boates agitadas. O gerente, o proprio David Hilbert, é
um homem muito gentil, de barba bem tratada que nunca é visto sem seus 6culos
e chapéu branco. O Grande Hotel de Hilbert tinha uma infinidade de quartos, nu-

Figura 2.1: O Hotel de Hilbert

merados consecutivamente, uma para cada nimero natural. Todos eram igualmente
confortaveis. Num fim de semana prolongado, o hotel estava com seus quartos todos
ocupados, quando chega um viajante. A recepcionista vai logo dizendo:

-Sinto muito, mas nao ha vagas.

Ouvindo isto, o gerente interveio:

-Podemos abrigar o cavalheiro, sim senhora.

E a ordena:

-Transfira o héspede do quarto 1 para o quarto 2, passe do quarto 2 para o
quarto 3 e assim por diante. Quem estiver no quarto n, mude para o quarto n + 1.
Isto mantera todos alojados e deixard disponivel o quarto 1 para o recém-chegado.
Logo depois chegou um onibus com 1000 passageiros, todos querendo hospedagem.
A recepcionista, tendo aprendido a licdo, removeu o hospede de cada quarto n para
o quarto n + 1000 e acolheu todos os passageiros do dénibus. Mas ficou sem saber o
que fazer quando, horas depois, chegou um trem com uma infinidade de passageiros
(estes passageiros devem ser indexados por N). Desesperada, apelou para o gerente
que prontamente respondeu o problema dizendo:

-Passe cada hospede do quarto n para o quarto 2n. Isto deixara vagos todos os
apartamentos de nimero impar, nos quais poremos os novos hospedes.
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-Pensando melhor: mude quem est4 no quarto n para o quarto 3n. Os novos
hospedes, ponha-os no quarto de niimero 3n + 2. Deixaremos vagos os quartos de
namero 3n + 1. Assim, sobrarao ainda infinitos quartos vazios e eu poderei ter
sossego por algum tempo.

2.3 Conjuntos Enumeraveis e Nao-Enumeraveis

Esta secao foi elaborada a partir das seguintes referéncias bibliogréaficas:
[1], [4], [9], [11].

Definicao 2.3.1 Um conjunto X € enumerdvel quando € finito ou quando existe
uma bijecio f : N — X. No sequndo caso, X € chamado de infinito enumerdvel

e, pondo v1 = f(1),20 = f(2),...,2, = f(n),... temos X = {x1,29, T3, ..., Tp, ...}
Cada bijegao f: N — X chamamos uma enumeragao (dos elementos) de X.

A bijecao f: N — P, f(n) = 2n, mostra que o conjunto P dos niimeros naturais
pares é infinito enumeravel. Analogamente, g : n — 2n — 1 define uma bijecao
de N sobre o conjunto dos ntimeros naturais impares, o qual é, portanto, infinito
enumeravel. Também o conjunto Z dos nimeros inteiros é enumeravel. Basta notar
que a funcao h : Z — N, definida por:

2n, se n >0
h(x)_{—2n+1, se n<0

¢ uma bijecao. Isto posto, h™! : N — Z é uma enumeracao de Z.

Valem as seguintes propriedades sobre conjuntos:

Proposicao 2.3.1 Sequem as sequintes afirmacoes:

(1) Se X € um conjunto infinito, entdo | X| > |N|;

(2) Um subconjunto de conjunto finito € necessariamente finito;

(3) Uma uniao finita de conjuntos é finita;

(4) Um subconjunto de um conjunto enumerdvel é necessariamente enumerdvel;

(5) Uma unido enumerdvel de conjuntos enumerdveis é necessariamente enumerduvel;

(6) Um produto finito de conjuntos enumerdveis € enumerdvel.

Teorema 2.3.1 Todo conjunto infinito X contém um subconjunto infinito enume-
ravel.
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Prova. Basta definirmos uma funcao injetiva f : N — X. Para isso, come¢aremos
escolhendo, em cada subconjunto nao vazio A C X, um elemento x4 € A. Em
seguida, definimos f por indugdo. Colocamos f(1) = zx e, supondo ja definidos
f(1), f(2),..., f(n), escrevemos A, = X—{f(1), f(2), ..., f(n)}. Como X nao é finito,
A,, é nao vazio. Colocaremos entao f(n + 1) = x € A,. Isto completa a defini¢ao
indutiva da funcao f : N — X. Afirmamos que f é injetiva. Com bastante efeito,
dados m # n em N com m < n. Entao, f(m) € {f(1), f(2),..., f(n — 1)} enquanto
que f(n) estd no complementar de {f(1), f(2),..., f(n —1)}. Logo, f(m) # f(n). A

imagem de N é, portanto, um subconjunto infinito enumeréavel de X. [
Teorema 2.3.2 Todo conjunto de X C N é enumerdvel.

Prova. Se X for finito, é enumeravel. Se for infinito, definiremos por inducao uma
bijecdo f : N — X. Coloquemos f(1), f(2), ..., f(n) definidos de modo a satisfazerem
as seguintes condigoes:

(a) f(1) < f(2) <. < f(n);
(b) Pondo B, = X — {f(1), f(2),..., f(n)} temos f(n) < x para todo x € B,,.

Em seguida, percebendo que B, # () (uma vez que X ¢é infinito), definimos
f(n+ 1) como o menor elemento de B,. Isto completa a definicdo de f: N — X
de modo a serem mantidas as condigbes (a) e (b) para todo N. Segue-se de (a) que
f é injetiva. Por outro lado, (b) implica que f é sobrejetiva pois se existisse algum
r € X — f(N), terfamos = € B,, para todo n e, portanto, x > f(n), qualquer que
fosse n € N. Entao o conjunto infinito f(N) C N seria limitado, uma contradi¢ao. m

Teorema 2.3.3 Seja X um conjunto enumerdvel. Se f : X — Y € sobrejetiva,
entao Y € enumerdvel.

Prova. Existe g : Y — X tal que fog = Idy. Logo, f admite uma inversa a
esquerda de g e, portanto, g ¢ injetiva. Segue-se, entao, que Y é enumeravel. [

Teorema 2.3.4 Sejam X e Y conjuntos enumerdveis. O produto cartesiano X XY
€ enumerdvel.

Prova. Existem funcoes injetivasr: X - Nes:Y — N. Logo, g: X XY — NxN;,
dada por g(x,y) = (r(x), s(y)) é injetiva. Isto posto, basta provarmos que N x N &
enumeravel. Para isso, tomemos a fungao f : Nx N — N, em que f(m,n) =2™-3".
Pela unicidade da decomposicao em fatores primos, f ¢ injetiva, o que fornece uma
bije¢do de N x N sobre o conjunto enumeravel f(N x N) C N. [ ]

Teorema 2.3.5 O conjunto Q dos nimeros racionais é enumerdvel.
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Prova. De fato, o conjunto Z — {0} é um conjunto enumeréavel. Dai, também é
um conjunto enumerdvel o produto cartesiano Z x Z — {0}. Ora, a funcao f :

m
Z x 7. — {0} — Q, definida por f(m,n) = — & sobrejetiva. Isto posto, concluimos
n

que Q é enumeravel. [

Corolario 2.3.1 Sejam Xy, Xo, ..., X,,, ... conjuntos enumerdveis. A unido X =

o0
U X, € enumerdvel.

n=1

Prova. Em palavras, uma uniao enumeravel de conjuntos enumeraveis € um conjunto
enumeravel. Para provarmos tomemos, para cada m € N, uma fungdo sobrejetiva
fm : N — X,,. Em seguida, definamos uma fun¢ao f : N x N — X colocando
f(m,n) = fn(n). Observemos que f ¢ sobrejetiva. Como N x N é enumerével,
concluimos que X é enumeravel. [

Em particular, uma uniao finita X = X; U ... U X,, de conjuntos enumera-
veis ¢ também um conjunto enumeravel. Basta aplicar o corolario acima, com
Xn—i—l - Xn+2 = ... = @

Vimos que dois conjuntos finitos tem o mesmo ntimero cardinal se, e somente
se, possuem o mesmo nimero de elementos. Se X for infinito enumerével temos
| X| = |Y] se, e somente se, Y for infinito enumeravel.

Lembramos que, como visto no capitulo 1, dados dois conjuntos X e Y, o simbolo
F(X;Y) representa o conjunto de todas as fungoes f: X — Y.

Teorema 2.3.6 Sejam X um conjunto arbitrdrio e Y um conjunto contendo pelo
menos dois elementos. Nenhuma funcao s: X — F(X;Y) € sobrejetiva.

Prova. Dada r : X — F(X;Y), indicaremos com r, o valor de r no ponto = € X.
Dessa forma, r, é uma funcao de X em Y. Construiremos, agora, uma funcao
f e F(X;Y) tal que r, # f para todo = € X. Isto é feito escolhendo, para cada
r € X, um elemento f(x) € Y, diferente de r,. Como Y contém pelo menos dois
elementos, isto é possivel. A funcdo f: X — Y assim obtida é tal que f(z) # r.(z)
e, portanto, f # r,, para todo x € X. Isto posto, f & r(X) e, portanto, r nao é
sobrejetiva. ]

Corolario 2.3.2 Sejam X, Xo, X3, ..., X, ... conjuntos infinitos enumerdveis. O
o0

produto cartesiano HX" nao € enumerdvel.

n=1
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Prova. Basta considerar o caso em que todos os X,, sao iguais a N. Nesse caso,
H X, = F(N;N), o que ndo é enumeravel. [ ]

Teorema 2.3.7 O conjunto dos nimeros reais R nao é enumerdvel.

Prova. Cada ntmero real z tal que 0 < 2 < 1 admite uma representacao decimal
da forma 0,ajaqas...a,..., sendo que cada a; um algarismo, isto é, tal que a; €
{0,1,2,--- ,9} e, ademais, tal representacao decimal é tinica se nao tivermos a; = 9
para todo indice maior que algum indice i fixado. Se o conjunto de todos os ntimeros
reais x tais que 0 < z < 1 fosse enumeravel, poderiamos rotular suas representacoes
decimais por niimeros naturais, como:

T = O, a11a12013...A1p.--
To = O, a21A22023...A9y, ...
T3 = 0, a31a32a33...A3p,---

Definamos agora, por sua representacao decimal, um ntmero real x tal que 0 <
x < 1ex # x, para todo indice n, o que estabelecerd uma contradi¢ao e, portanto,
mostrard que o conjunto em questao nao pode ser enumerdvel. Construimos x
como segue: para cada natural n, o n-ésimo algarismo da representacao decimal
de x é igual a qualquer inteiro b, tal que 0 < b, < 9 e b, # Ay, de forma que
x = 0,b1bobs...b,.... Isto posto, temos x # x, para cada indice n, uma vez que as
representacoes decimais de = e z,, diferem pelo menos em seus n-ésimos algarismos.
[ |

Observacao 2.3.1 O conjunto dos nimeros irracionais € nao-enumerdvel.

Prova. De fato, denotemos por I o conjunto dos nimeros irracionais. Por absurdo se
I fosse enumerével, entao como R = QUI concluiriamos que R deveria ser enumeravel
pois seria uma uniao de conjuntos enumeraveis, o que € um absurdo. [

Corolario 2.3.3 Se A é um conjunto infinito e B é finito, dada uma funcao f :
A — B, eziste pelo menos um x tal que f~'(x) é um conjunto de cardinalidade
nfinita.

Prova. Temos que, se B ¢ finito e existe uma fungao f : A — B tal que f~!(z) é

finito, para todo = € B, terfamos que U f~'(x) é uma unido finita de conjuntos

zeB
finitos e A, portanto, seria finito. ]
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Capitulo 3

Numeros Transfinitos e Aritmética
Cardinal

Existe, depois do finito, um transfinito, ou seja, uma escala ilimitada de modos
determinados, que por natureza sao infinitos, e que no entanto podem ser definidos
de maneira precisa, tal como o finito, por nimeros determinados, bem definidos e
distintos uns dos oulros.

Cantor chegou a nogao de infinito real sem considerar diretamente os nimeros,
mas sim os conjuntos. Para isso, procurou atribuir tamanhos, que ele chamou de car-
dinalidade, aos diversos tipos de conjuntos de infinitos elementos. A essas poténcias
deu o nome de nimeros transfinitos.

Cantor se fazia entao varias perguntas: Se haviam varios niimeros transfinitos,
serd que era possivel ordené-los? Haveria um infinito maior que todos os outros?

Para tentar responder essas perguntas, Cantor, que era um tebrico conciencioso,
desenvolve entao uma aritmética do infinito, isto é, uma extensao, para os nimeros
que lhe servem como medida do infinito, das regras de aritmética que se aplicam
aos nimeros naturais, usados para medir o que ¢ finito (adi¢do, multiplicagao, ex-
ponenciacdo, etc.).

Este capitulo tem como objetivo apresentar resultados importantes envolvendo
os chamados numeros transfinitos, bem como apresentar uma aritmética na qual
estes nimeros sao, de fato, contemplados, é a chamada aritmética cardinal.

3.1 Numeros Cardinais

Esta secao foi elaborada a partir das seguintes referéncias bibliograficas:
[1], [4], [7], [10].
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O primeiro cardinal infinito (transfinito) é o cardinal de N, usualmente deno-
tado por Ny. O simbolo X é a primeira letra do alfabeto hebraico e chama-se alef.
Em geral, denotamos os cardinais transfinitos por R com algum indice.

Os cardinais formam uma sequéncia transfinita iniciada pelos ntimeros naturais
(que sdo cardinais) e por Xy. A sequéncia constituida pelos primeiros cardinais tem
entao o seguinte aspecto:

0<1<2.. <N,

Mas a sequéncia de cardinais nunca termina, N; denota o menor cardinal que é
maior que Ny, depois, Ny denota o menor dos cardinais que é maior que Ny, e assim
sucessivamente, permitindo avancar na sequéncia acima para obter

0<1<2<. . <Ng< Ny <Ny <<V, <L

Definigao 3.1.1 O cardinal Yy é definido como o cardinal do conjunto p(A) onde
A € um conjunto cujo cardinal é Rg. Wy € definido como o cardinal do conjunto p(B)
onde B € um conjunto cujo numero cardinal é Ny, e assim sucessivamente.

Teorema 3.1.1 (Sanduiche de Cardinais) Sejam B,C e D conjuntos. Se D C
CCBeD~B,entioD~C~B.

Prova. Como D ~ B existe uma bijecao f : B — D. Como D C C, entao
f B — (' éinjetiva, ou seja, B < C. Como C C B, segue-se que C' < B. Logo,
pelo Teorema de Cantor-Schroder-Bernstein, temos que C' ~ Be D ~ C. ]

3.1.1 Relacao de Ordem entre Cardinais

Definindo uma ordem sobre os cardinais podemos indicar quando um conjunto tem
cardinalidade maior que o outro. Nesse caso, diremos que o primeiro conjunto tem
uma quantidade maior de elementos.

Definicao 3.1.2 Dados dois conjuntos A e B, a cardinalidade de A é menor ou
wqual que a cardinalidade de B quando existe um C C B tal que C' € equipotente a
A, ou seja:

|A| < |B| < eziste um C C B tal que A ~ C.

Nesse caso dizemos também que |B| > |A| e que a relagdo > (maior ou igual)
é a relagdo inversa de <. Naturalmente, se |B| < |A| e B nao é equipotente a A,
entao |B| é menor que |A| e escreve-se |B| < |A| ou ainda |A| > |B|. Isso significa
que A tem uma quantidade maior de elementos que B.
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3.2 Aritmética Cardinal

Esta secao foi elaborada a partir das seguintes referéncias bibliogréaficas:

[1], [4], [5], [6], [8]-

3.2.1 Adicao de Cardinais

Defini¢ao 3.2.1 Dados dois cardinais a e b tais que |A| = a e |B| = b, temos que
|JAUB|=a+b se AN B =1{. Esta soma de cardinais € unica.

Para observarmos que existe tal cardinal procederemos como se segue. Dados
dois cardinais quaisquer a e b existem conjuntos C' e D tais que |C| =a e |D| = b.
De fato, C' x {0} e D x {1} sdo equipotentes a C' e D, respectivamente. Denotemos
A=Cx{0},B=Dx{l}entao |A| =|C| =a,|B| =|D| =b,e ANB = (), portanto
existem conjuntos A e B como apresentamos na definicdo no tocante & adicao. Nos
referiremos a a + b como a soma de a e b.

Proposicao 3.2.1 Para todos os conjuntos A e B, nado necessariamente disjuntos,
temos que |AU B| < |A| + |B|.

Prova. Se AN B = (), temos que |AU B| = |A| + |B|. Se |AN B| # 0, temos que
|AU B| = |A| + |B| — |An BJ|. Logo, temos que |[AU B| < |A| + |B|. Portanto,
|AU B| < |A| + |B]. m

Proposicao 3.2.2 (Propriedades Bdsicas da Adi¢ao de Cardinais).
(1) (Associativa). (a+b)+c=a+ (b+c)
(i1) (Comutativa). a+b="b+ a.
(iii) A relagdo de ordem para adicdo. a > b < existe um ¢ tal que a = b+ c.
(iv) Monotonicidade da adicéo. a <bec<d0=a+c¢<b+0.

Prova. (i) Sejam A, B e C conjuntos tais que |A| = a, |B] = b e |C| = ¢. Sabemos
que AUBUC = (AUB)UC = AU (BUZC). Isto posto, pela defini¢do 3.2.1, temos

que (a+b)+c=a+ (b+c). u
Prova. (ii) Existem conjuntos A e B tais que |A] = a e |B| = b. Temos que
|JAUB| =a+b, e |BUA| =b+ a. Mas, sabemos que AU B = BU A. Portanto,
at+b=>b+a. u

Prova. (iii) Sejam A e B conjuntos tais que |A| = a e |B| = b. Como a > b, temos
que |B| < |A|. Consideremos um conjunto X, X C A tal que |B| = |X|. Dai, temos
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|X| = |B|] = b. Tomemos um conjunto C' tal que C' = A — X. Logo, A=XUC e
X NC =0,onde |A] = |X|+ |C|. Fazendo |C| = ¢, temos que a = b + c. u

Prova. (i) Sejam A, B, C' e D conjuntos tais que |A| = a,|B| = b, |[C| = ce
|D| = 0. Assumamos que os conjuntos B e D sdo disjuntos, isto ¢ BN D = (), e
alem disso, A C B e C C D. Temos que |A| < |B|, o que nos permite afirmar que
o conjunto A possui a mesma cardinalidade de algum subconjunto de B. Podemos
substituir A por este subconjunto, desde que ele possua cardinalidade a. O mesmo
se aplica para o conjunto C. Se ANC' =0 e BND =), temos que |[AUC| =a+¢
e|BUD|=b+0ese ACBeCCD,onde AUCCBUD, temosa+c¢<b+0. m

Observacao 3.2.1 A operacao de adicao de numeros naturais coincide com a ope-
racao de adi¢ao dos cardinais. FEm particular, a soma de dois quaisquer numeros
cardinais finitos € um nidmero cardinal.

Proposicao 3.2.3 Para todo cardinal finito n, temos que Ny +n = N.

Prova. Uma vez que n ¢é finito, temos que n < Ry. Portanto, existe um cardinal ¢
tal que Ny = n + ¢. Logo, ¢ = Ry ou ¢ é um cardinal finito. Se ¢ era um cardinal
finito, entao também n + ¢ era finito, o que contradiz n + ¢ = Ny. Portanto, ¢ = N,
e temos que n + Ny = N. [

Proposicao 3.2.4 Para todo cardinal a > Ny e para todo cardinal finito n, temos
que a+n = a. Em particular, R, +n = N,.

Prova. Se a > N, entao existe um cardinal ¢ tal que a = Ny + ¢ e portanto
a+n=No+c)+n=(c+Rp)+n=c+XRg+n)=c+ Ny =a. u

Proposicao 3.2.5 Para todo cardinal a,a + 1 = a se e somente se a > N.

Prova. Se a > Nj entdao a+ 1 = a. Por outro lado, se a+1 = a, seja A um conjunto
de cardinalidade a e b um elemento tal que b € A. Isto posto, |[AU{b}| = |A|+|{b}| =
a+1 = a = |A|. Consequentemente, AU{b} & equipotente ao proprio subconjunto A,
o que implica que A é um conjunto infinito e, portanto, a = a+1 = |[AU {b}| > N,.
[

Observacao 3.2.2 O teorema 3.2.1 ndo serd provado por conter, em sua demons-
tracao, conhecimentos relevantes a teoria dos numeros ordinais, conteido este que
nao faz parte do nosso trabalho.

Teorema 3.2.1 (Hessemberg) ([5], teorema 3.13, p.94) X, + N, = X,,.
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Observacao 3.2.3 O teorema 3.2.1 € mais geral do que o teorema 3.2.2. No
entanto, podemos provar o teorema 3.2.2 utilizando os conceitos adquiridos nesse
texto.

Teorema 3.2.2 Ny + Ry = N,.

Prova. Sejam N, e N;, respectivamente, os conjuntos dos nimeros naturais pares e
nimeros naturais impares. Entao, N, e N; sao subconjuntos enumeraveis, disjuntos
e a unido deles ¢ N. Consequentemente, pela definigdo 3.1.1, Rg+ Ny = [N, | +|N;| =
|NPUN1‘ = ’N’:NO |

Proposigao 3.2.6 N, + Rz = N,,,,(0.8)-

Prova. Assumamos, sem perda de generalidade, que o > (. Entao, temos que
Ny <R, + Nﬁ <N+ R, =R, = Nma:p(a,ﬁ)- u

Lema 3.2.1 Se A, B,C' e D sao conjuntos tais que A~ C,B ~ D entdo A X B ~
C xD.

Prova. Como A ~ C, seja f uma funcao bijetiva tal que f : A — C e também
sabendo que B ~ D, seja g uma funcao bijetiva tal que g : B — D. Dai, definindo
uma funcdo h : Ax B — C x D por h(a,b) = (f(a), g(b)), verifica-se que h & bijetiva.
|

3.2.2 Multiplicacao de Cardinais

Definicao 3.2.2 Dados dois cardinais a e b tais que |A| = a e |B| = b, temos que
|Ax B =a-b (ouab). Esta multiplicacao de cardinais é unica.

Suponhamos agora, que existam conjuntos C' e D tais que |C| = a,|D| = b
e |C x D| = ¢. Temos que A ~ C e B ~ D. Logo, por causa do lema 3.1.1,
CxD~AxBe|CxD|~|Ax B|. Portanto, concluimos que ¢ = ¢'.

Para ver que a definicao acima é independente da escolha dos representantes
A e B, sejam C e D conjuntos tais que A ~ C'e B ~ D. Entao, temos que
A x B~ C x D e, portanto, |[A x B| = |C x D|. Esta defini¢do da a resposta que
esperamos quando a e b sdo ntimeros cardinais finitos. Como a multiplicacao dos
nimeros naturais é bastante familiar, nosso interesse principal aqui é o produto de
nimeros cardinais transfinitos, e o produto de um ntumero cardinal finito por um
numero cardinal transfinito.

Proposicao 3.2.7 (Propriedades Bdsicas da Multiplicagcao de Cardinais).
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Associativa. a-(b-¢) = (a-b)-c.
Comutativa. a-b=">0"-a.
Distributividade da multiplica¢io em relagao a soma. a-(b+c¢)=a-b+a-c.

Monotonicidade da multiplicacao. a <bec<0=a-c¢<b-0.

Prova. (i) Sejam A, B e C conjuntos tais que |A| = a,|B| = b e |C]| = ¢. Como
(Ax B)x C=Ax (BxC), temos que (a-b)-c=a-(b-c). u

Prova. (ii) Sejam A e B conjuntos tais que |A| = a,|B| =b. Como Ax B ~ Bx A,
temos que a-b="0-a. [

Prova. (ii7) Sejam A, B e C conjuntos tais que |A| = a,|B| = b e |C| = ¢. Como
Ax (BUC)=(AxB)U(AxC(C), temosquea-(b+c¢)=a-b+a-c. u

Prova. (i) Sejam A, B, C' e D conjuntos tais que |A| = a,|B| = b, |[C| =ce
|D| = 0. Utilizaremos a mesma ideia da prova da proposi¢ao 3.1.2 (iv). Podemos
assumir que A C B e C' C D. Consequentemente, teremos A x C' C B x D, onde
|A x C| < |B x D|. Isto posto, temos |[A x C| =a-ce |B x D| =b-2. Portanto,
obtemos a-¢ < b-0. ]

Observacao 3.2.4 Se m e n sao dois niumeros cardinais finitos entao mn € tam-
bém um cardinal finito. Sobre os cardinais finitos a operac¢ao da multiplicacao de
cardinais € a multiplicacao usual dos numeros naturais, uma vez que satisfaca a
definicdo recursiva, isto é, m-0=0, e m(n+ 1) = mn + m.

Observacao 3.2.5 O coroldrio 3.2.1 nao serd provado por conter, em sua demons-
tracao, conhecimentos relevantes a teoria dos numeros ordinais, conteudo este que
nao faz parte do nosso trabalho.

Corolario 3.2.1 (Hessemberg) ([5], coroldrio 3.23, p.97) X, - X, = X,.

Observacao 3.2.6 Temos que o corolario 3.2.1 € mais geral do que o coroldrio
3.2.2 porém, utilizando os resultados desse texto, este coroldrio pode ser perfeita-
mente provado.

Corolario 3.2.2 Ny - Ny = Ng.
Prova. Como N x N ~ N, pelo teorema 2.3.4, temos que Ny - Ny = No. [
Corolario 3.2.3 N, - Vg = N, 20,8

Prova. Assumamos, sem perda de generalidade, que a < 3. Temos que ag =
1-ag <N, Ng < Ng-Ng = Rg, portanto, N, - g = N,50(0,8)- ]

Proposicao 3.2.8 Se n é um cardinal finito e n > 0, entao n - N, = N,

Prova. 8, =1-8N, <n-N, <N, -V, =N,, portanto, n - N, = N,. [
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3.2.3 Exponenciagao de Niumeros Cardinais

Definigao 3.2.3 Dados dois conjuntos A e B, definamos AP = {f;f: B — A}.

Definicao 3.2.4 Dados dois cardinais a e b tais que |A| = a e |B| = b, temos que
|AB| = a®. Esta ezponenciacio de cardinais é tinica.

Proposicao 3.2.9 (Propriedades Bdsicas da Exponenciac¢do de Cardinais)
(i) a®*¢ =a®.a".
(i) (a*)" = a'.
(75i) (a-b)" =a‘- b
(iv) a<bec<d=a" <b°

Prova. (i) Sejam A, B e C' conjuntos tais que |A| = a,|B| =be |C] =ce BNC = 0.
Sabemos que |B U C| = b+ ¢. E suficiente mostrar que os conjuntos AZ x A¢ e
ABYC 30 equipotentes. Com este proposito, associamos a cada par (f, g) de funcoes
feABege AY a fungiao fUg € APYC (ver [5], p-28, proposicdo 6.17 e p.31,
proposicao 6.30). Esta associacio estabelece uma equipoténcia entre os conjuntos
AP x A% e ABYC Isto posto, a®** = a® - a*. n

Prova. (ii) Sejam A, B e C conjuntos com cardinais a,b e ¢, respectivamente. A
proposi¢ao estara provada se estabelecermos que AB*¢ ~ (AB)Y. Antes de mostrar-
mos a equipoténcia, necessitamos, primeiramente, de uma notacao convencional:
Para uma funcao dada f : B x C' — A e um elemento dado a € C, existe uma
fungao f* : B — A definida por f%(b) = f(b,a) para todo b € B. A fungao
g ABXC — (AP)C| que associa a cada f € AB*C a funcio h € (AP)Y, dada por
h(a) = f* para todo a € C' é uma bijecao. [ ]

Prova. (iii) Sejam A, B e C conjuntos com nitmeros cardinais a,b e ¢, respec-
tivamente. A funcio F : (A x B)® — A% x BY que emparelha cada funcao
f:C — Ax B com afuncao (fao f, fg o f) em A® x B® é bijetiva. Isto posto,
(a-b)=a-b" |

Prova. (iv) Sejam A, B, C' e D conjuntos com cardinalidade a,b, ¢ e 0, respecti-
vamente, cujas poténcias sao iguais as poténcias dos seus cardinais. Como a < b
e ¢ < 0, podemos assumir que A C B e C' C D. Pela definicao 3.1.3, temos que
|A€] = a‘ e |BP| = b°. Como A C B, podemos afirmar que A° C B, o que nos
da que a® < b°. Se ¢ = 0, é imediato que a® < b®. Se ¢ # 0, comoa < bec <0,
temos 0 > ¢ e, pela proposi¢do 3.1.2 (i), existe um namero cardinal p tal que
0 = ¢+ p, onde podemos escrever que b° = b®- b, em que b° > b°. Portanto, a® < b°
e bt <b® = a° < b m
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Observacao 3.2.7 Sem en sao nimeros cardinais finitos entao m"™ é um cardinal
finito. Nos cardinais finitos a operacao de exponenciacdao cardinal € a exponenciacao
usual dos mimeros naturais, desde que satisfaca a definicdo recursiva, isto é, m° =
1,m"t =m" - m.

Proposig¢ao 3.2.10 Para todo cardinal finito n > 0, temos que N, - N = N,,.
Prova. Por inducao em n. Fazendo n = 1, pelo corolario 3.2.1 temos que
Np - Ny =Ny,
Suponhamos agora que a igualdade seja verdadeira para n = k. Temos que
R, - R =N,

Para n =k + 1, obtemos
R, - REFL =R RE LR,

Como supomos que para n = k a igualdade é verdadeira e, mais uma vez, pelo
corolério 3.2.1, podemos escrever

R, - REFL =R R, =Ry,

o que conclui a nossa prova. [
Corolario 3.2.4 Para todo cardinal a, temos que a < 2°.

Prova. Selecionamos A tal que |A| = a. Entdo, [{0, {0}}*] = 2°. Além disso,
o(A) ~ {0,{0}}* e, A < p(A), de onde A < {0, {0}}*. Portanto, a < 2°. ]

Proposi¢io 3.2.11 Sen > 2 = nie = 2% tal que f < a = V" = 2Re,

Prova. Se n > 2 e 3 < a entdo 2% < ple < Nga, pela monotonicidade da expo-
nenciagdo, temos que 2% < (2%)Xa " desde que Ng < N, < 2%, Tsto posto, temos
que 2%« < 2RaRa — 9Ra  Portanto, todas estas desigualdades sio igualdades, e nossa
proposicao se verifica. [

3.3 Outros Resultados Envolvendo Aritmética Car-
dinal

Teorema 3.3.1 2% = N;.
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Prova. Usando o Teorema de Cantor-Schroder-Bernstein, visto no capitulo 2 deste
trabalho, ¢ suficiente mostrarmos que 2% < N; e 2% > R;. Note que ¥y = |Q),
o que implica dizer que 2% = |p(Q)|. Considere f : R — p(Q), definida por
fla) ={z € Q;x < a} C Q, para cada a € R. Se a e b sdo nimeros reais distintos,
podemos supor que a < b. Logo, existe r € Q, tal que a < r < b, 0o que implica
que r € f(b) er € f(a), o que mostra que f(a) # f(b), Consequentemente, f é
uma fungao injetiva. Isto posto, X; = |R| < |p(Q)| = 2%°. Por outro lado, a fungao
g :{0,1} = R, definida por g(h) = 0, h(0)R(1)h(2)... € R ¢é injetiva, o que mostra
que 2% < Ry, como queriamos. n

Corolario 3.3.1 Ny < N;.
Prova. Pelo Teorema de Cantor, temos que Ry < |p(N)| = 2N = 2R = §;. ]

Corolario 3.3.2 Considere os conjuntos R e X = {x1,x9,...,2,}. Se Y =R — X,
entao |Y] = |R|.

Prova. Seja [Y| =a. ComoR =Y UX e YNX = () segue que 8; = [R| = [YUX| =
a+n = a (ver proposi¢ao 3.2.4, p. 32). [ |

Proposicao 3.3.1 A cardinalidade do conjunto dos nimeros irracionais € maior
do que Xy, ou seja |I| > Ny.

Prova. Escrevemos I = R — Q. Por absurdo, suponhamos que |R — Q| = 8,;. Como
R = (R—Q)UQ ¢ uma unido disjunta, temos que |R| = [R—Q|+|Q| < Rg+Ry = Ny,
ou seja, terfamos que |R| < Vg, o que gera um absurdo. Portanto, concluimos que

|]I| > NQ. |
Proposicao 3.3.2 Se A € um subconjunto enumerdvel de B e |B| = Wy entao,
Prova. Podemos assumir, sem perda de generalidade, que B = R x R. Seja

P = {x € R;(z,y) € A} para algum y € R. Temos que |P| < |A]. Como A &
enumeravel, entdao |A| = Ny e temos que |P| < Wg. Assim, existe o € R tal que
xog & P. Logo X = {zp} x R ¢é disjunto de A, ou seja, esta contido em (R x R) — A.
Além disso temos que | X| = |R|, de onde concluimos que ¥; < [(R x R) — A|. Isto
posto, |B — A| = N;. u

Cantor provou que podem existir infinitos cardinais transfinitos, muito maiores
que a cardinalidade do conjunto dos niimeros reais. Para qualquer conjunto nao va-
zio A, |A| < |p(A)], o que nos permite afirmar que X; < |[p(R)| = Xy, onde Ny = 21,
Obtemos, assim um novo cardinal transfinito estritamente superior aos anteriores.
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N, é o cardinal de, por exemplo, o conjunto de todas as fun¢oes reais de variavel real.
Pelo que foi apresentado, podemos construir uma sucessao de cardinais transfinitos
Ny <Ny < Ng < ...

A partir do Teorema de Cantor, concluimos que ¥y < 2%. Assim, o conjunto

N j dinalidade & 2% ngo & avel. T ignifi to N é
o(N), cuja cardinalidade é nao é enumeravel. Isso significa que enquanto N é
infinito e enumeravel, o conjunto p(N) tem uma quantidade muito maior de elemen-
tos, ele é infinito e nao enumeravel.

, T I Ro . .
O teorema também indica que Ry < 280 < 220 < 927 < ou seja, existem

infinitos cardinais transfinitos. Mais formalmente, pode-se definir a sequéncia (c,)
tal que c; = Ny e para cada n natural, ¢, 1 = 2" > c,.
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Apéndice A

Um Breve Comentario Sobre a
Hipo6tese do Continuo

Este apéndice foi elaborado a partir das seguintes referéncias bibliografi-
cas: [2], [10].

A matematica é hoje um dominio do conhecimento altamente sofisticado onde
se descrevem estruturas extremamente complexas. O conjunto dos niimeros reais
nao ¢ um representante dessa extrema complexidade. Seria pois de esperar que uma
teoria como a teoria dos conjuntos, que ¢é suficientemente poderosa para formalizar
a matemaética, pudesse decidir a questao ¢ = N;.

Ja vimos que |R| > X, = |N|. Cantor acreditou que se poderia demonstrar
que nao existem cardinalidades intermediarias entre ¢ e Ny, o que corresponde a
afirmar que ¢ = ®;. E claro que 2% que ¢ o cardinal do conjunto das funcoes
f:N—=2=1{0,1} (que pode ser visto como o conjunto das representagoes biadicas
dos reais no intervalo (0, 1)) coincide com ¢. Mas isto ndo resolve a questao original,
apenas permite escrevé-la de outra forma, ou seja: 2% = ;.

A conviccao de Cantor alimenta a denominada hipdtese do continuo ou seja,
2% = N, ou seja, nao existe nenhum conjunto A com a propriedade Ry < |A| < N;.
Ele dedicou enormes esforcos tentando provar ou refutar esta conjectura. Por vérias
vezes chegou a anunciar té-la provado, mas, invariavelmente, descobria algum erro
nas suas dedugdes. Em 1884, numa carta enviada a Mittag Leffler (1846-1927),
ele refere ter encontrado uma demonstracao rigorosa de que o continuo nao tem a
cardinalidade ®; (ou seja a hipotese do continuo seria falsa). Contudo, passado um
dia depois desta declaracao, Cantor voltou a escrever a Mittag Leffler dando conta
da descoberta de um erro na sua prova e de sua intencao de voltar a estabelecer a
veracidade da hipo6tese do continuo.

A ideia de Cantor consistia em provar que, dado um subconjunto X C R, se tem
| X| < |N|ou | X| = |R|, ou seja, que ndo existem cardinalidades intermediérias entre
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Figura A.1: Mittag Leffler

IN| e |R|. Deste modo, |R| teria que ser o primeiro cardinal maior que Xy. Cantor
foi assim conduzido a uma tentativa de caracterizar a estrutura dos conjuntos dos
reais. A sua abordagem levou-o a considerar caracterizacoes topologicas.

Uma nocao basica, neste contexto é a de conjunto aberto. Um subconjunto
X C R é aberto se, dado um elemento a € X, podemos considerar um real ¢ > 0 tal
que (a —e,a+¢€) C X. O intervalo aberto (a — ¢,a + €) é chamado de vizinhanca
aberta de a com raio € e denota-se por V.(a). Um subconjunto X C R se diz fechado
se 0 seu complementar em R for aberto.

Por outro lado, um ponto de acumula¢ao de um conjunto X C R é um real a tal
que, para qualquer ¢ > 0, a vizinhanca V,(a) contém pontos de X diferentes de a.

Se a € X nao for um ponto de acumulacao de X, diz-se que é um ponto isolado de
X.

Definicao A.0.1 Um subconjunto P C R é chamado perfeito se é fechado e nao
tem pontos isolados.

Nem todo conjunto fechado é perfeito (por exemplo, {0} é fechado e nao é per-
feito, uma vez que 0 é um ponto isolado). Mas, todo o conjunto fechado de cardi-
nalidade superior a X, ¢ da forma P U S onde P ¢é perfeito e |S| < X, (Teorema de
Cantor-Bendixon).

Teorema A.0.2 Se P € um conjunto perfeito, entio |P| = |R|.

Estas consideracoes nos permitem explicar por que razao a hipotese do continuo
se impos tao fortemente a Cantor. Nao é dificil observar que a maior parte dos
conjuntos considerados na pratica da anélise matematica ou sao enumerdveis, isto
é, possuem cardinalidade nao superior & dos naturais ou sao intervalos, ou se obtém
de um destes dois tipos usando as operacoes comuns na teoria dos conjuntos, como
sao as unioes, as intersecoes ou o complementar.

Assim, se procurarmos conjuntos de algum modo relevantes na pratica dessa
andlise, temos que procurar conjuntos que fazem parte de um certo universo de
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subconjuntos de R que é fechado para a realizacao daquelas operagoes e contém os
objetos basicos mencionados. Em termos abstratos, esse universo possui a estrutura
daquilo que se designa por o-dlgebra de conjuntos.

Definicao A.0.2 Uma familia A de subconjuntos de R diz-se uma o-dlgebra, se

A0 e:

se A,B € A entao, ANB = A;
se A,B € A entao, AUB = A;
se Ae A entio, R— A e A;
se {A,;n € N} C A entao

ﬂAneAeUAneA

neN neN

Recorrendo a esta nocao podemos caracterizar mais precisamente o universo
a que anteriormente citamos: trata-se da menor o-algebra de subconjuntos de R
que contém os conjuntos abertos. Essa o-algebra é conhecida como dlgebra dos
conjuntos borelianos. Podemos também agora ter uma no¢ao mais exata da razao
que levou Cantor a considerar a hipotese do continuo como um teorema que poderia
ser demonstrado. A razao é que entre os borelianos nao se pode encontrar nenhum
contra-exemplo para a hipotese do continuo, por que qualquer destes conjuntos
¢ enumeravel ou contém um subconjunto perfeito. Isso mostra que um eventual
contra-exemplo escaparia a pratica matemaética corrente e seria, de certa forma,
pouco natural.

Os borelianos sao conjuntos simples, no sentido em que cada um possui uma
espécie de historia, que é neste caso uma sequéncia de operacoes que descreve como
cada boreliano se obtém a partir de conjuntos abertos.

Uma questao intimamente relacionada ao problema do continuo, citado habitual-
mente como problema do continuo generalizado, é o seguinte: Existe algum ntimero
cardinal que estd estritamente entre um nimero cardinal transfinito a e 2°7 Esta
questao também nao foi respondida. A conjetura de que nao existe um tal nimero
cardinal é chamada hipdtese do continuo generalizada.

Hipoétese do Continuo Generalizada. Para qualquer ntimero transfinito a,
nao ha nenhum cardinal  tal que a < < 2%

Logo em 1900, no Congresso Internacional de Matematicos, em Paris, o grande

matematico alemao David Hilbert (1862-1943) apresentou uma lista de 23 proble-
mas matematicos nao resolvidos, sendo o primeiro deles o problema do continuo.
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Figura A.2: David Hilbert

Nenhum progresso foi feito em solucionar este problema até o ano de 1938, pois
em 1939, Kurt Goédel (1906-1978) demonstrou que a hipotese do continuo é consis-
tente relativamente aos axiomas da teoria dos conjuntos. Este resultado ¢ do mesmo
tipo daqueles que estabelecem a consisténcia da negacao do axioma das paralelas
através da exibicao de geometrias nao euclidianas. Como é que sabemos que o axi-
oma das paralelas nao se pode provar a partir dos restantes axiomas da geometria
euclidiana?

Figura A.3: Kurt Godel

Paralelamente, podemos associar a conjuntos de axiomas estruturas que o in-
terpretam, ou seja, no qual os axiomas sao verdadeiros. Tais estruturas sao deno-
minadas modelos da axiomatica. (Os axiomas da geometria euclidiana plana sdo
verdadeiros se interpretarmos ponto como um par ordenado (x,y) de numeros re-
ais e a reta como um conjunto de tais pares que satisfazem equacoes da forma
ax + by +c=0 (onde a e b nao sao simultaneamente nulos). Por outro lado, os ni-
meros naturais, com a ordem usual e as operacoes de adicao e multiplicacao usuais,
constituem um modelo de axiomas (de Peano) para a aritmética.

A relagdo entre provas e modelos é a seguinte: se # se demonstra a partir de
um conjunto de axiomas oy, 03, ..., 0, entao 0 ¢ verdadeira em qualquer modelo de
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01,09, ...,0,. Reciprocamente, gracas ao Metateorema da Completude Seméntica,
demonstrado por Gdodel, sabemos também que se uma sentenca é verdadeira em
todos os modelos de uma dada axiomatica, entao é demonstrével nessa axiomaética.

Se T' é um conjunto de sentencgas (uma axiomatica) e se f é uma sentenca, es-
crevemos ' F @ para indicar que existe uma prova de 6 com hipoteses em T' (isto
é, usando os axiomas de I'). Se, por outro lado, M é uma estrutura onde, uma vez
interpretada, a sentenga 6 se mostra verdadeira, escrevemos M = 6 para indicar
este fato. (Se, para qualquer sentenca 6 em I' se tem M |= 0, escrevemos M = T).
Finalmente, se o ¢ uma sentenca e [' ¢ uma axiomatica e se para qualquer estrutura
M se tiver que M =T implica M |= o, entao escrevemos I' = o e dizemos que o é
consequéncia semantica de I.

Metateorema da Completude Seméantica (G6del). SeI' ¢ uma axiomaética
e o ¢ uma sentenca, tem-se I' - ¢ se, e somente se,

I'Eo.

Antes de Gddel, Cantor ja havia estabelecido que os cardinais constituiam uma
ordem linear e que a cardinalidade do continuo ¢, era estritamente superior a cardi-
nalidade dos ntimeros naturais, que era N.

Cantor conjecturou que ¢ = Ny, ou seja, que os reais tinham a cardinalidade do
segundo cardinal infinito. Por outro lado, devido ao trabalho de von Neumann
(1903-1957), ja se possuia uma boa imagem do universo de conjuntos.

Figura A.4: von Neumann

De fato, depois do trabalho de von Neumann ficou claro que os conjuntos se
dispéem numa hierarquia cumulativa, que pode ser descrita recursivamente (nos
ordinais), iterando a operagdo que a cada conjunto X faz corresponder o conjunto
de suas partes p(X) = {A; A C X}.

Os numeros ordinais sao uma extensao dos nimeros naturais diferentes dos in-
teiros e dos cardinais. Como outros tipos de numeros, ordinais podem ser soma-
dos, multiplicados e exponenciados. Os ntimeros ordinais podem ser de dois tipos:
aqueles que sucedem a outros ordinais e que, por isso, sao chamados de ordinais
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sucessores, € que os hao sucedendo a nenhum ordinal sao chamados de ordinais [i-
mite. (Por exemplo, 4 é um ordinal sucessor. O ordinal w é um ordinal limite).
O universo de conjuntos usualmente denotado por V encontra-se estratificado em
niveis V,, indexados nos ordinais «. Esses niveis se definem por recursao transfinita
nos ordinais de acordo com o seguinte:

Vo =0; Vs = p(Va); Vi = U Vo (se A & um ordinal limite).

a<

Pode-se provar que qualquer conjunto ocorre num destes niveis, pelo que o as-
pecto geral de um universo de conjuntos se traduz no acima citado.

Acontece que a operagdo g é demasiado geral e abstrata. ©(X) pode conter
subconjuntos de X de tal modo abstratos e gerais que nao podem ser caracterizados,
nem sequer isolar um principio formador. Esta situagao configura uma operagao o
que vai muito além daquilo que ¢ exigido pela pratica mateméatica, onde os conjuntos
que utilizamos sdo, em geral, descritos fazendo envolver algum tipo de principio
formador, ou alguma caracteristica de seus elementos.

Godel decidiu entao descrever uma espécie de sub-universo de conjuntos ao re-
produzir a hierarquia vista anteriormente, mas utilizando dessa vez uma operacao
mais fraca da operacdo g que iremos denotar por D. Vamos considerar, que D(X) é
formado pelos subconjuntos de X cujos elementos sao descritiveis usando a operacao
X. A definigdo do novo universo (que se denota por L) é entdo a seguinte:

Lo =0; L(a) = D(La); Ly = | J La (se A é um ordinal limite)

a<

Os conjuntos que surgem em algum L, sao chamados construtiveis e formam
L, que se designa universo construtivel de Godel. Usando o fato de existir um
controle muito maior sobre a estrutura de p(X), quando interpretamos p em L,
(Godel conseguiu provar que naquele universo existe uma bijecao entre o conjunto
dos reais construtiveis, ou seja, entre o conjunto que, do ponto de vista de L, é R,
e o ordinal que, do ponto de vista de L, é N;. Assim, em L, a hipétese do continuo
é verdadeira.

Apesar de notavel, o resultado de Godel apenas revela que os axiomas da teoria
dos conjuntos nao refutam a hipdtese do continuo. A questdo de saber se aquele
principio se pode provar a partir dos axiomas permaneceu intocada. Poder-se-ia
efetivamente demonstrar a hipotese do continuo na teoria dos conjuntos? Ou, como
na situacao do axioma das paralelas, seria a teoria dos conjuntos incapaz de decidir
aquela questao?

A resposta a estas questoes teria que esperar pela década de 60 do século XX,
altura em que Paul Cohen (1934-2007), da Stanford University, mostrou finalmente
que a teoria dos conjuntos nao pode provar a hipotese do continuo. Ele obteve esta
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conclusao, tendo sido bem sucedido na descricao de um universo de conjuntos onde
IR| > Wy. A técnica de Cohen, conhecida como Forcing, foi completamente inovadora
e surpreendeu toda a comunidade matematica. Ao contrario de Gédel que procedeu
a prova do seu resultado de consisténcia descrevendo aquilo que se designa modelo
interno, ou seja, um universo menor com os mesmos ordinais, a técnica de Cohen lhe
permitiu descrever super-universos, ou seja, expansoes do universo original, contendo
os mesmos ordinais.

Figura A.5: Paul Cohen

Basicamente, ele descreveu um processo que, dados um universo de conjuntos
V e um conjunto G (contendo informacao nao disponivel em V'), permite obter um
novo universo V' [G], verificando:

(1) Vc ViG]
(2) GeVIa];
(3) V[G] tem os mesmos ordinais que V.

verdadeira em V' [G]. Deste
consistente com a teoria dos

D

Cohen provou que a hipotese do continuo nao
modo, também a negagao da hipdtese do continuo
conjuntos.

D
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