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Resumo

Neste trabalho, mostramos um pouco a teoria sobre os chamados números trans�-
nitos e sua aritmética cardinal. Para tanto, trabalhamos também alguns resultados
envolvendo conjuntos, bem como equipotência, conjuntos �nitos, in�nitos, conjuntos
enumeráveis e não-enumeráveis.

Palavras-chave: Cantor, Teoria dos Conjuntos, Números Cardinais, Números
Trans�nitos, Aritmética Cardinal
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Abstract

In this work, we show basic results about the so-called trans�nite numbers and their
cardinal arithmetic. For these purpose, we also show some results involving the set
theory, as well as equinumerosity, �nite sets, in�nite sets, countable sets and un-
countable sets.

Keywords: Cantor, Set Theory, Cardinal Numbers, Trans�nite Numbers, Cardinal
Arithmetic.
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Introdução

Os gregos sempre evitaram lidar com o in�nito, pois esse conceito lhes trazia di�cul-
dades que eles nunca souberam resolver, e por isso eles nunca trataram os conjuntos
in�nitos. Nem eles nem seus sucessores das civilizações helenística, árabe e da Eu-
ropa medieval. Foi só no século XIX que os matemáticos começaram a estudar
conjuntos in�nitos de maneira sistemática. E o primeiro a fazer isso foi Bernhard
Bolzano(1781-1848 ), que nasceu, viveu e morreu em Praga. Era sacerdote cató-
lico que, além de se dedicar a estudos de Filoso�a, Teologia e Matemática, tinha
grandes preocupações com os problemas sociais de sua época. Seu ativismo em
favor de reformas educacionais, sua condenação do militarismo e da guerra, sua de-
fesa de liberdade de consciência e em favor da diminuição das desigualdades sociais
custaram-lhe sérios embaraços com o governo. As ideias de Bolzano em Matemática
não foram menos avançadas. É até admirável que, vivendo em relativo isolamento
em Praga, afastado do principal centro cientí�co da época, que era Paris, ele tenha
tido sensibilidade para problemas de vanguarda no desenvolvimento da Matemática.
Infelizmente, seus trabalhos permaneceram praticamente desconhecidos por várias
décadas após a sua morte. (ver [2])

Figura 1: Bernhard Bolzano

Bolzano produziu vários trabalhos matemáticos importantes, mas aqui vamos nos
limitar apenas a mencionar seu pioneirismo no tratamento de conjuntos in�nitos.
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Ele escreveu um livro sobre os paradoxos do in�nito, publicado postumamente em
1859, no qual aborda várias questões de natureza �losó�ca e matemática acerca
dos conjuntos in�nitos. Depois de Bolzano, devemos mencionar Richard Dedekind
(1831-1916 ), um grande nome da Matemática do século XIX. Ele foi mais longe que
Bolzano, utilizando a noção de conjunto na construção dos números reais.

Figura 2: Richard Dedekind

Mas foi Georg Cantor (1845-1918 ) quem mais avançou no estudo dos conjun-
tos. No capítulo 1 deste nosso trabalho, apresentamos resultados os quais julgamos
preliminares envolvendo a teoria dos conjuntos que serão muito úteis nos capítulos
subsequentes.

Figura 3: Georg Cantor

Em 1872 Cantor estava iniciando sua carreira pro�ssional e se ocupava do estudo
da representação das funções por meio de séries trigonométricas. Nessa ocupação
ele foi levado a investigar os conjuntos de pontos de descontinuidade de tais funções,
os mais simples dos quais são os conjuntos com apenas um número �nito de pontos.
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Mas o aparecimento de conjuntos cada vez mais complicados acabou levando Cantor
a investigar conjuntos in�nitos em sua generalidade. Nesse estudo ele introduziu um
conceito simples, que logo se revelaria da maior importância, qual seja, o conceito
de equipotência de conjuntos, que será abordado no capítulo 2 deste nosso trabalho.

No caso de conjuntos �nitos, serem equipotentes corresponde a terem o mesmo
número de elementos. E no caso dos conjuntos in�nitos? Bem, nesse caso não
faz sentido falar em número de elementos do conjunto, pois tais conjuntos sempre
tem in�nitos elementos. Mas como o conceito de cardinalidade é válido tanto para
conjuntos �nitos como para conjuntos in�nitos, e como tal conceito corresponde
exatamente ao conceito de número de elementos no caso de conjuntos �nitos, é esse
conceito que estende, para conjuntos in�nitos, a noção de número de elementos do
conjunto.

Assim, de um modo geral, diz-se que dois conjuntos quaisquer A e B são equi-
potentes se eles tiverem a mesma cardinalidade. A cardinalidade de um conjunto
corresponde ao número de elementos que este conjunto possui. Essa de�nição, no
caso dos conjuntos �nitos, não traz nada de novo. Mas, como veremos, estende,
para conjuntos in�nitos, a noção de número de elementos de um conjunto. Tais
números são os chamados números trans�nitos, o qual abordaremos no capítulo 3
deste trabalho.

Chama-se conjunto enumerável todo conjunto equipotente a N. Assim, o con-
junto dos números pares positivos é enumerável, pois, como mostraremos no capí-
tulo 2, ele é equipotente a N. Não deixa de ser supreendente, para quem adquire
esse conhecimento pela primeira vez, constatar que existem subconjuntos próprios
de N que são equipotentes a N. Não apenas o conjunto dos pares positivos, mas
também o conjunto dos números ímpares, o conjunto dos quadrados dos inteiros
{1, 4, 9, 16, 25, 36, ...} e muitos outros mais, todos equipotentes a N. Esse fenômeno
é uma peculiaridade dos conjuntos in�nitos e pode ser usado para caracterizar tais
conjuntos.

Será que todos os conjuntos in�nitos são enumeráveis? Ou seja, equipotentes a
N? Veremos que não é assim. Estabeleceremos, no capítulo 2, a enumerabilidade dos
números racionais, um resultado já em si surpreendente. Veri�caremos no capítulo
2 deste trabalho, que o conjunto dos números reais R é não enumerável. E, diante
deste resultado, Cantor mostrou que existem pelo menos dois tipos de in�nito: o
conjunto dos números naturais e o conjunto dos números reais.

No tocante aos números cardinais, que será abordado no capítulo 2, temos que a
utilização da noção de função bijetiva entre conjuntos é a abordagem adequada para
comparar o tamanho de dois conjuntos. Esta abordagem também foi introduzida
por Cantor e, surpreendentemente, conduz a existência de diferentes tamanhos de
in�nitos. Motivamos este trabalho levantando as seguintes questões: Que conjunto
seria maior, o conjunto N dos números naturais, ou o conjunto Q dos números
racionais? O que se pode dizer quanto ao conjunto dos números reais e o intervalo
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(0, 1)? Os reais seriam maiores do que o intervalo (0, 1)? O conjunto Z dos números
inteiros é in�nito e o conjunto dos números reais também, mas, há alguma relação
entre eles com respeito à quantidade de elementos?

Cantor provou outro fato não menos pertubador: Dado um conjunto qualquer,
é sempre possível construir outro conjunto maior ainda, maior no sentido de que
ele contém o primeiro conjunto como parte própria e não é equipotente a essa sua
parte própria. Sendo assim, esses dois conjuntos têm cardinalidades diferentes. Isso
permite ordenar as cardinalidades dos conjuntos criando o que chamamos de números
trans�nitos. Um tal número nada mais é que a cardinalidade de um conjunto.
Abordaremos esse assunto no capítulo 3 deste trabalho.

Ainda, no capítulo 3, destacamos a chamada Aritmética Cardinal. Já existe uma
aritmética cardinal para os números cardinais �nitos. Por exemplo, se x e y são dois
números cardinais �nitos, temos que a soma x+y e o produto xy tem seus signi�cados
tradicionais. Neste capítulo, além de abordar a aritmética dos cardinais �nitos,
generalizamos estes conceitos de modo a cobrir os números cardinais trans�nitos
também. Ou seja, uma aritmética que se aplica a todos os números cardinais, �nitos
e in�nitos, que preserve os signi�cados e propriedades tradicionais da aritmética dos
números cardinais �nitos.

No apêndice deste trabalho, apresentamos, de uma forma breve, a Hipótese do
Contínuo. A hipótese do contínuo é uma conjectura proposta por Georg Cantor.
Esta conjectura consiste no seguinte:

Não existe nenhum conjunto com mais elementos do que o conjunto dos números
inteiros e menos elementos do que o conjunto dos números reais.

Aqui mais elementos e menos elementos tem um sentido muito preciso. Esta
hipótese foi o número um dos 23 Problemas de Hilbert apresentados na conferência
do Congresso Internacional de Matemática de 1900, o que levou a que fosse estudada
profundamente durante o século XX.
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Capítulo 1

Resultados Preliminares de Teoria

dos Conjuntos

A Teoria dos Conjuntos foi desenvolvida de forma rigorosa e moderna no �nal o
século dezenove por Georg Cantor (1845-1918 ) para abordar certas questões sutis
da teoria das funções. As ideias revolucionárias de Cantor, de início incompreendidas
por serem demasiado abstratas para a época, foram rapidamente se impondo como
elemento uni�cador de vários ramos da matemática, a ponto de se tornarem o meio
pelo qual é formalizada toda a matemática contemporânea.

A teoria contribuiu decisivamente para que se passasse a encarar sob outra pers-
pectiva os problemas da matemática, desde os que surgem nos fundamentos da
disciplina até os que são típicos de ramos especializados da álgebra, da análise e da
geometria.

As aplicações da teoria dos conjuntos à solução de questões relativas à estrutura
algébrica de vários tipos de conjuntos e a questões relativas às suas propriedades
operatórias abriram novos rumos para os matemáticos, ressaltando, entre outras
aplicações, a extensão dos conceitos de medida e de integral, a introdução das noções
de espaço abstrato, de�nido como conjuntos de elementos com dadas propriedades,
e bem assim notáveis inovações no campo da integração e no do estudo das funções,
examinadas à luz da correspondência entre conjuntos.

Neste primeiro capítulo deste trabalho, procuramos apresentar, de uma maneira
clara e objetiva, alguns resultados que julgamos importantes da teoria dos conjuntos,
em alguns momentos sem o rigor matemático apropriado, com o objetivo de fazer
com que o leitor venha a compreender, além destes resultados preliminares, outros
importantes conceitos para que, �nalmente, venhamos a abordar as chamadas No-
ções Básicas de In�nito e Números Cardinais.
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Resultados Preliminares de Teoria dos Conjuntos Capítulo 1

1.1 A Linguagem dos Conjuntos

Esta seção foi elaborada a partir das seguintes referências bibliográ�cas:
[1], [3], [7], [11].

Os termos conjunto e elemento e a relação de um elemento pertencer a um
conjunto são conceitos primitivos; ou seja, não serão de�nidos. Usamos o termo
coleção como sinônimo de conjunto. A a�rmação que um elemento x pertence ao
conjunto A é simbolizada por x ∈ A e a sua negação é simbolizada por x 6∈ A.

De�nição 1.1.1 Dois conjuntos são considerados iguais, se eles têm os mesmos
elementos. Mais precisamente, temos que A = B se, e somente se, todo elemento
de A é elemento de B e todo elemento de B é elemento de A.

A condição de que todo elemento de um conjunto A pertence a um conjunto B,
estabelece uma relação entre A e B, chamada relação de inclusão. Quando existir
uma tal relação entre A e B escreveremos A ⊂ B ou B ⊃ A, que se lê A está contido
em B ou A é subconjunto de B, ou ainda, B contém A.

Proposição 1.1.1 A relação de inclusão possui as seguintes propriedades:

(1) A ⊂ A, para todo conjunto A;

(2) A = B se, e somente se, A ⊂ B e B ⊂ A;

(3) Se A ⊂ B e B ⊂ C, então A ⊂ C.

A negação de A ⊂ B, ou seja, o fato de A não ser subconjunto de B, é sim-
bolizada por A 6⊂ B e signi�ca que existe pelo menos um elemento de A que não
pertence a B. Se A ⊂ B e A 6= B, diremos que A é subconjunto próprio de B. Neste
caso, escrevemos A $ B. No que se segue, admitiremos o leitor familiarizado com o
conjunto dos números naturais N = {0, 1, 2, 3, 4 · · · } e com o conjunto dos números
inteiros: Z = {· · · − 3,−2,−1, 0, 1, 2, 3, · · · }.

O conjunto Q, dos números racionais, é formado pelas frações p
q
, onde p e q

pertencem a Z, sendo q 6= 0. Em símbolos, temos que

Q = {p/q; p ∈ Z, q ∈ Z, q 6= 0}.

Lê-se: "Q é o conjunto das frações p/q tais que p pertence a Z, q pertence a Z e
q é diferente de zero".
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Resultados Preliminares de Teoria dos Conjuntos Capítulo 1

Amaioria dos conjuntos encontrados em matemática não são de�nidos especi�cando-
se, um a um, os seus elementos. O método mais frequente de de�nir um conjunto
é por meio de uma propriedade comum e exclusiva dos seus elementos. Mais preci-
samente, parte-se de uma propriedade P . Ela de�ne um conjunto X, assim: se um
elemento x goza da propriedade P , então x ∈ X; se não goza de P , então x 6∈ X.
Escreve-se

X = {x; goza da propriedade P}.

Lê-se: "X é o conjunto dos elementos x tais que x goza da propriedade P".

Muitas vezes a propriedade P se refere a elementos de um conjunto fundamental
A. Neste caso, escreve-se

X = {x ∈ A;x goza da propriedade P}.

Por exemplo, seja N o conjunto dos números naturais e consideremos a seguinte
propriedade, que se refere a um elemento genérico x ∈ N:

"x é maior do que 5".

A propriedade P , de um número natural ser maior do que 5, de�ne o conjunto
X = {6, 7, 8, 9 · · · }, ou seja,

X = {x ∈ N;x > 5}.

Lê-se: "X é o conjunto dos x pertencentes a N tais que x é maior do que 5".

Às vezes, ocorre que nenhum elemento de A goza da propriedade P . Neste caso,
o conjunto {x ∈ A; x goza de P} não possui elemento algum. Isto é o que se chama
um conjunto vazio. Para representá-lo, usaremos o símbolo ∅.

Portanto, o conjunto vazio é de�nido assim: Qualquer que seja x, tem-se x 6∈ ∅.

Alguns exemplos:

• {x ∈ A;x 6= x} = ∅;

• {x ∈ N; 1 < x < 2} = ∅;

• {x;x 6= x} = ∅.

De�nição 1.1.2 A�rmamos que ∅ ⊂ A, para qualquer que seja o conjunto A.

Esta a�rmação parece estranha à primeira vista, mas vejamos como é natural
a falsidade de sua negação (isto é, sua veracidade). A a�rmação ∅ 6⊂ A, para
algum conjunto A, signi�ca que existe pelo menos um x ∈ ∅ tal que x 6∈ A e isto é
claramente falso, visto que o conjunto ∅ não possui qualquer elemento.

3



Resultados Preliminares de Teoria dos Conjuntos Capítulo 1

1.1.1 Operações com Conjuntos

Dada uma coleção qualquer de conjuntos, admitiremos a existência de um conjunto
tal que cada um de seus elementos pertence a pelo menos um dos conjuntos da
coleção. Tal conjunto será chamado de união dos conjuntos da coleção.

De�nição 1.1.3 Dados dois conjuntos A e B, a união de A e B é o conjunto
A ∪B = {x;x ∈ A ou x ∈ B}.

As propriedades a seguir decorrem imediatamente das de�nições.

Proposição 1.1.2 Para todos os conjuntos A, B e C, temos que:

(1) A ∪ ∅ = A e A ∪ A = A;

(2) A ⊂ A ∪B e B ⊂ A ∪B;

(3) A ∪B = B ∪ A;

(4) (A ∪B) ∪ C = A ∪ (B ∪ C).

Proposição 1.1.3 Dados conjuntos A,A′, B e B′, com A ⊂ B e A′ ⊂ B′, então
A ∪ A′ ⊂ B ∪B′.

Prova. Se A ∪ A′ = ∅, a asserção é verdadeira. Suponha que A ∪ A′ 6= ∅. Se
x ∈ A ∪ A′, temos que x ∈ A ou x ∈ A′, e como A ⊂ B e A′ ⊂ B′, segue-se que
x ∈ B ou x ∈ B′. Isto posto, x ∈ B ∪B′. Portanto, provamos que A∪A′ ⊂ B ∪B′.

Corolário 1.1.1 A ∪B = A se, e somente se, B ⊂ A.

Prova. Suponhamos que A ∪ B = A. Como B ⊂ A ∪ B, segue-se que B ⊂ A.
Reciprocamente, suponha que B ⊂ A. Como A ⊂ A, segue-se da proposição que
A∪B ⊂ A∪A = A. Logo, A∪B ⊂ A. Como A ⊂ A∪B, segue-se que A∪B = A.

De�nição 1.1.4 Dados dois conjuntos A e B, a interseção de A e B é o conjunto
A ∩ B = {x;x ∈ A e x ∈ B}. Quando A ∩ B = ∅, dizemos que os conjuntos A e B
são disjuntos.

As propriedades a seguir decorrem das de�nições:

Proposição 1.1.4 Para todos os conjuntos A,B e C, temos que:

(1) A ∩B = ∅ e A ∩ A = A;

4
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(2) A ∩B e A ∩B ⊂ B;

(3) A ∩B = B ∩ A;

(4) (A ∩B) ∩ C = A ∩ (B ∩ C).

Proposição 1.1.5 Dados conjuntos A,B e C quaisquer, temos que A∩ (B ∪C) =
(A ∩B) ∪ (A ∩ C).

Prova. Inicialmente, provemos a inclusão A ∩ (B ∪ C) ⊂ (A ∩ B) ∪ (A ∩ C). Se
A ∩ (B ∪ C) = ∅, nada temos a provar. Suponha que A ∩ (B ∪ C) 6= ∅. Seja x
um elemento qualquer de A ∩ (B ∪ C). Logo, temos que x ∈ A e x ∈ B ∪ C. Seja
x ∈ B, então x ∈ A ∩B. Se x ∈ C, então x ∈ A ∩C. Em qualquer caso, temos que
x ∈ (A∩B)∪(A∩C). Agora, provemos a inclusão (A∩B)∪(A∩C) ⊂ A∩(B∪C). Se
o conjunto da esquerda for vazio, a inclusão é veri�cada. Suponha que tal conjunto
é não vazio, e seja x um elemento qualquer dele. Logo, x ∈ A ∩ B ou x ∈ A ∩ C.
Em qualquer caso, x ∈ A e temos que x ∈ B ou x ∈ C. Isto posto, x ∈ A∩ (B ∪C).

Proposição 1.1.6 Dados conjuntos A, B e C, quaisquer, temos que A∪ (B∩C) =
(A ∪B) ∩ (A ∪ C).

De�nição 1.1.5 Dados dois conjuntos A e B, a diferença A menos B, é o conjunto
A − B = {x;x ∈ A e x 6∈ B}. Quando B ⊂ A, a diferença A − B é denotada por
{A(B) e é chamada de complementar de B em A.

Por exemplo, se A = {a, b, c} e B = {b, c, d}, então A−B = {a}.

Proposição 1.1.7 Para todos os conjuntos A e B, temos que:

(1) A− ∅ = A e A− A = ∅;

(2) Se A ∩B = ∅, então A−B = A e B − A = B;

(3) {A(∅) = A e {A(A) = ∅.

Proposição 1.1.8 Sejam B e B′ subconjuntos de A. Se B ⊂ B′, então {A(B′) ⊂
{A(B).

Prova. Suponha que B ⊂ B′. Se {A(B′) = ∅, nada temos a provar. Se {A(B′) 6= ∅
e seja x um elemento qualquer de {A(B′). Isto posto, x 6∈ B′. Segue-se que x 6∈ B
pois, caso contrário, como B ⊂ B′, teríamos x ∈ B′. Consequentemente, x ∈ {A(B).
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Proposição 1.1.9 Sejam B e B′ subconjuntos de A. Temos que {A(B ∪ B′) =
{A(B) ∩ {A(B′).

Prova. A proposição decorre da seguinte cadeia de equivalências:

x ∈ {A(B ∪B′)⇔ x 6∈ B ∪B′ ⇔ x 6∈ B e x 6∈ B′ ⇔ x ∈ {A(B) ∩ {A(B′),

para todo elemento x de A.

Proposição 1.1.10 Sejam B e B′ subconjuntos de A. Temos que {A(B ∩ B′) =
{A(B) ∪ {A(B′).

1.1.2 Conjunto de Partes e Produto Cartesiano

De�nição 1.1.6 Dado um conjunto A qualquer, admitiremos a existência de um
conjunto ℘(A), cujos elementos são todos subconjuntos de A, chamado conjunto das
partes ou conjunto potência de A.

De�nição 1.1.7 Um par ordenado (a, b) de elementos de A é o elemento de ℘(℘(A))
dado por {{a}, {a, b}}. Não é difícil convencer-se que (a, b) = (a′, b′) se, e somente
se, a = a′ e b = b′.

De�nição 1.1.8 Dados dois conjuntos A e B, o produto cartesiano de A e B é o
conjunto A × B de todos os pares ordenados (a, b) de elementos de A ∪ B tais que
a ∈ A e b ∈ B. Simbolicamente, escrevemos A×B = {(a, b); a ∈ A e b ∈ B}.

Por exemplo, seA = {a, b} eB = {c, d}, temos queA×B = {(a, c), (a, d), (b, c), (b, d)}
e B × A = {(c, a), (c, b), (d, a), (d, b)}.

Note que, em geral, A×B 6= B×A. Temos também que A×B = ∅ se, e somente
se, A = ∅ ou B = ∅.

1.1.3 Família de Conjuntos

De�nição 1.1.9 Seja I um conjunto não vazio qualquer. Uma família indexada
por I é uma coleção de conjuntos Ai com i ∈ I. Uma tal família será denotada por
(Ai)i∈I .

De�nição 1.1.10 A união dos elementos de uma família é
⋃
i∈I

Ai = {x;x ∈ Ai para

algum i ∈ I} e a sua interseção é
⋂
i∈I

Ai = {x;x ∈ Ai para todo i ∈ I}.

De fato, para todo j ∈ I, temos que Aj ⊂
⋃
i∈I

Ai e
⋂
i∈I

Ai ⊂ Aj.
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1.2 Funções

Esta seção foi elaborada a partir das seguintes referências bibliográ�cas:
[3], [11], [12].

De�nição 1.2.1 Dados dois conjuntos não vazios X e Y , uma relação de X em Y
(ou entre X e Y , nessa ordem), é um subconjunto R do produto cartesiano X × Y ,
isto é, R é um conjunto de pares ordenados do tipo (x, y), com x ∈ X e y ∈ Y . Se
R é uma relação de X em X, diremos simplesmente que R é uma relação em X.

No exemplo que se segue, dados X = {1, 2, 3} e Y = {2, 3, 4, 5}, o conjunto R =
{(x, y) ∈ X × Y ;x ≥ y} é a relação de X em Y dada por R = {(2, 2), (3, 2), (3, 3)};
de fato, esses são os únicos pares ordenados (x, y) com x ∈ {1, 2, 3}, y ∈ {2, 3, 4, 5}
e tais que x ≥ y. Se R é uma relação de X em Y , então R ⊂ X × Y por de�nição.

Reciprocamente, escolhido um par ordenado (x, y) ∈ X × Y , pode ocorrer que
(x, y) ∈ R ou (x, y) 6∈ R (isto é, que x e y sejam relacionados ou não por R). No
primeiro caso, vamos denotar por xRy. Temos que: xRy ⇔ (x, y) ∈ R.

De�nição 1.2.2 Uma relação binária em um conjunto X 6= ∅ é uma sentença
aberta xRy no conjunto X ×X.

São exemplos de relações binárias a igualdade x = y entre elementos de um
conjunto X e a relação de desigualdade x ≤ y em Z.

Proposição 1.2.1 Uma relação binária xRy em um conjunto X 6= ∅ será chamada
relação de equivalência, se possuir as seguintes propriedades:

(i) xRx é verdadeira para todo x ∈ X (Propriedade Re�exiva);

(ii) Se xRy é verdadeira, então yRx é verdadeira (Propriedade Simétrica);

(iii) Se xRy e yRz são verdadeiras, então xRz é verdadeira (Propriedade Tran-
sitiva).

De�nição 1.2.3 Dada uma relação de equivalência ≡ em um conjunto X, de�-
nimos a classe de equivalência de um elemento a ∈ X como sendo o conjunto
[a] = {x ∈ X;x ≡ a} e o elemento a será chamado de representante da classe
[a].

Por exemplo, se a relação de equivalência é a igualdade entre os elementos de
um conjunto X, temos que [a] = {a}, para todo a ∈ X.
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De�nição 1.2.4 Sejam dados dois conjuntos não vazios X e Y . Uma função f de
X em Y é uma regra que associa a cada x ∈ X um único y ∈ Y . Os conjuntos X e
Y são chamados respectivamente de domínio e contradomínio da função. Denomi-
naremos X = D(f), Y = CD(f) e f(X) como sendo a imagem da função f . Temos
que f(X) ⊂ Y .

As três de�nições a seguir explicitam alguns tipos extremamente úteis de funções.

De�nição 1.2.5 Dados conjuntos não vazios X e Y , e �xado um elemento c ∈ Y ,
a função constante c de X em Y é a função f : X → Y tal que f(x) = c para todo
x ∈ X.

No caso extremo da função constante e igual a c, de�nida acima, todo x ∈ X
está associado a um mesmo y ∈ Y , a saber, y = c. Contudo, as condições impostas
na de�nição são plenamente satisfeitas, isto é, todo x ∈ X está associado a um único
y ∈ Y .

De�nição 1.2.6 Dado um conjunto não vazio X, a função identidade de X,
denotada por IdX : X → X, é a função dada por Id(x) = x para todo x ∈ X.

De�nição 1.2.7 Duas funções f : X → Y e g : W → Z são iguais se X = W,Y =
Z e f(x) = g(x) para todo x ∈ X.

Se duas funções f : X → Y e g : W → Z forem iguais, escrevemos f = g. A
de�nição acima signi�ca a igualdade dos domínios, X = W , e dos contradomínios,
Y = Z, assim como a validade da função f(x) = g(x) para todo x ∈ X. Se funções
f e g não forem iguais, escrevemos f 6= g e diremos que f e g são funções diferentes
ou distintas.

1.2.1 Composição de Funções

Dadas duas funções f : X → Y e g : Y → Z, temos, em última análise, regras bem
de�nidas partindo de x ∈ X via f , obter y = f(x) ∈ Y e, via g, obter g(z) ∈ Z.
Parece muito razoável que possamos formar uma função que nos permita sair de X
diretamente para Z. Este é de fato o caso, e a função resultante é denominada a
função composta de f e g, de acordo com o seguinte:

De�nição 1.2.8 Dadas as funções f : X → Y e g : Y → Z, a função composta
de f e g, nessa ordem, é a função g ◦ f : X → Z de�nida, para cada x ∈ X, por
(g ◦ f)(x) = g(f(x)). De uma forma geral, basta que tenhamos f(X) ⊂ Y para que
a função g ◦ f faça sentido.
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Apesar de não ser comutativa, a operação de composição de funções é associativa,
conforme segue:

Proposição 1.2.2 Dadas funções f : X → Y , g : Y → Z e h : Z → W , temos que
h ◦ (g ◦ f) = (h ◦ g) ◦ f .

Prova. Veja primeiro que as ambas h ◦ (g ◦ f) e (h ◦ g) ◦ f são funções de X em W .
Portanto, para serem iguais, é su�ciente que associem cada x ∈ A em um mesmo
elemento de W . Para ver isto, basta notar que (h ◦ (g ◦ f))(x) = h((g ◦ f)(x)) =
h((g(f(x))) = (h ◦ g)(f(x)) = ((h ◦ g) ◦ f)(x).

A proposição acima é muito importante pois, se tivermos funções f , g e h e
pudermos compô-las (nessa ordem), podemos denotar a função composta por h◦g◦f
simplesmente, não nos preocupando com qual composição efetuar primeiro.

De�nição 1.2.9 Uma função f : X → Y é dita:

(a) Injetora, injetiva ou ainda uma injeção, se para quaisquer x1, x2 ∈ X tais
que x1 6= x2 ⇒ f(x1) 6= f(x2);

(b) Sobrejetora, sobrejetiva ou ainda uma sobrejeção, se sua imagem for todo
o conjunto Y , isto é, f(X) = Y ;

(c) Bijetora, bijetiva ou ainda uma bijeção se for ao mesmo tempo injetiva e
sobrejetiva.

Teorema 1.2.1 Se X ⊂ R é um conjunto não vazio e f : X → X é uma função
tal que f(f(x)) = x para todo x, então f é bijetiva.

Prova. Sejam x1 e x2 números reais tais que f(x1) = f(x2). Para mostrarmos
que f é injetiva é su�ciente provar que x1 = x2. Para tanto, observe que f(x1) =
f(x2) ⇒ f(f(x1)) = f(f(x2)). Logo, x1 = x2 por hipótese. A sobrejetividade de
f é imediata. Fixado y ∈ X e tomando f(y) ∈ X, temos f(f(y)) = y. Isto posto,
concluímos que y ∈ f(X).

A proposição a seguir ensina como se comportam funções injetivas, sobrejetivas
e bijetivas em relação à composição.

Proposição 1.2.3 Sejam f : X → Y e g : Y → Z duas funções dadas. Então:

(a) g ◦ f injetiva ⇒ f injetiva, mas a recíproca nem sempre é verdadeira.

(b) g ◦ f sobrejetiva ⇒ g sobrejetiva, mas a recíproca nem sempre é verdadeira.
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(c) g, f injetivas ⇒ g ◦ f injetiva.

(d) g, f sobrejetivas ⇒ g ◦ f sobrejetiva.

(e) g, f bijetivas ⇒ g ◦ f bijetiva.

Prova.
(a) Para x1 e x2 em X, temos que f(x1) = f(x2) ⇒ g(f(x1)) = g(f(x2)) ⇒
(g ◦ f)(x1) = (g ◦ f)(x2) ⇒ x1 = x2, onde na última passagem usamos o fato
de g ◦ f ser injetiva. Temos agora que dar um exemplo no qual f seja injetiva mas
g◦f não o seja. Para tanto, basta tomarmos X = Y = Z = R, f(x) = x e g(x) = x2.

(b) Dado arbitrariamente z ∈ Z, a sobrejetividade de g ◦ f garante a existência
de pelo menos um x ∈ X tal que z = (g ◦ f)(x). Mas aí, z = g(f(x)) e g tam-
bém é sobrejetiva. Para o exemplo necessário à segunda parte, tomemos novamente
X = Y = Z = R, g(x) = x e f(x) = x2.

(c) Usando sucessivamente as injetividades de g e de f , temos para x1 e x2 em
X que (g ◦ f)(x1) = (g ◦ f)(x2)⇒ g(f(x1)) = g(f(x2))⇒ f(x1) = f(x2)⇒ x1 = x2,
e g ◦ f também é injetiva.

(d) Dado arbitrariamente z ∈ Z, a sobrejetividade de g garante a existência de
y ∈ Y tal que z = g(y). Por outro lado, a sobrejetividade de f assegura a existência
de x ∈ X tal que f(x) = y. Então, temos que (g ◦ f)(x) = g(f(x)) = g(y) = z,
donde g ◦ f também é sobrejetiva.

(e) Segue dos itens (c) e (d) que g e f bijetoras⇒ g e f são injetivas e sobrejetivas
⇒ g ◦ f injetiva e sobrejetiva ⇒ g ◦ f bijetiva.

1.2.2 Inversão de Funções

Consideremos uma função f : X → Y bijetiva. Temos que os elementos de X e Y
estão em correspondência biunívoca, ou seja, a cada elemento de X corresponde um
e só um elemento de Y via f , e vice-versa. Quando tal ocorrer, podemos obter uma
outra função g : Y → X, simplesmente exigindo que f(x) = y ⇔ g(y) = x.

De�nição 1.2.10 Diremos que uma função g : Y → X é uma inversa à esquerda
de f se g ◦ f = IdX e g é uma inversa à direita de f se f ◦ g = IdY .

Uma pergunta natural a esta altura é por que não podemos usar a declaração
acima para de�nir a inversa de uma função bijetiva. De um ponto de vista intuitivo,
se f não fosse sobrejetiva, existiria um elemento y de Y que não seria imagem por
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f de nenhum elemento de X. Assim, não teríamos uma maneira natural de de�nir
g(y) a partir de f . Por outro lado, se f não fosse injetiva, existiriam elementos
distintos x1 e x2 em X com uma mesma imagem y ∈ Y via f . Quando tentássemos
de�nir g por meio de f , também não haveria maneira natural de decidirmos quem,
dentre x1 e x2, deveria ser igual a g(y).

Voltando ao caso em que f é bijetiva, não é difícil ver que g, de�nida como
acima, é de fato uma função, e ademais tal que (g ◦ f)(x) = x para todo x ∈ X e
(f ◦ g)(y) = y para todo y ∈ Y . De outro modo, temos g ◦ f = IdX e f ◦ g = IdY .
Reciprocamente, se f : X → Y e g : Y → X são funções tais que g ◦ f = IdX e
f ◦ g = IdY , então f deve ser, de fato uma bijeção, e g é a única função que satisfaz
tais igualdades de composição.

De�nição 1.2.11 Seja f : X → Y uma bijeção dada. A função inversa de f é a
função g : Y → X tal que, para x ∈ X, y ∈ Y , temos que g(y) = x⇔ y = f(x).

Daqui em diante, denotaremos a inversa de uma bijeção f : X → Y por f−1 :
Y → X. Observe que o expoente −1 na notação da função inversa não tem nenhum
signi�cado aritmético. Ele simplesmente chama atenção para o fato de que f−1 faz
o caminho inverso de f , isto é, aplica Y em X em vez de X em Y , revertendo as
setas das associações feitas por f .

Proposição 1.2.4 Uma função é sobrejetiva se, e somente se, ela admite inversa
à direita.

Prova. Seja f : X → Y uma função sobrejetiva. Então, para cada y ∈ Y é possível
escolher pelo menos um x ∈ X tal que y = f(x). Fixe um tal x para cada y. De�na
g : Y → X tal que g(y) = x (note que em geral toda função g não é unicamente
determinada, ela o será se f é injetiva). Segue-se então que, para todo y ∈ Y ,
f ◦ g(y) = f(g(y)) = f(x) = y. Isto posto, f ◦ g = IdY e, portanto, g é uma inversa
à direita de f . Reciprocamente, suponha que f ◦ g = IdY para alguma função
g : Y → X. Como IdY é sobrejetiva, segue-se que f é também sobrejetiva.

Proposição 1.2.5 Uma função é injetiva se, e somente se, ela admite uma inversa
à esquerda.

Prova. Seja f : X → Y uma função injetiva. Então, cada y ∈ f(X) determina um
único x ∈ X tal que y = f(x). De�na g : Y → X como a seguir:

g(y) =

{
x, se y ∈ f(X)
a, se y 6∈ f(X)

onde a é um elemento qualquer �xado de X. Note que em geral g não é unicamente
determinada, ela o será se f for sobrejetiva. Segue-se então que g◦f(x) = g(f(x)) =
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g(y) = x, para todo x ∈ X. Isto posto, g ◦ f = IdX e, portanto, g é uma inversa à
esquerda de f . Suponha reciprocamente que existe g : Y → X tal que g ◦ f = IdX .
Como IdX é injetiva, segue-se que f é injetiva.

Proposição 1.2.6 Se uma função admite uma inversa à esquerda e uma inversa à
direita, então estas são iguais.

Prova. Sejam g1, g2 : Y → X, respectivamente, uma inversa à direita e uma inversa
à esquerda de uma função f : X → Y . Segue-se que g1 = IdX ◦ g1 = (g2 ◦ f) ◦ g1 =
g2 ◦ (f ◦ g1) = g2 ◦ IdY = g2.

Lema 1.2.1 Sejam A e B conjuntos não vazios. Existe uma uma função sobrejetiva
f : A→ B se, e somente se, existe uma função injetiva g : B → A.

Prova. Com efeito, se existe uma sobrejeção f : A → B, segue-se que, para cada
x ∈ B, podemos escolher um único y ∈ A tal que f(y) = x. Então, de�nimos
g : B → A, tal que g(x) = y. Note que isso é, evidentemente, uma injeção.
Reciprocamente, se existe g : B → A injetiva, �xando um a ∈ B qualquer, de�ne-se
f : A→ B tal que f(x) = g−1(x), se x ∈ g(B) e f(x) = a, se x 6∈ g(B). Note que f
é evidentemente sobrejetiva.

Proposição 1.2.7 Uma função admite inversa se, e somente se, ela é bijetiva.

Prova. Seja f uma função bijetiva. Logo, f admite uma inversa à esquerda e uma
inversa à direita. Logo, estas são iguais, de�nindo uma função inversa para f . A
recíproca segue do explicitado acima.

Proposição 1.2.8 Se f : X → Y e g : Y → Z são funções bijetivas, então g ◦ f :
X → Z é bijetiva e (g ◦ f)−1 = f−1 ◦ g−1.

Prova. Já sabemos que g◦f é bijetiva. Por outro lado, como (g◦f)−1 e f−1◦g−1 são
ambas funções de Z emX, a �m de veri�car que (g◦f)−1 = f−1◦g−1 é su�ciente, pela
unicidade da inversa, notar que (f−1◦g−1)◦(g◦f) = IdX e (g◦f)◦(f−1◦g−1) = IdZ .

1.2.3 Conjunto de Funções

De�nição 1.2.12 Dados dois conjuntos não vazios X e Y . Denotaremos por F(X, Y )
o conjunto de todas as funções de X em Y .
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A composição de duas funções determina em F(X,X) uma operação que já vi-
mos, é associativa. Esta operação tem o elemento neutro IdX e não é comutativa,
se X tem dois ou mais elementos.

De fato, sejam a, b ∈ X, com a 6= b, e de�namos f : X → X, tal que f(x) = a,
para todo x ∈ X e g : X → X, tal que g(x) = b, para todo x ∈ X. Agora, observe
que f(g(a)) = a e g(f(a)) = b e, portanto, f ◦ g 6= g ◦ f .

Em matemática, frequentemente, um mesmo objeto pode vir apresentado de
vários modos distintos. Por exemplo, quando X = {1, 2} e Y 6= ∅, o conjunto
F(X, Y ) pode ser naturalmente identi�cado com o conjunto Y 2 = Y × Y . De fato,
para cada função f : {1, 2} → Y , associamos o par (f(1), f(2)). Esta associação
estabelece uma bijeção natural entre F(X, Y ) e Y 2.

1.3 Boa Ordenação

De�nição 1.3.1 Seja X um subconjunto de números naturais. Diz-se que um nú-
mero p ∈ X é o menor elemento de X (ou elemento mínimo de X) quando se tem
p ≤ n para todo n ∈ X.

Por exemplo, 1 é o menor elemento do conjunto N de todos os números naturais.
Com maior razão, qualquer que seja X ⊂ N com 1 ∈ X, 1 é o menor elemento de
X.

De�nição 1.3.2 Dado X ⊂ N, se p ∈ X e q ∈ X são ambos os menores elementos
de X então p ≤ q e q ≤ p, donde p = q. Assim o menor elemento de um conjunto
é único.

De�nição 1.3.3 Analogamente, se X ⊂ N, um número p ∈ X chama-se o maior
elemento de X (ou elemento máximo de X)quando se tem p ≥ n para todo n ∈ X.

Nem todo conjunto de números naturais possui um elemento máximo. Por exem-
plo, o próprio N não tem o maior elemento já que, para todo n ∈ N tem-se n+1 > n.

Corolário 1.3.1 Se existir o elemento máximo de um conjunto X ⊂ N, ele é único.

Prova. Com efeito, se p ∈ X e q ∈ X são ambos máximos então p ≥ q e q ≥ p,
donde p = q.

Um resultado de grande importância, até mesmo como método de prova, é o fato
de que todo conjunto não vazio de números naturais possui um menor elemento. Este
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fato é conhecido como Princípio da Boa Ordenação. Para tanto, utilizaremos em
sua prova o seguinte axioma:

(Princípio da Indução) Se X ⊂ N é um subconjunto tal que 1 ∈ X e, para todo
n ∈ X tem-se também s(n) ∈ X, então X = N. De�namos s(n) como o sucessor
de n.

Teorema 1.3.1 (Princípio da Boa Ordenação) Todo conjunto não vazio A ⊂ N
possui um menor elemento.

Prova. Usando a notação In = {p ∈ N; 1 ≤ p ≤ n}, consideremos o conjunto
X ⊂ N, formado pelos números n ∈ N tais que In ⊂ N − A. (Assim, dizer que
n ∈ X signi�ca a�rmar que n 6∈ A e que todos os números naturais menores do que
n também não pertencem a A). Se tivermos 1 ∈ A, o teorema estará demonstrado
pois 1 será o menor elemento de A. Se, porém, for 1 6∈ A então 1 ∈ X. Por outro
lado, temos X 6= N. (Pois X ⊂ N− A e A 6= ∅. Assim, X cumpre a primeira parte
da hipótese de indução (contém 1) mas não satisfaz à conclusão (não é igual a N).
Logo, não pode cumprir a segunda parte da hipótese. Isto quer dizer: deve existir
algum n ∈ X tal que n+ 1 6∈ X. Seja a = n+ 1. Então todos os inteiros desde 1 até
n pertencem ao complementar de A mas a = n+ 1 pertence a A. Desta maneira, a
é o menor elemento do conjunto A, o que prova o teorema.

Do Princípio da Boa Ordenação decorre uma proposição conhecida como o Se-
gundo Princípio da Indução, que provaremos agora.

Teorema 1.3.2 (Segundo Princípio da Indução) Seja X ⊂ N um conjunto
com a seguinte propriedade: Dado n ∈ N, se X contém todos os números naturais
m tais que m < n, então n ∈ X. Nestas condições, X = N.

Prova. Seja Y = N−X. A�rmamos que Y = ∅. Com efeito, se Y não fosse vazio,
existiria um menor elemento p ∈ Y . Então, para todo número natural m < p, seria
m ∈ X. Pela hipótese feita sobre X, teríamos p ∈ X, o que gera uma contradição.

O Segundo Princípio da Indução constitui um método útil para demonstração de
proposições referentes a números naturais. Ele também pode ser anunciado assim:

Teorema 1.3.3 Seja P uma propriedade relativa a números naturais. Se, dado
n ∈ N, do fato de todo número natural m < n gozar da propriedade P puder ser
inferido que n goza da propriedade P, então todo número natural goza de P.

Um número natural chama-se primo quando p 6= 1 e não se pode escrever p = m·n
com m < p e n < p. O chamado Teorema Fundamental da Aritmética diz que todo
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número natural se decompõe, de modo único, como produto de fatores primos. A
prova utiliza o Segundo Princípio da Indução. Com efeito, dado n ∈ N, suponhamos
que todo número natural menor do que n possa ser decomposto como produto de
fatores primos. Então, ou n é primo (e neste caso n é, de modo trivial, um produto
de fatores primos) ou então n = m ·k, com m < n e k < n. Pela hipótese de indução,
m e k são produtos de fatores primos. Segue-se que n também o é. Pelo Segundo
Princípio da Indução, concluímos que todo número natural é produto de números
primos.
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Capítulo 2

De�nições e Propriedades Básicas

dos Números Cardinais

Quando comparamos dois conjuntos �nitos, dizemos que sua equipotência se dá
quando ambos têm o mesmo número de elementos. Não se pode dizer o mesmo de
conjuntos in�nitos, e quando falamos de conjunto de números in�nitos nos referimos
à sua correspondência biunívoca, ou que pode nos transmitir uma ideia de justa
proporção entre estes conjuntos.

Mas com a descoberta de Cantor de que os números reais são mais in�nitos que
os números naturais, percebemo-nos em três níveis de enumerabilidade, ou seja: os
conjuntos �nitos propriamente, enumeráveis pelos seus próprios termos, os números
in�nitos enumeráveis, que podem ser justapostos como os números naturais, e �-
nalmente o conjunto dos números que extrapolam esta correspondência, que seriam
os en�m os conjuntos não-enumeráveis. É interessante esta maneira cantoriana de
desvendar o in�nito, e é talvez nesta perspectiva que se esconde grande parte do
valor da teoria de Cantor dos números trans�nitos. Ele nos mostra que o conjunto
in�nito, tal como o conjunto �nito segue uma mesma regra, e que, ao contrário do
que pensam alguns restricionistas, nos é passível de compreensão.

A intuição que se esconde por trás disso é o que o in�nito enumerável é um
in�nito que se atualiza aos nossos olhos, isto é, não importa em que ponto de seu
desenrolar estejamos, ele sempre seguirá as mesmas regras. Não se intimidando com
o tamanho do in�nito, Cantor postula uma tese de geração do in�nito, tomando cada
in�nito como uma unidade e somando a este mais para obter um segundo in�nito. À
mesma maneira com que somamos um número ao outro, Cantor nos demonstra que é
possível se fazer com o in�nito enumerável em uma sucessão algorítmica inesgotável.

Por isso e apesar disso, Cantor postula uma terceira lei de geração em comple-
mento às duas anteriores que �cam subentendidas na geração do in�nito enumerável
e na sucessão enumerável do mesmo.

Um in�nito absoluto não pode ser provado matematicamente, porém os demais,
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e quaisquer in�nitos de diferente potência podem, sem restrição alguma, ser bem
ordenados, no sentido de que seus elementos estejam relacionados entre si por uma
sucessão; há um primeiro elemento no conjunto, todo elemento, exceto o último, tem
um antecessor, e �nalmente, para cada elemento do dado conjunto bem ordenado,
in�nito ou não, há um determinado elemento que é o sucessor imediato de todos os
elementos que compõem o conjunto.

Neste capítulo, apresento resultados importantes envolvendo equipotência, con-
juntos �nitos e in�nitos, bem como conjuntos enumeráveis e não-enumeráveis. Os
resultados precedentes sobre números cardinais nos fornecem uma visão inicial, intui-
tiva, porém incompleta do conceito de cardinais. Agora, formalizaremos o conceito
de maneira a preservar o que foi visto, ampliando as possibilidades de entendimento
para contextos mais ricos, ou mais especi�camente, para um conjunto com muito
mais elementos.

2.1 Conjuntos Equipotentes

Esta seção foi elaborada a partir das seguintes referências bibliográ�cas:
[1], [4], [5], [6], [8], [11].

De�nição 2.1.1 Dizemos que um conjunto A é equipotente a um conjunto B se
existir uma bijeção de A em B. Denotaremos por A ∼ B (lemos: A é equipotente a
B).

Teorema 2.1.1 ∼ é uma relação de equivalência.

Prova. Com efeito, a função identidade Id : A → A, de�nida por Id(a) = a, para
todo a ∈ A é uma função bijetiva e, assim, A ∼ A. Se A ∼ B, existe uma função
bijetiva f : A → B que admite uma inversa f−1 : B → A, também bijetiva. Logo,
B ∼ A. Se A ∼ B e B ∼ C, então existem funções f : A→ B e g : B → C bijetivas.
A composta de (g ◦ f) : A→ C é também bijetiva e assim A ∼ C.

O conceito de cardinalidade de conjuntos advém naturalmente do conceito de
equipotência e tem a incumbência, na teoria dos conjuntos, de indicar a quantidade
de elementos desse conjunto. Para conjuntos �nitos essas concepções são bastante
intuitivas, mas para o mesmo não se dá para os chamados conjuntos trans�nitos,
que vão além do in�nito.

De�nição 2.1.2 Para cada conjunto A vamos associar um elemento x que cha-
maremos de número cardinal do conjunto A, o qual denotaremos por |A|. Dois
conjuntos A e B são equipotentes se |A| = |B|.
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De�nição 2.1.3 x é um número cardinal se existir um conjunto A tal que x = |A|.

Os números cardinais associados a conjuntos são denotados como se segue: 0 =
|∅|, 1 = |{∅}|, 2 = |{∅, {∅}}|, ... e, dando continuidade, podemos associar de uma
maneira recursiva aos algarismos que de�nem os números naturais de conjuntos de
tal forma que, um conjunto tem n elementos se e somente se seu número cardinal
for exatamente n.

De�nição 2.1.4 Sejam x e y dois números cardinais. x ≤ y se houver conjuntos
A e B tais que x = |A| e y = |B| tal que A é equipotente a um subconjunto de B ,
para uma escolha particular de A e B.

De�nição 2.1.5 Para qualquer conjunto A, indicamos por

2A = {f ; f : A→ {0, 1}}.

Proposição 2.1.1 Se A é um conjunto, tal que A 6= ∅, então ℘(A) ∼ 2A, em que
℘(A) é o conjunto das partes de A.

Prova. Para B ⊆ A, seja fB : A→ {0, 1} a função característica de B, isto é,

fB(a) =

{
0, se a 6∈ B
1, se a ∈ B

A função g : ℘(A)→ 2A de�nida por g(B) = fB é bijetiva.

Teorema 2.1.2 Sejam A e B conjuntos quaisquer. Se |A| = |B|, então |℘(A)| =
|℘(B)|.

Prova. Se |A| = |B|, então existe uma bijeção f : A → B. Seja g : ℘(A) → ℘(B),
dada por g(X) = f(X)(a imagem do conjunto X pela função f). Vamos, agora,
mostrar que g é bijetiva.

(i) Injetividade: Se g(X) = g(Y ), então f(X) = f(Y ). Daí como f é bijetiva,
temos que X = f−1(f(X)) = f−1(f(Y )) = Y .

(ii) Sobrejetividade: Seja Y ∈ ℘(B) e consideremos a imagem inversa de Y
como f−1(Y ) ∈ ℘(A).

Então, g(f−1(Y )) = f(f−1)(Y ) = Y pois f é bijetiva. Isto posto, ℘(A) → ℘(B) é
bijetiva.

Teorema 2.1.3 (Cantor) Seja A um conjunto não vazio qualquer e denotemos
℘(A) o conjunto das partes de A. Temos que |A| < |℘(A)|.
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Prova. Sabemos que a aplicação f : A → ℘(A), tal que f(a) = {a} é injetiva,
então, de maneira imediata, |A| ≤ |℘(A)|. Para mostrar que, adicionalmente, se
tem |A| 6= |℘(A)| é necessário provar agora que não existe nenhuma bijeção entre A
e ℘(A). Logo, basta mostrar que não há nenhuma função de A em ℘(A) que seja
sobrejetiva ou, dito de outro modo, que para toda a função f : A→ ℘(A) existe um
subconjunto X de ℘(A) que não é imagem de f de nenhum elemento de A. Tal prova
devemos a Cantor, que introduziu o conjunto X = {x ∈ A;x 6∈ f(x)} provando em
seguida que não existe qualquer b ∈ A para o qual se tenha f(b) = X. De fato, seja
x ∈ A qualquer. Então ou x 6∈ X ou x ∈ X. Se x 6∈ X, da de�nição de X resulta
que x ∈ f(x) e, portanto, f(x) 6= X. Consequentemente, f(x) não é uma função
sobrejetiva, como foi a�rmado.

Vimos que ℘(A) é o conjunto das partes de um conjunto A. Considerando o
conjunto de dois elementos {0, 1}, veremos agora que existe uma bijeção h : ℘(A)→
F(A; {0, 1}). A cada X ∈ ℘(A), associamos a função hX : A → {0, 1} chamada
função característica do conjunto X. Temos que:

hX(x) =

{
1, se x ∈ X
0, se x 6∈ X

A correspondência X 7→ hX é uma bijeção de ℘(A) sobre F(A; {0, 1}). Sua
inversa associa a cada função f : A → {0, 1} o conjunto X dos pontos x ∈ A tais
que f(x) = 1. Como {0, 1} tem dois elementos, temos que nenhuma função r : A→
F(A; {0, 1}) é sobrejetiva. Consequentemente, nenhuma função s : A → ℘(A) é
sobrejetiva. (Se fosse, r = h ◦ s : A→ F(A; {0, 1}) também seria sobrejetiva). Mas
existe uma função injetiva evidente f : A → ℘(A), de�nida por f(x) = {x}. De
fato, como provado no teorema anterior, temos que |A| < |℘(A)| para todo conjunto
A.

De�nição 2.1.6 Quando há uma função injetiva de A em B indicamos por A � B
e quando há função injetiva e A não é equipotente a B, indicamos por A ≺ B. Isto
posto, para cada conjunto A vale A ≺ ℘(A).

Lema 2.1.1 Se C ⊆ A e A � C, então A ∼ C.

Prova. Seja f : A → C uma função injetiva e consideremos A0 = A − C,A1 =
f(A0), ..., An+1 = f(An). De�namos uma função g : A → C e provemos que g é
bijetiva:

g(a) =

{
a, se a 6∈

⋃
n∈NAn

f(a), se a ∈
⋃
n∈NAn

Mostremos que g é bijetiva:
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(a) g é injetiva:

Sejam a, b ∈ A com a 6= b.

Se a 6∈
⋃
n∈NAn e b 6∈

⋃
n∈NAn, então g(a) = a e g(b) = b. Isto posto,

g(a) = g(b).

Se a 6∈
⋃
n∈NAn e b ∈

⋃
n∈NAn, então g(a) = a e g(b) = f(b). Daí,

g(a) = a 6∈
⋃
n∈NAn e g(b) = f(b) ∈

⋃
n∈NAn. Isto posto, g(a) 6= g(b).

Se a ∈
⋃
n∈NAn e b ∈

⋃
n∈NAn, então g(a) = f(a) e g(b) = f(b). Uma vez que

f seja injetiva, então g(a) 6= g(b) e g também é injetiva.

(b) g é sobrejetiva:

Seja c ∈ C. Se c 6∈
⋃
n∈NAn, então g(c) = c.

Se c ∈
⋃
n∈NAn, como c 6∈ A−C = A0, então c ∈ Aj, para algum j ≥ 1. Logo,

existe b ∈ Aj−1 tal que c = f(b) = g(b).

Portanto, g é sobrejetiva e, como também é injetiva, concluímos que g é bije-
tiva.

Segue uma proposição que servirá de apoio para a prova do teorema de Cantor-
Schroder-Bernstein:

Proposição 2.1.2 Se B ⊂ A e |A| ≤ |B|, então |A| = |B|, ou seja, se B ⊂ A,
existe uma função injetiva f : A→ B, então |A| = |B|.

Teorema 2.1.4 (Cantor-Schroder-Bernstein) Dados dois conjuntos A e B, se
|A| ≤ |B| e também |B| ≤ |A|, então |A| = |B| ⇒ A ∼ B.

Prova. Com efeito, tomando as funções injetivas f : A → B e g : B → A, tem-se
que f ∗ : A → f(A), onde f ∗(x) = f(x), é uma bijeção entre A e f(A) ⊂ B. Logo,
(f ∗◦g) : B → f(A) é uma função injetiva. Como f(A) ⊂ B, temos que |f(A)| = |B|
ou, em outras palavras, existe uma função bijetiva h : f(A) → B. Notemos, então
que (h ◦ f ∗) : A → B é composição de funções bijetivas e, portanto, é uma função
bijetiva. Portanto, A ∼ B.

20



De�nições e Propriedades Básicas dos Números Cardinais Capítulo 2

Proposição 2.1.3 (Princípio da Casa dos Pombos) Se a cardinalidade de A é
estritamente maior do que a cardinalidade de B, então não existe injeção de A em
B.

Prova. Basta ver que se |A| ≤ |B| e se houvesse uma injeção f : A → B, f : A →
f(A) seguiria que |A| ≤ |B| e, pelo Teorema de Cantor-Schroder-Bernstein, isso
implicaria que |A| = |B|, o que prova a nossa proposição.

2.2 Conjuntos Finitos e In�nitos

Esta seção foi elaborada a partir das seguintes referências bibliográ�cas:
[1], [4], [11].

Pelo que já foi explicitado neste trabalho, é imediato constatar que a relação
de equipotência entre conjuntos é uma relação de equivalência. Como já vimos na
seção anterior, escrevemos A ∼ B para representar que A e B são equipotentes.

Podemos agora formalizar a de�nição de conjunto �nito do seguinte modo:

De�nição 2.2.1 Um conjunto A é chamado �nito se for vazio ou existir um número
m ∈ N tal que A ∼ Im = {1, 2, 3, ...,m}. Um conjunto que não é �nito é chamado
in�nito.

A questão que se coloca naturalmente é saber se o número natural m é univo-
camente determinado por A e pela existência de uma bijeção de Im em A. Bem, a
resposta é positiva e decorre do resultado a seguir:

De�nição 2.2.2 Se A for um conjunto �nito, o número m ∈ Im tal que A ∼ Im é,
como se sabe, o cardinal do conjunto A que se denota por |A|.

O objetivo agora é darmos um signi�cado à noção de cardinalidade no caso de
conjuntos in�nitos. Antes, porém, consideremos o seguinte resultado:

Teorema 2.2.1 Sejam m e n dois números naturais. Se m > n > 0, então não
existe nenhuma função injetiva de Im em In.

Prova. A�rmamos que basta provar o teorema quando m = n+1. De fato, suponha
que a asserção do teorema válida para m = n+ 1. Se m > n+ 1 e se existisse uma
função injetiva de Im em In, a sua restrição a In+1 também seria injetiva, o que
seria uma contradição. Para provar o teorema, usemos indução em n. A a�rmação
é válida para n = 1 e suponha que é válida para n. Provemos, então, que é válida
para n+ 1. Suponha, por absurdo, que a a�rmação para n+ 1 é falsa. Logo, existe
f : In+2 → In+1 injetiva. Duas possibilidades podem ocorrer:
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(a) n+ 1 6∈ f(In+2). Nesse caso, a função g : In+1 → In, de�nida por g(x) = f(x)
para todo x ∈ In+1 é injetiva, o que é uma contradição.

(b) n + 1 ∈ f(In+2). Seja x′ o único elemento de In+2 tal que f(x′) = n + 1.
Consideraremos, agora, dois subcasos:

(b') x′ = n + 2. Neste caso, g : In+1 → In de�nida por g(x) = f(x), ∀x ∈ In+1 é
bem de�nida e injetiva, absurdo.

(b�) x′ 6= n+ 2. Como f é injetiva, temos que f(n+ 2) 6= f(x′) = n+ 1.

Isto posto, a função g : In+1 → In de�nida por

g(x) =

{
f(x), se x 6∈ x′

f(n+ 2), se x ∈ x′

é bem de�nida e injetiva, o que também é uma contradição.

Suponha agora que dado um conjunto A, existam números naturais m e n com
m > n > 0 e duas bijeções f : Im → A e g : In → A. Segue-se então que
g−1◦f : Im → In é uma bijeção, portanto, injetiva o que não é possível pelo teorema.

Consequentemente, dado um conjunto �nito A, o número natural m para o qual
existe uma bijeção de Im → A é univocamente determinado por A e é chamado de
cardinalidade de A. Diremos, neste caso, que A tem m elementos. A cardinalidade
do conjunto vazio ∅ é zero, por de�nição.

Corolário 2.2.1 (Princípio de Dirichlet) Dados dois conjuntos X e Y respec-
tivamente com m e n elementos, se m > n > 0, então não existe nenhuma função
injetiva de X em Y .

Prova. Existem bijeções f : Im → X e g : In → Y . Se existisse uma função injetora
h : X → Y , teríamos que f−1 ◦ h ◦ f : Im → In é injetiva, o que não seria possível
pelo teorema.

Corolário 2.2.2 Seja X um conjunto com m elementos e Y um conjunto com n
elementos. Se m < n, então não existe nenhuma função sobrejetiva de X em Y .

Prova. Suponha m > 0 e que exista uma função sobrejetiva de f : X → Y .
Logo, sabemos do capítulo anterior que a função f admitiria uma inversa à direita
g : Y → X. Portanto, f ◦ g = IdY . Segue-se então que g admite uma inversa à
esquerda. Isto posto, temos que g é injetiva, o que contradiz o Princípio de Dirichlet.
Se m = 0, o resultado vale por vacuidade, pois não existem sequer funções de ∅ em
Y .
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Corolário 2.2.3 Sejam X e Y dois conjuntos �nitos de mesma cardinalidade. Uma
função f : X → Y é injetiva se, e somente se, ela é sobrejetiva.

Prova. Suponha que f seja injetiva e suponha, por absurdo, que não é sobrejetiva.
Seja y′ ∈ Y não pertencente a f(X). Logo, a função:

f1 : X → Y
x 7→ f(x)

é bem de�nida e injetiva, o que é uma contradição pelo Princípio de Dirichlet.
Suponha agora que f seja sobrejetiva e mas não injetiva. Logo, existem x′ e x′′ tais
que f(x′) = f(x′′). Isto posto a função:

f2 : X − {x′} → Y
x 7→ f(x)

é bem de�nida e sobrejetiva, o que também gera uma contradição pelo corolário
anterior.

Teorema 2.2.2 Todo o conjunto in�nito contém um subconjunto equipotente a N.

Prova. Seja A um conjunto in�nito qualquer. A é não vazio e, portanto, possui
um elemento a1 ∈ A. O conjunto A \ {a1} é não vazio pois se não fosse A seria
o conjunto �nito {a1}. Consequentemente existirá a2 ∈ A \ {a1}. Analogamente,
o conjunto A \ {a1, a2} não pode ser vazio e, portanto, existirá a3 ∈ A \ {a1, a2}.
Procedendo assim sucessivamente obteremos um subconjunto {a1, a2, ..., } de A que
é equipotente a N.

Este teorema revela que o conjunto N é, de certo modo, o menor conjunto in-
�nito, já que cada conjunto in�nito possui um subconjunto equipotente a N. Com
base no teorema anterior podemos agora de�nir conjunto �nito a partir da noção de
conjunto in�nito sem exigir o conhecimento prévio do conjunto N. Tal de�nição se
deve a Dedekind.

De acordo com este resultado todos os subconjuntos in�nitos de N são equipo-
tentes a N. Estão neste caso, por exemplo, os conjuntos dos números pares positivos,
dos números ímpares positivos, dos números primos, etc.

Proposição 2.2.1 O conjunto dos números inteiros Z é in�nito.

Prova. Se existissem um número natural m e uma bijeção f : Im → Z teríamos
uma função injetiva f−1 : Z→ Im e, portanto a função restrição g : Im+1 → Im seria
injetiva, o que é impossível. Portanto, Z é in�nito.
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2.2.1 O Paradoxo do Hotel In�nito de Hilbert

David Hilbert foi um grande entusiasta das descobertas de Cantor, chegando a
a�rmar que ninguém nos expulsará do paraíso que Cantor criou para nós. Para
ilustrar o conceito de in�nitude e enumerabilidade, Hilbert imaginou um hotel de
in�nitos quartos. Vamos explorar a ideia de Hilbert com uma dose extra de �cção.

O Hotel de Hilbert �ca ao bordo do Mar Mediterrâneo, em Saint Tropez, na
badalada Cote d'Azur. Seu edifício, cinza e branco, construído em 1925 é um belo
exemplo de estilo art-decor dos anos 20 e 30 do século XX. Grande e confortável, o
hotel tem uma in�nidade enumerável de quartos su�cientes para hospedar clientes
dos mais diversos gostos. Desde aqueles em busca de dias tranquilos e ensolarados
aos que preferem noites em boates agitadas. O gerente, o próprio David Hilbert, é
um homem muito gentil, de barba bem tratada que nunca é visto sem seus óculos
e chapéu branco. O Grande Hotel de Hilbert tinha uma in�nidade de quartos, nu-

Figura 2.1: O Hotel de Hilbert

merados consecutivamente, uma para cada número natural. Todos eram igualmente
confortáveis. Num �m de semana prolongado, o hotel estava com seus quartos todos
ocupados, quando chega um viajante. A recepcionista vai logo dizendo:

-Sinto muito, mas não há vagas.
Ouvindo isto, o gerente interveio:
-Podemos abrigar o cavalheiro, sim senhora.
E a ordena:
-Trans�ra o hóspede do quarto 1 para o quarto 2, passe do quarto 2 para o

quarto 3 e assim por diante. Quem estiver no quarto n, mude para o quarto n+ 1.
Isto manterá todos alojados e deixará disponível o quarto 1 para o recém-chegado.
Logo depois chegou um ônibus com 1000 passageiros, todos querendo hospedagem.
A recepcionista, tendo aprendido a lição, removeu o hóspede de cada quarto n para
o quarto n+ 1000 e acolheu todos os passageiros do ônibus. Mas �cou sem saber o
que fazer quando, horas depois, chegou um trem com uma in�nidade de passageiros
(estes passageiros devem ser indexados por N). Desesperada, apelou para o gerente
que prontamente respondeu o problema dizendo:

-Passe cada hóspede do quarto n para o quarto 2n. Isto deixará vagos todos os
apartamentos de número ímpar, nos quais poremos os novos hóspedes.
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-Pensando melhor: mude quem está no quarto n para o quarto 3n. Os novos
hóspedes, ponha-os no quarto de número 3n + 2. Deixaremos vagos os quartos de
número 3n + 1. Assim, sobrarão ainda in�nitos quartos vazios e eu poderei ter
sossego por algum tempo.

2.3 Conjuntos Enumeráveis e Não-Enumeráveis

Esta seção foi elaborada a partir das seguintes referências bibliográ�cas:
[1], [4], [9], [11].

De�nição 2.3.1 Um conjunto X é enumerável quando é �nito ou quando existe
uma bijeção f : N → X. No segundo caso, X é chamado de in�nito enumerável
e, pondo x1 = f(1), x2 = f(2), ..., xn = f(n), ... temos X = {x1, x2, x3, ..., xn, ...}.
Cada bijeção f : N→ X chamamos uma enumeração (dos elementos) de X.

A bijeção f : N→ P, f(n) = 2n, mostra que o conjunto P dos números naturais
pares é in�nito enumerável. Analogamente, g : n 7→ 2n − 1 de�ne uma bijeção
de N sobre o conjunto dos números naturais ímpares, o qual é, portanto, in�nito
enumerável. Também o conjunto Z dos números inteiros é enumerável. Basta notar
que a função h : Z→ N, de�nida por:

h(x) =

{
2n, se n > 0

−2n+ 1, se n ≤ 0

é uma bijeção. Isto posto, h−1 : N→ Z é uma enumeração de Z.

Valem as seguintes propriedades sobre conjuntos:

Proposição 2.3.1 Seguem as seguintes a�rmações:

(1) Se X é um conjunto in�nito, então |X| ≥ |N|;
(2) Um subconjunto de conjunto �nito é necessariamente �nito;

(3) Uma união �nita de conjuntos é �nita;

(4) Um subconjunto de um conjunto enumerável é necessariamente enumerável;

(5) Uma união enumerável de conjuntos enumeráveis é necessariamente enumerável;

(6) Um produto �nito de conjuntos enumeráveis é enumerável.

Teorema 2.3.1 Todo conjunto in�nito X contém um subconjunto in�nito enume-
rável.
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Prova. Basta de�nirmos uma função injetiva f : N → X. Para isso, começaremos
escolhendo, em cada subconjunto não vazio A ⊂ X, um elemento xA ∈ A. Em
seguida, de�nimos f por indução. Colocamos f(1) = xX e, supondo já de�nidos
f(1), f(2), ..., f(n), escrevemos An = X−{f(1), f(2), ..., f(n)}. ComoX não é �nito,
An é não vazio. Colocaremos então f(n + 1) = x ∈ An. Isto completa a de�nição
indutiva da função f : N → X. A�rmamos que f é injetiva. Com bastante efeito,
dados m 6= n em N com m < n. Então, f(m) ∈ {f(1), f(2), ..., f(n− 1)} enquanto
que f(n) está no complementar de {f(1), f(2), ..., f(n− 1)}. Logo, f(m) 6= f(n). A
imagem de N é, portanto, um subconjunto in�nito enumerável de X.

Teorema 2.3.2 Todo conjunto de X ⊂ N é enumerável.

Prova. Se X for �nito, é enumerável. Se for in�nito, de�niremos por indução uma
bijeção f : N→ X. Coloquemos f(1), f(2), ..., f(n) de�nidos de modo a satisfazerem
as seguintes condições:

(a) f(1) < f(2) < ... < f(n);

(b) Pondo Bn = X − {f(1), f(2), ..., f(n)} temos f(n) < x para todo x ∈ Bn.

Em seguida, percebendo que Bn 6= ∅ (uma vez que X é in�nito), de�nimos
f(n + 1) como o menor elemento de Bn. Isto completa a de�nição de f : N → X,
de modo a serem mantidas as condições (a) e (b) para todo N. Segue-se de (a) que
f é injetiva. Por outro lado, (b) implica que f é sobrejetiva pois se existisse algum
x ∈ X − f(N), teríamos x ∈ Bn para todo n e, portanto, x > f(n), qualquer que
fosse n ∈ N. Então o conjunto in�nito f(N) ⊂ N seria limitado, uma contradição.

Teorema 2.3.3 Seja X um conjunto enumerável. Se f : X → Y é sobrejetiva,
então Y é enumerável.

Prova. Existe g : Y → X tal que f ◦ g = IdY . Logo, f admite uma inversa à
esquerda de g e, portanto, g é injetiva. Segue-se, então, que Y é enumerável.

Teorema 2.3.4 Sejam X e Y conjuntos enumeráveis. O produto cartesiano X×Y
é enumerável.

Prova. Existem funções injetivas r : X → N e s : Y → N. Logo, g : X×Y → N×N,
dada por g(x, y) = (r(x), s(y)) é injetiva. Isto posto, basta provarmos que N× N é
enumerável. Para isso, tomemos a função f : N×N→ N, em que f(m,n) = 2m · 3n.
Pela unicidade da decomposição em fatores primos, f é injetiva, o que fornece uma
bijeção de N× N sobre o conjunto enumerável f(N× N) ⊂ N.

Teorema 2.3.5 O conjunto Q dos números racionais é enumerável.
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Prova. De fato, o conjunto Z − {0} é um conjunto enumerável. Daí, também é
um conjunto enumerável o produto cartesiano Z × Z − {0}. Ora, a função f :

Z × Z − {0} → Q, de�nida por f(m,n) =
m

n
é sobrejetiva. Isto posto, concluímos

que Q é enumerável.

Corolário 2.3.1 Sejam X1, X2, ..., Xn, ... conjuntos enumeráveis. A união X =
∞⋃
n=1

Xn é enumerável.

Prova. Em palavras, uma união enumerável de conjuntos enumeráveis é um conjunto
enumerável. Para provarmos tomemos, para cada m ∈ N, uma função sobrejetiva
fm : N → Xm. Em seguida, de�namos uma função f : N × N → X colocando
f(m,n) = fm(n). Observemos que f é sobrejetiva. Como N × N é enumerável,
concluímos que X é enumerável.

Em particular, uma união �nita X = X1 ∪ ... ∪ Xn de conjuntos enumerá-
veis é também um conjunto enumerável. Basta aplicar o corolário acima, com
Xn+1 = Xn+2 = ... = ∅.

Vimos que dois conjuntos �nitos tem o mesmo número cardinal se, e somente
se, possuem o mesmo número de elementos. Se X for in�nito enumerável temos
|X| = |Y | se, e somente se, Y for in�nito enumerável.

Lembramos que, como visto no capítulo 1, dados dois conjuntos X e Y , o símbolo
F(X;Y ) representa o conjunto de todas as funções f : X → Y .

Teorema 2.3.6 Sejam X um conjunto arbitrário e Y um conjunto contendo pelo
menos dois elementos. Nenhuma função s : X → F(X;Y ) é sobrejetiva.

Prova. Dada r : X → F(X;Y ), indicaremos com rx o valor de r no ponto x ∈ X.
Dessa forma, rx é uma função de X em Y . Construiremos, agora, uma função
f ∈ F(X;Y ) tal que rx 6= f para todo x ∈ X. Isto é feito escolhendo, para cada
x ∈ X, um elemento f(x) ∈ Y , diferente de rx. Como Y contém pelo menos dois
elementos, isto é possível. A função f : X → Y assim obtida é tal que f(x) 6= rx(x)
e, portanto, f 6= rx, para todo x ∈ X. Isto posto, f 6∈ r(X) e, portanto, r não é
sobrejetiva.

Corolário 2.3.2 Sejam X1, X2, X3, ..., Xn, ... conjuntos in�nitos enumeráveis. O

produto cartesiano
∞∏
n=1

Xn não é enumerável.
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Prova. Basta considerar o caso em que todos os Xn são iguais a N. Nesse caso,∏
Xn = F(N;N), o que não é enumerável.

Teorema 2.3.7 O conjunto dos números reais R não é enumerável.

Prova. Cada número real x tal que 0 ≤ x ≤ 1 admite uma representação decimal
da forma 0, a1a2a3...an..., sendo que cada ai um algarismo, isto é, tal que ai ∈
{0, 1, 2, · · · , 9} e, ademais, tal representação decimal é única se não tivermos ai = 9
para todo índice maior que algum índice i0 �xado. Se o conjunto de todos os números
reais x tais que 0 ≤ x ≤ 1 fosse enumerável, poderíamos rotular suas representações
decimais por números naturais, como:

x1 = 0, a11a12a13...a1n...
x2 = 0, a21a22a23...a2n...
x3 = 0, a31a32a33...a3n...
.....................................
xn = 0, an1an2an3...ann....
.....................................

De�namos agora, por sua representação decimal, um número real x tal que 0 ≤
x < 1 e x 6= xn para todo índice n, o que estabelecerá uma contradição e, portanto,
mostrará que o conjunto em questão não pode ser enumerável. Construímos x
como segue: para cada natural n, o n-ésimo algarismo da representação decimal
de x é igual a qualquer inteiro bn tal que 0 ≤ bn < 9 e bn 6= ann, de forma que
x = 0, b1b2b3...bn.... Isto posto, temos x 6= xn para cada índice n, uma vez que as
representações decimais de x e xn diferem pelo menos em seus n-ésimos algarismos.

Observação 2.3.1 O conjunto dos números irracionais é não-enumerável.

Prova. De fato, denotemos por I o conjunto dos números irracionais. Por absurdo se
I fosse enumerável, então como R = Q∪I concluiríamos que R deveria ser enumerável
pois seria uma união de conjuntos enumeráveis, o que é um absurdo.

Corolário 2.3.3 Se A é um conjunto in�nito e B é �nito, dada uma função f :
A → B, existe pelo menos um x tal que f−1(x) é um conjunto de cardinalidade
in�nita.

Prova. Temos que, se B é �nito e existe uma função f : A → B tal que f−1(x) é
�nito, para todo x ∈ B, teríamos que

⋃
x∈B

f−1(x) é uma união �nita de conjuntos

�nitos e A, portanto, seria �nito.

28



Capítulo 3

Números Trans�nitos e Aritmética

Cardinal

Existe, depois do �nito, um trans�nito, ou seja, uma escala ilimitada de modos
determinados, que por natureza são in�nitos, e que no entanto podem ser de�nidos
de maneira precisa, tal como o �nito, por números determinados, bem de�nidos e
distintos uns dos outros.

Cantor chegou à noção de in�nito real sem considerar diretamente os números,
mas sim os conjuntos. Para isso, procurou atribuir tamanhos, que ele chamou de car-
dinalidade, aos diversos tipos de conjuntos de in�nitos elementos. A essas potências
deu o nome de números trans�nitos.

Cantor se fazia então várias perguntas: Se haviam vários números trans�nitos,
será que era possível ordená-los? Haveria um in�nito maior que todos os outros?

Para tentar responder essas perguntas, Cantor, que era um teórico conciencioso,
desenvolve então uma aritmética do in�nito, isto é, uma extensão, para os números
que lhe servem como medida do in�nito, das regras de aritmética que se aplicam
aos números naturais, usados para medir o que é �nito (adição, multiplicação, ex-
ponenciação, etc.).

Este capítulo tem como objetivo apresentar resultados importantes envolvendo
os chamados números trans�nitos, bem como apresentar uma aritmética na qual
estes números são, de fato, contemplados, é a chamada aritmética cardinal.

3.1 Números Cardinais

Esta seção foi elaborada a partir das seguintes referências bibliográ�cas:
[1], [4], [7], [10].
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O primeiro cardinal in�nito (trans�nito) é o cardinal de N, usualmente deno-
tado por ℵ0. O símbolo ℵ é a primeira letra do alfabeto hebraico e chama-se alef .
Em geral, denotamos os cardinais trans�nitos por ℵ com algum índice.

Os cardinais formam uma sequência trans�nita iniciada pelos números naturais
(que são cardinais) e por ℵ0. A sequência constituída pelos primeiros cardinais tem
então o seguinte aspecto:

0 < 1 < 2... < ℵ0.

Mas a sequência de cardinais nunca termina, ℵ1 denota o menor cardinal que é
maior que ℵ0, depois, ℵ2 denota o menor dos cardinais que é maior que ℵ1, e assim
sucessivamente, permitindo avançar na sequência acima para obter

0 < 1 < 2 < ... < ℵ0 < ℵ1 < ℵ2 < ... < ℵn < ....

De�nição 3.1.1 O cardinal ℵ1 é de�nido como o cardinal do conjunto ℘(A) onde
A é um conjunto cujo cardinal é ℵ0. ℵ2 é de�nido como o cardinal do conjunto ℘(B)
onde B é um conjunto cujo número cardinal é ℵ1, e assim sucessivamente.

Teorema 3.1.1 (Sanduíche de Cardinais) Sejam B,C e D conjuntos. Se D ⊆
C ⊆ B e D ∼ B, então D ∼ C ∼ B.

Prova. Como D ∼ B existe uma bijeção f : B → D. Como D ⊆ C, então
f : B → C é injetiva, ou seja, B � C. Como C ⊆ B, segue-se que C � B. Logo,
pelo Teorema de Cantor-Schroder-Bernstein, temos que C ∼ B e D ∼ C.

3.1.1 Relação de Ordem entre Cardinais

De�nindo uma ordem sobre os cardinais podemos indicar quando um conjunto tem
cardinalidade maior que o outro. Nesse caso, diremos que o primeiro conjunto tem
uma quantidade maior de elementos.

De�nição 3.1.2 Dados dois conjuntos A e B, a cardinalidade de A é menor ou
igual que a cardinalidade de B quando existe um C ⊆ B tal que C é equipotente a
A, ou seja:

|A| ≤ |B| ⇔ existe um C ⊆ B tal que A ∼ C.

Nesse caso dizemos também que |B| ≥ |A| e que a relação ≥ (maior ou igual)
é a relação inversa de ≤. Naturalmente, se |B| ≤ |A| e B não é equipotente a A,
então |B| é menor que |A| e escreve-se |B| < |A| ou ainda |A| > |B|. Isso signi�ca
que A tem uma quantidade maior de elementos que B.
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3.2 Aritmética Cardinal

Esta seção foi elaborada a partir das seguintes referências bibliográ�cas:
[1], [4], [5], [6], [8].

3.2.1 Adição de Cardinais

De�nição 3.2.1 Dados dois cardinais a e b tais que |A| = a e |B| = b, temos que
|A ∪B| = a + b se A ∩B = ∅. Esta soma de cardinais é unica.

Para observarmos que existe tal cardinal procederemos como se segue. Dados
dois cardinais quaisquer a e b existem conjuntos C e D tais que |C| = a e |D| = b.
De fato, C ×{0} e D×{1} são equipotentes a C e D, respectivamente. Denotemos
A = C×{0}, B = D×{1} então |A| = |C| = a, |B| = |D| = b, e A∩B = ∅, portanto
existem conjuntos A e B como apresentamos na de�nição no tocante à adição. Nos
referiremos a a + b como a soma de a e b.

Proposição 3.2.1 Para todos os conjuntos A e B, não necessariamente disjuntos,
temos que |A ∪B| ≤ |A|+ |B|.

Prova. Se A ∩ B = ∅, temos que |A ∪ B| = |A| + |B|. Se |A ∩ B| 6= ∅, temos que
|A ∪ B| = |A| + |B| − |A ∩ B|. Logo, temos que |A ∪ B| < |A| + |B|. Portanto,
|A ∪B| ≤ |A|+ |B|.

Proposição 3.2.2 (Propriedades Básicas da Adição de Cardinais).

(i) (Associativa). (a + b) + c = a + (b + c)

(ii) (Comutativa). a + b = b + a.

(iii) A relação de ordem para adição. a ≥ b⇔ existe um c tal que a = b + c.

(iv) Monotonicidade da adição. a ≤ b e c ≤ d⇒ a + c ≤ b + d.

Prova. (i) Sejam A, B e C conjuntos tais que |A| = a, |B| = b e |C| = c. Sabemos
que A∪B ∪C = (A∪B)∪C = A∪ (B ∪C). Isto posto, pela de�nição 3.2.1, temos
que (a + b) + c = a + (b + c).

Prova. (ii) Existem conjuntos A e B tais que |A| = a e |B| = b. Temos que
|A ∪ B| = a + b, e |B ∪ A| = b + a. Mas, sabemos que A ∪ B = B ∪ A. Portanto,
a + b = b + a.

Prova. (iii) Sejam A e B conjuntos tais que |A| = a e |B| = b. Como a ≥ b, temos
que |B| ≤ |A|. Consideremos um conjunto X, X ⊆ A tal que |B| = |X|. Daí, temos
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|X| = |B| = b. Tomemos um conjunto C tal que C = A −X. Logo, A = X ∪ C e
X ∩ C = ∅, onde |A| = |X|+ |C|. Fazendo |C| = c, temos que a = b + c.

Prova. (iv) Sejam A, B, C e D conjuntos tais que |A| = a, |B| = b, |C| = c e
|D| = d. Assumamos que os conjuntos B e D são disjuntos, isto é B ∩ D = ∅, e
além disso, A ⊆ B e C ⊆ D. Temos que |A| ≤ |B|, o que nos permite a�rmar que
o conjunto A possui a mesma cardinalidade de algum subconjunto de B. Podemos
substituir A por este subconjunto, desde que ele possua cardinalidade a. O mesmo
se aplica para o conjunto C. Se A ∩C = ∅ e B ∩D = ∅, temos que |A ∪C| = a + c
e |B ∪D| = b + d e se A ⊆ B e C ⊆ D, onde A∪C ⊆ B ∪D, temos a+ c ≤ b+ d.

Observação 3.2.1 A operação de adição de números naturais coincide com a ope-
ração de adição dos cardinais. Em particular, a soma de dois quaisquer números
cardinais �nitos é um número cardinal.

Proposição 3.2.3 Para todo cardinal �nito n, temos que ℵ0 + n = ℵ0.

Prova. Uma vez que n é �nito, temos que n < ℵ0. Portanto, existe um cardinal c
tal que ℵ0 = n + c. Logo, c = ℵ0 ou c é um cardinal �nito. Se c era um cardinal
�nito, então também n+ c era �nito, o que contradiz n+ c = ℵ0. Portanto, c = ℵ0
e temos que n+ ℵ0 = ℵ0.

Proposição 3.2.4 Para todo cardinal a ≥ ℵ0 e para todo cardinal �nito n, temos
que a + n = a. Em particular, ℵα + n = ℵα.

Prova. Se a ≥ ℵ0, então existe um cardinal c tal que a = ℵ0 + c e portanto
a + n = (ℵ0 + c) + n = (c + ℵ0) + n = c + (ℵ0 + n) = c + ℵ0 = a.

Proposição 3.2.5 Para todo cardinal a, a + 1 = a se e somente se a ≥ ℵ0.

Prova. Se a ≥ ℵ0 então a+ 1 = a. Por outro lado, se a+ 1 = a, seja A um conjunto
de cardinalidade a e b um elemento tal que b 6∈ A. Isto posto, |A∪{b}| = |A|+|{b}| =
a+1 = a = |A|. Consequentemente, A∪{b} é equipotente ao próprio subconjunto A,
o que implica que A é um conjunto in�nito e, portanto, a = a+ 1 = |A∪ {b}| ≥ ℵ0.

Observação 3.2.2 O teorema 3.2.1 não será provado por conter, em sua demons-
tração, conhecimentos relevantes à teoria dos números ordinais, conteúdo este que
não faz parte do nosso trabalho.

Teorema 3.2.1 (Hessemberg) ([5], teorema 3.13, p.94) ℵα + ℵα = ℵα.
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Observação 3.2.3 O teorema 3.2.1 é mais geral do que o teorema 3.2.2. No
entanto, podemos provar o teorema 3.2.2 utilizando os conceitos adquiridos nesse
texto.

Teorema 3.2.2 ℵ0 + ℵ0 = ℵ0.

Prova. Sejam Np e Ni, respectivamente, os conjuntos dos números naturais pares e
números naturais ímpares. Então, Np e Ni são subconjuntos enumeráveis, disjuntos
e a união deles é N. Consequentemente, pela de�nição 3.1.1, ℵ0 +ℵ0 = |Np|+ |Ni| =
|Np ∪ Ni| = |N| = ℵ0.

Proposição 3.2.6 ℵα + ℵβ = ℵmax(α,β).

Prova. Assumamos, sem perda de generalidade, que α ≥ β. Então, temos que
ℵα ≤ ℵα + ℵβ ≤ ℵα + ℵα = ℵα = ℵmax(α,β).

Lema 3.2.1 Se A,B,C e D são conjuntos tais que A ∼ C,B ∼ D então A× B ∼
C ×D.

Prova. Como A ∼ C, seja f uma função bijetiva tal que f : A → C e também
sabendo que B ∼ D, seja g uma função bijetiva tal que g : B → D. Daí, de�nindo
uma função h : A×B → C×D por h(a, b) = (f(a), g(b)), veri�ca-se que h é bijetiva.

3.2.2 Multiplicação de Cardinais

De�nição 3.2.2 Dados dois cardinais a e b tais que |A| = a e |B| = b, temos que
|A×B| = a · b (ou ab). Esta multiplicação de cardinais é única.

Suponhamos agora, que existam conjuntos C e D tais que |C| = a, |D| = b
e |C × D| = c′. Temos que A ∼ C e B ∼ D. Logo, por causa do lema 3.1.1,
C ×D ∼ A×B e |C ×D| ∼ |A×B|. Portanto, concluímos que c = c′.

Para ver que a de�nição acima é independente da escolha dos representantes
A e B, sejam C e D conjuntos tais que A ∼ C e B ∼ D. Então, temos que
A × B ∼ C ×D e, portanto, |A × B| = |C ×D|. Esta de�nição dá a resposta que
esperamos quando a e b são números cardinais �nitos. Como a multiplicação dos
números naturais é bastante familiar, nosso interesse principal aqui é o produto de
números cardinais trans�nitos, e o produto de um número cardinal �nito por um
número cardinal trans�nito.

Proposição 3.2.7 (Propriedades Básicas da Multiplicação de Cardinais).
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(i) Associativa. a · (b · c) = (a · b) · c.
(ii) Comutativa. a · b = b · a.
(iii) Distributividade da multiplicação em relação à soma. a · (b + c) = a · b + a · c.
(iv) Monotonicidade da multiplicação. a ≤ b e c ≤ d⇒ a · c ≤ b · d.

Prova. (i) Sejam A, B e C conjuntos tais que |A| = a, |B| = b e |C| = c. Como
(A×B)× C = A× (B × C), temos que (a · b) · c = a · (b · c).

Prova. (ii) Sejam A e B conjuntos tais que |A| = a, |B| = b. Como A×B ∼ B×A,
temos que a · b = b · a.

Prova. (iii) Sejam A, B e C conjuntos tais que |A| = a, |B| = b e |C| = c. Como
A× (B ∪ C) = (A×B) ∪ (A× C), temos que a · (b + c) = a · b + a · c.

Prova. (iv) Sejam A, B, C e D conjuntos tais que |A| = a, |B| = b, |C| = c e
|D| = d. Utilizaremos a mesma ideia da prova da proposição 3.1.2 (iv). Podemos
assumir que A ⊆ B e C ⊆ D. Consequentemente, teremos A × C ⊆ B × D, onde
|A × C| ≤ |B ×D|. Isto posto, temos |A × C| = a · c e |B ×D| = b · d. Portanto,
obtemos a · c ≤ b · d.
Observação 3.2.4 Se m e n são dois números cardinais �nitos então mn é tam-
bém um cardinal �nito. Sobre os cardinais �nitos a operação da multiplicação de
cardinais é a multiplicação usual dos números naturais, uma vez que satisfaça a
de�nição recursiva, isto é, m · 0 = 0, e m(n+ 1) = mn+m.

Observação 3.2.5 O corolário 3.2.1 não será provado por conter, em sua demons-
tração, conhecimentos relevantes à teoria dos números ordinais, conteúdo este que
não faz parte do nosso trabalho.

Corolário 3.2.1 (Hessemberg) ([5], corolário 3.23, p.97) ℵα · ℵα = ℵα.
Observação 3.2.6 Temos que o corolário 3.2.1 é mais geral do que o corolário
3.2.2 porém, utilizando os resultados desse texto, este corolário pode ser perfeita-
mente provado.

Corolário 3.2.2 ℵ0 · ℵ0 = ℵ0.
Prova. Como N× N ∼ N, pelo teorema 2.3.4, temos que ℵ0 · ℵ0 = ℵ0.
Corolário 3.2.3 ℵα · ℵβ = ℵmax(α,β)
Prova. Assumamos, sem perda de generalidade, que α ≤ β. Temos que αβ =
1 · αβ ≤ ℵα · ℵβ ≤ ℵβ · ℵβ = ℵβ, portanto, ℵα · ℵβ = ℵmax(α,β).
Proposição 3.2.8 Se n é um cardinal �nito e n > 0, então n · ℵα = ℵα
Prova. ℵα = 1 · ℵα ≤ n · ℵα ≤ ℵα · ℵα = ℵα, portanto, n · ℵα = ℵα.
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3.2.3 Exponenciação de Números Cardinais

De�nição 3.2.3 Dados dois conjuntos A e B, de�namos AB = {f ; f : B → A}.

De�nição 3.2.4 Dados dois cardinais a e b tais que |A| = a e |B| = b, temos que
|AB| = ab. Esta exponenciação de cardinais é única.

Proposição 3.2.9 (Propriedades Básicas da Exponenciação de Cardinais)

(i) ab+c = ab · ac.
(ii)

(
ab
)c

= abc.

(iii) (a · b)c = ac · bc.
(iv) a ≤ b e c ≤ d⇒ ac ≤ bd.

Prova. (i) Sejam A,B e C conjuntos tais que |A| = a, |B| = b e |C| = c e B∩C = ∅.
Sabemos que |B ∪ C| = b + c. É su�ciente mostrar que os conjuntos AB × AC e
AB∪C são equipotentes. Com este propósito, associamos a cada par (f, g) de funções
f ∈ AB e g ∈ AC a função f ∪ g ∈ AB∪C (ver [5], p.28, proposição 6.17 e p.31,
proposição 6.30). Esta associação estabelece uma equipotência entre os conjuntos
AB × AC e AB∪C . Isto posto, ab+c = ab · ac.

Prova. (ii) Sejam A,B e C conjuntos com cardinais a, b e c, respectivamente. A
proposição estará provada se estabelecermos que AB×C ∼ (AB)C . Antes de mostrar-
mos a equipotência, necessitamos, primeiramente, de uma notação convencional:
Para uma função dada f : B × C → A e um elemento dado a ∈ C, existe uma
função fa : B → A de�nida por fa(b) = f(b, a) para todo b ∈ B. A função
g : AB×C → (AB)C , que associa a cada f ∈ AB×C a função h ∈ (AB)C , dada por
h(a) = fa para todo a ∈ C é uma bijeção.

Prova. (iii) Sejam A,B e C conjuntos com números cardinais a, b e c, respec-
tivamente. A função F : (A × B)C → AC × BC , que emparelha cada função
f : C → A × B com a função (fA ◦ f, fB ◦ f) em AC × BC é bijetiva. Isto posto,
(a · b)c = ac · bc.

Prova. (iv) Sejam A, B, C e D conjuntos com cardinalidade a, b, c e d, respecti-
vamente, cujas potências são iguais as potências dos seus cardinais. Como a ≤ b
e c ≤ d, podemos assumir que A ⊆ B e C ⊆ D. Pela de�nição 3.1.3, temos que
|AC | = ac e |BD| = bc. Como A ⊆ B, podemos a�rmar que AC ⊆ BC , o que nos
dá que ac ≤ bc. Se c = d, é imediato que ac ≤ bd. Se c 6= d, como a ≤ b e c ≤ d,
temos d ≥ c e, pela proposição 3.1.2 (iii), existe um número cardinal p tal que
d = c+ p, onde podemos escrever que bd = bc ·bp, em que bd ≥ bc. Portanto, ac ≤ bc

e bc ≤ bd ⇒ ac ≤ bd.
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Observação 3.2.7 Se m e n são números cardinais �nitos então mn é um cardinal
�nito. Nos cardinais �nitos a operação de exponenciação cardinal é a exponenciação
usual dos números naturais, desde que satisfaça a de�nição recursiva, isto é, m0 =
1,mn+1 = mn ·m.

Proposição 3.2.10 Para todo cardinal �nito n > 0, temos que ℵα · ℵnα = ℵα.

Prova. Por indução em n. Fazendo n = 1, pelo corolário 3.2.1 temos que

ℵ1 · ℵ1 = ℵ1.

Suponhamos agora que a igualdade seja verdadeira para n = k. Temos que

ℵα · ℵkα = ℵα.

Para n = k + 1, obtemos
ℵα · ℵk+1

α = ℵα · ℵkα · ℵα.

Como supomos que para n = k a igualdade é verdadeira e, mais uma vez, pelo
corolário 3.2.1, podemos escrever

ℵα · ℵk+1
α = ℵα · ℵα = ℵα,

o que conclui a nossa prova.

Corolário 3.2.4 Para todo cardinal a, temos que a < 2a.

Prova. Selecionamos A tal que |A| = a. Então, |{∅, {∅}}A| = 2a. Além disso,
℘(A) ∼ {∅, {∅}}A e, A ≺ ℘(A), de onde A ≺ {∅, {∅}}A. Portanto, a < 2a.

Proposição 3.2.11 Se n ≥ 2⇒ nℵα = 2ℵα tal que β ≤ α⇒ ℵβℵα = 2ℵα.

Prova. Se n ≥ 2 e β ≤ α então 2ℵα ≤ nℵα ≤ ℵℵαβ , pela monotonicidade da expo-
nenciação, temos que 2ℵα ≤ (2ℵα)ℵα , desde que ℵβ ≤ ℵα ≤ 2ℵα . Isto posto, temos
que 2ℵα ≤ 2ℵα·ℵα = 2ℵα . Portanto, todas estas desigualdades são igualdades, e nossa
proposição se veri�ca.

3.3 Outros Resultados Envolvendo Aritmética Car-

dinal

Teorema 3.3.1 2ℵ0 = ℵ1.
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Prova. Usando o Teorema de Cantor-Schroder-Bernstein, visto no capítulo 2 deste
trabalho, é su�ciente mostrarmos que 2ℵ0 ≤ ℵ1 e 2ℵ0 ≥ ℵ1. Note que ℵ0 = |Q|,
o que implica dizer que 2ℵ0 = |℘(Q)|. Considere f : R → ℘(Q), de�nida por
f(a) = {x ∈ Q;x < a} ⊂ Q, para cada a ∈ R. Se a e b são números reais distintos,
podemos supor que a < b. Logo, existe r ∈ Q, tal que a < r < b, o que implica
que r ∈ f(b) e r 6∈ f(a), o que mostra que f(a) 6= f(b), Consequentemente, f é
uma função injetiva. Isto posto, ℵ1 = |R| ≤ |℘(Q)| = 2ℵ0 . Por outro lado, a função
g : {0, 1}N → R, de�nida por g(h) = 0, h(0)h(1)h(2)... ∈ R é injetiva, o que mostra
que 2ℵ0 ≤ ℵ1, como queríamos.

Corolário 3.3.1 ℵ0 < ℵ1.

Prova. Pelo Teorema de Cantor, temos que ℵ0 < |℘(N)| = 2|N| = 2ℵ0 = ℵ1.

Corolário 3.3.2 Considere os conjuntos R e X = {x1, x2, ..., xn}. Se Y = R−X,
então |Y | = |R|.

Prova. Seja |Y | = a. Como R = Y ∪X e Y ∩X = ∅ segue que ℵ1 = |R| = |Y ∪X| =
a+ n = a (ver proposição 3.2.4, p. 32).

Proposição 3.3.1 A cardinalidade do conjunto dos números irracionais é maior
do que ℵ0, ou seja |I| > ℵ0.

Prova. Escrevemos I = R−Q. Por absurdo, suponhamos que |R−Q| = ℵ0. Como
R = (R−Q)∪Q é uma união disjunta, temos que |R| = |R−Q|+|Q| ≤ ℵ0+ℵ0 = ℵ0,
ou seja, teríamos que |R| ≤ ℵ0, o que gera um absurdo. Portanto, concluímos que
|I| > ℵ0.

Proposição 3.3.2 Se A é um subconjunto enumerável de B e |B| = ℵ1 então,
|B − A| = ℵ1.

Prova. Podemos assumir, sem perda de generalidade, que B = R × R. Seja
P = {x ∈ R; (x, y) ∈ A} para algum y ∈ R. Temos que |P | ≤ |A|. Como A é
enumerável, então |A| = ℵ0 e temos que |P | ≤ ℵ0. Assim, existe x0 ∈ R tal que
x0 6∈ P . Logo X = {x0}×R é disjunto de A, ou seja, está contido em (R×R)−A.
Além disso temos que |X| = |R|, de onde concluímos que ℵ1 ≤ |(R× R)− A|. Isto
posto, |B − A| = ℵ1.

Cantor provou que podem existir in�nitos cardinais trans�nitos, muito maiores
que a cardinalidade do conjunto dos números reais. Para qualquer conjunto não va-
zio A, |A| < |℘(A)|, o que nos permite a�rmar que ℵ1 < |℘(R)| = ℵ2, onde ℵ2 = 2ℵ1 .
Obtemos, assim um novo cardinal trans�nito estritamente superior aos anteriores.
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ℵ2 é o cardinal de, por exemplo, o conjunto de todas as funções reais de variável real.
Pelo que foi apresentado, podemos construir uma sucessão de cardinais trans�nitos
ℵ1 < ℵ2 < ℵ3 < ....

A partir do Teorema de Cantor, concluímos que ℵ0 < 2ℵ0 . Assim, o conjunto
℘(N), cuja cardinalidade é 2ℵ0 não é enumerável. Isso signi�ca que enquanto N é
in�nito e enumerável, o conjunto ℘(N) tem uma quantidade muito maior de elemen-
tos, ele é in�nito e não enumerável.

O teorema também indica que ℵ0 < 2ℵ0 < 22ℵ0 < 222
ℵ0

< ..., ou seja, existem
in�nitos cardinais trans�nitos. Mais formalmente, pode-se de�nir a sequência (cn)
tal que c1 = ℵ0 e para cada n natural, cn+1 = 2cn > cn.
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Apêndice A

Um Breve Comentário Sobre a

Hipótese do Contínuo

Este apêndice foi elaborado a partir das seguintes referências bibliográ�-
cas: [2], [10].

A matemática é hoje um domínio do conhecimento altamente so�sticado onde
se descrevem estruturas extremamente complexas. O conjunto dos números reais
não é um representante dessa extrema complexidade. Seria pois de esperar que uma
teoria como a teoria dos conjuntos, que é su�cientemente poderosa para formalizar
a matemática, pudesse decidir a questão c = ℵ1.

Já vimos que |R| > ℵ0 = |N|. Cantor acreditou que se poderia demonstrar
que não existem cardinalidades intermediárias entre c e ℵ0, o que corresponde a
a�rmar que c = ℵ1. É claro que 2ℵ0 que é o cardinal do conjunto das funções
f : N→ 2 = {0, 1} (que pode ser visto como o conjunto das representações biádicas
dos reais no intervalo (0, 1)) coincide com c. Mas isto não resolve a questão original,
apenas permite escrevê-la de outra forma, ou seja: 2ℵ0 = ℵ1.

A convicção de Cantor alimenta a denominada hipótese do contínuo ou seja,
2ℵ0 = ℵ1, ou seja, não existe nenhum conjunto A com a propriedade ℵ0 < |A| < ℵ1.
Ele dedicou enormes esforços tentando provar ou refutar esta conjectura. Por várias
vezes chegou a anunciar tê-la provado, mas, invariavelmente, descobria algum erro
nas suas deduções. Em 1884, numa carta enviada a Mittag Le�er (1846-1927),
ele refere ter encontrado uma demonstração rigorosa de que o contínuo não tem a
cardinalidade ℵ1 (ou seja a hipótese do contínuo seria falsa). Contudo, passado um
dia depois desta declaração, Cantor voltou a escrever a Mittag Le�er dando conta
da descoberta de um erro na sua prova e de sua intenção de voltar a estabelecer a
veracidade da hipótese do contínuo.

A ideia de Cantor consistia em provar que, dado um subconjunto X ⊂ R, se tem
|X| ≤ |N| ou |X| = |R|, ou seja, que não existem cardinalidades intermediárias entre
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Figura A.1: Mittag Le�er

|N| e |R|. Deste modo, |R| teria que ser o primeiro cardinal maior que ℵ0. Cantor
foi assim conduzido a uma tentativa de caracterizar a estrutura dos conjuntos dos
reais. A sua abordagem levou-o a considerar caracterizações topológicas.

Uma noção básica, neste contexto é a de conjunto aberto. Um subconjunto
X ⊂ R é aberto se, dado um elemento a ∈ X, podemos considerar um real ε > 0 tal
que (a − ε, a + ε) ⊂ X. O intervalo aberto (a − ε, a + ε) é chamado de vizinhança
aberta de a com raio ε e denota-se por Vε(a). Um subconjunto X ⊂ R se diz fechado
se o seu complementar em R for aberto.

Por outro lado, um ponto de acumulação de um conjunto X ⊂ R é um real a tal
que, para qualquer ε > 0, a vizinhança Vε(a) contém pontos de X diferentes de a.
Se a ∈ X não for um ponto de acumulação de X, diz-se que é um ponto isolado de
X.

De�nição A.0.1 Um subconjunto P ⊂ R é chamado perfeito se é fechado e não
tem pontos isolados.

Nem todo conjunto fechado é perfeito (por exemplo, {0} é fechado e não é per-
feito, uma vez que 0 é um ponto isolado). Mas, todo o conjunto fechado de cardi-
nalidade superior a ℵ0 é da forma P ∪ S onde P é perfeito e |S| ≤ ℵ0 (Teorema de
Cantor-Bendixon).

Teorema A.0.2 Se P é um conjunto perfeito, então |P | = |R|.

Estas considerações nos permitem explicar por que razão a hipótese do contínuo
se impôs tão fortemente a Cantor. Não é difícil observar que a maior parte dos
conjuntos considerados na prática da análise matemática ou são enumeráveis, isto
é, possuem cardinalidade não superior à dos naturais ou são intervalos, ou se obtém
de um destes dois tipos usando as operações comuns na teoria dos conjuntos, como
são as uniões, as interseções ou o complementar.

Assim, se procurarmos conjuntos de algum modo relevantes na prática dessa
análise, temos que procurar conjuntos que fazem parte de um certo universo de
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subconjuntos de R que é fechado para a realização daquelas operações e contém os
objetos básicos mencionados. Em termos abstratos, esse universo possui a estrutura
daquilo que se designa por σ-álgebra de conjuntos.

De�nição A.0.2 Uma família A de subconjuntos de R diz-se uma σ-álgebra, se
A 6= 0 e:

(1) se A,B ∈ A então, A ∩B = A;
(2) se A,B ∈ A então, A ∪B = A;
(3) se A ∈ A então, R− A ∈ A;
(4) se {An;n ∈ N} ⊂ A então ⋂

n∈N

An ∈ A e
⋃
n∈N

An ∈ A

Recorrendo a esta noção podemos caracterizar mais precisamente o universo
a que anteriormente citamos: trata-se da menor σ-álgebra de subconjuntos de R
que contém os conjuntos abertos. Essa σ-álgebra é conhecida como álgebra dos
conjuntos borelianos. Podemos também agora ter uma noção mais exata da razão
que levou Cantor a considerar a hipótese do contínuo como um teorema que poderia
ser demonstrado. A razão é que entre os borelianos não se pode encontrar nenhum
contra-exemplo para a hipótese do contínuo, por que qualquer destes conjuntos
é enumerável ou contém um subconjunto perfeito. Isso mostra que um eventual
contra-exemplo escaparia à prática matemática corrente e seria, de certa forma,
pouco natural.

Os borelianos são conjuntos simples, no sentido em que cada um possui uma
espécie de história, que é neste caso uma sequência de operações que descreve como
cada boreliano se obtém a partir de conjuntos abertos.

Uma questão intimamente relacionada ao problema do contínuo, citado habitual-
mente como problema do contínuo generalizado, é o seguinte: Existe algum número
cardinal que está estritamente entre um número cardinal trans�nito a e 2a? Esta
questão também não foi respondida. A conjetura de que não existe um tal número
cardinal é chamada hipótese do contínuo generalizada.

Hipótese do Contínuo Generalizada. Para qualquer número trans�nito a,
não há nenhum cardinal x tal que a < x < 2a.

Logo em 1900, no Congresso Internacional de Matemáticos, em Paris, o grande
matemático alemão David Hilbert (1862-1943) apresentou uma lista de 23 proble-
mas matemáticos não resolvidos, sendo o primeiro deles o problema do contínuo.
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Figura A.2: David Hilbert

Nenhum progresso foi feito em solucionar este problema até o ano de 1938, pois
em 1939, Kurt Gödel (1906-1978) demonstrou que a hipótese do contínuo é consis-
tente relativamente aos axiomas da teoria dos conjuntos. Este resultado é do mesmo
tipo daqueles que estabelecem a consistência da negação do axioma das paralelas
através da exibição de geometrias não euclidianas. Como é que sabemos que o axi-
oma das paralelas não se pode provar a partir dos restantes axiomas da geometria
euclidiana?

Figura A.3: Kurt Gödel

Paralelamente, podemos associar a conjuntos de axiomas estruturas que o in-
terpretam, ou seja, no qual os axiomas são verdadeiros. Tais estruturas são deno-
minadas modelos da axiomática. (Os axiomas da geometria euclidiana plana são
verdadeiros se interpretarmos ponto como um par ordenado (x, y) de números re-
ais e a reta como um conjunto de tais pares que satisfazem equações da forma
ax+ by + c = 0 (onde a e b não são simultaneamente nulos). Por outro lado, os nú-
meros naturais, com a ordem usual e as operações de adição e multiplicação usuais,
constituem um modelo de axiomas (de Peano) para a aritmética.

A relação entre provas e modelos é a seguinte: se θ se demonstra a partir de
um conjunto de axiomas σ1, σ2, ..., σn, então θ é verdadeira em qualquer modelo de
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σ1, σ2, ..., σn. Reciprocamente, graças ao Metateorema da Completude Semântica,
demonstrado por Gödel, sabemos também que se uma sentença é verdadeira em
todos os modelos de uma dada axiomática, então é demonstrável nessa axiomática.

Se Γ é um conjunto de sentenças (uma axiomática) e se θ é uma sentença, es-
crevemos Γ ` θ para indicar que existe uma prova de θ com hipóteses em Γ (isto
é, usando os axiomas de Γ). Se, por outro lado, M é uma estrutura onde, uma vez
interpretada, a sentença θ se mostra verdadeira, escrevemos M |= θ para indicar
este fato. (Se, para qualquer sentença θ em Γ se tem M |= θ, escrevemos M |= Γ).
Finalmente, se σ é uma sentença e Γ é uma axiomática e se para qualquer estrutura
M se tiver que M |= Γ implica M |= σ, então escrevemos Γ |= σ e dizemos que σ é
consequência semântica de Γ.

Metateorema da Completude Semântica (Gödel). Se Γ é uma axiomática
e σ é uma sentença, tem-se Γ ` σ se, e somente se,

Γ |= σ.

Antes de Gödel, Cantor já havia estabelecido que os cardinais constituíam uma
ordem linear e que a cardinalidade do contínuo c, era estritamente superior à cardi-
nalidade dos números naturais, que era ℵ0.

Cantor conjecturou que c = ℵ1, ou seja, que os reais tinham a cardinalidade do
segundo cardinal in�nito. Por outro lado, devido ao trabalho de von Neumann
(1903-1957), já se possuía uma boa imagem do universo de conjuntos.

Figura A.4: von Neumann

De fato, depois do trabalho de von Neumann �cou claro que os conjuntos se
dispõem numa hierarquia cumulativa, que pode ser descrita recursivamente (nos
ordinais), iterando a operação que a cada conjunto X faz corresponder o conjunto
de suas partes ℘(X) = {A;A ⊂ X}.

Os números ordinais são uma extensão dos números naturais diferentes dos in-
teiros e dos cardinais. Como outros tipos de números, ordinais podem ser soma-
dos, multiplicados e exponenciados. Os números ordinais podem ser de dois tipos:
aqueles que sucedem a outros ordinais e que, por isso, são chamados de ordinais
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sucessores, e que os não sucedendo a nenhum ordinal são chamados de ordinais li-
mite. (Por exemplo, 4 é um ordinal sucessor. O ordinal ω é um ordinal limite).
O universo de conjuntos usualmente denotado por V encontra-se estrati�cado em
níveis Vα indexados nos ordinais α. Esses níveis se de�nem por recursão trans�nita
nos ordinais de acordo com o seguinte:

V0 = ∅; VS(α) = ℘(Vα); Vλ =
⋃
α<λ

Vα (se λ é um ordinal limite).

Pode-se provar que qualquer conjunto ocorre num destes níveis, pelo que o as-
pecto geral de um universo de conjuntos se traduz no acima citado.

Acontece que a operação ℘ é demasiado geral e abstrata. ℘(X) pode conter
subconjuntos de X de tal modo abstratos e gerais que não podem ser caracterizados,
nem sequer isolar um princípio formador. Esta situação con�gura uma operação ℘
que vai muito além daquilo que é exigido pela prática matemática, onde os conjuntos
que utilizamos são, em geral, descritos fazendo envolver algum tipo de princípio
formador, ou alguma característica de seus elementos.

Gödel decidiu então descrever uma espécie de sub-universo de conjuntos ao re-
produzir a hierarquia vista anteriormente, mas utilizando dessa vez uma operação
mais fraca da operação ℘ que iremos denotar por D. Vamos considerar, que D(X) é
formado pelos subconjuntos deX cujos elementos são descritíveis usando a operação
X. A de�nição do novo universo (que se denota por L) é então a seguinte:

L0 = ∅; LS(α) = D(Lα); Lλ =
⋃
α<λ

Lα (se λ é um ordinal limite)

Os conjuntos que surgem em algum Lα são chamados construtíveis e formam
L, que se designa universo construtível de Gödel. Usando o fato de existir um
controle muito maior sobre a estrutura de ℘(X), quando interpretamos ℘ em L,
Gödel conseguiu provar que naquele universo existe uma bijeção entre o conjunto
dos reais construtíveis, ou seja, entre o conjunto que, do ponto de vista de L, é R,
e o ordinal que, do ponto de vista de L, é ℵ1. Assim, em L, a hipótese do contínuo
é verdadeira.

Apesar de notável, o resultado de Gödel apenas revela que os axiomas da teoria
dos conjuntos não refutam a hipótese do contínuo. A questão de saber se aquele
princípio se pode provar a partir dos axiomas permaneceu intocada. Poder-se-ia
efetivamente demonstrar a hipótese do contínuo na teoria dos conjuntos? Ou, como
na situação do axioma das paralelas, seria a teoria dos conjuntos incapaz de decidir
aquela questão?

A resposta a estas questões teria que esperar pela década de 60 do século XX,
altura em que Paul Cohen (1934-2007), da Stanford University, mostrou �nalmente
que a teoria dos conjuntos não pode provar a hipótese do contínuo. Ele obteve esta
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conclusão, tendo sido bem sucedido na descrição de um universo de conjuntos onde
|R| ≥ ℵ2. A técnica de Cohen, conhecida como Forcing, foi completamente inovadora
e surpreendeu toda a comunidade matemática. Ao contrário de Gödel que procedeu
à prova do seu resultado de consistência descrevendo aquilo que se designa modelo
interno, ou seja, um universo menor com os mesmos ordinais, a técnica de Cohen lhe
permitiu descrever super-universos, ou seja, expansões do universo original, contendo
os mesmos ordinais.

Figura A.5: Paul Cohen

Basicamente, ele descreveu um processo que, dados um universo de conjuntos
V e um conjunto G (contendo informação não disponível em V ), permite obter um
novo universo V [G], veri�cando:

(1) V ⊂ V [G];

(2) G ∈ V [G];

(3) V [G] tem os mesmos ordinais que V .

Cohen provou que a hipótese do contínuo não é verdadeira em V [G]. Deste
modo, também a negação da hipótese do contínuo é consistente com a teoria dos
conjuntos.
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