

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL E AMBIENTAL - MESTRADO -

RELAÇÕES PRECIPITAÇÃO-UMIDADE DO SOLO-VAZÃO DE EVENTOS SUB-DIÁRIOS EM BACIAS EXPERIMENTAIS DO NE BRASILEIRO

Por

Luís Romero Barbosa

Dissertação de Mestrado apresentada à Universidade Federal da Paraíba para obtenção do grau de Mestre

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL E AMBIENTAL

- MESTRADO -

RELAÇÕES PRECIPITAÇÃO-UMIDADE DO SOLO-VAZÃO DE EVENTOS SUB-DIÁRIOS EM BACIAS EXPERIMENTAIS DO NE BRASILEIRO

Dissertação submetida ao Programa de Pós-Graduação em Engenharia Civil e Ambiental da Universidade Federal da Paraíba, como parte dos requisitos para a obtenção do título de Mestre.

Luís Romero Barbosa

Orientador: Prof. Dr. Cristiano das Neves Almeida

LUÍS ROMERO BARBOSA

RELAÇÕES PRECIPITAÇÃO-UMIDADE DO SOLO-VAZÃO DE EVENTOS SUB-DIÁRIOS EM BACIAS EXPERIMENTAIS DO NE BRASILEIRO

Dissertação aprovada em/ como requisito para a obtenção do título de Mes	tre
em Engenharia Civil e Ambiental do Centro de Tecnologia da Universidade Federal	da
Paraíba.	
BANCA EXAMINADORA:	
Prof. Dr. Cristiano das Neves Almeida – UFPB	
(Orientador)	
Prof. Dr. Adriano Rolim da Paz – UFPB	
(Examinador Interno)	
Prof. Dr. Carlos de Oliveira Galvão – UFCG	
(Examinador Externo)	

À minha querida mãe Fabiana Gonçalves Barbosa e ao meu querido pai Lúcio Lauro Barbosa que sempre me apoiaram e acreditaram no meu potencial. E àquelas pessoas que fazem parte da minha vida.

Dedico!

AGRADECIMENTOS

Este trabalho envolveu a obtenção e tratamento de muitos dados, bem como ao apoio pessoal e motivacional, feitos graças à ajuda de uma série de pessoas e suporte financeiro. Por isto, esta página se presta a meus sinceros agradecimentos.

Primeiramente e acima de tudo agradeço a Deus, por todas as benções concedidas assim como por toda proteção dada, tanto em momentos de alegrias e felicidades quanto ao longo dos desafios da minha vida, os quais certamente contribuíram para o meu aprendizado.

À minha mãe, desenhista industrial Fabiana Gonçalves Barbosa, agradeço-lhe por todo seu amor, amizade, dedicação, orientação e ensinamentos, já que abdicou bastante tempo ao meu lado me educando, fortificando, incentivando e, acima de tudo, revelandome os caminhos corretos para uma vida feliz, digna, íntegra, responsável e vitoriosa. Sendo assim, esta mulher e mãe, a quem devo toda minha vida pelo que me tornei, é também aquela a quem dedico tudo o que conquistei, visto que ela me mostrou que não há limites, e que de tudo sou capaz. A pessoa mais importante e a maior inspiração da minha vida.

Ao meu pai, engenheiro civil Lúcio Lauro Barbosa, meu maior exemplo de ética, caráter, integridade e honestidade assim como minha maior inspiração profissional, expresso com eterna gratidão as lições, ensinamentos, incentivo e palavras de amor dados em todos os momentos. Este que é meu maior orgulho.

Às minhas irmãs Ana Carolina Barbosa e Ana Carina Quirino Barbosa, que antes de tudo são grandes amigas e companheiras, agradeço-lhes pelo carinho, incentivo e atenção já que sempre estiveram comigo, apoiando-me em todas as minhas decisões.

Aos meus avós Antônio Gomes Barbosa, Nilda Gonçalves Barbosa, Josefa Dorziat Quirino Barbosa e Lourival Alfredo Barbosa (*in memoriam*) pelas palavras de incentivo, carinho, orações, mas também pela educação dada conforme os verdadeiros princípios do respeito, honestidade e dignidade, exercendo perfeitamente suas condições de avós.

Ao Prof. Dr. Cristiano das Neves Almeida, agradeço-lhe pela excelentíssima orientação dada nesta dissertação assim como pelo apoio, incentivo e ensinamentos ao longo da minha vida acadêmica, tornando-se a pessoa fundamental em minha formação profissional.

À todos os professores do Programa de Pós-Graduação em Engenharia Civil e Ambiental da Universidade Federal da Paraíba, em especial àqueles da área de Recursos Hídricos, agradeço-lhes pelos ensinamentos e conhecimentos repassados com tanto capricho e excelência.

À todos os alunos de iniciação científica, em especial a Emerson da Silva Freitas e Ângelo Miguel Fernandes Leal; agradeço-lhes pela disposição e dedicação atribuídas durante todas as atividades do meu mestrado.

Ao Prof. Dr. Alain Marie Bernard Passerat de Silans, agradeço-lhe pela orientação deste e vários outros trabalhos, pela transmissão de conhecimentos com empatia e dedicação, e pela disposição para a realização de atividades de manutenção em campo.

Ao técnico-laboratorista Edilson Edimar de Souza, agradeço-lhe por todo suporte dado às atividades de campo e de laboratório, assim como pela transmissão de conhecimentos práticos e experimentais.

Ao Prof. Dr. Adriano Rolim da Paz, agradeço-lhe pelas correções, sugestões e críticas feita sobre o meu trabalho, a partir dos quais eu pude me guiar, corrigir e aprimorar os resultados e conclusões desta pesquisa.

Aos professores Dr. Carlos de Oliveira Galvão e Dr. José Carlos de Araújo, agradeço-lhes pelo fornecimento dos dados hidrológicos das bacias hidrográficas do São João do Cariri/PB e Aiuaba/CE, respectivamente; bem como pelas considerações, sugestões e correções feitas sobre os estudos desenvolvidos nesta dissertação.

Aos meus colegas Nicholas Borges de Lira, Gerald Norbert Souza da Silva e Victor Hugo Rabelo Coelho, agradeço-lhes pelo apoio e auxílio ao longo de todo o mestrado.

A CAPES e ao CNPq, agradeço-lhes pelo aporte financeiro dado por meio da concessão de bolsas (PQ, mestrado, iniciação científica) que permitiram a realização deste Mestrado.

RESUMO

O entendimento dos mecanismos de transformação chuva-vazão com dados em alta resolução temporal mostra-se fundamental no aperfeiçoamento da maior parte dos estudos hidrológicos, ao provê conhecimento e informação detalhada a respeito das propriedades e características de suas principais variáveis. Este trabalho teve como objetivo avaliar a influência dos critérios de definição de evento chuvoso na determinação das características dos hietogramas, bem como investigar as relações hidrológicas dos eventos chuvosos e da umidade antecedente do solo com aquelas dos hidrogramas de escoamento superficial, por meio de técnicas estatísticas, em bacias experimentais do Nordeste Brasileiro. Para tanto, uma parcela dos dados foi adquirida, em escala sub-horária, dos bancos de dados mantidos pelos parceiros da Rede de Hidrologia do Semiárido (REHISA) desde 2003 e a outra foi monitorada e obtida ao longo do hidrológico 2013-2014, por meio de frequentes medições, realização de ensaios e tratamento de dados. Em seguida, técnicas de estatística descritiva, testes de aderência e de hipóteses, métodos exploratórios de dados, análises estatísticas multivariadas e técnicas de regressão linear múltipla foram utilizadas, quer na inspeção visual, quer na investigação estatística dos dados, a fim de estabelecer padrões de variação e avaliar o grau de associação entre variáveis. O primeiro estudo realizado revelou que a variação do critério de mínimo intervalo de tempo entre eventos fez reduzir em até quase 50% o número de eventos, além de subestimar a intensidade média dos eventos 4 vezes, em média. O segundo estudo mostrou que a bacia hidrográfica tropical costeira apresenta aproximadamente 4 vezes mais eventos do que as do semiárido, dos quais 6% da totalidade dos eventos que permanecem não caracterizados, contribuem para 38% do total precipitado, e puderam ser reduzidos em até 97%, transformando-se, sobretudo, em eventos do tipo unimodal com pico à esquerda. O terceiro estudo mostrou que a umidade do solo apresenta um padrão de variação similar até 3 dias de antecedência e exerce uma influência significante, juntamente com a lâmina precipitada e a duração dos eventos chuvosos, sobre o coeficiente de escoamento, o pico e a vazão do hidrograma; por outro lado, a componente responsável pelo pico e intensidades dos hietogramas foi significante apenas sobre o coeficiente de escoamento, este que, por sua vez, foi a característica melhor ajustada pela análise de regressão múltipla, dado o coeficiente de determinação de 0,66. Portanto, este estudo evidencia a importância do monitoramento contínuo e sistemático de dados hidroclimatológicos para a realização de estudos experimentais que venham a dar subsídios à tomada de decisões em medidas de gerenciamento de recursos hídricos.

PALAVRAS-CHAVE: bacias experimentais, escala sub-horária, eventos chuvosos, umidade antecedente do solo, hidrograma de escoamento, análises estatísticas.

ABSTRACT

The assessment of rainfall-runoff transformation mechanisms with high temporal resolution data has proven crucial to the improving of hydrological studies, by providing detailed knowledge and information about the properties and the characteristics of their main variables. This study aimed at assessing the influence of rainfall event definition criteria in determining the characteristics of hyetographs, as well as in investigating the hydrological relations of rainfall events and antecedent soil moisture with those of the runoff hydrograph, by means of statistical techniques, in experimental basins in Northeast Brazil. To this end, a portion of the data was acquired, in sub-hourly scale, from the databases maintained by the partners of the research since 2003 and the other one was monitored and taken along the hydrological year of 2013-2014 through frequent measurements, performing essays and data processing. Then, descriptive statistics, hypothesis testing, exploratory data analysis, multivariate statistical techniques and multiple linear regression were carried out either for visual inspection or for statistical data investigation, in order to establish variation patterns and evaluate the association degree among variables. The first study revealed that the variation in minimum inter-event time criteria has reduced by almost 50% the number of events, and underestimated the average intensity of events by 4 times on average. The second study showed that the tropical coastal basin has approximately 4 times more events than those of semiarid, of which 6% of all events that remain unshaped, contribute to 38% of the total precipitation, and could be reduced by up to 97%, becoming mainly on unimodal events with peak to the left. The third study showed that soil moisture has a similar variation pattern up to 3 days in advance and exerts a significant influence, along with the precipitation and duration of rainfall events on both the runoff coefficient, the peak and the discharge of hydrographs; on the other hand, the principal component responsible for the peak and intensities of hyetographs was significant only on the runoff coefficient, which was, in turn, the best feature set for the multiple linear regression analysis, as it the coefficient of determination was 0.66. Therefore, this study highlights the importance of continuous and systematic hydroclimatological data monitoring for the experimental studies that may provide input to decision-making in water resources management measures.

KEYWORDS: experimental basins, sub-hourly scale, rainfall events, antecedent soil moisture, runoff hydrograph, statistical analysis.

SUMÁRIO

RESUMO
ABSTRACT
LISTA DE FIGURAS
LISTA DE TABELAS

		DE TADELAS	
1	INT	FRODUÇÃO	20
	1.1	PONTO DE PARTIDA E HIPÓTESE PRINCIPAL	22
	1.2	OBJETIVO GERAL	22
	1.3	OBJETIVOS ESPECÍFICOS	22
	1.4	ESTRUTURAÇÃO DA DISSERTAÇÃO	23
2	RE	FERENCIAL TEÓRICO	24
	2.1	A DEFINIÇÃO DO EVENTO CHUVOSO	24
	2.2	A CARACTERIZAÇÃO DO EVENTO CHUVOSO	24
	2.3	INFLUÊNCIA DA UMIDADE DO SOLO NOS PROCESSOS HIDROLÓGICOS	25
	2.4	EFEITOS DO USO DO SOLO E COBERTURA VEGETAL NOS PROCESSOS	
	HIDRO	LÓGICOS	26
	2.5	EFEITOS DA INFILTRAÇÃO NOS PROCESSOS HIDROLÓGICOS	26
	2.6	CARACTERÍSTICAS DO HIDROGRAMA DE ESCOAMENTO SUPERFICIAL	27
	2.7	MECANISMOS DE GERAÇÃO DE ESCOAMENTO	28
3	MA	TERIAIS & MÉTODOS	29
	3.1	CARACTERIZAÇÃO DAS ÁREAS DE ESTUDO	29
	3.1. 3.1. 3.2	\mathbf{r}	30
	DAS B	ACIAS EXPERIMENTAIS	33
	3.3	ESTUDO 1: EFEITOS DA VARIAÇÃO DOS CRITÉRIOS DE DEFINIÇÃO DE EVENTOS	
	CHUV	OSOS SOBRE AS FLUTUAÇÕES DE INTENSIDADE E A QUANTIDADE DE EVENTOS	37
	<i>3.3</i> . 3.4	1 Metodologia de variação dos critérios na definição do evento chuvoso ESTUDO 2: ANÁLISE DA OCORRÊNCIA, FORMA E CARACTERÍSTICAS DOS	37
	НІЕТО	GRAMAS EM BACIAS EXPERIMENTAIS DO NORDESTE BRASILEIRO	38
	3.4. 3.4. 3.4. 3.4.	 2 Classificação dos eventos chuvosos 3 Reclassificação dos eventos não caracterizados 	39 40

	3.5	ESTUI	00 3: Av	ALIAÇÃO I	DAS RELA	ÇOES ENT	ΓRE EVE	NTOS CH	UVOSOS	, UMIDA	DE
A	ANTEC:	EDENT	E DO SOLO	O E HIDRO	GRAMAS :	DE ESCOA	AMENTO	A PART	R DE AN	ÁLISES	
M	MULTI	VARIAI	OAS DE SU	AS VARIÁ	VEIS CAR	ACTERIZ	ANTES				43
	3.	2	racterizaç racterizaç racterizaç álises Est Análise Análise	ção das h ção dos e ção da un atísticas h e de agrup e de comp	es e defini idrogram ventos de nidade do Multivari pamento ponentes p múltipla	as de esc precipito solo adas principais	coament ação	o superj	icial		45 47 48 49
4	RES	SULTA	ADOS &	DISCUS	SÕES		•••••	•••••	•••••	•••••	52
4	1.1	Estui	00 1: Efe	ITOS DA V	/ARIAÇÃO	DOS CRI	TÉRIOS I	DE DEFIN	IÇÃO DE	E EVENT	OS
C	CHUVO	SOS SC	BRE AS F	LUTUAÇÕ	ES DE INT	ENSIDAD	E E A QU	JANTIDA	DE DE E	VENTOS	53
		-			MIT sobi	_					
	4.1.2	2 Infl	luência de	o critério	MIT sobi	re as inte	ensidade	s dos ev	entos e	subeven	tos
4	1.2				OCORRÊN						
Н	HETOC	RAMA	CEMBAC	a Euroei							
			S EM BAC	IAS EXPE	RIMENTAI	s do Noi	RDESTE]	Brasile	IRO		59
	4.2.2 dade 4.2.2	l Fre os 2 Van	equência e riação de	e precipit frequênc	ação dos ia dos evo	eventos entos não	classific	ados an erizados	tes da a durant	gregaçã e a	ĭo dos 59
	4.2.2 dade 4.2.2 recte 4.2.3	l Fre os 2 Var assifice 3 Fre	equência (riação de ação equência (e precipit frequênc e	ação dos ia dos eve ação acu	eventos entos não mulada o	classific	eados an erizados etos clas	tes da a durant	gregaçã e a s depois	ĭo dos 59 61 da
	4.2.2 dade 4.2.2 recle 4.2.3 agre 4.2.4	l Fre os 2 Van assifica 3 Fre gação 4 Ava	equência o riação de ação equência o dos dado aliação es	e precipit frequênc e precipit ss	ação dos ia dos evo ação acu das propi	eventos entos não mulada o riedades	classific caract dos even dos eve	erizados erizados tos clas ntos clas	tes da a	gregaçã e a s depois os antes	ĭo dos 59 61 r da 62 da
	4.2 dadd 4.2 recld 4.2 agre 4.2 recld 4.2	l Fre os 2 Var assifice 3 Fre gação 4 Ave assifice 5 Ave eclassi	equência oriação de açãoequência o dos dado aliação es açãoaliação es ficaçãoficaçãoficaçãoficação	e precipit frequênc e precipit os statística	ação dos ia dos eve ação acu das propi	eventos entos não mulada o riedades	classific	erizados an erizados tos clas ntos clas	tes da a durant sificado ssificado caracte	gregaçã s e a s depois os antes erizados	ĭo dos 59 61 da 63 depois 65
	4.2.2 dade 4.2.2 recle 4.2.2 recle 4.2.2 da re 4.2.0	l Fre os 2 Var assifice 3 Fre gação 4 Ave assifice 5 Ave eclassi 6 Var	equência o como como como como como como como c	e precipit frequênc e precipit os statística statística frequênc	ação dos ia dos eve ação acu das propi das propi	eventos entos não mulada o riedades riedades	classific	erizados an erizados intos clas intos clas intos não	tes da a durant sificado ssificado caracte	gregaçã e a s depois os antes erizados	ĭo dos 59 61 da 62 da depois 65 os não
	4.2.2 dadd 4.2.2 recld 4.2.2 agre 4.2.4 recld 4.2.2 da r 4.2.0	l Fre os 2 Vai assifice 3 Fre gação 4 Ava assifice 5 Ava eclassi 6 Vai	equência o como como como como como como como c	e precipit frequênc e precipit os statística statística frequênc o fortes e	ação dos ia dos eve ação acu das propi das propi ia e parti	eventos entos não mulada o riedades riedades	classific	erizados an erizados ntos clas ntos clas intos não	tes da a durant sificado ssificado caracte total do	gregaçã e a s depois os antes erizados	ŭo dos 59 61 e da 62 da 63 depois 65 os não 66
4	4.2 dadd 4.2 recld 4.2 agre 4.2 da r 4.2 da r 4.2	l Free Proposition	equência o como como como como como como como c	e precipit frequênc e precipit os statística statística frequênc o fortes e	tação dos ia dos eve tação acu das propi das propi ia e parti e extremos	eventos entos não mulada o riedades cipação s ções en ções en r	classific	erizados an erizados tos clas ntos clas ntos não	tes da a durant sificado caracte total do	gregaçã s depois os antes erizados os evento	ŭo dos 59 61 e da 62 da 63 depois 65 os não 66
4	4.2 dadd 4.2 recld 4.2 agre 4.2 da r 4.2 da r 4.2	l Fre	equência o como como como como como como como c	e precipit frequênc e precipit os statística statística frequênc o fortes e	ação dos ia dos eve ação acu das propi das propi ia e parti	eventos entos não mulada o riedades cipação s ções en ções en r	classific	erizados an erizados tos clas ntos clas ntos não	tes da a durant sificado caracte total do	gregaçã s depois os antes erizados os evento	ŭo dos 59 61 e da 62 da 63 depois 65 os não 66
4 A	4.2 dadd 4.2 recld 4.2 agre 4.2 da r 4.2 da r 4.2 ANTEC	l Fre	equência o como como como como como como como c	e precipit frequênc e precipit os statística frequênc o fortes e ALIAÇÃO I	tação dos ia dos eve tação acu das propi das propi ia e parti e extremos	eventos entos não mulada o riedades cipação e s composition construction constructi	classific	erizados an erizados etos clas entos clas entos não ipitação entos CH	tes da a durant sificado caracte total do UVOSOS	gregaçãs depoisos anteserizadoss evento	ŭo dos 59 61 e da 63 depois 65 os não 66
4 A	4.2.2 dadd 4.2.2 recld 4.2.2 da recld 4.2.2 da r. 4.2.0 cara 4.3 MNTEC	l Fre	equência deriação de açãoequência dos dado aliação es ficação de ados muito 3: AVA	e precipit frequênc e precipit os statística statística frequênc fo fortes e ALIAÇÃO I D E HIDRO	das propi das propi das propi das propi das propi Extremos DAS RELA	eventos entos não mulada o riedades riedades Cipação do COES ENTA ACTERIZA do Coes do Coes do Coes en Toes es coes en Toes en	classific	erizados an erizados etos clas entos clas entos não entos não entos não entos charace entos não	tes da a durant sificado caracte total do UVOSOS R DE AN	gregaçã e a s depois os antes erizados s evento , UMIDA ÁLISES	ão dos 59 61 da 63 depois 65 os não 66 66
4 A	4.2 dade 4.2 agre 4.2 da recle 4.2 da r 4.2 cara 4.3 MULTIV 4.3 chav	l Fre	equência e riação de ação equência e dos dado aliação es ação aliação de ados muit DO 3: AVA E DO SOLO DAS DE SU	e precipit frequênc e precipit os statística d statística d frequênc frequênc o fortes e ALIAÇÃO I D E HIDRO (AS VARIÁ das curva	ação dos ia dos eve ação acu das propi das propi ia e parti extremos DAS RELA GRAMAS AVEIS CAR us de calil	eventos entos não mulada o riedades cipação o construcción de ESCOA ACTERIZA de construcción d	classific	erizados an erizados tos clas ntos clas ntos não ipitação NTOS CH	tes da a durant sificado sificado caracte total do UVOSOS R DE AN	gregaçã e a s depois os antes erizados , UMIDA ÁLISES	io dos 59 61 da 62 da 63 depois 65 os não 66 71 -
4 A	4.2.2 dade 4.2.2 agree 4.2.2 da recle 4.2.3 da recle 4.2.3 da recle 4.2.4 da recle 4.2.5 da recle 4.3.3 antechay 4.3.2 chay 4.3.2	l Free Proposition	equência de cação DO SOLO DAS DE SU castrução de castruções de cas	e precipit frequênc e precipit os statística e statística e frequênc o fortes e ALIAÇÃO I D E HIDRO AS VARIÁ das curva	ação dos ia dos eve ação acu das propi das propi ia e parti extremos DAS RELA GRAMAS VEIS CAR as de calid	eventos entos não mulada o mul	classific	erizados an erizados etos clas entos clas entos não entos não entos não entos não entos chas entos não entos	tes da a durant sificado sificado caracte total do UVOSOS R DE AN	gregaçãs depoiss depoiss antess eventos eventos curvascurvas	io dos 59 61 r da 62 da 63 depois 65 DS não 66 71 71
4 A	4.2.2 dade 4.2.2 agree 4.2.2 da recla 4.3.3 antec	l Fre	equência oriação de açãoequência o dos dado aliação es açãoeriação de ados muito DO 3: AVA DO SOLO DAS DE SU enstrução o dise multifise multification de control of the co	e precipit frequênc e precipit os statística e statística e statística e ALIAÇÃO I D E HIDRO SAS VARIÁ das curva	dação dos ia dos eve ação acu das propi das propi ia e parti extremos DAS RELA GRAMAS VEIS CAR us de calid dos hidro dos event	eventos entos não mulada o riedades cipação o compação do compação do compação do compação do compação do compação do compagnamas o compagnama	classific	erizados an erizados atos clas ntos clas ntos não ipitação A PARTI de do so chuvoso	tes da a durant sificado sificado caracte total do UVOSOS R DE AN	gregaçãs depoiss depoiss anteserizadoss eventot Curvas	io dos 59 61 da 63 depois 65 os não 66 71 71 75 75
4 A	4.2.2 dade 4.2.2 agree 4.2.2 da recle 4.2.3 da recle 4.2.3 da recle 4.2.4 da recle 4.2.5 da recle 4.3.3 antechay 4.3.2 chay 4.3.2	l Free ps	equência de cação de	e precipit frequênc e precipit os statística e statística	ação dos ia dos eve ação acu das propi das propi ia e parti extremos DAS RELA GRAMAS VEIS CAR as de calid	eventos entos não mulada o mulada o mulada es riedades es consectos es subelades ante dades ante da	classific	erizados an erizados erizados etos clas entos clas entos não entos não entos não entos chação entos chação es do so es do so	tes da a durant sificado ssificado caracte total do UVOSOS R DE AN	gregaçã e a s depois os antes erizados s evento ALISES curvas	io dos 59 61 da 62 da 63 depois 65 os não 66 71 71 75 82 85

	5.1	ESTUDO 1: EFEITOS DA VARIAÇÃO DOS CRITÉRIOS DE DEFINIÇÃO DE EVENTOS	
	CHUVC	OSOS SOBRE AS FLUTUAÇÕES DE INTENSIDADE E A QUANTIDADE DE EVENTOS	96
	5.2	ESTUDO 2: ANÁLISE DA OCORRÊNCIA, FORMA E CARACTERÍSTICAS DOS	
	HIETO	GRAMAS EM BACIAS EXPERIMENTAIS DO NORDESTE BRASILEIRO	97
	5.3	ESTUDO 3: AVALIAÇÃO DAS RELAÇÕES ENTRE EVENTOS CHUVOSOS, UMIDADE	
	ANTEC	EDENTE DO SOLO E HIDROGRAMAS DE ESCOAMENTO A PARTIR DE ANÁLISES	
	MULTI	VARIADAS DE SUAS VARIÁVEIS CARACTERIZANTES	98
A	PÊND	ICE A	105
A	PÊND	ICE B	109
A	PÊND	ICE C	114
A	PÊND	ICE D	120
A	PÊND	ICE E	125
A	PÊND	ICE F	130

LISTA DE FIGURAS

Figura 1 - Localização dos postos pluviográficos estudados	. 29
Figura 2 - Localização da Bacia Experimental do Riacho Guaraíra e da Bacia	
Representativa do Rio Gramame	. 31
Figura 3 - Detalhamento sub-bacias em estudos na Bacia Experimental do Riacho Guara	
Figura 4 - Estação de monitoramento pluviográfico equipada com pluviógrafo digital e sonda de reflectometria no domínio do tempo	
Figura 5 - Coleta de amostras indeformadas de solo	
Figura 6 - Instalação da estação linimétrica e medição de vazão com micromolinete	. 54
realizados na seção de monitoramento da sub-bacia 503	. 35
Figura 7 - Programa de gerenciamentos de dados da bacia experimental do Riacho	
Guaraíra	. 36
Figura 8 - Definição do evento chuvoso utilizando o critério do mínimo intervalo tempo	
entre eventos (MIT) variado e mínima lâmina precipitada (MLP) igual a 2,5 mm	
Figura 9 - Definição do evento chuvoso utilizando o critério do mínimo intervalo tempo	
entre eventos (MIT) igual a 30 min e mínima lâmina precipitada (MLP) igual a 1,01	16
mm	
Figura 10 - Tipos de hietogramas sintéticos utilizados para classificação	
Figura 11 - Transformação dos eventos não caracterizados em eventos caracterizáveis a	
partir da agregação do intervalo de tempo Δt . No exemplo 1 (à esquerda) o Δt varia	
em 0, 5 e 10 min, já no exemplo 2 (à direita) o Δt varia em 0, 15 e 30 min	. 42
Figura 12 - Fluxograma empregado para a determinação dos critérios de definição de	
eventos chuvosos por meio do procedimento de tentativa e erro	. 45
Figura 13 - Fluxograma empregado na caracterização dos hidrogramas	
Figura 14 - Fluxogramas empregado na caracterização dos eventos chuvosos	. 47
Figura 15 - Fluxogramas empregado na caracterização da umidade antecedente do solo	. 48
Figura 16 - Fluxogramas empregado nas análises estatísticas multivariadas	. 52
Figura 17 - Intensidade do evento chuvoso, dos subeventos chuvosos e intensidade médi dos subeventos (MIT evento: 24 horas, MIT Subevento: 1 hora, ano de referência	
2005)	
Figura 18 - Intensidade do evento chuvoso, dos subeventos chuvosos e intensidade médi dos subeventos (MIT evento: 24 horas, MIT Subevento: 3 horas, ano de referência	
2005)	
Figura 19 - Intensidade do evento chuvoso, dos subeventos chuvosos e intensidade médi	a
dos subeventos (MIT evento: 24 horas, MIT Subevento: 6 horas, ano de referência	
2005)	. 56
Figura 20 - Gráfico do tipo BoxPlot com os valores mínimo, desvio padrão, média, e	. .
máximo da quantidade de subeventos (MIT do subevento: 1 hora)	. 56
Figura 21 - Gráfico do tipo BoxPlot com os valores mínimo, desvio padrão, média e	
máximo da quantidade de subeventos (MIT do subevento: 3 horas)	. 57
Figura 22 - Gráfico do tipo BoxPlot com os valores mínimo, desvio padrão, média e	
máximo da quantidade de subeventos (MIT do subevento: 6 horas)	
Figura 23 - Gráfico do tipo BoxPlot com os valores mínimo, média menos desvio padrão),
média, média mais desvio padrão, e máximo da intensidade média dos subeventos	50
(MIT do subevento: 1 hora)	. 58

Figura 24 - Gráfico do tipo BoxPlot com os valores mínimo, média menos desvio padrão,
média, média mais desvio padrão, e máximo da intensidade média dos subeventos
(MIT do subevento: 3 horas)
Figura 25 - Gráfico do tipo BoxPlot com os valores mínimo, média menos desvio padrão,
média, média mais desvio padrão, e máximo da intensidade média dos subeventos
(MIT do subevento: 6 horas)
Figura 26 - Frequência relativa e precipitação total dos eventos definidos e classificados
durante o período de estudo (hietogramas: R – Retangular; UC – Unimodal Central;
UD – Unimodal à Direita; UE – Unimodal à Esquerda; B – Bimodal; NC – Não
Caracterizado)
Figura 27 - Variação da frequência relativa dos eventos NC reclassificados após agregação
dos dados de precipitação (hietogramas: R – Retangular; UC – Unimodal Central; UD
 Unimodal à Direita; UE – Unimodal à Esquerda; B – Bimodal; NC – Não
Caracterizado)61
Figura 28 - Frequência relativa e precipitação total dos eventos após a agregação de dados
a 30 minutos (hietogramas: R – Retangular; UC – Unimodal Central; UD – Unimodal
à Direita; UE – Unimodal à Esquerda; B – Bimodal; NC – Não Caracterizado) 62
Figura 29 - Análise estatística de todos eventos classificados (hietogramas: R – Retangular;
UC – Unimodal Central; UD – Unimodal à Direita; UE – Unimodal à Esquerda; B –
Bimodal; NC – Não Caracterizado)
Figura 30 - Análise estatística dos eventos não caracterizados após reclassificados no
tempo de agregação de 30 minutos (hietogramas: R – Retangular; UC – Unimodal
Central; UD – Unimodal à Direita; UE – Unimodal à Esquerda)
Figura 31 - Variação de frequência e participação dos eventos NC de intensidade superior a
10 mm.h ⁻¹ no total precipitado (hietogramas: R – Retangular; UC – Unimodal Central;
UD – Unimodal à Direita; UE – Unimodal à Esquerda; B – Bimodal; NC – Não
Caracterizado)
Figura 32 - Variação de frequência e participação dos eventos NC, de duração superior a
120 min, no total precipitado (hietogramas: R – Retangular; UC – Unimodal Central;
UD – Unimodal à Direita; UE – Unimodal à Esquerda; B – Bimodal; NC – Não
Caracterizado)69
Figura 33 - Variação de frequência e participação dos eventos NC, de pico superior a 1,5
mm, no total precipitado (hietogramas: R – Retangular; UC – Unimodal Central; UD
 Unimodal à Direita; UE – Unimodal à Esquerda; B – Bimodal; NC – Não
Caracterizado)70
Figura 34 - Curvas de calibração das sondas TDR obtidos nas estações 03 e 04 da bacia
experimental do Riacho Guaraíra (Est. Pluv. – Estação Pluviográfica)72
Figura 35 - Teste post-hoc de Tukey aplicado sobre os dados de densidade aparente do solo
72
Figura 36 - Teste de Kruskal-Wallis aplicado sobre os dados de umidade do solo
Figura 37 - Curvas granulométricas médias do solo de cada estação pluviográfica da bacia
experimental do Riacho Guaraíra
Figura 38 - Curvas-chuve das seções obtidas no estado atual de coleta de dados
Figura 39 - Variação da precipitação, umidade do solo e vazão na bacia 502, de janeiro a
dezembro de 2014
Figura 40 - Variação da precipitação, umidade do solo, e vazão na bacia 501, de janeiro a
dezembro de 2014
Figura 41 - Variação da precipitação e vazão na bacia 503, de janeiro a dezembro de 2014

pelo método Single Linkage (Ta - Tempo de ascenção ao pico; Tr - Tempo de	
Recessão; Tct – Tempo do início ao centroide; Duração – Duração do hidrogra	
C.E. – Coeficiente de Escoamento; Volume – Volume de escoamento; Pico –	
hidrograma)	
gura 43 - Projeção das variáveis de escoamento no plano-fator 1x2, obtido da aná	
componentes principais (Ta - Tempo de ascenção ao pico; Tr - Tempo de Rec	
Tct – Tempo do início ao centroide; Duração – Duração do hidrograma; C.E Coeficiente de Escoamento; Volume – Volume de escoamento; Pico – Pico do	
hidrograma)	
gura 44 - Projeção das variáveis de escoamento no espaço tridimensional, obtido	
análise de componentes principais (Ta - Tempo de ascenção ao pico; Tr – Tem	
Recessão; Tct – Tempo do início ao centroide; Duração – Duração do hidrogra	-
C.E. – Coeficiente de Escoamento; Volume – Volume de escoamento; Pico –	
hidrograma)	
gura 45 - Curva Scree Plot dos autovalores da matriz de correlação obtidos das va	
de escoamento pela análise de componentes principais	
gura 46 - Gráfico <i>Amalgamation Schedule</i> para os métodos <i>Single Linkage</i> , <i>Com</i> p	plete
Linkage e Ward sobre as características dos eventos e subeventos chuvosos	83
gura 47 - Dendograma resultante da análise de agrupamento das variáveis dos evo	
subeventos chuvosos pelo método de Ward (Pico – Pico máximo do hietogran	
Intensidade média do hietograma; Dur – Duração total do hietograma)	
gura 48 - Projeção das variáveis dos eventos e subeventos no plano-fator 1x2, ob	tido da
análise de componentes principais (Pico – Pico máximo do hietograma; Int –	0.4
Intensidade média do hietograma; Dur – Duração total do hietograma)	
gura 49 - Dendograma resultante da análise de agrupamento dos valores de umida antecedente do solo pelo método Single Linkage (h – horas; d – dias)	
gura 50 - Projeção das diversas umidades antecedentes do solo no plano-fator 1x2	
obtido da análise de componentes principais (h – horas; d – dias)	
gura 51 - Dendograma resultante da análise de agrupamento conjunta das variáve	
precipitação, umidade do solo e escoamento pelo método de <i>Ward</i> (Pico – Pic	
máximo; Int – Intensidade média; Dur – Duração total; Ta - Tempo de ascensã	
pico; Tr – Tempo de Recessão; Tct – Tempo ao centroide; C.E. – Coeficiente	de
Escoamento; Vol – Volume de escoamento; Evento – Evento Chuvoso; Subev	
Subevento Chuvoso; Hid – Hidrograma de Escoamento Superficial; Umidade	_
Umidade do Solo à 0 horas)	
gura 52 - Dendograma resultante da análise de agrupamento das diferenças de ter	
entre hietograma e hidrograma pelo método de Ward (Ct-Ct – tempo centroide	
hietograma ao centroide do hidrograma; Fi-Fi – tempo fim a fim; Pi-Pi – temp	
pico; In-In – tempo de início ao início)	89
gura 53 - Projeção das variáveis de precipitação e umidade do solo no espaço	. D
tridimensional, obtido da análise de componentes principais (Int – Intensidade	
Precipitação; Dur – Duração; Ta_Evento – Tempo ao pico do hietograma; Tct	
 Tempo ao centroide do hietograma) gura 54 - Gráfico de valores previstos pela regressão pelos valores observados e ş 	
de probabilidade normal dos dados previstos, ambos para o pico do hidrogram	
gura 55- Gráfico de valores previstos pela regressão pelos valores observados e g	
de probabilidade normal dos dados previstos, ambos para o volume de escoam	
de biobabilidade normal dos dados bievisios, aminos mila o vontine de escaran-	
gura 56 - Gráfico de valores previstos pela regressão pelos valores observados e	gráfico

Figura 57 - Dados médios de densidade aparente das amostras de solo de 2013 e 2014 105 Figura 58 - Teste de Bartlett aplicado sobre os dados médios de densidade aparente 105 Figura 59 - Teste de homocedasticidade aplicado aos dados médios de densidade aparente do solo no ano hidrológico de 2013-2014, antes do teste ANOVA one-way 106 Figura 60 - Gráfico de efeitos resultante da aplicação do teste ANOVA one-way aplicado aos dados médios de densidade aparente do solo no ano hidrológico de 2013-2014 107 Figura 61 - Dados médios de umidade do solo coletados em 2013 e 2014
pelo método <i>Ward</i> (Pico – Pico do hidrograma; Volume – Volume de escoamento; C.E. – Coeficiente de Escoamento; Duração – Duração do hidrograma; Tct – Tempo do início ao centroide; Tr – Tempo de Recessão; Ta - Tempo de ascenção ao pico).
Figura 65 - Dendograma resultante da análise de agrupamento das variáveis dos eventos e subeventos chuvosos pelo método <i>Single Linkage</i> (Pico – Pico máximo do hietograma; Int – Intensidade média do hietograma; Dur – Duração total do hietograma)
Figura 66 - Dendograma resultante da análise de agrupamento das variáveis dos eventos e subeventos chuvosos pelo método <i>Complete Linkage</i> (Pico – Pico máximo do hietograma; Int – Intensidade média do hietograma; Dur – Duração total do hietograma)
Figura 67 - Dendograma resultante da análise de agrupamento dos valores de umidade antecedente do solo pelo método <i>Complete Linkage</i> (h – horas; d – dias)
antecedente do solo pelo método de <i>Ward</i> (h – horas; d – dias)
Figura 70 - Dendograma resultante da análise de agrupamento conjunta das variáveis de precipitação, umidade do solo e escoamento pelo método de <i>Complete Linkage</i> (Pico – Pico máximo; Int – Intensidade média; Dur – Duração total; Ta - Tempo de ascensão ao pico; Tr – Tempo de Recessão; Tct – Tempo ao centroide; C.E. – Coeficiente de Escoamento; Vol – Volume de escoamento; Evento – Evento Chuvoso; Subevento – Subevento Chuvoso; Hid – Hidrograma de Escoamento; Umidade – Umidade do Solo à 0 horas)
Figura 71 - Dendograma resultante da análise de agrupamento das diferenças de tempo entre hietograma e hidrograma pelo <i>Single Linkage</i> (In-In – tempo de início do hietograma ao início do hidrograma; Fi-Fi – tempo fim a fim; Ct-Ct – tempo centroide a centroide; Pi-Pi – tempo pico a pico)

npo centroide
132
os e gráfico
na 135
os e gráfico
ção pelo
136

LISTA DE TABELAS

Tabela 1 - Principais características das áreas de estudo
Tabela 2 - Coordenadas das estações pluviográficas e climatológica da Bacia Experimental
do Riacho Guaraíra33
Tabela 3 - Coordenadas das estações fluviográficas da Bacia Experimental do Riacho
Guaraíra
Tabela 4 - Precipitações anuais para os postos estudados
Tabela 5 - Metodologia de agregação de dados no passo de tempo de 2 minutos
Tabela 6 - Precipitação anual registrada pela estação, quantidade e precipitação total dos
eventos analisados
Tabela 7 - Exemplo das características determinadas dos eventos e seus subeventos (ano
2004, MIT 24 horas, MIT subevento 1 hora)
Tabela 8 - Valores médios de intensidade dos eventos e intensidade média dos subeventos,
e relação entre essas variáveis
Tabela 9 - Quantidade de eventos chuvosos classificados e não caracterizados
Tabela 10 - Quantidade percentual de eventos não caracterizados muito fortes e extremos
66
Tabela 11 - Valores de correlação das variáveis de precipitação e umidade do solo com as
componentes, obtidas da análise de componentes principais da Figura 53 (Prec –
Precipitação; Int – Intensidade; Dur – Duração; Ta – Tempo de Ascenção ao Pico do
Evento Chuvoso; Tct – Tempo de Ascenção ao Centroide do Evento Chuvoso) 90
Tabela 12 - Sumário da regressão linear múltipla obtida para o pico do hidrograma91
Tabela 13 - Sumário da regressão linear múltipla obtida para o volume de escoamento 93
Tabela 14 - Sumário da regressão linear múltipla obtida para o coeficiente de escoamento
94
Tabela 15 - Características determinadas dos eventos e seus subeventos (ano 2004, MIT
evento 24 horas, MIT subevento 1 hora)
Tabela 16 - Características determinadas dos eventos e seus subeventos (ano 2005, MIT
evento 24 horas, MIT subevento 1 hora)
Tabela 17 - Características determinadas dos eventos e seus subeventos (ano 2006, MIT
evento 24 horas, MIT subevento 1 hora)
Tabela 18 - Características determinadas dos eventos e seus subeventos (ano 2007, MIT
evento 24 horas, MIT subevento 1 hora)
Tabela 19 - Valores reais das variáveis de escoamento obtidos na caracterização dos
hidrogramas115
Tabela 20 - Valores normalizados das variáveis de escoamento obtidos na caracterização
dos hidrogramas e aplicados nas análises estatísticas
Tabela 21 - Valores reais das variáveis dos eventos e subeventos chuvosos obtidos na
caracterização dos hietogramas
Tabela 22 - Valores normalizados das variáveis dos eventos e subeventos chuvosos
obtidos na caracterização dos hidrogramas e aplicados nas análises estatísticas 123
Tabela 23 - Valores reais das variáveis de umidade do solo obtidos para as antecedências
de 0 hora até 5 dias, para cada hidrograma definido (h – horas; d – dias)126
Tabela 24 - Valores reais das variáveis de umidade do solo obtidos para as antecedências
de 6 dias até 30 dias e valores normalizados da umidade do solo à 0 hora, para cada
hidrograma definido (h – horas; d – dias)
Tabela 25 - Valores reais de distância entre hidrogramas e hietogramas
Tabela 26 - Sumário da regressão linear múltipla obtida para a duração do hidrograma . 134

Tabela 27 - Sumário da regressão linear múltipla obtida para a razão tempo de asce	enção
pelo tempo de recessão (Ta/Tr)	135
Tabela 28 - Coordenadas (ou score) das componentes principais obtidos para cada	
hidrograma	136

1 INTRODUÇÃO

O entendimento dos mecanismos de transformação chuva-vazão com dados em alta resolução temporal (*i.e.* escala sub-diária e sub-horária) é fundamental no aperfeiçoamento de grande parte dos estudos hidrológicos (*e.g.* sedimentação, erosibilidade, geração de escoamento, etc.), bem como no desenvolvimento de sistemas de alerta (*e.g.* à enchentes e à movimentação de terra), já que a precipitação a partir de certos valores limites desencadeia diversos fenômenos e desastres ambientais.

A compreensão dos processos hidrológicos de uma determinada região, bem como o monitoramento dos recursos hídricos, atesta o compromisso desta região com o crescimento social, político e econômico, ao provê conhecimento e informação para o desenvolvimento de projetos, por meio de práticas sustentáveis.

O desenvolvimento de estudos locais e regionais no âmbito da hidrologia básica experimental serve ainda de base para estudos internacionais, uma vez que países com uma hidrologia similar, que sofrem com a carência de dados, podem utilizar os resultados e conclusões desses estudos como referência e ponto de partida para novas pesquisas.

Em bacias experimentais, o monitoramento das variáveis hidrológicas é feito com boas resoluções espaciais e temporais, o que consequentemente permitem um estudo detalhado das variáveis. No caso da bacia experimental do riacho Guaraíra, localizada na região litorânea sul do estado da Paraíba, os pluviógrafos instalados medem a precipitação na escala sub-horária.

Os avanços alcançados nos últimos anos por meio da legislação não foram seguidos por avanços na área da hidrologia experimental, visto que séries longas de dados hidroclimatológicos são necessárias para as tomadas de decisão sobre os recursos hídricos, os quais por vezes ainda permanecem incompletos ou mesmo inexistentes, dada certas áreas de estudo (IBESA, 2002).

A literatura contém uma riqueza de estudos onde as propriedades dos eventos chuvosos se mostram relevantes para os processos hidrológicos, no entanto, ainda assim, pouca exploração científica tem sido realizada sobre a definição e análise das propriedades dos eventos chuvosos, ou mesmo sobre sua variabilidade geográfica e temporal (DUNKERLEY, 2008a).

A definição de um evento chuvoso é um conveniente modo de sumarizar séries temporais de valores de precipitações em entidades significativas em termos de aplicação

particular. Tais aplicações incluem estudos de geração de escoamento, erosão do solo, perdas por interceptação e modelagem da precipitação (BROWN *et al.*, 1985).

Definir e analisar as propriedades dos eventos chuvosos e sua variabilidade espaçotemporal é essencial para o desenvolvimento de uma correta interpretação dos diferentes tipos de precipitações e de seus impactos nos processos ambientais, em regiões geográficas das mais distintas naturezas (DUNKERLEY, 2008a).

Três linhas principais de pesquisas sobre a precipitação podem ser identificadas: (1) estimativa da precipitação por meio de imagens de satélite, em especial o TRMM (*Tropical Rainfall Measuring Mission*) (MEHRAN & AGHAKOUCHAK, 2014; YONG *et al.*, 2014; MÜLLER & THOMPSON, 2013); (2) análise de precipitações extremas e seus impactos ambientais (JENA *et al.*, 2014; YANGA *et al.*, 2010); (3) estudo detalhado sobre eventos chuvosos, suas características e suas influências sobre as demais etapas do ciclo hidrológico (PASCHALIS *et al.*, 2014; HAILE *et al.*, 2011; DUNKERLEY, 2010; DUNKERLEY, 2008).

A tarefa de padronizar os métodos de comparação das respostas hidrológicas entre bacias com características análogas tem sido bastante árdua, devido à inconsistência entre terminologias e metodologias aplicadas na literatura, embora a abordagem sobre as relações precipitação-vazão por vezes possa ser bastante simples e padrão (BLUME *et al.*, 2007).

A compreensão dos efeitos de escala e agrupamento dos tipos de evento pode também ajudar a desenvolver um melhor entendimento sobre a ocorrência de enchentes e secas, bem como uma melhor compreensão de como a mudança climática as afeta. Desse modo, as intensidades elevadas de precipitação e longos intervalos entre dias consecutivos com precipitação diária superior à 1mm.dia⁻¹ implicam no agrupamento de enchentes e secas (ZHANG *et al.*, 2012).

Os hietogramas observados dos eventos de precipitação têm sido repetidamente classificados em hietogramas sintéticos, a fim de permitir análises com respeito às propriedades da precipitação, bem como em avaliações de seus percentuais de participação nas precipitações totais a nível local e regional, em termos de bacias hidrográficas (BARBOSA *et al.*, 2011; COUTINHO *et al.*, 2014).

Com o propósito de contribuir para o melhoramento dos estudos hidrológicos que vêm sendo realizados pelo grupo de pesquisadores de recursos hídricos do LARHENA/UFPB (Laboratório de Recursos Hídricos e Engenharia Ambiental da Universidade Federal da Paraíba), ao longo do projeto de pesquisa BEER (Instalações de

Bacias Experimentais e Representativas na Rede de Hidrologia do Semiárido), pesquisas têm sido realizadas com dados monitorados por pluviógrafos digitais, sondas linimétricas e sondas de reflectometria no domínio do tempo, contidos na bacia experimental do Riacho Guaraíra, localizados na bacia representativa do Rio Gramame, Paraíba, e outras bacias hidrográficas situadas no Semiárido Nordestino.

1.1 Ponto de partida e hipótese principal

- Os eventos chuvosos dados por hietogramas de forma complexa, não definida, ou não caracterizada, representam uma parcela relativamente pequena dos eventos ocorridos no ano hidrológico, porém são responsáveis pelas maiores contribuições relativas na lâmina total anual precipitada (BARBOSA et al., 2011; COUTINHO et al., 2014).
- A hipótese principal deste estudo é que as propriedades dos eventos chuvosos, as quais são influenciadas pelos critérios de definição dos mesmos (DUNKERLEY, 2008a; DUNKERLEY, 2008b), aliados à condição de umidade antecedente do solo, podem explicar fidedignamente as principais características dos hidrogramas de escoamento superficial (e.g. volume de escoamento, pico do hidrogramas e coeficiente de escoamento), especialmente nos casos de eventos não caracterizados.

1.2 Objetivo geral

 Avaliar a influência dos critérios de definição de eventos chuvosos na determinação das características dos hietogramas, bem como analisar as propriedades de precipitação e de umidade antecedente do solo com as variáveis dos hidrogramas de escoamento superficial, em bacias experimentais nordestinas.

1.3 Objetivos específicos

- Estudo 1: Avaliar a efeito da variação dos critérios usados na definição de eventos chuvosos sobre o cálculo das intensidades e da quantidade de eventos;
- Estudo 2: Determinar as características de precipitação que melhor se associam às classes de hietograma sintéticos, bem como analisar o percentual relativo de ocorrência dos eventos de precipitação preponderantes, em uma bacia costeira tropical úmida e duas do Semiárido Nordestino;
- Estudo 3: Avaliar o grau de interdependência das relações existentes entre as características da precipitação, umidade antecedente do solo e vazão superficial, por

meio de técnicas estatísticas de análise multivariada, em três sub-bacias hidrográficas contidas na bacia experimental do Riacho Guaraíra.

1.4 Estruturação da dissertação

A dissertação encontra-se estruturada da seguinte forma: no primeiro capítulo (Introdução) relata-se uma contextualização abrangendo o tema em estudo, como também são estabelecidos os objetivos que se pretende alcançar com este trabalho. No capítulo 2 (Referencial Teórico) é apresentada a revisão dos estudos que fundamentaram as atividades deste estudo diante do atual panorama científico. As características fisiográficas da área de estudo são enfocadas no capítulo 3 (Caracterização das Áreas de Estudo). No quarto capítulo (Materiais & Métodos) estão descritas as etapas metodológicas utilizadas para atingir os objetivos propostos no capítulo 1. O capítulo 5 (Resultados & Discussões) se constitui dos resultados e discussões a respeito da definição de eventos chuvosos, características da precipitação e suas influências no processo de resposta hidrológica do escoamento superficial, bem como o reflexo da umidade antecedente do solo durante o processo. No último capítulo (Conclusões & Recomendações) são apresentadas as considerações finais acerca dos resultados obtidos durante a pesquisa, evidenciando a importância do trabalho experimental e sugerindo algumas recomendações em favor de estudos futuros. Por fim, foram listadas as referencias que serviram de aporte para a elaboração da dissertação, e os apêndices, nos quais constam os dados utilizados na confecção dos gráficos deste estudo e os demais resultados que não foram discutidos no corpo do trabalho.

2 REFERENCIAL TEÓRICO

O processo de transformação da chuva em vazão é bastante complexo e afetado por muitos fatores, dentre os quais as características da precipitação (*e.g.* intensidade, duração pico, etc.) e da bacia hidrográfica revelam-se como fatores primários afetando as respostas hidrológicas integradas (*e.g.* o hidrograma de escoamento) e as respostas hidrológicas distribuídas (*e.g.* a variabilidade espacial e temporal da umidade do solo) (RAN *et al.*, 2012).

Contudo, não apenas a magnitude da precipitação influencia a resposta hidrológica, mas também a distribuição de frequência, a sazonalidade (*i.e.* estação do ano de ocorrência), e as condições da bacia hidrográfica (*e.g.* umidade antecedente do solo e vazão antecedente) influenciam no pico e no volume de descarga, bem como a evaporação e a interceptação no dossel determinam as taxas nas quais rios e cursos d'água respondem a eventos de precipitação (KALANTARI *et al.*, 2014; BLUME *et al.*, 2007; EISENBIES *et al.* 2007; HARDER *et al.* 2007; MIWA *et al.* 2003).

2.1 A definição do evento chuvoso

A implicação da definição de evento chuvoso pelo MIT (*i.e.* mínimo intervalo de tempo entre eventos chuvosos) se mostra importante, sobretudo na intensidade média, pois, ao passo que o MIT varia de 15 minutos até 24 horas, a intensidade média pode diminuir em 46% e o número de eventos chuvosos em 22% (DUNKERLEY, 2008b).

Avaliações do efeito do estabelecimento do MIT variando de 30 min até 8h, para a resolução temporal de 1 min, possibilitaram ainda a verificação de uma relação direta da altitude com a duração do evento, com a lâmina precipitada e com o MIT; onde o número de eventos registrados mostrou-se inversamente relacionado à altitude (HAILE *et al.*, 2011).

2.2 A caracterização do evento chuvoso

Os hietogramas dos eventos chuvosos são classificados em hietogramas sintéticos, permitindo analisar os propriedades da precipitação, bem como avaliar seus percentuais de participação nas lâminas totais precipitadas a nível local e regional, em termos de bacias hidrográficas (BARBOSA *et al.*, 2011; COUTINHO *et al.*, 2014).

Simulações de eventos chuvosos com intensidades variáveis e perfis de eventos distintos têm mostrado que, hietogramas com pico tardio são os que provocam maiores valores de volume médio e pico máximo de escoamento superficial (DUNKERLEY,

2012). Enquanto isso, os eventos não caracterizados (*i.e.* sem forma definida) têm exibido as maiores durações, picos máximos e intensidades médias, além de serem os que proporcionalmente mais contribuíram para as lâminas mensais precipitadas (BARBOSA *et al.*, 2011; COUTINHO *et al.* 2014).

Estudos sobre tempestades com velocidades de deslocamento muito baixo mostram que as mesmas, em média, possuem picos de descarga elevados e um curto tempo até o pico de escoamento. No caso de precipitações fortes, a incerteza no desempenho gerado por um modelo hidrológico pode ser substancialmente elevado; tal incerteza foi consistentemente maior quando a bacia hidrográfica esteve seca, antes do início da tempestade, destacando o importante papel da umidade antecedente do solo na geração do escoamento (PASCHALIS *et al.*, 2014).

As características das cheias diferem quando obtidos de dados horários e diários, tanto para eventos chuvosos isolados quanto para os complexos. Além disso, a existência de um limiar na precipitação efetiva se mostra evidente para a ocorrência de eventos de cheias, após períodos relativamente secos (KOSTKA e HOLKO, 2003).

A avaliação de uma curta faixa de eventos chuvosos permite a investigação dos padrões espaço-temporais da precipitação e a estimativa de sua sazonalidade. Tal variabilidade influencia nas características dos processos hidrológicos, onde seus efeitos não são uniformes nos contribuintes do balanço hídrico das bacias hidrográficas (SHI *et al.*, 2013; ZHAO *et al.*, 2013; COSCARELLI e CALOIERO, 2012).

2.3 Influência da umidade do solo nos processos hidrológicos

Zonas ribeirinhas dominam o processo de geração de vazões superficiais e subterrâneas para pequenos e rápidos eventos chuvosos, sob a condição de umidade do solo seca, provocando picos de vazão rápidos. Enquanto que, encostas íngremes dominam a geração de vazões para grandes e lentos eventos chuvosos, na condição de umidade do solo úmida, antecipando o pico de umidade em relação ao de vazão (PENNA *et al.*, 2011).

Durante o período úmido de uma bacia costeira florestada, a precipitação controlou 70% da vazão gerada, e durante o período seco influenciou 20% das vazões. Enquanto isso, a condição antecedente de umidade em curto prazo (dado pelo índice de precipitação antecedente ao longo de 5 dias, *i.e.* 5-API) teve um papel mais importante do que em longo prazo (dado pelo índice de precipitação antecedente ao longo de 30 dias, *i.e.* 30-API) na obtenção da resposta hidrológica, durante o período quente (LA TORRE TORRES *et al.*, 2011).

Embora os dados indiquem que o coeficiente de escoamento atingisse valores de 19% durante os maiores eventos de precipitação, a resposta do fluxo de escoamento foi afetada expressivamente pelo conteúdo úmido antecedente, ou seja, pelos eventos de 5 a 20 mm, os quais foram predominantes e mais dispersos (CABALLERO *et al.*, 2012).

2.4 Efeitos do uso do solo e cobertura vegetal nos processos hidrológicos

Em quatro bacias tropicais úmidas cujos suprimentos de água são escassos, percebeu-se que áreas cobertas por 60% de florestas transformaram cerca de 50% da chuva total em fluxo de escoamento. Enquanto isso, nas bacias florestadas imperturbadas, o total de descargas foi menor do que 20% da quantidade de precipitação (CABALLERO *et al.*, 2012).

A fim de quantificar o impacto hidrológico de mudanças do uso do solo no pico e volumes de descargas, percebeu-se que as áreas 60% reflorestadas e canais gramados possuíram as maiores capacidades de redução dos picos de vazão. Além disso, quanto à redução do volume de vazão dos eventos de cheia, o reflorestamento de 30% de áreas à jusante da bacia (*i.e.* próximo ao exutório) foi sempre mais eficaz que as demais medidas. Ademais, o completo desmatamento da área de captação em estudo poderia ocasionar um aumento de 60% no pico de descargas e um aumento de 10% no volume de vazão para eventos extremos com período de retorno de 50 anos (KALANTARI *et al.*, 2014).

2.5 Efeitos da infiltração nos processos hidrológicos

Quanto aos padrões espaciais das taxas de infiltração e seus efeitos nos processos hidrológicos, em uma pequena sub-bacia ao longo de 2 anos (um seco e outro úmido), percebeu-se que menores precipitações produziram menores umidades do solo, condições nas quais houve mais repelência à água no solo, o qual reduziu as taxas de infiltração, gerando um maior escoamento superficial na condição seca (*i.e. overland flow*) e uma menor descarga de vazões (*i.e. storm runoff*) na condição úmida. Além disso, o fato de áreas baixas receberem uma maior contribuição do escoamento superficial e subterrâneo, as mesmas apresentaram mais repelência à água do que as encostas, possivelmente porque as substâncias repelentes e as partículas finas foram carreadas, deixando macroporos no solo (MIYATA *et al.*, 2010).

Ao inferir que a previsão dos hietogramas unitários depende de diversos fatores relacionados tanto às características das bacias quanto à fonte de dados de precipitação, estudos sobre a infiltração através do leito do rio constataram seu efeito no atraso do centro

de massa da precipitação efetiva e na antecipação do centro de massa das vazões para próximo do ponto inicial do escoamento direto, provocando uma elevação íngreme dos hidrogramas previstos. Além disso, as perdas por transmissão foram responsáveis pela diminuição dos volumes e dos picos de escoamento (REW e McCUEN, 2012).

2.6 Características do hidrograma de escoamento superficial

A exatidão da investigação das respostas hidrológicas foi influenciada pelo método aplicado na separação de hidrogramas de escoamento. Assim, ao avaliar seus efeitos em uma curta faixa de eventos durante 15 meses de dados, pôde-se inferir que os coeficientes de escoamento, obtidos com 5 métodos distintos, diferiram consideravelmente entre si e que tal diferença dependeu principalmente da forma do hidrograma nesse estudo (BLUME *et al.*, 2007).

Um estudo indicou uma tendência oposta entre a intensidade de precipitação e o coeficiente de escoamento, o que implica dizer que a variabilidade intra-anual da precipitação não seria o fator que determinaria os padrões dos coeficientes de escoamento (TIAN *et al.*, 2012).

Quanto à variabilidade sazonal do coeficiente de escoamento, esta é principalmente comandada pelas forças climáticas, enquanto que a variabilidade espacial é controlada pelas propriedades da paisagem, em geral, e pelas propriedades do solo, em particular (LI *et al.*, 2012).

As análises dos dados interanuais de precipitação e de vazão revelaram que os coeficientes de escoamento são baixos nos períodos secos, relacionado ao déficit de precipitação e às elevadas taxas de evaporação potencial. Igualmente, a queda nos coeficientes de escoamento na transição das estações úmida para a seca pode ser indicativo dos processos de abstração inicial da precipitação (*e.g.* depressão superficial, interceptação do dossel e fendas do solo por retração à secagem) (TIAN *et al.*, 2012).

A alteração do comportamento do escoamento é um reflexo da mudança da umidade superficial do solo, governada pela topografia na presença do nível de lençol freático raso durante a estação úmida, e governado apenas pelas propriedades do solo na ausência de nível freático, durante a estação seca (WESTERN *et al.* 1999; e TIAN *et al.*, 2012).

2.7 Mecanismos de geração de escoamento

Investigações de campo e modelagens sobre a dinâmica de descarga de vazões e nível de lençol freático em uma pequena sub-bacia florestada e mediterrânea observaram que o fluxo de base, governado pelo processo de geração de fluxo subsuperficial saturado (SSF), influenciou bastante na geração de vazões na calha do rio, cujo coeficiente de escoamento apresentou um comportamento não-linear, exibindo valores maiores que 2% apenas quando a umidade do solo foi maior do que 30% e a profundidade do lençol freático foi menor do que 1 m (NIEDDA e PIRASTRU, 2013).

Quanto aos padrões espaciais de umidade de solo e geração de vazões, a contribuição do processo de fluxo superficial de saturação (SOF) para as descargas de vazões ocorreu em maior proporção em áreas de fluxo convergente do que em áreas de fluxo divergente durante os picos de descargas, o que limitou a área de convergência do fluxo SSF ao fundo dos vales e as zonas de pasto natural, onde a profundidade do solo foi menor ou igual a 50 cm e a condutividade do solo foi baixa. Por outro lado, a rápida redução da declividade e condutividade do solo no pé das encostas florestadas, localizadas no fundo dos vales, resultou no afloramento do fluxo SSF (NIEDDA e PIRASTRU, 2013).

Ao analisar a geração de vazões em uma pequena sub-bacia úmida e temperada com solos profundos em diferentes escalas temporais, concluiu-se que o excesso de escoamento da infiltração (*i.e.* fluxo superficial Hortoniano) pode desempenhar um papel importante durante a ocorrência de precipitações intensas ocorridas durante os períodos secos, uma vez que tais eventos mostram elevados coeficientes de escoamento e menores valores de condutividade elétrica mínima (ZABALETA e ANTIGÜEDAD, 2013).

A elevada percentagem da lâmida total escoada (*i.e.* 55-85%) foi proveniente da água armazenada no solo, advinda de eventos chuvosos precedentes. Constatou-se também uma tendência específica de que a umidade do solo pouco influi no comportamento de vazões mais elevadas, sendo estas mais sensíveis às características da precipitação (ZABALETA e ANTIGÜEDAD, 2013; MELLO *et al.*, 2007).

3 MATERIAIS & MÉTODOS

3.1 Caracterização das áreas de estudo

Diferentes áreas de estudo foram utilizadas para o cumprimento dos objetivos propostos. Inicialmente, os dados pluviométricos de três bacias experimentais localizadas em pontos distintos do Nordeste Brasileiro foram usados para avaliar a influência dos critérios de definição de evento chuvoso na determinação das principais características de precipitação. Em seguida, os dados de precipitação, umidade do solo e vazão superficial foram monitorados em três sub-bacias contidas na bacia experimental do Riacho Guaraíra, para avaliar as relações entre as características destes três fenômenos hidrológicos.

3.1.1 Bacias experimentais contidas no Nordeste Brasileiro

Para o segundo estudo foi selecionado três pluviógrafos de três bacias hidrográficas experimentais (BHE), mostrados na Figura 1, onde: duas se situam no estado da Paraíba, uma no litoral e outra no interior; e uma no interior do estado do Ceará. As três BHE's foram selecionadas por conta das diferentes características climáticas, além de pertencerem à Rede de Hidrologia do Semiárido (REHISA, 2004), mantida em parte pelos autores desta pesquisa.

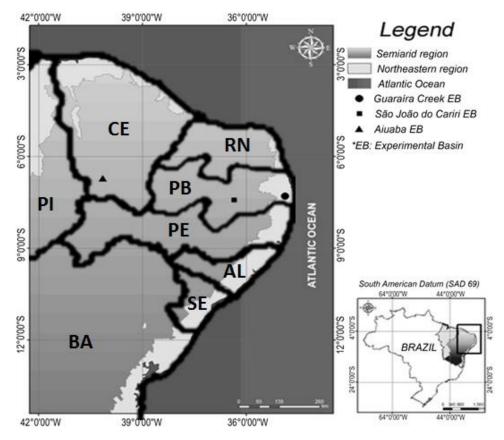


Figura 1 - Localização dos postos pluviográficos estudados

A BHE do Riacho Guaraíra, círculo na Figura 1, está localizada na Zona da Mata do litoral da Paraíba entre as coordenadas de 7º 11' e 7º 23' (latitude Sul) e 34º 48' e 35º 10' (longitude Oeste). Sua área de drenagem é de 5,74 km², faz parte da bacia hidrográfica representativa do Rio Gramame e, segundo a classificação de Köppen, seu clima é do tipo tropical úmido. A BHE de São João do Cariri, quadrado na Figura 1, situa-se entre as coordenadas 7º 20' e 7º 23' (Sul) e 36º 31' e 36º 33' (Oeste), na Zona do Cariri do interior da Paraíba. A terceira BHE é a de Aiuaba, triângulo na Figura 1, localizada entre as coordenadas 6º 41' e 6º 44' (Sul) e 40º 15' e 40º 18' (Oeste), encontra-se no interior do Ceará. Essas últimas se localizam na região Semiárida e possuem, respectivamente, áreas de drenagem de 13,78 km² e 12,05 km². Maiores detalhes sobre as áreas de estudo são apresentadas na Tabela 1.

Tabela 1 - Principais características das áreas de estudo

Dados gerais	BHE Aiuaba (P1)	BHE São João do Cariri (P102)	BHE Riacho do Guaraíra (P2)
Estado	Ceará	Paraíba	Paraíba
Área (km²)	12,05	13,78	5,74
Clima	Semiárido Quente	Semiárido Quente	Tropical Chuvoso
Precipitação Anual Média	560 mm	390 mm	1.700 mm
Período Chuvoso	Janeiro até Abril	Janeiro até Maio	Março até Julho
Temperatura Média Anual	26,0°C	26,2°C	26,0°C

3.1.2 Sub-bacias contidas na Bacia Experimental do Riacho Guaraíra

O primeiro e terceiro estudos foram desenvolvidos apenas na BHE Riacho Guaraíra, localizada na bacia representativa do Rio Gramame (doravante denominada BHR Rio Gramame), conforme Figura 2 e Figura 3. Onde a BHR Rio Gramame se situa parte no município de Alhandra e parte no de Pedras de Fogo entre as coordenadas UTM Norte 9.190,80 km e 9.195,25 km, e Leste 274,50 km e 277,00 km (*Datum* SAD 69), distante 40 km de João Pessoa, capital do estado da Paraíba.

Do ponto de vista climatológico, observa-se que o período chuvoso se concentra em cinco meses, compreendidos entre março e julho, com uma precipitação média anual de aproximadamente 1.700 mm, conforme Tabela 1. Além disso, a BHR Rio Gramame apresenta características de clima tropical chuvoso, segundo a classificação de Köeppen (PDRH, 2000).

Sua área é ocupada principalmente pela monocultura da cana-de-açúcar, com alguns remanescentes de vegetações Capoeira e de Mata Atlântica (LIRA *et al.*, 2003). Suas demais características físicas foram descritas detalhadamente por Goldfarb *et al.* (2002).

No mais, a BHR Rio Gramame se encontra próxima à barragem de Gramame-Mamuaba, cuja capacidade de armazenamento gira em torno da ordem de 56 milhões de m³, de importância superlativa para a região metropolitana de João Pessoa, pois é por meio dela que cerca de um quarto da população do Estado da Paraíba é abastecida (PDRH, 2000).

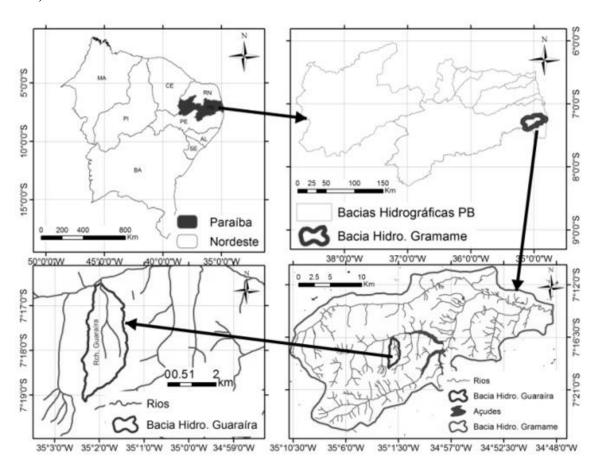


Figura 2 - Localização da Bacia Experimental do Riacho Guaraíra e da Bacia Representativa do Rio Gramame

A Figura 3 mostra o mapa de localização das estações de monitoramento da BHE Riacho Guaraíra, contemplado por: 4 pluviográficas, 1 é climatológica e 3 linimétricas; cujas coordenadas se encontram na Tabela 2 e Tabela 3. Além disso, percebe-se que 3 subbacias foram definidas com o propósito do desenvolvimento deste estudo, onde as duas adjacentes foram designadas pelas denominações bacia 501 e bacia 502, e aquela que as engloba, fora nomeada de bacia 503.

BACIA EXPERIMENTAL DO RIACHO GUARAÍRA ESCALA 1/20.000

ÁREA: 5,74 Km²

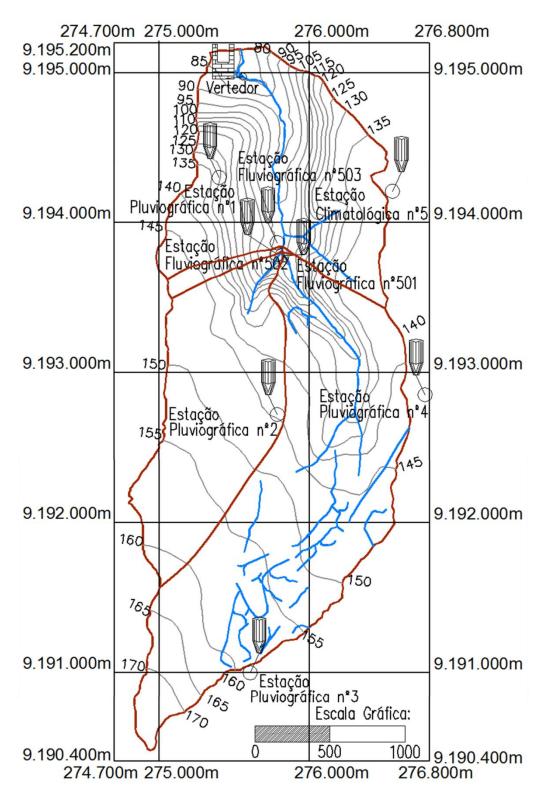


Figura 3 - Detalhamento sub-bacias em estudos na Bacia Experimental do Riacho Guaraíra

Tabela 2 - Coordenadas das estações pluviográficas e climatológica da Bacia Experimental do Riacho Guaraíra

Identificação	Tipologia	Localização	Longitude (m)	Latitude (m)
Est. Pluv. 01	Estação Pluviográfica	BHE*	275.401,85 L	9.194.297,56 S
Est. Pluv. 02	Estação Pluviográfica	BHE*	275.788,91 L	9.192.719,43 S
Est. Pluv. 03	Estação Pluviográfica	BHE*	275.608,07 L	9.190.997,32 S
Est. Pluv. 04	Estação Pluviográfica	BHE*	276.824,75 L	9.192.848,39 S
Est. Clim. 05	Estação Climatológica	BHE*	276.555,55 L	9.194.206,26 S

*Bacia Experimental do Riacho Guaraíra

Tabela 3 - Coordenadas das estações fluviográficas da Bacia Experimental do Riacho Guaraíra

Nome	Tipologia	Área (km²)	Longitude (m)	Latitude (m)
Est. Fluv. 501	Estação Fluviográfica	2,62	275.821,00 L	9.193.780,00 S
Est. Fluv. 502	Estação Fluviográfica	1,36	275.787,00 L	9.193.788,00 S
Est. Fluv. 503	Estação Fluviográfica	4,05	275.788,00 L	9.193.864,00 S

3.2 Instrumentos, materiais e procedimentos utilizados no monitoramento das bacias experimentais

Séries de dados pluviográficos sub-horários, monitorados desde 2003, foram coletados do banco de dados das três bacias experimentais, para a realização dos estudos referentes à definição, classificação e caracterização dos eventos chuvosos. Atividades de campo foram realizadas ao longo de 2014 para a coleta de dados de precipitação, reflectometria no domínio do tempo e níveis linimétricos, necessários para a obtenção do hietograma dos eventos chuvosos, da umidade antecedente do solo e do hidrograma de escoamento superficial. O processamento e manipulação dos dados foram realizados no Laboratório de Recursos Hídricos e Engenharia Ambiental (LARHENA) e no Laboratório de Hidráulica, ambos da Universidade Federal da Paraíba (UFPB).

Os registros de precipitação foram coletados por meio do pluviógrafo digital (mecanismo *Tipping Bucket*), modelo TB4-L da Campbell[®] Scientific, Inc., cuja basculada possui uma precisão de 0,254 mm de chuva precipitada, valor relativo a 0,01 polegadas no sistema de medidas americano (Figura 4). A resolução temporal dos pluviógrafos instalados na BHE do Riacho Guaraíra e do São João do Cariri é de 1 minuto, enquanto que na BHE de Aiuaba é de 5 minutos.

Figura 4 - Estação de monitoramento pluviográfico equipada com pluviógrafo digital e sonda de reflectometria no domínio do tempo

Os dados de umidade do solo foram coletados por meio da sonda de reflectometria no domínio do tempo (sonda TDR), modelo CS-616 da Campbell[®] Scientific, Inc. (Figura 4), cujo registro horário da constante dielétrica oscilou na faixa de 15 a 35 ms, ao longo do ano hidrológico em estudo (2013 a 2014), na BHE Riacho Guaraíra. Para tanto, realizou-se a calibração das sondas TDR a fim de converter os dados da constante dielétrica para umidade do solo, por meio da aplicação de regressões polinomiais do 2º grau. A umidade do solo foi obtida por meio de pesagens sucessivas de amostras indeformadas de solo (Figura 5) úmido e seco, coletados *in loco* nas cinco estações de monitoramento pluviográfico a cada 30 dias, nos períodos úmidos e secos do ano hidrológico.

Figura 5 - Coleta de amostras indeformadas de solo.

Os dados linimétricos nas sub-bacias da BHE Riacho Guaraíra foram monitorados a cada 15 minutos a partir de 2013, com uma sonda de pressão instalada para medir a coluna d'água, desenvolvida pelo fabricante Rene Neuenschwander em parceria com o professor Dr. Cristiano das Neves Almeida. No entanto, em função de testes, o único período que esteve apto para ser utilizado neste estudo foi aquele de janeiro a outubro de 2014, que engloba o período chuvoso da área de estudo. Para a obtenção das curvas-chave das subbacias 501, 502 e 503, as vazões foram obtidas tanto com o auxílio de um micromolinete (Figura 6) quanto por meio de medições expeditas, respectivamente nas vazões de alta/média e baixa. Os valores de coluna d'água foram correlacionados aos de coluna d'água, por meio de aplicação de regressões exponenciais.

Figura 6 - Instalação da estação linimétrica e medição de vazão com micromolinete realizados na seção de monitoramento da sub-bacia 503

Arquivos no formato *.dat foram coletados periodicamente a cada 15 dias por meio de um *notebook* pelo *software* PC200W 3.3 da Campbell[®] Scientific, Inc., os quais são armazenados no *datalogger* (*i.e.* aparelho de armazenamento de dados localizado nas estações), este que permite coletar parte ou a totalidade de dados. Os modelos de *dataloggers* existentes na BHE Riacho Guaraíra são o CR510 e o CR10X, os quais operam por meio de programas desenvolvidos na plataforma Edlog, integrado ao programa PC208, que permitem o armazenamento dos dados segundo critérios que estabelecem os intervalos de captação.

Após a coleta, os arquivos no formato *.dat são analisados por meio de uma planilha eletrônica desenvolvida no MS Excel, programada com sub-rotinas na linguagem Visual Basic for Applications (Figura 7), a fim de facilitar a supervisão visual das informações que estão sujeitas a falhas nas sondas e dispositivos da estação. Estas informações são armazenadas no banco de dados do PostgreSQL, ficando então disponíveis para o uso.

Figura 7 - Programa de gerenciamentos de dados da bacia experimental do Riacho

A manutenção dos equipamentos foi feita toda vez que se registraram dados errôneos ou quando as estações pararam de funcionar. As medidas adotadas para obtenção das soluções resumiram-se boa parte na troca das baterias externas dos reguladores de voltagem ou das baterias internas dos *dataloggers*, bem como na substituição dos dispositivos constituintes da estação. Isso geralmente foi detectado quando do entupimento do pluviógrafo, da redução do desempenho do painel solar, de danificações no regulador de voltagem e no *datalogger*.

3.3 Estudo 1: Efeitos da variação dos critérios de definição de eventos chuvosos sobre as flutuações de intensidade e a quantidade de eventos

3.3.1 Metodologia de variação dos critérios na definição do evento chuvoso

Para este estudo foram utilizados dados de precipitação instantânea de 4 anos (2004 a 2007), coletados do posto pluviográfico nº1 da bacia experimental do Riacho Guaraíra. Esses dados foram processados numa planilha eletrônica do MS Excel, desenvolvida para este estudo. Nessa planilha foram programadas funções para:

- 1. Definir os eventos chuvosos em função dos critérios de lâmina mínima precipitada (MLP) e do mínimo intervalo de tempo entre eventos (MIT), sendo este o intervalo de tempo mínimo entre o termino de um evento chuvoso e início de outro. Na planilha, o MIT pode variar de 1 minuto até 24 horas, semelhante ao realizado por DUNKERLEY (2008). Para este estudo foi utilizada a MLP de 2,5 mm e apenas 3 MIT's, sendo eles: 6, 12 e 24 horas; para que pudéssemos avaliar o efeito da variação desses MIT's sobre as características dos eventos chuvosos. Os eventos chuvosos contam com informações sobre: ano, dia juliano, hora, valor da precipitação, e quantidade de registro do evento. A Figura 8 exemplifica a definição de eventos e subeventos chuvosos;
- 2. Calcular as características dos eventos chuvosos: precipitação acumulada, duração e intensidade;
- 3. Determinar os subeventos de cada evento chuvoso, utilizando o mesmo critério do MIT (ver Figura 8). Nesta situação, foram utilizados MIT's de 1, 3 e 6 horas, já que o mínimo valor do MIT dos eventos chuvosos foi 6 horas e porque se deseja avaliar a variação das características do subeventos.
- Calcular as características de cada subevento: precipitação acumulada, duração, intensidade, quantidade, intensidade média, duração média e intervalo médio de tempo sem precipitação;
- Compilar todos os dados e resultados numa tabela, a fim de permitir a realização de análises estatísticas do comportamento da intensidade e suas flutuações em eventos e subeventos chuvosos.

Para analisar a intensidade de eventos chuvosos e suas flutuações, foram definidos os seguintes termos:

1. Intensidade do evento chuvoso: relação entre a lâmina total precipitada e sua duração;

- 2. Intensidade dos subeventos chuvosos: relação entre a lâmina total de cada subevento e sua duração;
- 3. Intensidade média dos subeventos chuvosos: valor médio das intensidades dos subeventos chuvosos, que compõem um evento chuvoso.

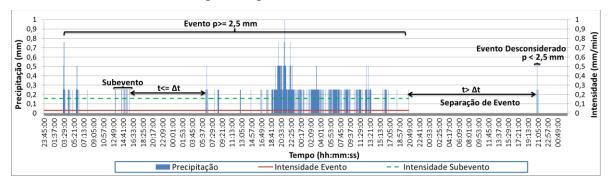


Figura 8 - Definição do evento chuvoso utilizando o critério do mínimo intervalo tempo entre eventos (MIT) variado e mínima lâmina precipitada (MLP) igual a 2,5 mm

3.4 Estudo 2: Análise da ocorrência, forma e características dos hietogramas em bacias experimentais do Nordeste Brasileiro

3.4.1 Estabelecimento dos critérios na definição do evento chuvoso

Para este estudo, foram utilizados 4 anos de dados comuns aos três pluviógrafos localizados nas bacias experimentais, conforme apresentado na Tabela 4. A escolha deste período de dados (2005 a 2008) se deu pelo fato do mesmo ter contemplado anos chuvosos, secos e mediamente chuvosos nas três bacias hidrográficas.

	1 ,					
	Precipitação anual (mm)					
Anos	BHE Aiuaba	BHE São João	BHE Riacho			
Allos	(P1)	do Cariri	do Guaraíra			
		(P102)	(P2)			
2005	518,2	636,3	1.205,7			
2006	559,6	462,0	1.518,2			
2007	739,6	254,2	1.661,4			
2008	733,0	762,2	1.760,0			

Tabela 4 - Precipitações anuais para os postos estudados

De posse dos registros de precipitação, os eventos chuvosos foram definidos e selecionados segundo os seguintes critérios: a lâmina mínima precipitada (MLP) e o mínimo intervalo de tempo entre eventos (MIT). Conforme apresentado na Figura 9 e explicado a seguir.

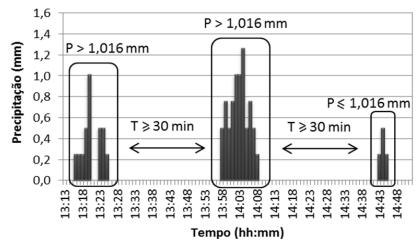


Figura 9 - Definição do evento chuvoso utilizando o critério do mínimo intervalo tempo entre eventos (MIT) igual a 30 min e mínima lâmina precipitada (MLP) igual a 1,016 mm

Evento chuvoso foi definido como aquele em que a lâmina precipitada acumulada ultrapasse 1,016 mm (*i.e.* 4 basculadas) com intervalo entre as basculadas inferior a 30 minutos, a fim de que a quantidade de eventos chuvosos classificados fosse a maior possível. Sendo assim, a Figura 9 exibe apenas dois eventos chuvosos, visto que a soma dos pulsos armazenados após as 14 horas e 43 minutos não se adéquam ao primeiro critério mencionado, pois a precipitação acumulada vale 1,016 mm. Ainda na Figura 9, vê-se que embora o primeiro evento chuvoso apresente um período de 2 minutos sem precipitação, este permanece inferior aos 30 minutos, não consolidando a separação do evento.

3.4.2 Classificação dos eventos chuvosos

Com todos os eventos chuvosos definidos, inicia-se a classificação destes a partir da associação da forma dos hietogramas observados com aspectos semelhantes, dentre grupos de hietogramas sintéticos.

Os hietogramas sintéticos selecionados para classificação dos eventos chuvosos são apresentados na Figura 10, sendo divididos em: Retangular (R); Unimodal com pico à Esquerda (UE), pico à Direita (UD) e pico Central (UC); Bimodal (B); e Não caracterizado (NC). Tal classificação foi realizada de maneira subjetiva a partir da inspeção visual dos hietogramas observados, cujo procedimento foi independentemente executado por duas pessoas. Em seguida, os resultados foram confrontados e debatidos de modo a se ter uma maior exatidão e padronização, para que então fosse atribuída adequadamente uma classe de hietograma sintético a cada evento chuvoso.

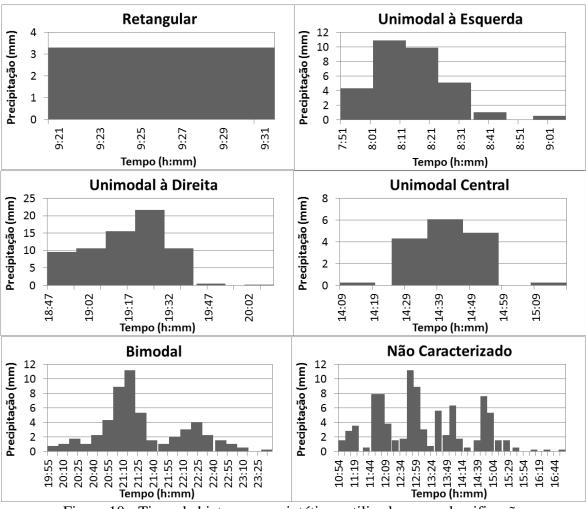


Figura 10 - Tipos de hietogramas sintéticos utilizados para classificação

3.4.3 Reclassificação dos eventos não caracterizados

Nas estações pluviográficas, a precipitação é mensurada pelo número de basculadas registrada dentro de um determinado período de tempo. A metodologia de reclassificação dos eventos Não Caracterizados (NC) consiste em: (1) somar as lâminas precipitadas para um determinado período de agregação (Δt), maior do que aquele utilizado pelo equipamento para o armazenamento das lâminas precipitadas (Tabela 5); e, (2) transformar um evento NC em um evento caracterizável, caso haja a possibilidade de realizá-lo. Em certos casos, pequenos períodos de agregação são suficientes para transformar um evento NC em um evento caracterizável, em outros casos, isso só ocorre se forem utilizados intervalos de agregação mais elevados.

Tabela 5 - Metodologia de agregação de dados no passo de tempo de 2 minutos

Ano	Dia	Horário	Prec.	Δt
Allo	Juliano	погано	(mm)	(min)
2006	12	14:11:00	0,254	-
2006	12	14:12:00	0,508	1,00
2006	12	14:13:00	0,254	2,00
2006	12	14:14:00	0,762	-
2006	12	14:15:00	0,254	1,00
2006	12	14:16:00	0,254	2,00
		\downarrow		
Ano	Dia	Horário	Prec.	Δt
Ano	Juliano	погапо	(mm)	(min)
2006	12	14:11:00	1,016	-
2006	12	14:14:00	1,270	_

O período Δt de agregação se refere à parcela de tempo acrescida ao horário do registro anterior, para o acúmulo das lâminas precipitadas. Desse modo, as durações e suas respectivas lâminas são somadas como se o equipamento de armazenamento de dados tivesse coletado tais registros para um o novo passo de tempo, *i.e.* no passo de tempo t+Δt. Já a Figura 11 mostra dois exemplos reais de eventos NC que foram agregados com diferentes valores de Δt, utilizando a metodologia abordada. O primeiro exemplo mostra a transformação de um evento NC em evento UE, para 5 e 10 minutos de agregação. Já o segundo, apresenta a transformação de um evento NC em evento UD, para 15 e 30 minutos de agregação.

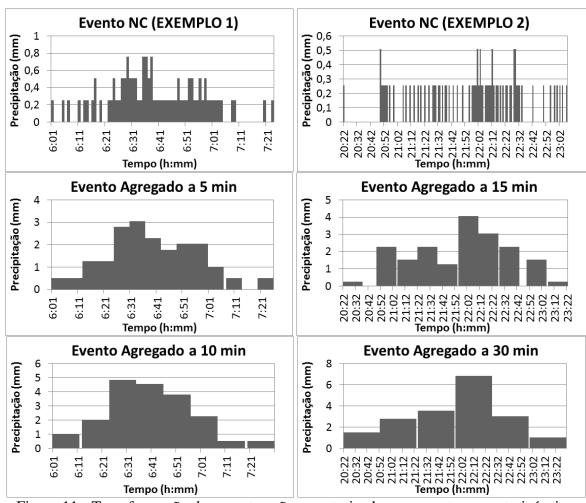


Figura 11 - Transformação dos eventos não caracterizados em eventos caracterizáveis a partir da agregação do intervalo de tempo Δt . No exemplo 1 (à esquerda) o Δt varia em 0, 5 e 10 min, já no exemplo 2 (à direita) o Δt varia em 0, 15 e 30 min

As estações pluviográficas das BHE's do São João do Cariri e Riacho Guaraíra registram dados de precipitação a cada minuto, quando da ocorrência destes registros, e a BHE Aiuaba a cada 5 minutos. Em decorrência dessas elevadas resoluções, o procedimento de agregação desses eventos pôde ser feito com intervalos de acúmulo de tempo de 2, 5, 7, 10, 15 e 30 minutos, de modo a permitir que um evento tomasse uma forma conhecida. O valor de Δt foi limitado a 30 minutos, pois a partir deste tempo de agregação, uma parte considerável dos eventos chuvosos NC eram totalmente acumulados ao instante inicial do evento, passando exclusivamente para a forma de eventos R.

Os eventos NC agregados foram novamente submetidos ao processo de classificação, pelo qual todos os eventos chuvosos haviam sido inicialmente submetidos, enquadrando-se em uma das classes já descritas, *i.e.* R, UE, UD, UC, B e NC. Vale salientar que, nem todos os eventos deixam de ser não caracterizado, o que depende da sua complexidade, no que se refere às flutuações dos picos e a duração dos mesmos.

3.4.4 Análise detalhada dos eventos chuvosos

Análises estatísticas e gráficas foram realizadas sobre os eventos reclassificados, onde seis tipos de resultados puderam ser avaliados: (1) quantificação de eventos caracterizáveis e não caracterizáveis; (2) frequência relativa dos tipos de hietograma, antes e após a reclassificação dos eventos NC, bem como de seus percentuais de participação na lâmina total precipitada; (3) variação da frequência relativa dos eventos NC reclassificados, para vários tempos de agregação de dados; (4) análises estatísticas das principais características da precipitação antes da reclassificação, assim como no tempo de agregação de 30 minutos (*i.e.* após a reclassificação); (5) variação das frequências relativas dos eventos NC reclassificados de elevada intensidade, duração e pico (por postos), assim como suas participações na lâmina total precipitada.

As análises anteriormente mencionadas foram feitas com auxílio do programa MS Excel, programada com sub-rotinas na linguagem de programação *Visual Basic for Applications* (VBA). As características da precipitação selecionadas, bem como a definição dos seus valores limites na categoria de eventos muito fortes e extremos, foram em parte semelhantes àqueles adotados por Tokay & Short (1996), quanto à intensidade. Os demais valores considerados para os eventos, que a partir de agora serão referidos como muito fortes e extremos, foram também os de duração maior que 120 minutos e os de pico maior que 1,5 mm. A escolha desses valores de referência também se baseia em observações *in loco* e na experiência prática, bem como nas avaliações preliminares dos dados que foram feitas ao longo do período em estudo.

3.5 Estudo 3: Avaliação das relações entre eventos chuvosos, umidade antecedente do solo e hidrogramas de escoamento a partir de análises multivariadas de suas variáveis caracterizantes

3.5.1 Calibração das curvas e definição de eventos chuvosos

O estudo apresentado *a posteriori* requer que sejam obtidas as curvas de calibração dos postos 02 e 04, para as sub-bacias 501 e 502, respectivamente; e no caso da sub-bacia 503, os valores de umidade antecedente do solo foram calculados pela média ponderada das umidades nas sub-bacias 501 e 502. Para isso, testes de significância foram aplicados sobre as características de densidade aparente e conteúdo volumétrico de água do solo dos cinco postos, a fim de avaliar a homogeneidade espaço-temporal da umidade do solo.

Sabendo que as coletas de solo foram feitas de maneira independente e aleatória, partiu-se inicialmente para a aplicação do teste de Bartlett, a fim de constatar se os valores

médios das características de umidade do solo, anteriormente descritas, apresentam variância homogênea, com dados distribuídos segundo a curva normal. Na situação de uma variância homogênea, o método estatístico a ser aplicado seria o ANOVA *one-way*. Caso contrário, o teste mais apropriado seria o teste não-paramétrico de Kruskal-Wallis (ESTATCAMP, 2015).

Se o resultado destes testes for significativamente favorável à hipótese nula, então poderíamos interpretar a umidade do solo como heterogênea em toda bacia hidrográfica. Neste caso, o mais indicado seria a aplicação de um teste *post-hoc* para identificar quais postos da bacia hidrográfica têm características semelhantes. Para tal, o teste *post-hoc*, subsequente ao ANOVA *one-way*, é o teste de Tukey; já o teste subsequente ao de Kruskal-Wallis, é o teste de Dunn (ESTATCAMP, 2015).

Para reforçar ainda mais a decisão de atribuir a curva de calibração da umidade do solo de um posto a outro, quando da insuficiência de dados de um destes, foram realizados testes granulométricos com os solos de todas as estações. Tais coletas de solo foram realizadas em duplicata e coletados até 50 cm de profundidade, para as análises granulométricas e texturais.

Medições periódicas de vazão e leituras da coluna d'água foram realizadas nas seções das sub-bacias em estudo, a fim de permitir o traçado de suas curvas-chave por meio da aplicação de regressões exponenciais. As curvas-chave das seções em monitoramento foram aplicadas aos dados de coluna d'água gerando os perfis dos hidrogramas de escoamento das sub-bacias. Os hidrogramas de escoamento superficial foram definidos a partir da metodologia descrita por Villela & Mattos (1975), a qual será explicada adiante do item 3.5.2. Cada hidrograma de escoamento superficial foi tarjado com um identificador numérico, os quais foram utilizados durante todo o estudo para a identificação dos eventos chuvosos responsáveis, bem como para os valores de umidade antecedente que influenciam os mecanismos de geração de vazão nas sub-bacias.

De posse do instante inicial dos eventos de escoamento superficial, os critérios de definição de eventos chuvosos também puderam ser testados de modo a revelar o(s) hietograma(s) responsável(is) por cada hidrograma. Este procedimento foi realizado com os dados de precipitação obtidos do posto pluviográfico nº4, e servirá para todas as três sub-bacias em estudo, já que esse posto apresentou uma série de dados completa (*i.e.* sem falhas) e pode ser considerado representativo da localidade, dado que a bacia experimental do Guaraíra possui uma pequena área de 5,74 km² (ver Tabela 1). Enfim, para a obtenção

dos critérios de definição e eventos e subeventos chuvosos foram seguidos os passos sintetizados pelo fluxograma das Figura 12.

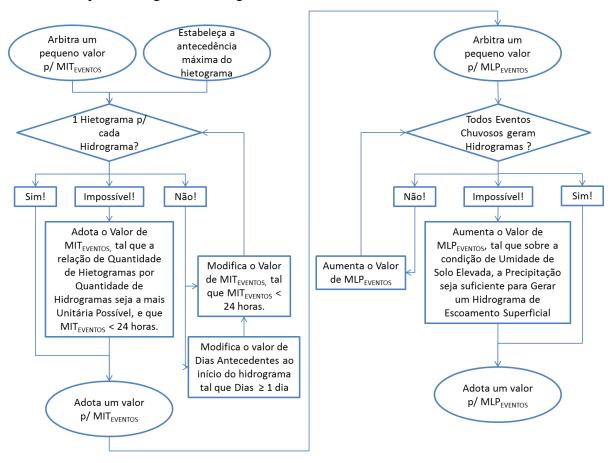


Figura 12 - Fluxograma empregado para a determinação dos critérios de definição de eventos chuvosos por meio do procedimento de tentativa e erro

Conforme a Figura 12, quatro critérios foram trabalhados: o mínimo intervalo de tempo entre eventos e entre subeventos (MIT_{EVENTOS} e MIT_{SUBEVENTOS}, respectivamente), a mínima lâmina precipitada (MLP_{EVENTOS}) e o tempo de antecedência máxima do início do evento chuvoso com relação ao início do hidrograma. No caso do MIT_{SUBEVENTOS}, entendese neste estudo que cada subevento chuvoso pode provocar um pico dentro do hidrograma de escoamento superficial, de modo que se tentou atingir a relação unitária de um subevento para cada pico. Exemplos gráficos da definição de eventos chuvosos, utilizando alguns desses critérios, foram demonstrados anteriormente nas Figura 8 e Figura 9.

3.5.2 Caracterização das hidrogramas de escoamento superficial

Os eventos de escoamento superficial são inicialmente definidos por meio de um método de separação de hidrogramas descrito por Villela & Mattos (1975). O ponto inicial do hidrograma de escoamento superficial é definido visualmente como aquele ponto de ascensão de vazão, onde a capacidade de infiltração do solo é excedida, e a contribuição da vazão na calha do rio passa a ser feita também pelos mecanismos de escoamento

superficial. Já o ponto final é aquele em que a contribuição de vazão cessa ou retorna a se fazer majoritariamente pelo escoamento de base. O diagrama de vazões entre os pontos inicial e final, excluída a área relativa ao escoamento de base, é o evento ou hidrogramas de escoamento superficial. Outras metodologias são abordadas em Blume *et al.* (2007).

Para cada evento de escoamento foram calculadas suas características, como: o volume de descarga, a vazão de pico, o coeficiente de escoamento, tempo de recessão, etc.; de acordo com o passo a passo exibido na Figura 13.

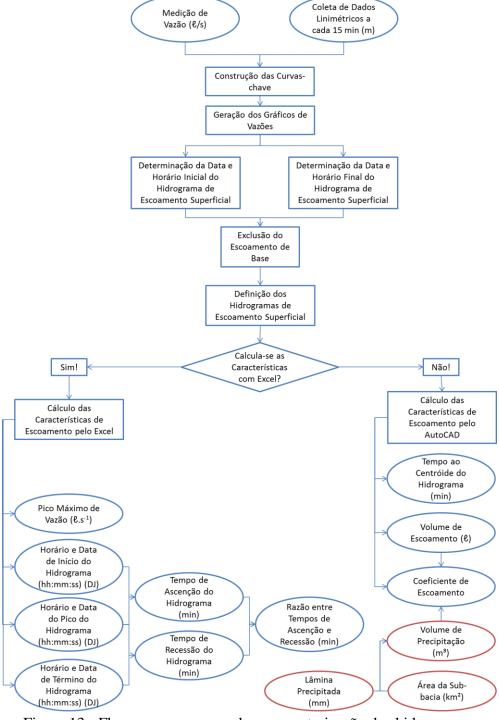


Figura 13 - Fluxograma empregado na caracterização dos hidrogramas

3.5.3 Caracterização dos eventos de precipitação

As propriedades dos eventos chuvosos e de seus subeventos também foram calculadas, a fim de compará-las com as características das vazões e de umidade do solo. As variáveis de precipitação estudadas foram: a lâmina total precipitada, a intensidade média, o pico máximo, a duração do evento, etc.; conforme apresentado na

Figura 14. Com isto, a natureza das relações desses dados poderão ser determinados por meio de análises estatísticas de componentes principais e análise de agrupamento de dados.

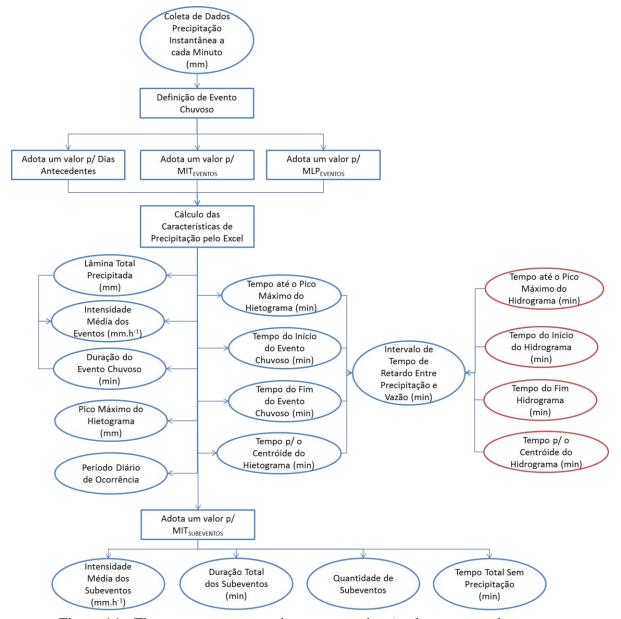


Figura 14 - Fluxogramas empregado na caracterização dos eventos chuvosos

3.5.4 Caracterização da umidade do solo

A umidade do solo foi obtida no instante inicial do evento de escoamento superficial, bem como a 0, 3, 6, 12 horas, e a 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 e 30 dias de

antecedência (Figura 15); identificando as possíveis relações entre as características de umidade do solo e as características das vazões, tais como realizados por La Torre Torres *et al.* (2011), Niedda e Pirastru (2013), Zabaleta e Antigüedad (2013).

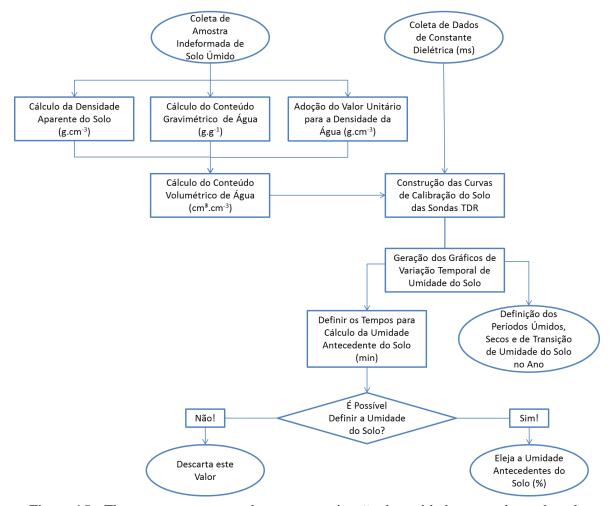


Figura 15 - Fluxogramas empregado na caracterização da umidade antecedente do solo

3.5.5 Análises Estatísticas Multivariadas

Nesta seção são introduzidos os métodos de análises estatísticas a serem aplicados sobre as variáveis de precipitação, umidade do solo e vazão, para avaliar suas relações. A interdependência das variáveis foi analisada usando métodos de mineração de dados, como a análise de agrupamento e a análise de componentes principais. Por fim, no final da seção será explicado o método de regressão selecionado para a análise do grau de associação dos variáveis.

A mineração de dados é um processo analítico usado para explorar grandes quantidades de dados em busca de padrões consistentes ou relacionamentos sistemáticos entre variáveis e, em seguida, para validar os resultados aplicando os padrões detectados a novos subconjuntos de dados. Esta técnica é subdividida em várias etapas usando vários métodos estatísticos, como: estatísticas básicas e descritivas (média, desvio padrão e

correlações, etc.); análise de componentes principais; seleção de atributos e redes neurais artificiais (SILVA, 2012).

Para o caso em estudo, a mineração de dados foi aplicada apenas para fins de detecção de padrões consistentes ou relacionamentos sistemáticos, não havendo nenhum viés de previsão.

3.5.5.1 Análise de agrupamento

Para avaliar a associação das variáveis dos processos hidrológicos podem ser empregados métodos estatísticos. A análise de agrupamento (ou de *cluster*) é um nome genérico dado para uma variedade de métodos matemáticos, que podem ser usados para descobrir quais objetos em um conjunto são similares (ROMESBURG, 1984).

A análise de agrupamento é a aglomeração sequencial de indivíduos a grupos (ou *clusters*) cada vez maiores, de acordo com algum critério, distância ou medida de dissimilaridade, de modo que as observações no mesmo grupo são similares em algum sentido (NAGHETTINI & PINTO, 2007). A análise de agrupamento é um método de aprendizagem não supervisionada, usada na análise de dados estatísticos com ampla utilização.

Algoritmos de agrupamento podem ser hierárquicos ou particionais, onde o primeiro é ainda dividido em: algoritmos de aglomeração (*bottom-up*) ou subdivididos (*top-down*). Os métodos de aglomeração mais comuns são: "vizinhos mais próximos" (ou *Single Linkage*), "vizinhos mais distantes" (ou *Complete Linkage*) e método de Ward (SILVA, 2012).

Todos os algoritmos de agrupamento em certo ponto necessitam avaliar as distâncias entre grupos, então, ao computar distâncias, é preciso decidir sobre a escala a ser usada. Sendo assim, quando as variáveis utilizam escalas totalmente diferentes (*e.g.*, duração em minutos, descarga de vazão em litros por segundo, etc.), os dados devem ser padronizados (*i.e.* normalizados) antes da análise de agrupamento, isso implica dizer que a média e o desvio padrão da variável devem ser 0 e 1, respectivamente. Desse modo, as dimensões que são usadas para computar as distâncias entre variáveis passam a ser de magnitudes comparáveis, caso contrário a análise seria tendenciosa uma vez que confiaria mais fortemente na dimensão que tem a maior amplitude de valores. Os dados resultantes da normalização encontram-se no Apêndice C.

Um indivíduo pode ter diversos atributos ou características, as quais são quantificadas e representadas pelo vetor de dados locais $\{Z_1, Z_2, \cdots, Z_p\}$. As medidas ou

distâncias de dissimilaridade entre dois indivíduos devem ser representativas da variação mútua das características locais em um espaço p-dimensional. A medida mais usada é a distância Euclidiana generalizada, a qual é simplesmente a distância geométrica tomada em um espaço de "p" dimensões (NAGHETTINI & PINTO, 2007). A distância Euclidiana entre dois indivíduos i e j é dada por:

$$d_{ij} = \sqrt{\sum_{k=1}^{p} (Z_{ik} - Z_{jk})^2}$$
 (1)

Para determinar as distâncias entre *clurters*, foi aplicado o método *Single Linkage*, cuja regra utilizada é a do "vizinho mais próximo". No entanto, o dendograma resultante pode exibir agrupamentos indistinguíveis, uma vez que este método associa com base na localização particular de elementos individuais. Alternativamente, os agrupamentos podem ser determinados pela regra dos "vizinhos mais distantes", do método *Complete Linkage*, ou por uma medida agregada como o método de *Ward*.

Para facilitar a interpretação dos agrupamentos no dendograma, o mesma pode ser traçado na horizontal ou na vertical, com dois tipos possíveis de galhos, os retangulares ou os diagonais. Para o caso em estudo, optou-se por dendogramas horizontais com galhos retangulares, ao entender que tal disposição facilita a distinção de agrupamentos.

É possível escolher escalonar o dendograma para uma escala padrão ao invés da distância euclidiana. Na escala padrão, o eixo vertical é escalonado percentualmente, pela razão d*link*/d*max**100, variando de 100% a 0%, a qual representa a percentagem do intervalo a partir da máxima para a mínima distancia dos dados.

Outra etapa consiste na escolha do ponto de corte do dendograma, para o qual o gráfico *Linkage Distances across Steps* (ou *Amalgamation Schedule*) foi utilizado. Esse gráfico permite identificar a distância de vinculação ideal (por meio da identificação de um patamar de corte) na qual a maior parte dos aglomerados é formada, devendo estes serem retidos para a interpretação (STATSOFT, 2015).

3.5.5.2 Análise de componentes principais

A ideia central da análise de componentes principais é reduzir a dimensionalidade de um conjunto de dados consistido de um grande número de variáveis relacionadas, mantendo tanto quanto possível a variação do conjunto de dados (JOLLIFFE, 2002). Além disso, a análise de componentes principais também pode ser usada como uma técnica de classificação, de modo a revelar as relações existentes entre as variáveis e os casos.

Muitos critérios são usados na prática para selecionar o número apropriado de componentes (ou fatores) para interpretação, no entanto o mais simples é aquele que retém as componentes em que o número do autovalor seja superior a "1". Além disso, a curva *Scree Plot* também pode ser usada para a mesma finalidade, na qual basta escolher as componentes a esquerda do local onde a mesma suaviza sua inclinação.

O percentual explicativo de cada componente principal sobre a variabilidade dos dados é indicada pelos autovalores. Onde, a soma dos autovalores é igual ao número de variáveis em análise, sendo arranjados em ordem decrescente para permitir a extração das componentes que justificam os maiores percentuais da variância total dos dados.

As relações entre as variáveis e os casos não podem ser facilmente visto no espaço dos fatores se a sua dimensão passar a ser maior do que dois. Assim, as variáveis e casos são estudados em pares de eixos escolhidos a partir do conjunto de eixos dos fatores. Outra opção seria a escolha o espaço tridimensional que permite uma visão geométrica global de um conjunto de três componentes (STATSOFT, 2015).

3.5.5.3 Regressão linear múltipla

Existem vários métodos estatísticos que podem ser empregados para a obtenção de dados previstos a partir de dados observados. Dentre os principais, têm-se os modelos: linear e não linear, regressão múltipla, análise de grupo, análise de correlação, análise de variância e análise de componentes principais.

A regressão linear múltipla foi o método estatístico escolhido, sendo aplicada não diretamente sobre as variáveis de precipitação, umidade do solo e vazão, mas sim sobre os principais fatores selecionados durante a análise de componentes principais. Além disso, isto não foi feito para fiz de previsão, e sim para entender quais e como as componentes principais de precipitação e umidade antecedente do solo se associam e explicam as propriedades do hidrograma de escoamento superficial.

Os coeficientes de regressão das componentes principais permitem uma visualização objetiva da relação de proporcionalidade destas com as variáveis dos hidrogramas. Além disso, as componentes que possuem os maiores valores absolutos de seus respectivos coeficientes, tendem a serem os que proporcionalmente mais afetam a variável dependente.

O coeficiente de determinação ajuda a detectar o potencial explicativo do modelo matemático calibrado e, portanto, também foi aplicado a fim de identificar se a metodologia proposta poderia ser considerada confiável em termos de ajuste.

Toda metodologia explicada anteriormente foi executada com uma série de dados de 10 meses, seguindo o procedimento sintetizado na Figura 16.

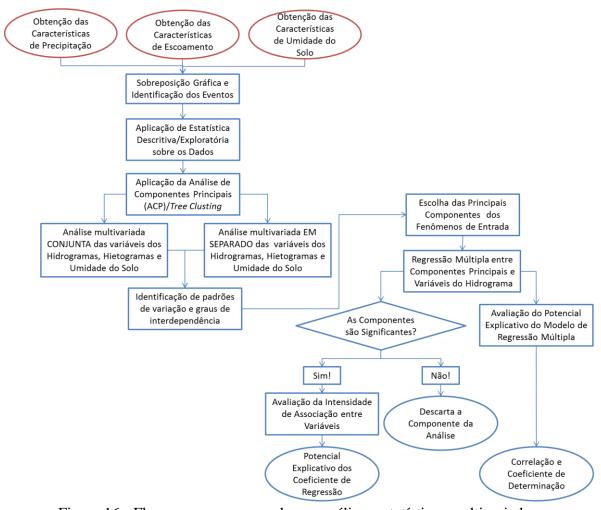


Figura 16 - Fluxogramas empregado nas análises estatísticas multivariadas

4 RESULTADOS & DISCUSSÕES

Neste capítulo são apresentados e discutidos os resultados obtidos durante toda pesquisa. Inicialmente são apresentados os resultados do primeiro estudo relativo às implicações da escolha de alguns critérios na definição de evento chuvoso, e seus efeitos nas características de intensidade de precipitação e quantidade de eventos chuvosos. Em uma segunda etapa, os eventos chuvosos foram classificados dentre as classes de hietogramas sintéticos e, em seguida, sua ocorrência e suas principais características foram investigadas entre três bacias hidrográficas localizadas no Nordeste Brasileiro. Por fim, as principais variáveis caracterizantes das propriedades dos eventos chuvosos, umidade antecedente do solo e hidrograma de escoamento superficial, e suas relações, ambas foram averiguadas a partir de análises estatísticas multivariadas, a fim de estabelecer padrões de variação das mesmas e graus de associação entre elas.

4.1 Estudo 1: Efeitos da variação dos critérios de definição de eventos chuvosos sobre as flutuações de intensidade e a quantidade de eventos

4.1.1 Influência do critério MIT sobre a quantidade de eventos chuvosos e a precipitação total anual

Inicialmente, apresenta-se a Tabela 6 que contém: os anos cujas séries de dados foram analisadas neste estudo; as precipitações anuais registradas na estação pluviográfica; as quantidades de eventos estudados para mínimo intervalo de tempo (MIT) entre eventos de 6, 12 e 24 horas; e a soma das precipitações totais destes eventos, após a aplicação dos critérios de mínimo intervalo de tempo entre eventos e lâmina mínima precipitada.

Tabela 6 - Precipitação anual registrada pela estação, quantidade e precipitação total dos eventos analisados

	Prec.	Quant. de	e eventos e	studados	Precipitação total anual (mm) para			
Ano	Anual	para ca	para cada MIT estudado		cada MIT do evento			
	(mm)	6 h	12 h	24 h	6 h	12 h	24 h	
2004	1.249	58	48	37	1.189	1.200	1.230	
2005	938	71	66	44	814	848	896	
2006	1.427	103	85	57	1.341	1.368	1.403	
2007	1.662	96	74	44	1.568	1.612	1.645	

Da Tabela 6 pode-se ver que à medida que o MIT aumenta, o número de eventos diminui, por outro lado os valores de precipitação total anual analisada aumentam. Isso porque quando o MIT é menor, o final do evento chuvoso tende a ser antecipado, o que por sua vez tende a provocar o descarte dos registros de precipitação, e *vice versa*. De qualquer forma, nota-se que, independente do MIT, a precipitação total analisada dos eventos não é muito modificado. A redução média da quantidade de precipitação monitorada em campo e analisada é cerca de 95%, isso significa que cerca de 95% da precipitação medida em campo foi analisada neste estudo.

Na Tabela 7 apresenta-se um exemplo dos resultados finais obtidos das características dos eventos e de seus subeventos analisados. Similarmente, 4 tabelas com essas características foram geradas, as quais são apresentadas no Apêndice B. Para análise dos dados dessas tabelas, são exibidos posteriormente gráficos e tabelas que as sintetizam.

Tabela 7 - Exemplo das características determinadas dos eventos e seus subeventos (ano 2004, MIT 24 horas, MIT subevento 1 hora)

Id						N°	Duração	Intensi-	
Hi-	Dia	Horário	Preci-	Du-	Inten-	de	média	dade mé-	Tempo
eto-	Juli-	Inicial	pitação	ração	sidade	Sube	Sube-	dia Sube-	Seco
gra	ano	(hh:mm)	(mm)	(min)	(mm/h)	ven-	vento	vento	(min)
ma						tos	(min)	(mm/h)	
1	1	08:52	3,556	180	1,185	2	72	9,015	108
2	5	06:55	2,794	1230	0,136	5	29	13,045	1201
3	8	00:32	11,684	3548	0,198	11	389	7,063	3159
4	12	01:24	74,422	4074	1,096	8	625	11,479	3449
5	16	02:31	2,032	1251	0,097	3	87	5,925	1164
6	18	14:27	3,556	189	1,129	2	114	12,178	75
7	19	22:15	62,738	4634	0,812	11	1012	7,84	3622

4.1.2 Influência do critério MIT sobre as intensidades dos eventos e subeventos chuvosos

A Tabela 8 apresenta valores médios de intensidades para os 4 anos analisados.

Tabela 8 - Valores médios de intensidade dos eventos e intensidade média dos subeventos, e relação entre essas variáveis

	Média da intensidade dos eventos (mm.h ⁻¹) - ie				Média da intens. média dos subeventos (mm.h ⁻¹) – imse			Re	lação	imse/i	e
MIT	MIT	Subev	ento	MIT MIT Subevento		MIT	MIT	Sube	vento		
evento	1 h	3 h	6 h	evento	1 h	3 h	6 h	evento	1 h	3 h	6 h
6 h	2,85	2,85	-	6 h	9,41	5,55	-	6 h	3,3	1,9	-
12 h	1,87	1,87	1,87	12 h	9,70	6,37	3,77	12 h	5,2	3,4	2,0
24 h	1,26	1,26	1,26	24 h	10,00	7,46	5,14	24 h	8,0	5,9	4,1

Da Tabela 8 pode-se ver que à medida que MIT do evento aumenta, a média de intensidade dos eventos para os 4 anos estudados diminui, enquanto que o valor médio da intensidade média dos subeventos aumenta. Porém, esse aumento e redução ocorrem em taxas bem distintas, a redução da intensidade média dos eventos é maior que 100% ao variar o MIT dos eventos de 6 para 24 h (*i.e.* de 2,85 para 1,26 mm.h⁻¹), enquanto que o aumento da média da intensidade média dos subeventos é de apenas 6% (*i.e.* de 9,41 a 10,00 mm.h⁻¹). Já na seção da direita da última tabela, tem-se a relação entre os valores médios da intensidade média dos subeventos e a intensidade dos eventos, na qual certos comportamentos são identificados: (1) à medida que o MIT dos eventos aumenta, essa relação também aumenta, indicando que intensidade dos eventos é subestimada com relação à dos subeventos; (2) já à medida que o MIT do subevento aumenta, essa relação

diminui, ou seja, para maiores MIT dos subeventos há uma tendência dessas duas intensidades se aproximarem. Esse último comportamento está demonstrado no evento das Figura 17, Figura 18 e Figura 19.

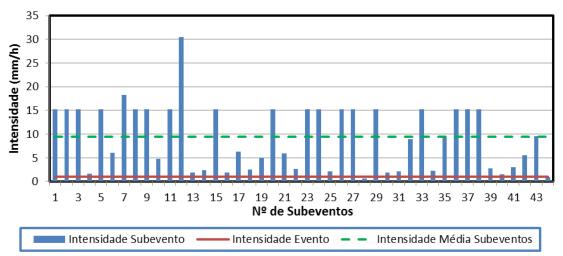


Figura 17 - Intensidade do evento chuvoso, dos subeventos chuvosos e intensidade média dos subeventos (MIT evento: 24 horas, MIT Subevento: 1 hora, ano de referência 2005)

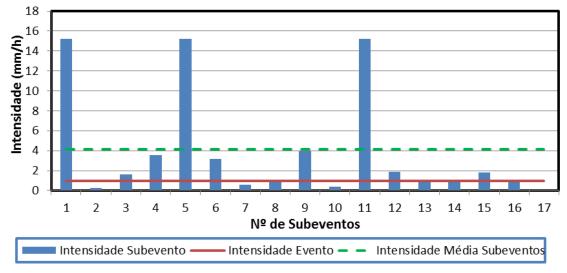


Figura 18 - Intensidade do evento chuvoso, dos subeventos chuvosos e intensidade média dos subeventos (MIT evento: 24 horas, MIT Subevento: 3 horas, ano de referência 2005)

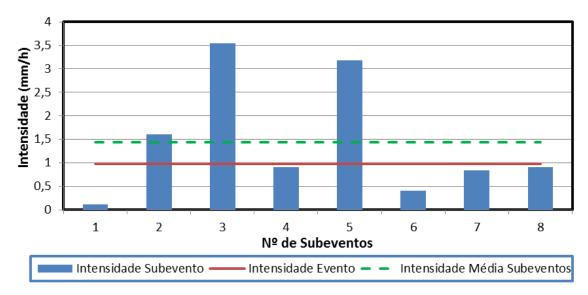


Figura 19 - Intensidade do evento chuvoso, dos subeventos chuvosos e intensidade média dos subeventos (MIT evento: 24 horas, MIT Subevento: 6 horas, ano de referência 2005)

Analisando-se essas três últimas figuras é possível compreender melhor quão distintos são os três conceitos aqui utilizados: intensidade do evento chuvoso, intensidade dos subeventos chuvosos e intensidade média dos subeventos chuvosos. Nota-se também que, à medida que o MIT dos subeventos aumenta, as diferenças entre esses valores de intensidade diminuem. Pode-se ver ainda que, as intensidades de alguns subeventos apresentam valores bem superiores à intensidade do evento e a intensidade média dos subeventos, como é o caso do subevento 12 da Figura 17, em que o valor da intensidade do subevento é maior que 30 mm.h⁻¹, enquanto que os valores das duas outras intensidades são menores que 10 mm.h⁻¹.

Em seguida, as variações das quantidades de subeventos por evento definido foram avaliadas, para todas as combinações de MIT entre eventos e subeventos definidas no estudo, conforme apresentado nas figuras seguintes.

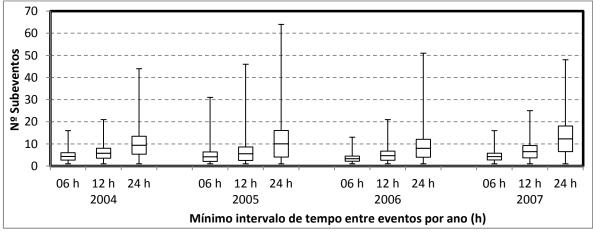


Figura 20 - Gráfico do tipo BoxPlot com os valores mínimo, desvio padrão, média, e máximo da quantidade de subeventos (MIT do subevento: 1 hora)

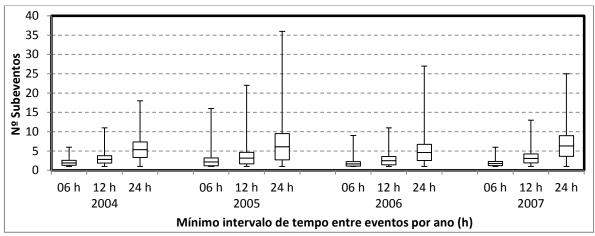


Figura 21 - Gráfico do tipo BoxPlot com os valores mínimo, desvio padrão, média e máximo da quantidade de subeventos (MIT do subevento: 3 horas)

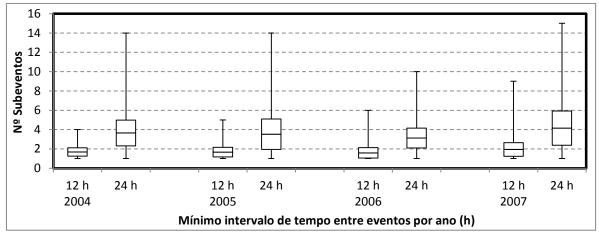


Figura 22 - Gráfico do tipo BoxPlot com os valores mínimo, desvio padrão, média e máximo da quantidade de subeventos (MIT do subevento: 6 horas)

Analisando-se a Figura 20, Figura 21 e Figura 22, pode-se ver que, independente do MIT do subevento considerado e do ano em análise, a média da quantidade de subeventos sempre cresce à medida que o MIT do evento aumenta e sua dispersão da mesma maneira. Já a quantidade máxima de subeventos reduz significativamente ao passo que o MIT do subevento aumenta; assim, para um MIT do subevento de 1 hora, no ano de 2005, chega-se a ter mais que 60 subeventos (na Figura 20), enquanto que para o MIT do subevento de 6 horas (na Figura 22) a quantidade máxima de subeventos é igual a 15, no ano de 2007.

Posteriormente, também foram avaliadas as variações das intensidades médias dos subeventos por evento, para todas as combinações de MIT entre eventos e subeventos definidas no estudo, como pode ser observado nos gráficos a seguir.

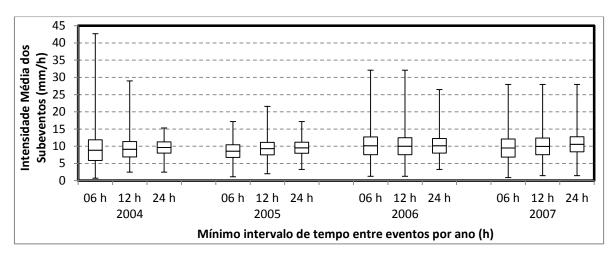


Figura 23 - Gráfico do tipo BoxPlot com os valores mínimo, média menos desvio padrão, média, média mais desvio padrão, e máximo da intensidade média dos subeventos (MIT do subevento: 1 hora)

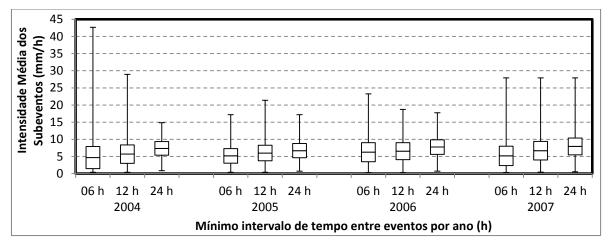


Figura 24 - Gráfico do tipo BoxPlot com os valores mínimo, média menos desvio padrão, média, média mais desvio padrão, e máximo da intensidade média dos subeventos (MIT do subevento: 3 horas)

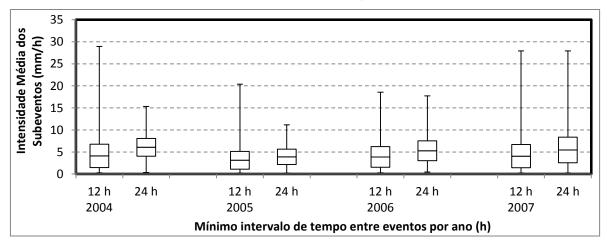


Figura 25 - Gráfico do tipo BoxPlot com os valores mínimo, média menos desvio padrão, média, média mais desvio padrão, e máximo da intensidade média dos subeventos (MIT do subevento: 6 horas)

Em relação à intensidade média dos subeventos apresentadas na Figura 23, Figura 24 e Figura 25, pode-se ver que, em certos casos, a diferença entre os valores máximos e mínimos diminuem ao passo que o MIT do evento aumenta. Porém, analisando-se os valores máximos das figuras, vê-se que os tais valores sempre são significativamente maiores que a média, podendo chegar a ordem de até 6 vezes, como no caso do ano de 2004, para um MIT de evento de 12 horas e MIT de subevento de 6 horas (Figura 25).

Na Figura 23, observa-se também que quando o MIT do subevento é menor (*i.e.* 1 hora), os valores médios das intensidades médias dos subeventos não variam tanto para diferentes MIT dos eventos, apresentando valores entre 9 e 11 mm.h⁻¹, aproximadamente. No entanto, quando o MIT do subevento aumenta (Figura 24 e Figura 25), os valores de intensidade média dos subeventos diminuem, porém suas diferenças aumentam suavemente mais à medida que o MIT do evento aumenta.

4.2 Estudo 2: Análise da ocorrência, forma e características dos hietogramas em bacias experimentais do Nordeste Brasileiro

4.2.1 Frequência e precipitação dos eventos classificados antes da agregação dos dados

Inicialmente, foram levantadas as quantidades absoluta e relativa de eventos classificados (Tabela 9), sejam ele caracterizáveis ou não, ocorridos nos 4 anos de dados (de 2005 a 2008), para as três bacias experimentais em estudo.

Dooto	Eventos cl	assificados	Eventos não caracterizados		
Posto -	Total	(%)	Total	(%)	
Aiuaba (G1)	229	16,77	11	4,80	
São João do Cariri (G102)	228	16,69	13	5,70	
Guaraíra (G2)	909	66,54	57	6,27	
Total	1,366	100,00	81	5,93	

Tabela 9 - Quantidade de eventos chuvosos classificados e não caracterizados

A quantidade de eventos ocorridos na bacia do Riacho Guaraíra (66,54% do total) foi cerca de quatro vezes maior do que os demais, enquanto que seus 57 eventos NC totalizaram 70,37% dos 5,93% eventos classificados como NC.

Com todos os eventos chuvosos classificados, a frequência relativa e a lâmina total precipitada de cada classe de hietogramas também foram calculadas, conforme a Figura 26.

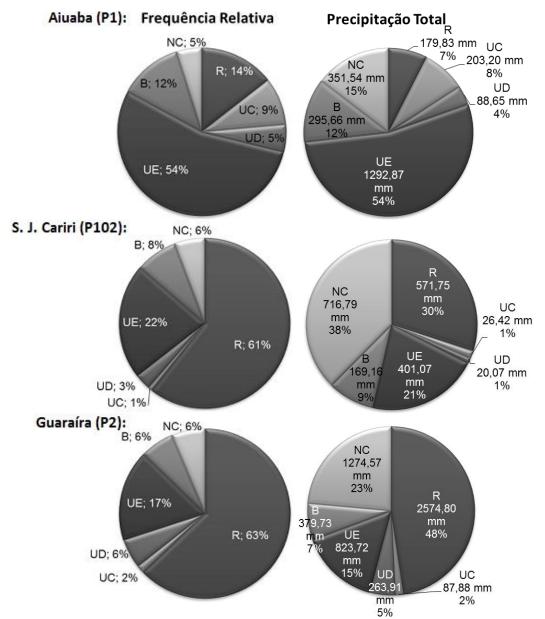


Figura 26 - Frequência relativa e precipitação total dos eventos definidos e classificados durante o período de estudo (hietogramas: R – Retangular; UC – Unimodal Central; UD – Unimodal à Direita; UE – Unimodal à Esquerda; B – Bimodal; NC – Não Caracterizado)

De acordo com a Figura 26, os eventos NC representaram uma pequena parcela dos eventos, cuja ocorrência variou entre 5 e 6% nas estações Aiuaba (P1), São João do Cariri (P102) e Guaraíra (P2), respectivamente. Em contrapartida, esses eventos contribuíram de 15 a 38% do total precipitado.

Além disso, ao somar todas as precipitações dos hietogramas em cada posto, têm-se as lâminas de 2.411,74, 1.905,25 e 5.404,61 mm, respectivamente, para os postos Aiuaba (P1), São João do Cariri (P102) e Guaraíra (P2). Depois, calculando a diferença da lâmina total precipitada durante o período de estudo (Tabela 4), *i.e.* 2.550,40 (P1), 2.114,70 (P102) e 6.145,30 mm (P2), por esses valores acumulados, obtêm-se os seguintes

resultados 138,66 (P1), 209,45 (P102) e 740,69 mm (P2), cuja porcentagem relativa ao total precipitado corresponde, respectivamente, a 5,44%, 9,90% e 12,05%. Sendo, portanto, o posto Guaraíra (P2) aquele em que o maior volume de registros foi descartado durante a classificação dos eventos.

4.2.2 Variação de frequência dos eventos não caracterizados durante a reclassificação

As precipitações instantâneas a cada minuto dos eventos NC foram agregadas com Δt de 2, 5, 7, 10, 15 e 30 minutos e, em seguida, tais eventos foram reclassificados. Deste modo, percebeu-se uma redução gradual da quantidade de eventos NC à medida que o tempo de agregação aumentava (Figura 27).

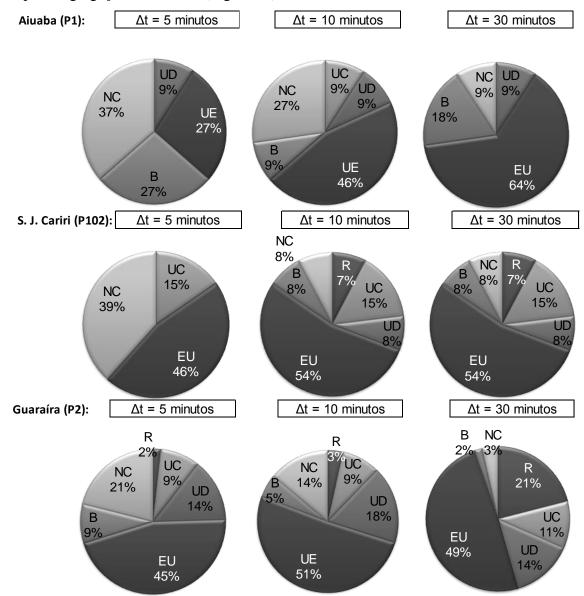
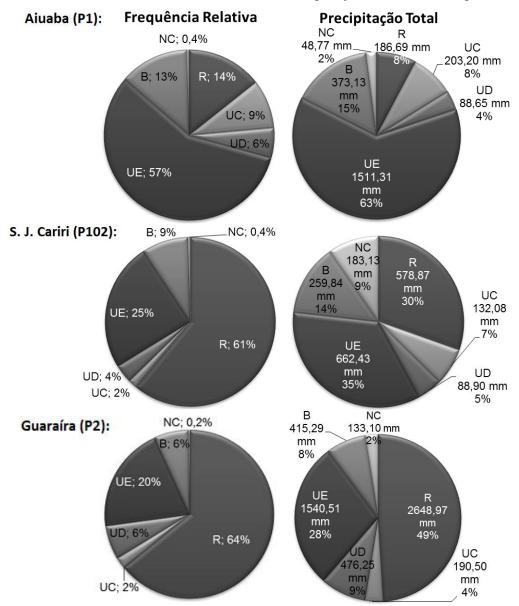


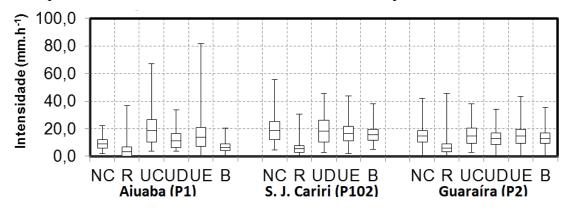
Figura 27 - Variação da frequência relativa dos eventos NC reclassificados após agregação dos dados de precipitação (hietogramas: R – Retangular; UC – Unimodal Central; UD – Unimodal à Direita; UE – Unimodal à Esquerda; B – Bimodal; NC – Não Caracterizado)

O percentual de ocorrências de precipitação sem forma definida foi reduzido para menos de 9%, atingindo o mínimo de 3%, ao passo que a quantidade de eventos caracterizáveis aumentou. Nessa conjuntura, o evento UE se destacou sobre os outros quase que na plenitude dos cenários, abrangendo percentuais de até 64% dos eventos NC.

4.2.3 Frequência e precipitação acumulada dos eventos classificados depois da agregação dos dados

Com os eventos NC reclassificados, a disposição percentual das suas frequências e precipitações totais, no intervalo de agregação de 30 minutos, foi agrupada à repartição original dos eventos chuvosos, obtendo-se assim a configuração mostrada na Figura 28.




Figura 28 - Frequência relativa e precipitação total dos eventos após a agregação de dados a 30 minutos (hietogramas: R – Retangular; UC – Unimodal Central; UD – Unimodal à Direita; UE – Unimodal à Esquerda; B – Bimodal; NC – Não Caracterizado)

Comparando os resultados das Figura 26 e Figura 28, é possível identificar a magnitude com a qual os eventos NC participam na lâmina precipitada, embora sua ocorrência pudesse ser considerada irrelevante em primeira instância. À medida que a frequência relativa dos eventos NC foi reduzida de no máximo 6% (Figura 26) para valores inferiores a 0,40% (Figura 28) e que sua participação na lâmina precipitada passasse de até 38% (Figura 26) para no máximo 9% (Figura 28).

Percebe-se também um expressivo aumento da participação das outras classes de hietograma na lâmina precipitada, em detrimento de um menor acréscimo da frequência de ocorrências da mesma, especialmente no caso dos eventos UE cujo comportamento se manifestou de modo mais característico. Como critério de exemplificação, no caso do posto Guaraíra (P2), tem-se que um aumento de 3% na frequência dos eventos UE (*i.e.* de 17% para 20%) provocou um acréscimo de 13% (*i.e.* de 15% para 28%) na sua participação da lâmina precipitada.

4.2.4 Avaliação estatística das propriedades dos eventos classificados antes da reclassificação

Uma análise estatística dos eventos chuvosos com as características da precipitação (*i.e.*, intensidade média, duração e pico máximo) foi realizada, para cada classe de hietograma sintético, antes da reclassificação dos eventos chuvosos, como mostrado na Figura 29. Para tanto, os índices de média, desvio padrão, valor máximo e mínimo foram calculados e representados por meio de diagramas do tipo *box plot*. Nem todas as classes foram contempladas nestes gráficos, sendo descartadas aquelas com menos de quatro eventos, pelo fato de três ou menos eventos não representar uma quantidade adequada de dados para o cálculo dos índices estatísticos, como o desvio padrão.

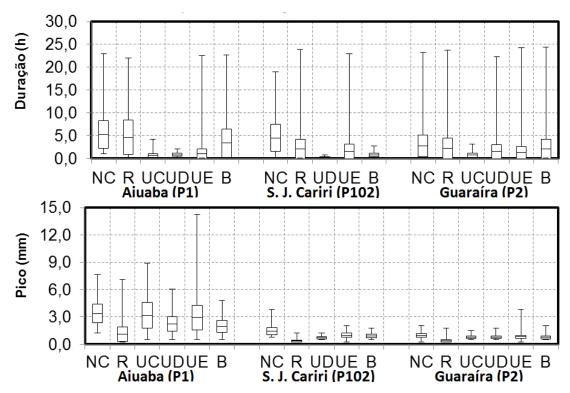


Figura 29 - Análise estatística de todos eventos classificados (hietogramas: R – Retangular; UC – Unimodal Central; UD – Unimodal à Direita; UE – Unimodal à Esquerda; B – Bimodal; NC – Não Caracterizado)

A Figura 29 apresenta as principais características estatísticas de todos os eventos chuvosos obtidos nos postos estudados, exceto pelo hietograma UC no posto São João do Cariri (P102), o qual não apresentou eventos suficientes para esta análise.

Quanto às intensidades médias, tem-se que os eventos R foram os que apresentaram as menores intensidades médias por postos. Por outro lado, os eventos Unimodais, *i.e.* UC, UD e UE, tiveram suas médias variando entre 10 e 20 mm.h⁻¹, um pouco superiores aos dos eventos B.

No que concerne às durações totais dos eventos chuvosos, as mesmas foram quase sempre inferiores a 1 dia, sendo os eventos NC aqueles cujas médias por postos foram as maiores. Além disso, percebe-se também que, o desvio padrão das durações dos eventos NC e R foram sempre grandes em todos os três postos estudados.

Com relação aos picos, o posto Guaraíra (P1) foi aquele que apresentou os maiores valores, os quais estiveram bem destacados quando comparados aos demais, sendo apenas seus eventos chuvosos os que atingiram valores máximos superiores a 4 mm para todas as classes de hietogramas sintéticos.

4.2.5 Avaliação estatística das propriedades dos eventos não caracterizados depois da reclassificação

Uma nova análise estatística dos eventos chuvosos com as características da precipitação (*i.e.*, intensidade média, duração e pico máximo) foi realizada, para cada classe de hietograma sintético, no caso de 30 minutos de agregação, como mostrado na Figura 30. Para tanto, os índices de média, desvio padrão, valor máximo e mínimo também foram calculados e representados por meio de diagramas do tipo *box plot*. Semelhantemente, as classes com menos de 4 eventos foram descartadas, por motivos estatísticos.

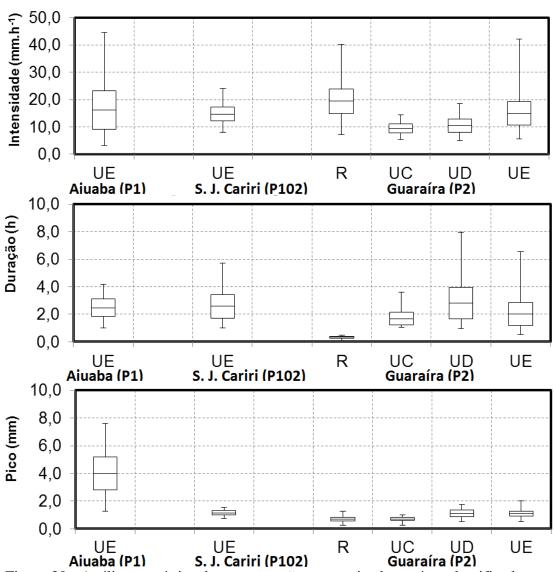


Figura 30 - Análise estatística dos eventos não caracterizados após reclassificados no tempo de agregação de 30 minutos (hietogramas: R – Retangular; UC – Unimodal Central; UD – Unimodal à Direita; UE – Unimodal à Esquerda)

A Figura 30 mostra que apenas a classe UE exibe eventos em todos os postos, *i.e.* Aiuaba (P1), São João do Cariri (P102) e Guaraíra (P2), após a agregação de 30 min. Além

disso, o posto Guaraíra (P2) foi aquele que apresentou a maior variedade nas formas de eventos, *i.e.* R, UC, UD e UE.

Em relação às intensidades médias percebe-se que, os eventos UE apresentaram médias semelhantes em todos os postos, *i.e.* em torno de 15 mm.h⁻¹. Por outro lado, foi o evento R que exibiu a maior média dentre as classes, *i.e.* cerca de 19 mm.h⁻¹. Além disso, o máximo valor registrado foi de 44,52 mm.h⁻¹ no posto Aiuaba (P1), enquanto que as menores dispersões e médias foram exibidas pelo evento UC no posto Guaraíra (P2).

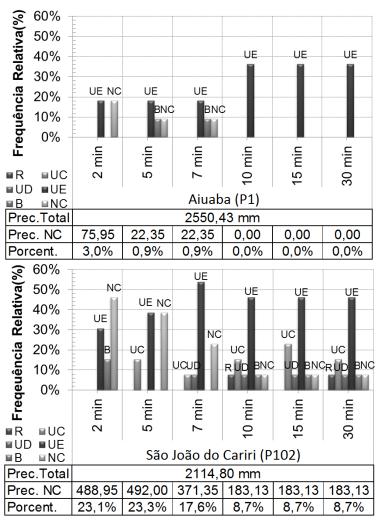
Quanto à duração dos eventos, os eventos UE novamente apresentaram médias muito próximas, *i.e.* em torno de 140 min (*i.e.* em torno de 2,33 horas). No entanto, foram os eventos UD aqueles que tiveram a maior média e desvio padrão, bem como o evento de maior duração, *i.e.* 8 horas. Por outro lado, os eventos R foram os de menores durações, cuja média de 20 min esteve bem abaixo dos demais.

Enfim, em relação aos picos máximos dos eventos, percebe-se claramente que, o posto Aiuaba (P1) se sobressaiu aos demais, devido às amplas variações e elevados valores de pico dos eventos UE. Além disso, pode-se perceber que o menor valor de pico máximo no posto P1, foi sempre maior que as médias de todos os eventos dos postos São João do Cariri (P102) e Guaraíra (P2).

4.2.6 Variação de frequência e participação na precipitação total dos eventos não caracterizados muito fortes e extremos

Inicialmente, a quantidade dos eventos NC também foi avaliada com os eventos muito fortes e extremos, ou seja, os de elevada intensidade média (*i.e.* maior que 10 mm.h⁻¹), grande duração (*i.e.* maior que 120 minutos) ou pico íngreme (*i.e.* maior que 1,5 mm). Deste modo, os percentuais de eventos não caracterizados acima desses limites estão na Tabela 10.

Tabela 10 - Quantidade percentual de eventos não caracterizados muito fortes e extremos


Postos	Quantidade de eventos não caracterizados (%)						
	Intensidade Média > 10 mm.h ⁻¹	Duração Total > 120 mm	Pico Máximo > 1,5 mm				
Aiuaba (P1)	36,4%	72,7%	81,8%				
São João do Cariri (P102)	92,3%	53,9%	46,2%				
Guaraíra (P2)	70,2%	33,3%	19,3%				

Segundo a Tabela 10, quanto às intensidades, quase todos os eventos não caracterizados do posto São João do Cariri (P102) (i.e. 92,3%) foram muito fortes e

extremos, enquanto que quanto às durações e picos, foi o posto Aiuaba (P1) aquele que mais apresentou esses eventos (*i.e.* 72,7% e 81,8%, respectivamente). Entretanto, vale salientar que a quantidade de eventos não caracterizados ocorridos no posto Guaraíra (P2) foi maior que a soma dos eventos dos demais postos, conforme Tabela 9.

Em seguida, a fim de avaliar a variação de frequência dos eventos NC muito fortes e extremos, bem como sua transformação em outros hietogramas durante a reclassificação, os mesmos limites anteriormente descritos também foram utilizados. Além disso, a participação dos eventos NC (reclassificados) na lâmina total precipitada da série total de dados foi determinada e tabelada. Assim, os gráficos de barras das Figura 31, Figura 32 e Figura 33 exibem esses comportamentos para todos os tempos de agregação de dados, nos três postos estudados e sobre as características de precipitação.

A Figura 31 apresenta a variação de frequência e a participação na lâmina precipitada dos eventos NC (reclassificados dentre as classes de hietogramas) com intensidade média superior a 10 mm.h⁻¹.

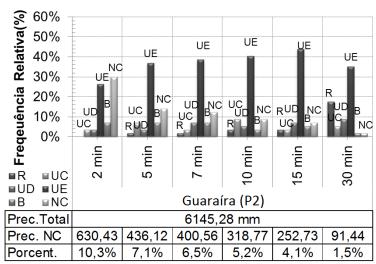
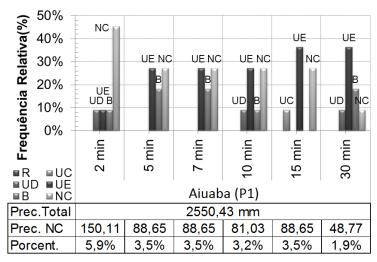
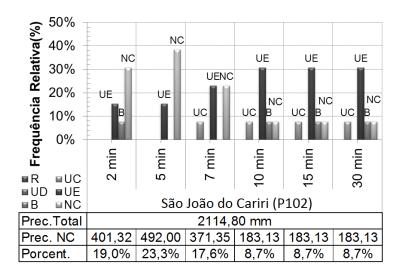




Figura 31 - Variação de frequência e participação dos eventos NC de intensidade superior a 10 mm.h⁻¹ no total precipitado (hietogramas: R – Retangular; UC – Unimodal Central; UD – Unimodal à Direita; UE – Unimodal à Esquerda; B – Bimodal; NC – Não Caracterizado)

Como pode ser visto na Figura 31, à medida que o tempo de agregação dos dados aumenta, a frequência dos eventos NC reduz, ao passo que a frequência dos demais eventos oscila, com destaque especial aos dos eventos UE. Esse comportamento é mais evidente no posto Aiuaba (P1), onde os eventos NC e UE dividem a grande maioria desses eventos de intensidade elevada. Já nos postos São João do Cariri (P102) e Guaraíra (P2), além dos eventos EU, os quais quase sempre atingem o percentual majoritário dos eventos, as outras classes se alternam na disputa da segunda maior parcela de eventos, com destaque para os eventos do tipo UC e NC no posto P102.

A Figura 32 apresenta a variação de frequência e a participação na lâmina precipitada dos eventos NC (reclassificados dentre as classes de hietogramas) com duração total superior a 120 min.

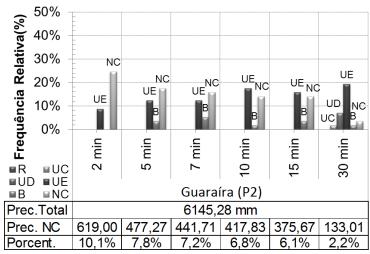


Figura 32 - Variação de frequência e participação dos eventos NC, de duração superior a 120 min, no total precipitado (hietogramas: R – Retangular; UC – Unimodal Central; UD – Unimodal à Direita; UE – Unimodal à Esquerda; B – Bimodal; NC – Não Caracterizado)

Como pode ser visto na Figura 32, uma tendência decrescente na ocorrência dos eventos NC, assim como um comportamento crescente dos eventos UE, podem ser observadas, à medida que o tempo de agregação aumenta. Por outro lado, percebe-se que diferentemente do comportamento exibido na Figura 31, o evento do tipo B no posto Aiuaba (P1) da Figura 32, além dos eventos UE e NC, também se destacam em certos tempos de agregação. Já no posto Guaraíra (P2), a aparição dos eventos B se faz mais discreta.

A Figura 33 apresenta a variação de frequência e a participação na lâmina precipitada dos eventos NC (reclassificados dentre as classes de hietogramas) com pico máximo superior a 1,5 mm.

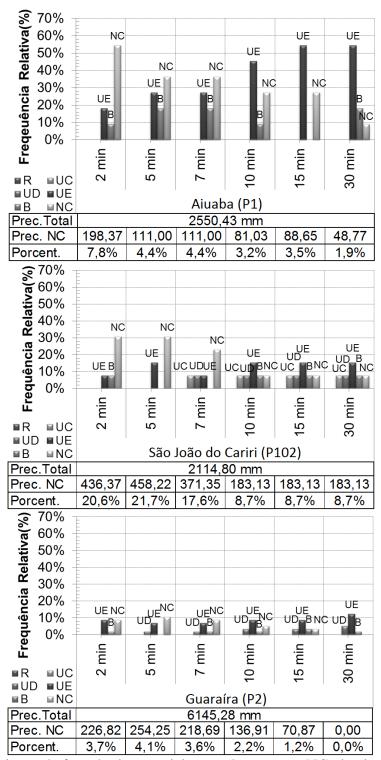


Figura 33 - Variação de frequência e participação dos eventos NC, de pico superior a 1,5 mm, no total precipitado (hietogramas: R – Retangular; UC – Unimodal Central; UD – Unimodal à Direita; UE – Unimodal à Esquerda; B – Bimodal; NC – Não Caracterizado)

Como pode ser visto na Figura 33, no posto Aiuaba (P1) a redistribuição de frequências dos eventos NC é bem mais relevante do que nos demais postos, atingindo valores superiores a 50%. Por outro lado, no posto Guaraíra (P2), essa redistribuição se limita à taxa de 12%. No mais, o comportamento decrescente dos eventos NC, bem como o

comportamento crescente dos UE, repete-se em todos os postos, semelhante ao caso das intensidades e durações. Percebe-se também na Figura 31, Figura 32 e Figura 33, que a percentagem de participação dos eventos NC na lâmina precipitada foi sempre maior no posto São João do Cariri (P102).

Há eventos que permaneceram Não Caracterizados até o passo de tempo de agregação de 30 minutos, esses eventos apresentaram durações de 294 a 479 minutos (*i.e.* 4h 54 min a 7h 59 min) e grandes volumes de lâmina precipitada, de até 183,13 mm. Foi observado que esses eventos, a exemplo do evento com maior duração (479 minutos) cuja precipitação acumulada foi 91,44 mm, persistiam na forma indefinida mesmo quando comparados com eventos de intensidade semelhante que apresentaram formas definidas. Essa discrepância é explicada pelo fato de que existe uma grande presença de intervalos sem precipitação dentro dos eventos NC, já que não se avaliou a intensidade de cada subevento, e sim a média do evento, o que faz a intensidade total ser bastante amortecida, constatação semelhante à de Dunkerley (2010). Isso afeta diretamente a forma da curva IDF (Intesidade-Duração-Frequência) na sua porção de maiores durações. Eventos longos contêm maior flutuação da intensidade da precipitação, ou seja, diferentes picos de intensidade.

4.3 Estudo 3: Avaliação das relações entre eventos chuvosos, umidade antecedente do solo e hidrogramas de escoamento a partir de análises multivariadas de suas variáveis caracterizantes

4.3.1 Construção das curvas de calibração de umidade do solo e das curvas-chave

Após a determinação da umidade do solo a partir das coletas de amostras realizadas, inicialmente se verificou que apenas as estações 03 e 04 tiveram pontos suficientes para a construção de suas curvas de calibração, para as quais foi escolhido o modelo matemático polinomial 2º grau, cujos aspectos estão mostrados na Figura 34.

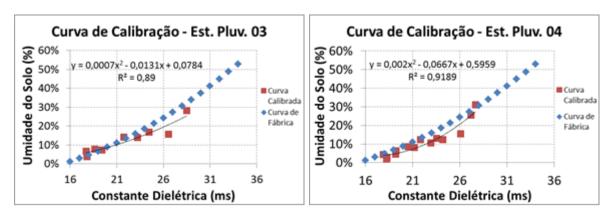


Figura 34 - Curvas de calibração das sondas TDR obtidos nas estações 03 e 04 da bacia experimental do Riacho Guaraíra (Est. Pluv. – Estação Pluviográfica)

Posteriormente, foi avaliado o nível de homogeneidade da densidade aparente e do conteúdo volumétrico de água no solo da bacia experimental do Riacho Guaraíra como um todo. Assim, pelos motivos mencionados no Item 3.5.1, para a densidade aparente do solo atribuíram-se o teste ANOVA *one-way* e o teste de Tukey; por outro lado, para o conteúdo volumétrico de água no solo, foi necessário apenas a aplicação do teste não-paramétrico de Kruskal-Wallis. A Figura 35 e Figura 36, e o Apêndice A, apresentam os resultados dos testes realizados sobre as variáveis em análise.

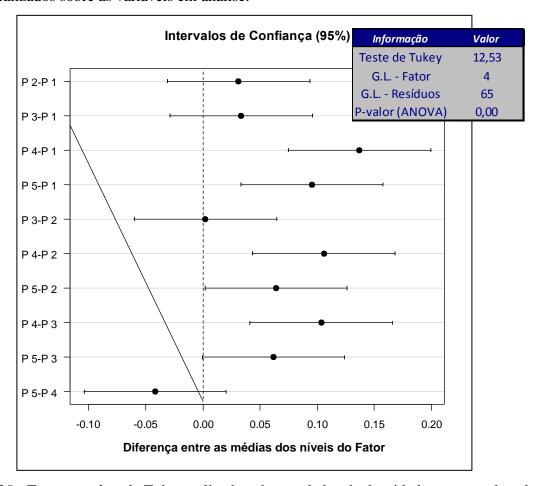


Figura 35 - Teste *post-hoc* de Tukey aplicado sobre os dados de densidade aparente do solo

A Figura 35 mostra que o P-valor (ANOVA) apresenta um valor inferior ao nível de significância 0,05, de forma que a hipótese de igualdade de todos os níveis, em simultâneo, é rejeitada. No entanto, ao avaliar cada nível do Fator individualmente, é possível identificar que os intervalos de confiança dos níveis P2-P1, P3-P1, P3-P2, P5-P3, P5-P4 englobaram o valor nulo (*i.e.* o valor "zero"), de modo que a hipótese de igualdade entre os mesmos não pode ser rejeitada. Ademais, observa-se que o valor central do nível P3-P2 foi aproximadamente igual à "zero", demonstrando que as densidades do solo nesses postos devem ser semelhantes.

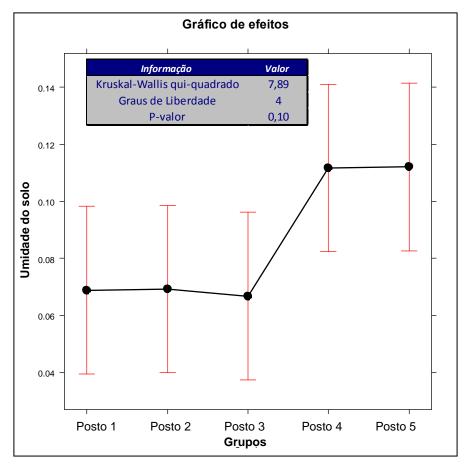


Figura 36 - Teste de Kruskal-Wallis aplicado sobre os dados de umidade do solo

A Figura 36 apresenta o gráfico de efeitos da umidade do solo, que nada mais é do que a representação gráfica da média e desvio padrão dessa variável nos postos avaliados. Percebe-se que o P-valor é superior ao nível de significância de 0,05, de forma que a hipótese de igualdade de todos os grupos (*i.e.* postos) é aceita. Isso é reforçado pelo fato de que as dispersões dos grupos se sobrepõem, o que fornece evidências de que a umidade média nos solos, a nível populacional, é semelhante em toda a bacia experimental do Riacho Guaraíra. Além disso, poda ser percebido uma estreita proximidade da média da umidade do solo entre os postos P1, P2, P3, bem como entre os postos P4 e P5.

De acordo com a Figura 35 e Figura 36, pode-se notar a existência de dois grupos distintos com respeito às caraterísticas do solo (*i.e.* densidade aparente e umidade do solo). Os postos 01, 02 e 03 apresentam comportamentos similares e são, portanto, considerados áreas cuja variação de umidade do solo é homogênea; os postos 04 e 05, por sua vez, comportam-se de modo semelhante, porém diferentemente dos demais.

Sendo assim, em termos estatísticos, a curva do posto 3 obtida anteriormente na Figura 34, cuja estação se localiza na cabeceira da bacia experimental do Riacho Guaraíra, pode ser adotada para o posto 2, localizado no interior na bacia 502, conforme mostrado na Figura 3.

Quanto às análises granulométricas do solo, a Figura 37 apresenta as curvas granulométricas obtidos dos solos dos cinco postos da bacia experimental do Riacho Guaraíra. Vale ressaltar que cada curva exibida na Figura 37 é a média das duas curvas obtidas na mesma localidade, uma vez que conforme explicado no Item 3.5.1, as amostras de solo foram coletadas em duplicata.

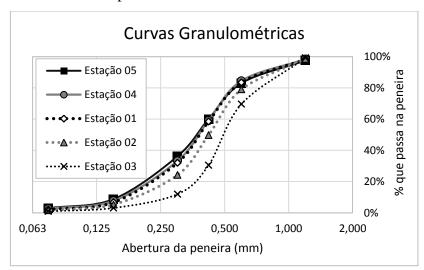


Figura 37 - Curvas granulométricas médias do solo de cada estação pluviográfica da bacia experimental do Riacho Guaraíra

Na Figura 37 pode ser observado que as curvas são semelhantes, sendo, portanto, todo o solo da bacia experimental do Riacho Guaraíra de textura semelhante e do tipo arenoso. Isto reforça a adoção da curva de calibração do posto 3 para o posto 2.

Por fim, para a obtenção das curvas-chave, foram plotados gráficos de dispersão relacionando as vazões e coluna d'água por meio de linhas de tendência, obtidas apenas com os períodos mais recentes de dados, *i.e.* com os dados "EST.501/2014", "EST.502/2014" e "EST.503/2014" apresentados na Figura 38.

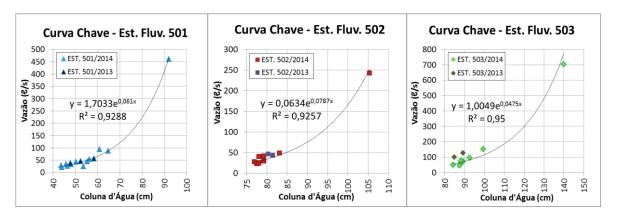


Figura 38 - Curvas-chuve das seções obtidas no estado atual de coleta de dados.

A Figura 38 apresenta a aspecto atual das curvas-chave das seções, onde a vazão calculada fora associada à coluna d'água ao invés da lâmina real, uma vez que o nível do deflúvio não foi analisado. Dessa maneira, apesar dos efeitos da erosão e sedimentação não serem considerados, a conversão da coluna d'água para vazão foi resguardada, já que a referência permanecerá fixa na cota do sensor.

4.3.2 Análise multivariada dos hidrogramas de escoamento superficial

Primeiramente foi aplicado o procedimento de calibração dos critérios de definição dos eventos chuvosos (*i.e.* MIT_{EVENTO}, MLP_{EVENTO} e antecedência máxima do evento) e dos subeventos chuvosos (*i.e.* MIT_{SUBEVENTO}) estabelecido na Figura 12 do Item 3.5.1. Isso para obter um evento chuvoso para cada hidrograma de escoamento superficial, bem como um subevento para cada pico do hidrograma.

Após testes sucessivos, realizados por tentativa e erro, com auxílio de algoritmos implantados na linguagem *Visual Basic for Applications* em uma planilha eletrônica, obteve-se o MIT_{EVENTOS} igual a 12 horas, MLP_{EVENTOS} igual a 6,1 mm e antecedência máxima igual a 2 dias. Em seguida, os subeventos chuvosos também foram determinados fazendo variar o MIT_{SUBEVENTOS}, no entanto, optou-se por adotar o valor do MIT_{SUBEVENTOS} como um quarto dos MIT_{EVENTOS} (*i.e.* 3 horas) a fim de atingir a relação de um subevento para cada pico do hidrogramas.

Subeventos chuvosos de ínfima lâmina precipitada, que não foram descartados apenas pelos critérios de definição de subeventos, tiveram que ser identificados e rejeitados antes da aplicação das técnicas estatísticas multivariadas. Isso porque os resultados das técnicas estatísticas são sensíveis aos valores de algumas características, tais como intensidade eventos e subeventos, que podem tomar valores atípicos, *e.g.* um pico de precipitação isolado em um minuto computaria um valor de intensidade elevado.

Os principais eventos de escoamento superficial foram identificados nas três subbacias deste estudo, no ano hidrológico 2013-2014, a partir dos gráficos das séries de variação de vazões apresentados na Figura 39, na Figura 40 e na Figura 41. Tais séries foram obtidas após a aplicação das curvas-chave das sub-bacias, apresentados na Figura 38, sobre as séries de níveis de coluna d'água. Para a definição dos eventos de escoamento superficial, aplicou-se o método de separação de hidrogramas descrito no Item 3.5.2.

De posse das curvas de calibração de umidade do solo atribuídas aos postos nº2 e nº4 (Figura 34), e dadas as considerações da Figura 35, da Figura 36 e da Figura 37, as séries horárias dos dados de constante dielétrica puderam ser convertidas em umidade do solo, cujos perfis estão apresentados na Figura 39 e na Figura 40. Assim, de posse dos instantes iniciais dos eventos de escoamento superficial, os valores de umidade do solo puderam ser obtidos para diversas antecedências.

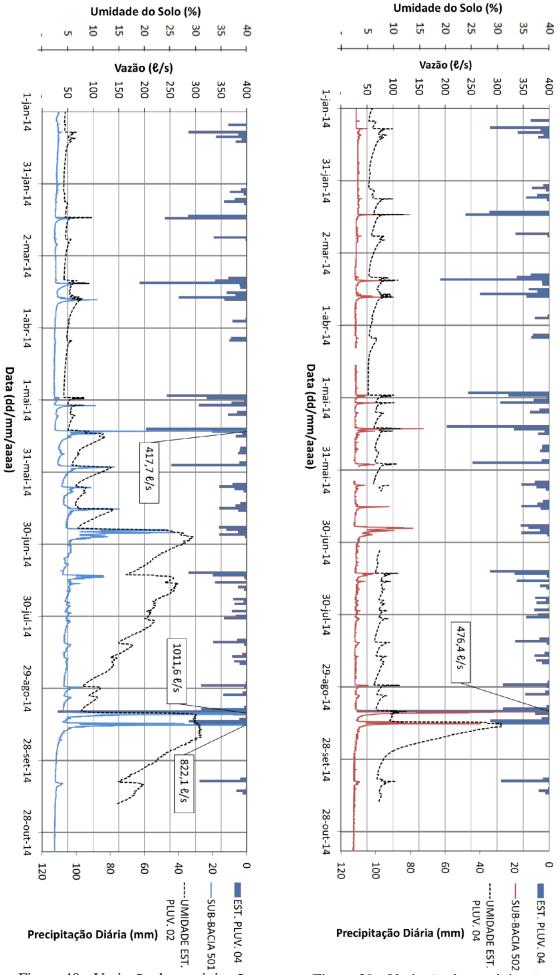


Figura 40 - Variação da precipitação, umidade do solo, e vazão na bacia 501, de janeiro a dezembro de 2014

Figura 39 - Variação da precipitação, umidade do solo e vazão na bacia 502, de janeiro a dezembro de 2014

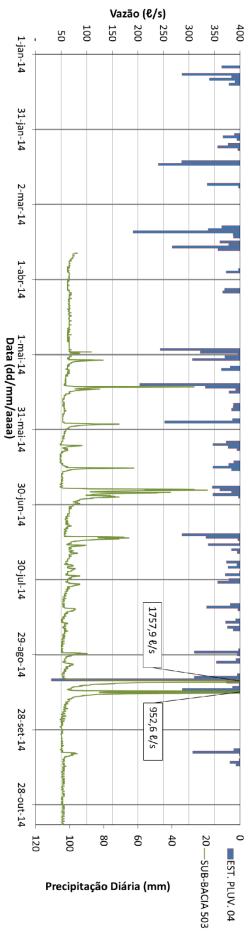


Figura 41 - Variação da precipitação e vazão na bacia 503, de janeiro a dezembro de 2014

Cada hidrograma de escoamento superficial foi tarjado com um identificador numérico, onde: de 1 a 25 são os hidrogramas da sub-bacia 501; de 26 a 45 são os da sub-bacia 502; de 46 a 63 são os da sub-bacia 503. Em seguida, cada característica de vazão foi calculada de acordo com os fluxogramas apresentados anteriormente na Figura 9 e, finalmente, seus valores foram normalizados para a aplicação das técnicas estatísticas multivariadas, cujos valores obtidos se encontram no Apêndice C.

Aplicou-se então a regra do "vizinho mais próximo" para o traçado do dendograma e, em seguida, foi feita a distinção dos grupos de variáveis que apresentam características semelhantes. Aqueles que não se agruparam foram descartados da análise, conforme a Figura 42. Os demais dendogramas, encontram-se anexados no Apêndice C.

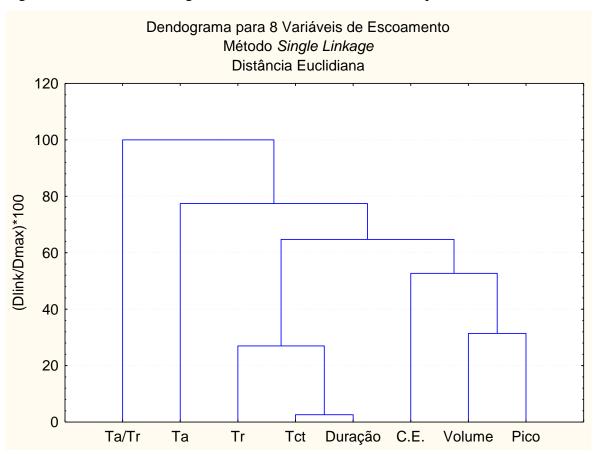


Figura 42 - Dendograma resultante da análise de agrupamento das variáveis de escoamento pelo método *Single Linkage* (Ta - Tempo de ascenção ao pico; Tr – Tempo de Recessão; Tct – Tempo do início ao centroide; Duração – Duração do hidrograma; C.E. – Coeficiente de Escoamento; Volume – Volume de escoamento; Pico – Pico do hidrograma)

A Figura 42 mostra que dois grupos podem ser distinguidos: um relativo às componentes de descarga de vazão, que inclui o pico e o volume do hidrograma, bem como o coeficiente de escoamento (C.E.); e outro que envolve algumas variáveis de tempo, *i.e.* a duração do hidrograma, o tempo ao centroide (Tct) e o tempo de recessão (Tr).

Aplicou-se também a análise de componentes principais, cujas componentes retidas foram aquelas com autovalor superior ao valor "um" (*i.e.* valor unitário), com as quais foi possível mapear distintos grupos de variáveis do hidrograma de escoamento superficial, na Figura 43. Vale lembrar mais uma vez que, conforme mencionado anteriormente, este estudo de relacionamento entre diferentes variáveis tem por finalidade derivar dimensões comuns ao longo dos quais seja possível classificá-las, bem como mapear diferentes populações dentro dessas dimensões.

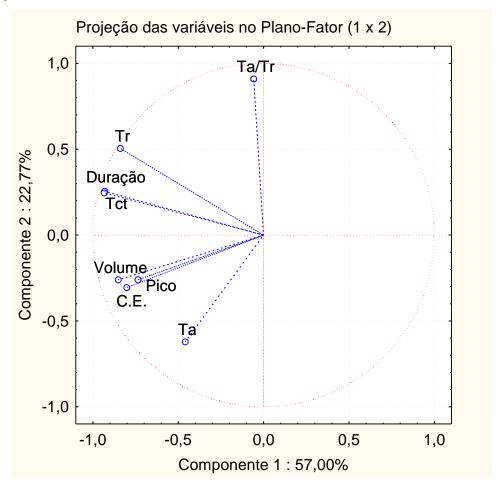


Figura 43 - Projeção das variáveis de escoamento no plano-fator 1x2, obtido da análise de componentes principais (Ta - Tempo de ascenção ao pico; Tr - Tempo de Recessão; Tct - Tempo do início ao centroide; Duração - Duração do hidrograma; C.E. - Coeficiente de Escoamento; Volume - Volume de escoamento; Pico - Pico do hidrograma)

Na Figura 43 percebe-se que a projeção das variáveis no plano fator 1 x 2, justifica 79,77% da variância total dos dados, no qual também é possível identificar dois grupos, semelhante aos da Figura 42, exceto pelo tempo de recessão (Tr) que se encontra um pouco mais deslocado da duração e do tempo até o centroide (Tct). A fim de ampliar o poder de explicação das componentes, a estas foi acrescidas do Fator 3, passando este novo conjunto a explicar 91,03% das variações, segundo a Figura 44.

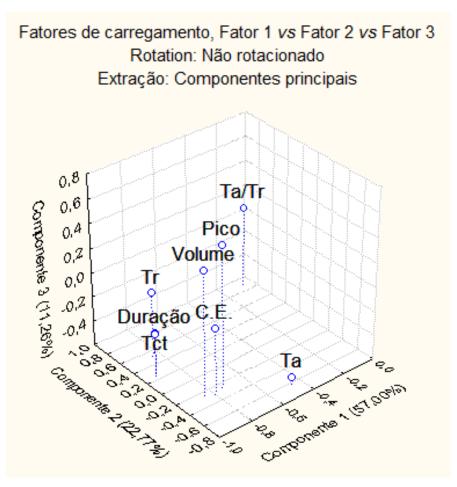


Figura 44 - Projeção das variáveis de escoamento no espaço tridimensional, obtido da análise de componentes principais (Ta - Tempo de ascenção ao pico; Tr - Tempo de Recessão; Tct - Tempo do início ao centroide; Duração - Duração do hidrograma; C.E. - Coeficiente de Escoamento; Volume - Volume de escoamento; Pico - Pico do hidrograma)

Observe na Figura 44 que o grupo composto pela duração e tempo ao centroide (Tct) permaneceu inalterado após o acréscimo do Fator 3. Por outro lado, o grupo formado pelas variáveis de descarga de vazão sofre uma modificação, a variação do coeficiente de escoamento (C.E.) se desloca das demais, aproximando do outro grupo. Contudo, embora tal comportamento tenha sido identificado, isto não descarta o fato de que os dois primeiros fatores são as componentes que explicitam as principais interdependências de variáveis, segundo os critérios estabelecidos anteriormente, o que se evidencia na curva *Scree Plot* da Figura 45.

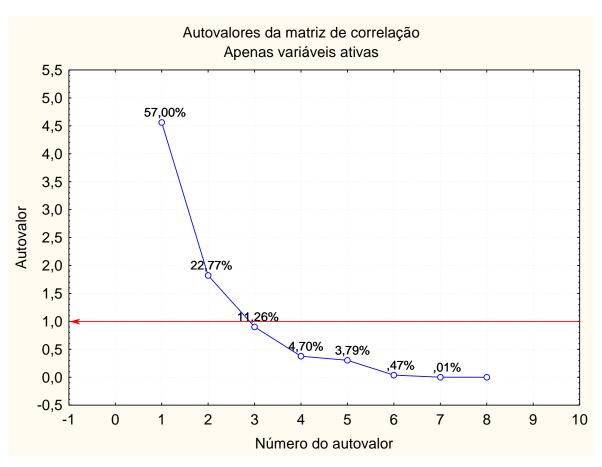


Figura 45 - Curva *Scree Plot* dos autovalores da matriz de correlação obtidos das variáveis de escoamento pela análise de componentes principais

4.3.3 Análise multivariada dos eventos e subeventos chuvosos

As variáveis de precipitação utilizam escalas diferentes (e.g., precipitação em milímetros, intensidade em milímetros por hora, etc.), as quais também tiveram que ser inicialmente padronizados para a realização das análises de agrupamento, cujos dados normalizados se encontram apresentados no Apêndice D.

As variáveis de precipitação computadas não disseram respeito apenas às características dos eventos chuvosos, mas também às características dos seus subeventos, pois as propriedades dos subeventos podem apresentar valores que de maneira mais significativa e realista revelam os efeitos (ou influências) da precipitação na geração de vazão.

Em seguida, foram aplicados os três principais métodos de agrupamento (*Single Linkage*, *Complete Linkage* e *Ward's method*), que no gráfico *Amalgamation Schedule* (ou gráfico *Linkage Distances across* Steps), da Figura 46, é possível identificar facilmente uma redução no patamar de corte, sem que fossem alterados os grupos nos dendogramas das variáveis de precipitação, conforme a Figura 47 e o Apêndice D. O aspecto geral do dendograma pelo método de *Ward* e as discussões estão apresentadas a seguir.

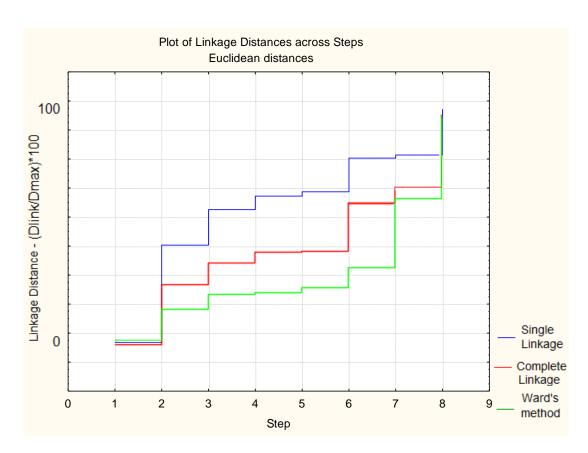


Figura 46 - Gráfico *Amalgamation Schedule* para os métodos *Single Linkage*, *Complete Linkage* e *Ward* sobre as características dos eventos e subeventos chuvosos

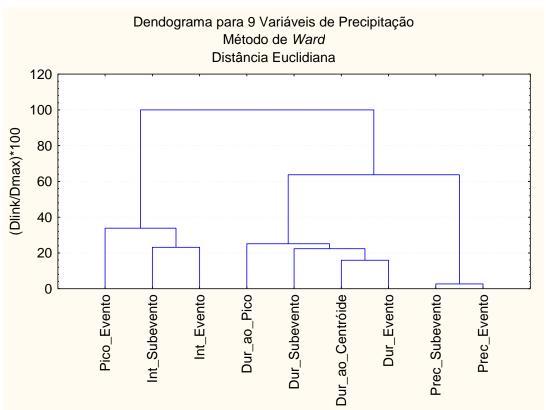


Figura 47 - Dendograma resultante da análise de agrupamento das variáveis dos eventos e subeventos chuvosos pelo método de *Ward* (Pico – Pico máximo do hietograma; Int – Intensidade média do hietograma; Dur – Duração total do hietograma)

A Figura 47 apresenta os principais agrupamentos identificados a partir das variáveis dos eventos e subeventos chuvosos. Como era de se esperar, o descarte de alguns subeventos chuvosos não afetou o grau de interdependência e associação entre as variáveis, especialmente entre as de lâmina precipitada dos eventos e subeventos chuvosos. Já as variáveis de tempo, tais como duração do evento e subevento, bem como as de tempo ao pico e tempo ao centroide foram claramente agrupadas e sugerem uma interdependência entre elas. Além disso, foi identificada uma relação entre das intensidades dos eventos e subeventos com os picos máximos de precipitação.

A partir das análises de componentes principais das variáveis de precipitação, resultados semelhantes aos anteriores puderam ser identificados. Duas componentes foram suficientes para explicar 80,21% das relações existentes, conforme apresentado na Figura 48. Além disso, é possível observar que as variáveis se agruparam do mesmo modo que foi obtido pela análise de agrupamento e que as lâminas precipitadas dos eventos e subeventos foram as únicas variáveis explicadas pelas duas componentes, e não só por uma.

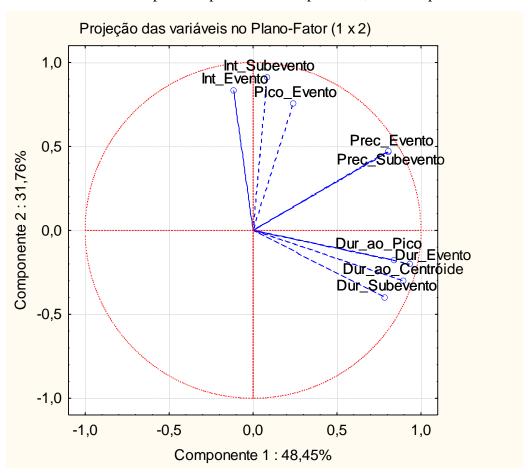


Figura 48 - Projeção das variáveis dos eventos e subeventos no plano-fator 1x2, obtido da análise de componentes principais (Pico – Pico máximo do hietograma; Int – Intensidade média do hietograma; Dur – Duração total do hietograma)

4.3.4 Análise multivariada das umidades antecedentes do solo

De posse dos instantes iniciais de ocorrência dos hidrogramas de escoamento superficial, pode-se determinar facilmente a umidade antecedente dos respectivos eventos de escoamento superficial. Para isso e no intuito de avaliar a partir de qual antecedência obtínhamos valores consideravelmente similares do ponto de vista de interdependência, foram escolhidos vários valores de umidade antecedentes, são eles: 0, 3, 6, 12 horas; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 30 dias. Os valores de umidade antecedente encontram-se tabelados no Apêndice E.

Em seguida, foi aplicada a regra do "vizinho mais próximo" para o traçado do dendograma e posterior distinção dos grupos de variáveis que apresentam características semelhantes, com o qual foi possível facilmente os identificar, conforme apresentado na Figura 49. Os demais dendogramas, encontram-se anexados no Apêndice E.

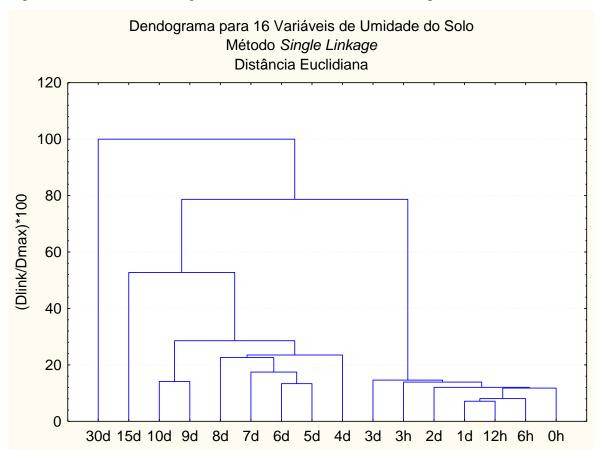


Figura 49 - Dendograma resultante da análise de agrupamento dos valores de umidade antecedente do solo pelo método *Single Linkage* (h – horas; d – dias)

Como pode ser observado na figura anterior, se for atribuído uma linha de corte em 30%, observa-se que para até três dias de antecedência, os dados de umidade de solo apresentam certo grau de associação. Do quarto até o décimo dia, um novo agrupamento é formado, indicando que este novo grupo possivelmente apresenta um novo padrão de

variação, diferente daqueles ocorridos imediatamente antes do hidrograma. Já no quinquagésimo e trigésimo dia antecedente, esta variação difere substancialmente dos anteriores, visto a vinculação destes com os demais ocorrem acima dos 50%.

Em seguida, aplicou-se a análise de componentes principais, cujas componentes retidas foram aquelas com autovalor superior a "um", com as quais foi possível mapear distintos grupos de variáveis de umidade do solo, conforme Figura 50.

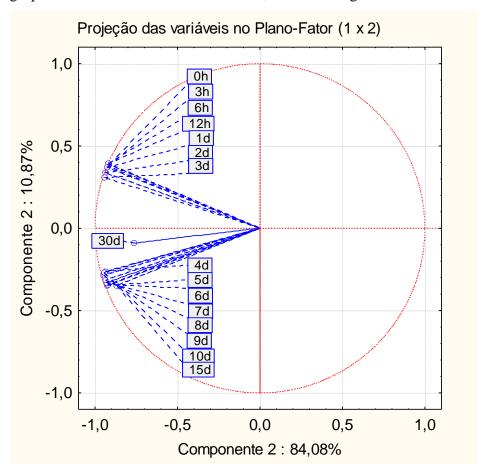


Figura 50 - Projeção das diversas umidades antecedentes do solo no plano-fator 1x2, obtido da análise de componentes principais (h – horas; d – dias)

Na figura anterior, percebe-se que a projeção das variáveis no plano fator 1 x 2, justifica 94,95% da variância total dos dados, cujas coordenadas fator até o décimo dia de umidade antecedente possui correlação variáveis-fator praticamente perfeita. No mesmo, o Fator 1 explica 84,08% da variância, sendo, portanto, a dimensão que identifica a natureza única dos dados, como de umidade do solo. Por outro lado, o Fator 2 explica apenas 10,87% da variância, porém é o responsável por dividir dois grupos populacionais, estando no eixo positivo os dados de umidade que podem exercer influência sobre o escoamento superficial na calha do rio, e no negativo aqueles que não exercem.

A interpretação dos resultados anteriores sugere, do ponto de vista hidrológico, que, a perda de umidade do solo por infiltração e/ou por evapotranspiração, nas sub-bacias estudadas, retém certo percentual de umidade ao longo de sua recessão que deve variar pouco em torno de sua média neste intervalo, *i.e.* durante os três primeiros dias antecedentes. Vale salientar que as sub-bacias apresentam topografia e classe textural do solo superficial homogêneas, segundo as Figura 3 e Figura 37.

Já do ponto de vista técnico, pelas razões elucidadas acima, o registro da umidade do solo poderia ser realizado com certa antecedência, sem afetar consideravelmente sua influência no momento de ocorrência do evento chuvoso. Por exemplo, no caso de perda de dados, um dado registrado até três dias antes do evento de escoamento superficial poderia substituí-lo fidedignamente.

4.3.5 Análise conjunta das variáveis de precipitação, umidade do solo e vazão

As análises anteriores permitiram a identificação de componentes formadas por grupos de variáveis interdependentes relacionadas aos fenômenos hidrológicos deste estudo. Com isso foi possível reduzir o espaço dimensões destes fenômenos, *e.g.* as nove variáveis de precipitação puderam ser reduzidas para apenas duas componentes, que juntas tiveram um poder explicativo de 80,21% da variância total; a umidade, por sua vez, poderia ser representada por apenas uma componente, já que por se só esta explica 84,08.

Nesta etapa do estudo, a meta traçada objetiva identificar qual o poder associativo destas principais componentes na explicação das principais características dos hidrogramas de escoamento superficial. Entretanto, *a priori*, tentou-se identificar visualmente quais os possíveis grupos criados a partir da análise de agrupamento, das principais variáveis em estudo, simultaneamente, conforme Figura 51 e Apêndice F. Para tal, a umidade do solo foi normalizada e suas falhas substituídas pela média, de acordo com o Apêndice E.

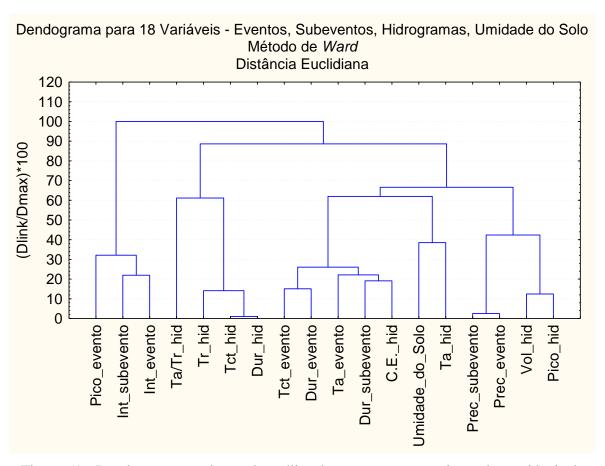


Figura 51 - Dendograma resultante da análise de agrupamento conjunta das variáveis de precipitação, umidade do solo e escoamento pelo método de *Ward* (Pico – Pico máximo; Int – Intensidade média; Dur – Duração total; Ta - Tempo de ascensão ao pico; Tr – Tempo de Recessão; Tct – Tempo ao centroide; C.E. – Coeficiente de Escoamento; Vol – Volume de escoamento; Evento – Evento Chuvoso; Subevento – Subevento Chuvoso; Hid – Hidrograma de Escoamento Superficial; Umidade – Umidade do Solo à 0 horas)

Deste modo, a Figura 51 exibem diversos grupos, dentre os quais, alguns agrupam variáveis de fenômenos distintos. Primeiramente, percebe-se uma associação entre a precipitação dos hietogramas com os volumes e picos de vazão dos hidrogramas. Além disso, a umidade esteve vinculada ao tempo de ascensão do hidrograma, os quais por sua vez se agruparam às características de tempo (*e.g.* duração, tempo ao centroide, tempo de ascensão dos hietogramas) e também ao coeficiente de escoamento superficial do hidrograma. Por outro lado, as demais propriedades de tempo dos hidrogramas estiveram agrupadas isoladamente com relação às anteriores. E, por fim, o grupo dos picos máximos e intensidades dos eventos e subeventos foi aquele que menos se associou aos demais.

A fim de explorar um pouco mais as características de tempo, foram calculadas as diferenças dos tempos dos hietogramas com aqueles dos hidrogramas, com os quais foram estabelecidas as relações entre as diferenças de tempo de início a início (In-In), fim a fim (Fi-Fi), centroide a centroide (Ct-Ct) e pico a pico (Pi-Pi), na Figura 52 e Apêndice F.

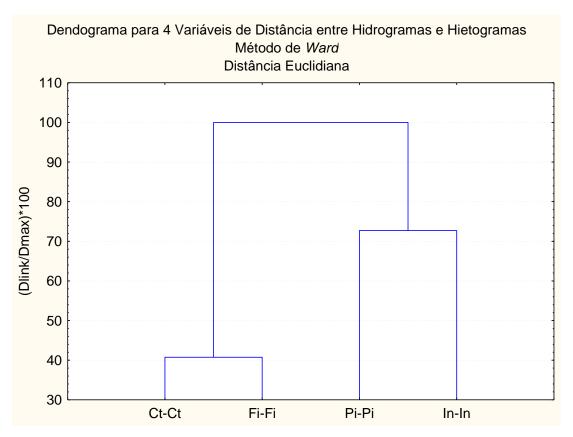


Figura 52 - Dendograma resultante da análise de agrupamento das diferenças de tempo entre hietograma e hidrograma pelo método de *Ward* (Ct-Ct – tempo centroide do hietograma ao centroide do hidrograma; Fi-Fi – tempo fim a fim; Pi-Pi – tempo pico a pico; In-In – tempo de início ao início)

A figura anterior mostra uma associação mais forte entre os tempos de centroide a centroide e fim a fim do hietograma do evento chuvosos ao hidrograma de escoamento superficial, e mais fraca entre o tempo pico a pico e início a início.

Até o momento, apenas foi possível identificar algumas prováveis associações de interdependência entre variáveis dos fenômenos de entrada (precipitação e umidade do solo) com aqueles de saída (hidrograma), porém o poder explicativo destas associações não foi computado. Para tanto, foram aplicadas regressões lineares múltiplas sobre as componentes principais, relacionando as variáveis independentes de entrada com as variáveis dependentes de saída e, por fim, seus coeficientes de regressão e de determinação foram avaliados.

As componentes principais das variáveis de entrada e suas respectivas variáveis potencialmente explicativas estão apresentadas na Figura 53 e na Tabela 11, a seguir.

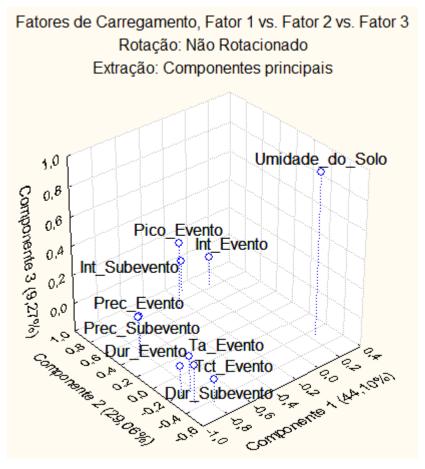


Figura 53 - Projeção das variáveis de precipitação e umidade do solo no espaço tridimensional, obtido da análise de componentes principais (Int – Intensidade; Prec – Precipitação; Dur – Duração; Ta_Evento – Tempo ao pico do hietograma; Tct_evento – Tempo ao centroide do hietograma)

Tabela 11 - Valores de correlação das variáveis de precipitação e umidade do solo com as componentes, obtidas da análise de componentes principais da Figura 53 (Prec – Precipitação; Int – Intensidade; Dur – Duração; Ta – Tempo de Ascenção ao Pico do Evento Chuvoso; Tct – Tempo de Ascenção ao Centroide do Evento Chuvoso)

Cargas Fatoriais (Não Rotacionado)

	Extração: Componentes Principais (Cargas marcadas são >0,70)				
	Componente Componente		Componente		
Variável	1	2	3		
Prec_evento	-0,82	0,44	0,06		
Dur_evento	-0,93	-0,23	0,03		
Int_evento	0,09	0,84	-0,00		
Pico_evento	-0,26	0,73	0,26		
Ta_evento	-0,83	-0,20	0,04		
Tct_evento	-0,88	-0,33	0,05		
Prec_subevento	-0,82	0,44	0,05		
Dur_subevento	-0,77	-0,42	-0,04		
Int_subevento	-0,11	0,91	0,02		
Umidade_do_Solo	0,25	-0,26	0,92		
Autovalor	4,41	2,91	0,93		
% Total da Variância	44,10	29,06	9,27		

Como se observa anteriormente, as três primeiras componentes explicaram 82,43% da variância total, além de serem capazes de agrupar todas as variáveis de entrada. A componente 1 envolve as características de lâmina precipitada e tempos, a componente 2 envolve as de intensidade e pico, e a componente 3 envolve a de umidade antecedente no instante inicial do hidrograma.

Assim, o espaço multidimensional de dez variáveis foi reduzido para um espaço tridimensional, cujas coordenadas (ou *score*) de cada caso (ou hidrograma) foram determinadas (os valores se encontram no Apêndice F) e foram aplicadas nas regressões múltiplas, respectivamente, sobre as variáveis de pico de hidrograma, de volume de vazão e de coeficiente de escoamento superficial.

Para tanto, a regressão múltipla assume que os valores residuais (*i.e.* valores observados menos valores previstos das variáveis) são normalmente distribuídos, e que a função de regressão (*i.e.* a relação entre as variáveis independentes e dependentes) é linear em sua natureza. Deste modo, se qualquer uma dessas hipóteses for grosseiramente violada, então os coeficientes de regressão (*i.e.* coeficientes B) e os testes de significância estatística podem ser afetados.

A Tabela 12, a Tabela 13 e a Tabela 14 apresentam o sumário da regressão lineares múltiplas, apresentando os coeficientes de regressão não-normalizados "B" e normalizados "Beta", seus erros padrões e a significância estatística, além de apresentarem os coeficientes de correlação e de determinação obtidos a partir da regressão. Por outro lado, a Figura 54, Figura 55 e Figura 56 exibem os gráficos de dispersão dos valores observados pelos valores previstos das variáveis de escoamento superficial, estes últimos obtidos por meio das regressões lineares múltiplas (exibidas na Tabela 12, na Tabela 13 e na Tabela 14), realizadas sobre as três componentes principais selecionadas. Além disso, as mesmas figuras também apresentam os gráficos de probabilidade normal dos resíduos.

Tabela 12 - Sumário da regressão linear múltipla obtida para o pico do hidrograma

Sumário da Regressão para a Variável Dependente: Pico do Hidrograma R= 0,68, R²= 0,47, R² ajustado= 0,44

F(3,67)=19,62, α=0,05, p<0,00, Erro Padrão da Estimativa: 0,71

	(-1111111111111-					
	Beta	Erro Padrão	В	Erro Padrão	t(67)	p-level
N=71		de Beta		de B		
Intercepto			-0,04	0,08	-0,47	0,64
Componente 1	-0,61	0,09	-0,28	0,04	-6,88	0,00
Componente 2	0,07	0,09	0,04	0,05	0,79	0,43
Componente 3	0.29	0.09	0.29	0.09	3.29	0.00

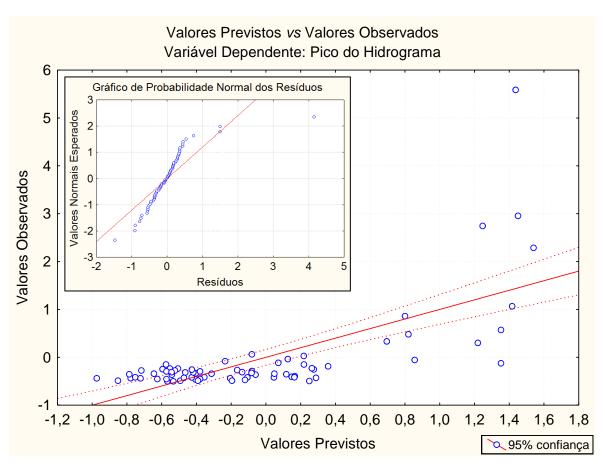


Figura 54 - Gráfico de valores previstos pela regressão pelos valores observados e gráfico de probabilidade normal dos dados previstos, ambos para o pico do hidrograma

A Figura 54 e Tabela 12 mostram que as componentes 1 e 3 foram as componentes significativas na explicação do pico do hidrograma, contudo o coeficiente de determinação foi apenas de 0,47. Além disso, o valor do coeficiente de regressão expresso por "B", mostra que, a componente 1 é negativa e a componente 3 é positiva, e que o módulo da componente 1 é aproximadamente igual ao da componente 3; revelando, portanto, que ambas têm pesos semelhantes. Em outras palavras, a precipitação tem uma influência igualmente importante a da umidade do solo no pico de escoamento. Por fim, percebe-se que os resíduos não se ajustaram bem ao papel de probabilidade normal, já que exibiu uma forma de "S", o que indica que a regressão linear não é a técnica mais adequada, mas que talvez a aplicação do logaritmo aos dados possa melhorar o grau de associação do modelo.

Tabela 13 - Sumário da regressão linear múltipla obtida para o volume de escoamento

Sumário da Regressão para a Variável Dependente: Volume de Escoamento R= 0,77, R²= 0,59, R² ajustado= 0,57

F(3,67)=31,91, α=0,05, p<0,00, Erro Padrão da Estimativa: 0,62

	Beta	Erro Padrão	В	Erro Padrão	t(67)	p-level
N=71		de Beta		de B		
Intercepto			-0,04	0,07	-0,53	0,60
Componente 1	-0,72	0,08	-0,33	0,04	-9,23	0,00
Componente 2	-0,07	0,08	-0,04	0,04	-0,88	0,38
Componente 3	0,24	0,08	0,24	0,08	3,12	0,00

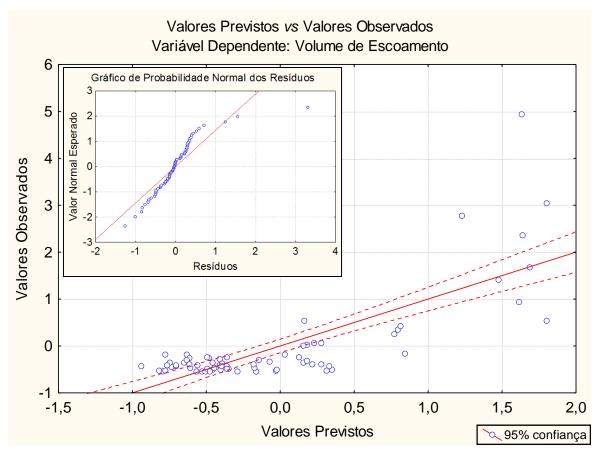


Figura 55- Gráfico de valores previstos pela regressão pelos valores observados e gráfico de probabilidade normal dos dados previstos, ambos para o volume de escoamento

A Figura 55 e a Tabela 13 mostram que, os resultados obtidos para o volume de escoamento têm comportamentos similares àqueles do pico de escoamento. Isso porque, observa-se que, ambas as componentes 1 e 3 foram significativas, só que neste caso o módulo do coeficiente de regressão "B" da componente 1 maior do que a componente 3, mostrando que para o volume de escoamento, as variáveis de precipitação apresentam uma influência maior do que a umidade antecedente do solo. Contudo, o coeficiente de determinação 0,59 foi maior, o que indica que as três componentes foram mais eficazes na explicação da variável de volume de escoamento. Já no que se refere ao papel de

probabilidade, o modelo de regressão linear novamente não se mostrou o mais adequado para explicar a resposta hidrológica, dado o aspecto em forma de "S".

Tabela 14 - Sumário da regressão linear múltipla obtida para o coeficiente de escoamento

Sumário da Regressão para a Variável Dependente: Coeficiente de Escoamento R= 0,81, R²= 0,66, R² ajustado= 0,64

F(3,67)=43,31, α=0,05, p<0,00, Erro Padrão da Estimativa: 0,57

	Beta	Erro Padrão	В	Erro Padrão	t(67)	p-level
N=71		de Beta		de B		
Intercepto			-0,04	0,07	-0,60	0,55
Componente 1	-0,70	0,07	-0,32	0,03	-9,87	0,00
Componente 2	-0,33	0,07	-0,19	0,04	-4,66	0,00
Componente 3	0,23	0,07	0,23	0,07	3,29	0,00

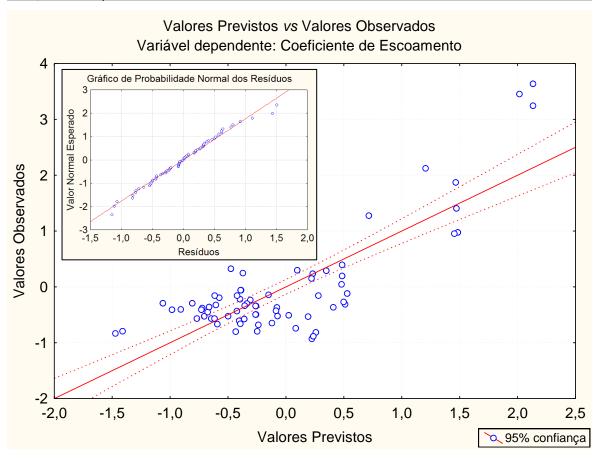


Figura 56 - Gráfico de valores previstos pela regressão pelos valores observados e gráfico de probabilidade normal dos dados previstos para o coeficiente de escoamento

Por fim, o coeficiente de escoamento foi a variável que apresentou os melhores resultados da regressão linear múltipla. Isso porque, de acordo com a Figura 56 e Tabela 14, as três componentes contribuíram significativamente para o coeficiente de determinação de 0,66, onde a componente 2 (relativo às intensidades e picos chuvosos), que até então tinha se mostrado insignificante, apresentou-se fundamental no aumento da capacidade de um evento chuvoso em gerar escoamento no leito do riacho. Além disso, os resíduos se ajustaram bem ao papel de probabilidade, sugerindo que para esta variável de

escoamento superficial, o modelo de regressão linear múltipla pode ser adequadamente aplicado as sub-bacias em estudo, mesmo com uma pequena amostra de eventos em estudo.

As demais variáveis de escoamento superficial, *i.e.* aquelas com unidades de tempo, não encontram-se aqui apresentadas por terem apresentados coeficientes de determinação baixos o que não proporcionou considerações relevantes a serem feitas. As mesmas estão anexadas no Apêndice F.

5 CONCLUSÕES & RECOMENDAÇÕES

5.1 Estudo 1: Efeitos da variação dos critérios de definição de eventos chuvosos sobre as flutuações de intensidade e a quantidade de eventos

Este primeiro estudo foi realizado na bacia experimental do Riacho Guaraíra com dados de quatro anos de precipitação (2004-2007), na escala sub-horária, e buscou avaliar a intensidade da precipitação e suas flutuações, para diferentes intervalos de tempo mínimo entre eventos e entre subeventos. A principal conclusão é que há uma diferença relevante entre as intensidades de um evento chuvoso, de seus subeventos e a média dos subeventos, sendo essas diferenças, entre esses três valores, importantes no cálculo da geração de escoamento superficial, na produção de sedimento e na variação da umidade do solo.

Outra conclusão diz respeito ao aumento do Mínimo Intervalo de Tempo entre eventos (MIT) que reduz a quantidade de eventos, pois eventos isolados são agregados a outros eventos, compondo assim um novo evento de maior duração. Porém, esse mesmo comportamento favorece o aumento da quantidade total de subeventos. Por outro lado, o aumento do MIT dos subeventos tende a reduzir a intensidade média dos subeventos.

A definição dos eventos de precipitação, mediante o estabelecimento dos critérios de MIT e MLP (*i.e.* Mínima Lâmina Precipitada), pode influenciar os resultados da resposta hidrológica gerada por modelagem, uma vez que a escolha de valores de MLP's altos e MIT's baixos podem eliminar ou desagregar pulsos de precipitação que possam promover uma resposta de vazão na bacia hidrográfica.

Analisando estatisticamente os dados para o caso estudado, a quantidade de eventos foi reduzida em quase 50% do MIT de 6 horas para o MIT de 24 horas, enquanto que em média apenas 5% da precipitação anual foi desprezada da análise. As relações entre as intensidades médias dos subeventos e às intensidades dos eventos apresentam valores da ordem de 2 até 8 vezes, mostrando que a intensidade média dos eventos podem ser subestimadas em média 4 vezes, mas podendo chegar até a 8 vezes. Essa redução na intensidade de um evento chuvoso pode proporcionar impacto na geração do escoamento superficial.

Essas conclusões apontam para a necessidade de estudos experimentais mais detalhados sobre a influência da intensidade de eventos chuvosos, e suas flutuações, sobre outras variáveis hidrológicas, uma vez que a precipitação é um indutor da geração de escoamento superficial, da produção de sedimento e de variações da umidade do solo.

5.2 Estudo 2: Análise da ocorrência, forma e características dos hietogramas em bacias experimentais do Nordeste Brasileiro

Neste segundo estudo, eventos sub-horários da precipitação foram analisados em três pluviógrafos, de três bacias hidrográficas experimentais do Nordeste Brasileiro. Embora o período de análise tenha sido relativamente curto (4 anos), a quantidade de eventos analisados por bacia experimental (BHE) foi grande: 229 eventos (BHE do Riacho Aiuaba); 228 eventos (BHE de São João do Cariri); e 909 eventos (BHE do Riacho Guaraíra). Ademais, os anos analisados registraram precipitações anuais maiores e menores que a média histórica.

A partir das análises realizadas, as seguintes conclusões podem ser destacadas:

- 1. Embora a ocorrência de eventos Não Caracterizados (NC) fosse pequena (de cerca de 6% por posto estudado), os mesmos foram os que mais contribuíram para o total precipitado (em até 38%), ver Figura 26.
- Aplicando a metodologia de reclassificação através da agregação do tempo, os eventos Não Caracterizados (NC) chegaram a ser reduzidos entre 92 e 97% nas áreas em estudo, para o período avaliado, ver Figura 27 e Figura 28.
- Nas três BHEs estudadas, os eventos reclassificados tendem predominantemente à
 forma do evento do tipo Unimodal à Esquerda (UE) à medida que o tempo de
 agregação aumenta, ver Figura 30, Figura 31, Figura 32 e Figura 33.
- 4. Os eventos classificados tiveram durações inferiores a 1 dia, com intensidades variando em média até 20 mm.h⁻¹, sendo a BHE do Riacho Aiuaba, a única que apresentou picos superiores a 4 mm para todas as classes de hietogramas, ver Figura 29.
- 5. A partir do passo de tempo agregação (Δt) igual 2 minutos, já foi possível estabelecer forma para muitos eventos Não Caracterizados nas BHEs. A redução mais significativa ocorreu para um Δt de 15 min e 30 min, sendo que na BHE do Riacho Guaraíra foi notado uma transformação considerável de eventos Não Caracterizados (NC) em Retangulares (R), de até 21 % (ver Figura 27), devido à agregação total do evento a um único horário (ver metodologia mostrada na Tabela 5), o que sugere que um passo de tempo intermediário entre 15 min e 30 min apresentaria fidedignidade maior às formas verdadeiras dos eventos NC para um MIT de 30 min na referida bacia.

Os resultados encontrados nesta pesquisa realizada com dados de precipitação com alta resolução temporal (1 e 5 minutos) devem influenciar diretamente em estudos sobre geração de escoamento superficial e produção de sedimento, uma vez que a ocorrência sucessiva de eventos com diferentes características deve influenciar diretamente e distintamente o modo como a umidade do solo se comporta e, por conseguinte, o funcionamento dos mecanismos de geração de escoamento e produção de sedimentos.

5.3 Estudo 3: Avaliação das relações entre eventos chuvosos, umidade antecedente do solo e hidrogramas de escoamento a partir de análises multivariadas de suas variáveis caracterizantes

Este terceiro ou último estudo também foi realizado na bacia experimental do Riacho Guaraíra com dados do ano hidrológico 2013-2014, na escala sub-horária, e buscou investigar o grau de interdependência e poder de associação das relações existentes entre as características da precipitação, umidade do solo e vazão superficial, por meio de técnicas estatísticas de análise multivariada.

Em geral, pode-se perceber que a aplicação das técnicas de análise de agrupamento e análise de componentes principais foi eficaz: na redução do espaço dimensional das variáveis (e.g. variáveis de precipitação), no descarte de variáveis sem grau de interdependência com as demais (e.g. variáveis de escoamento) e, na identificação de padrões de variação das mesmas (e.g. variáveis de umidade do solo). O caso mais evidente foi o da umidade antecedente do solo, onde a variância total de 16 variáveis pôde ser explicada em 94,95% por apenas duas componentes, com as quais se pode concluir que, até 3 dias de antecedência as sub-bacias apresentavam variações de umidade do solo semelhantes. Parâmetro esse, importantíssimo para pesquisas de variação espaço-temporal da umidade do solo, bem como para estudos dos mecanismos de geração de vazão.

Após a aplicação da regressão linear múltipla, observam-se três comportamentos relevantes sobre o pico de hidrograma, o volume de escoamento e o coeficiente de escoamento, são eles:

Três componentes principais foram suficientes para reduzir o espaço dimensional
das 10 variáveis de precipitação e umidade do solo para um espaço tridimensional.
O fator 1 envolveu as características de lâmina precipitada e tempos, o fator 2
envolveu as de intensidade e pico, e o fator 3 envolveu a de umidade antecedente
no instante inicial do hidrograma. Tais componentes foram todas significantes na

- explicação do coeficiente de escoamento, enquanto que apenas a primeira e terceira explicaram o pico e volume do hidrograma;
- 2. As características de pico e volume do hidrograma foram heterocedásticos (i.e. não se ajustaram a uma curva gaussiana) sugerindo que o modelo de regressão linear talvez não seja o mais apropriado, o que abri precedente para a aplicação da regressão não-linear múltipla, ou até mesmo a aplicação de outras técnicas, como a de redes neurais artificiais;
- 3. O coeficiente de determinação obtido foi sempre inferior a 66% para as características de escoamento avaliadas, o que sugere que novas variáveis de outros fenômenos poderiam ser implementadas nas análises, para melhorar o ajuste do modelo. Para tanto, sugere-se a integração da influência das paisagens da bacia hidrográfica, por meio da variável de evapotranspiração potencial; pois, embora a topografia, a classe textural e densidade aparente do solo sejam homogêneas entre as três sub-bacias 501, 502 e 503, a umidade do solo variou de maneira diferente entre as mesmas.

Percebe-se, por fim, que a aplicação de métodos subjetivos para a determinação das características dos fenômenos estudados, bem como a ausência de uma série mais longa de dados, pode ter reduzido tanto a precisão dos valores obtidos nos resultados do estudo quanto o ajuste dos modelos. Sugere-se, portanto, a continuação do monitoramento da precipitação, umidade do solo e vazão em simultâneo, assim como a aplicação de algoritmos de otimização sobre os critérios de definição de eventos chuvosos e de hidrogramas de escoamento superficial.

REFERÊNCIAS BIBLIOGRÁFICAS

BARBOSA, L. R.; SILANS, A. M. B. P.; ALMEIDA, C. N. **Detailed analysis of rainfall events in a representative coastal watershed from Brazilian Northeast**. In: XIV World Water Congress, Porto de Galinhas. Anais do XIV World Water Congress, 2011.

BLUME T.; ZEHE E.; BRONSTERT A. Rainfall-runoff response, event-based runoff coefficients and hydrograph separation. Hydrological Science Journal. 52:5, 843-862. DOI: 10.1623/hysj.52.5.843. 2007.

BROWN, B. G.; KATZ, R. W.; MURPHY, A. H. Exploratory analysis of precipitation events with implications for stochastic modelling. Journal of Climate and Applied Meteorology, v.24, p.57–67, 1985.

CABALLERO, L.A.; ALON R.; ZACHARY M. E.; TAMMO S. S. Rainfall Runoff Relationships for a Cloud Forest Watershed in Central America: Implications for Water Resource Engineering. Journal of the American Water Resources Association (JAWRA). 48(5): 1022-1031. DOI: 10.1111/j.1752-1688.2012.00668.x. 2012.

COSCARELLI, R.; CALOIERO, T. Analysis of daily and monthly rainfall concentration in Southern Italy (Calabria region). Journal of Hydrology 416, 145–156. 2012.

COUTINHO, J. V.; ALMEIDA, C. N.; LEAL, A. M. F.; BARBOSA, L. R. Experimental basins in the Northeast of Brazil: investigation on the characteristics of the sub-daily rainfall. In: 6th IAHS-EGU International Symposium on Integrated Water Resources Management, Bologna, Itália, 2014.

DUNKERLEY, D. Rain event properties in nature and in rainfall simulation experiments: a comparative review with recommendations for increasingly systematic study and reporting. Hydrological processes, v.22 (22), p.4415-4435, 2008a.

DUNKERLEY, D. **Identifying individual rain events from pluviograph records: a review with analysis of data from an Australian dryland site**. Hydrological Processes, v.22 (26), p.5024-5036, 2008b.

DUNKERLEY, D. Rain rate and its temporal profile: a neglected aspect of rain behaviour. Paper presented to General Assembly. European Geosciences Union, Vienna, May 2010. Geophysical Research Abstracts 12: EGU2010-1600. 2010.

DUNKERLEY, D. Effects of rainfall intensity fluctuations on infiltration and runoff: rainfall simulation on dryland soils, Fowlers Gap, Australia. Hydrological Processes, v.26 (15), p.2211-2224, 2012.

EISENBIES, M.; AUST, W.; BURGER, J.; ADAMS, M. Forest operations, extreme flooding events, and considerations for hydrologic modeling in the **Appalachian - a review**. Forest Ecology and Management 242: 77–98, DOI: 10.1016/j.foreco.2007.01.051. 2007.

ESTATCAMP. **Portal Action**. 2015. Disponível em: http://www.portalaction.com.br/. Acesso em: 14abril2015.

GOLDFARB, M. C.; CYSNEIROS, D. O.; SILVA, T. C. Caracterização fluviomorfológica da bacia do Rio Gramame. In: SILVA, T. C.; SILANS, A. M. B. P.; GADELHA, C. L. M.: Bacia do Rio Gramame: hidrologia e aspectos ambientais para a gestão dos seus Recursos Hídricos. 1.ed. João Pessoa: Editora Universitária - UFPB, p.196, 2002.

HAILE, A. T.; RIENTJES, T. H.; HABIB, E.; JETTEN, V.; GEBREMICHAEL, M. Rain event properties at the source of the Blue Nile River. Hydrology and Earth System Sciences, v.15 (4), p.1023-1034, 2011.

HARDER, S.; AMATYA, D.; CALLAHAN, T.; TRETTIN, C.; HAKKILA, J. **Hydrology and water budget for a forested Atlantic coastal plain watershed, South Carolina**. Journal of the American Water Resources Association 43(3): 563–575. 2007.

IBESA. Relatório preliminar sobre a instalação de bacias experimentais no **Semiárido**. Projeto financiado pela Financiadora de Estudos e Projetos – FINEP. 2002.

JENA, P. P.; CHATTERJEE, C.; PRADHAN, G.; MISHRA, A. Are recent frequent high floods in Mahanadi basin in eastern India due to increase in extreme rainfalls? Journal of Hydrology, 517, pág. 847-862, 2014.

JOLLIFFE, I. T. Principal Component Analysis. New York: Springer, 2002.

KALANTARI, Z.; LYON, S.W.; FOLKESON, L.; FRENCH, H.K.; STOLTE, J.; JANSSON, P-E.; SASSNER, M. Quantifying the hydrological impact of simulated changes in land use on peak discharge in a small catchment. Science of the Total Environment 466–467:741–754. DOI: 10.1016/j.scitotenv.2013.07.047. 2014.

KOSTKA, Z.; HOLKO, L. Analysis of rainfall-runoff events in a mountain catchment. International Hydrological Programme (IHP) of the United Nations Educational, Scientific and Cultural Organization (UNESCO): 9th Conference of the European Network of Experimental and Representative Basins. IHP-VI Technical Document in Hydrology N°67. UNESCO Working Series SC-2003/WS/30. 2003.

LA TORRE TORRES, I.B.; AMATYA, D.M.; SUN G.; CALLAHAN, T.J. Seasonal rainfall-runoff relationships in a lowland forested watershed in the

southeastern USA. Hydrological Processes. 25 : 2032 – 2045. DOI:10.1002/hyp.7955. 2011.

LI, H.; SIVAPALAN, M.; TIAN, F. Comparative diagnostic analysis of runoff generation processes in Oklahoma DMIP2 basins: The Blue River and the Illinois River. Journal of Hydrology, 418–419, 90–109. DOI: 10.1016/j.jhydrol.2010.08.005. 2012.

LIRA, G. A. R.; SILANS, A. M. B. P.; PEDROSA FILHO, L.; ALMEIDA, C. A.; LEITE, E. P. F.; SILVA, T. C.; FILHO, S. V.; MOURA, E. M.; SOUSA, E. E.; DIAS DA SILVA, L.: **Bacia experimental do rio Guaraíra: implantação e primeiros Resultados**. XV Simpósio Brasileiro de Recursos Hídricos, Curitiba, 2003.

MEHRAN, A.; AGHAKOUCHAK, A. Capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. Hydrological Processes, 28, pág. 2262-2270, 2014.

MELLO, C. R.; LIMA J. M.; DA SILVA A. M. Simulação do Deflúvio e Vazão de Pico em Microbacia Hidrográfica com Escoamento Efêmero. Revista Brasileira de Engenharia Agrícola e Ambiental. V. 11, N° 4, P.410–419. http://www.agriambi.com.br. 2007.

MIWA, M.; TRETTIN, C.; GARTNER, D.; BUNTON, C.; HUMPHREYS, R. Characterization of Headwater Stream Hydrology in the Southeastern Lower Coastal Plain. Final Report IAG#: DW12945840-01-0, USDA Forest Service, Charleston, SC. 2003.

MIYATA, S.; KOSUGI, K.; NISHI, Y.; GOMI, T.; SIDLE, R.C.; MIZUYAMA, T. Spatial pattern of infiltration rate and its effect on hydrological processes in a small headwater catchment. Hydrological Processes 24: 535–549. DOI: 10.1002/hyp.9217. 2010.

MÜLLER, M. F.; THOMPSON, S. E. Bias adjustment of satellite rainfall data through stochastic modeling: Methods development and application to Nepal. Advances in Water Resources, 60, pág. 121-134, 2013.

NAGHETTINI, M.; PINTO, É. J. A. Hidrologia Estatística. Belo Horizonte: CPRM – Serviço Geológico do Brasil, 2007.

NIEDDA, M.; PIRASTRU, M. Field investigation and modelling of coupled stream discharge and shallow water-table dynamics in a small Mediterranean catchment (Sardinia). Hydrological Processes. DOI: 10.1002/hyp.10016. 2013.

PASCHALIS, A.; FATICHI, S.; MOLNAR, P.; RIMKUS, S.; BURLANDO, P. On the effects of small scale space—time variability of rainfall on basin flood response. Journal of Hydrology, 514, 313–327. http://dx.doi.org/10.1016/j.jhydrol.2014.04.014. 2014.

PDRH. **Plano Diretor de Recursos Hídricos da Bacia do Rio Gramame**. SEMARH/SCIENTEC, 2000.

PENNA, D.; TROMP-VAN MEERVELD, H.J.; GOBBI, A.; BORGA, M.; DALLA FONTANA, G. The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrology and Earth System Science 15:689–702. DOI:10.5194/hess-15-689-2011. 2011.

RAN, Q.; SU, D.; LI, P.; HE, Z. Experimental study of the impact of rainfall characteristics on runoff generation and soil erosion. Journal of Hydrology, v.424-425, p.99-111, 2012.

REW, S.; McCUEN, R. Accuracy Assessment of Unit Hydrographs: Point versus Spatially Integrated Rainfall Input. J. Hydrol. Eng., 17(1), 23–31. 2012.

ROMESBURG, H. C. Cluster Analysis for Researchers. Belmont, California: Lifetime Learning Publications, 1984.

SHI, W.; YU, X.; LIAO, W.; WANG, Y.; JIA, B. **Spatial and temporal variability of daily precipitation concentration in the Lancang River Basin, China**. Journal of Hydrology, v.495, p.197-207, 2013.

SILVA, G. N. S. Caracterização de bacias através parâmetros obtidos por imagem de satélite e Modelos Digitais de Elevação em Sistemas de Informações Geográficas. Dissertação (Mestrado em Engenharia Urbana e Ambiental) - Universidade Federal da Paraíba. 2012.

STATSOFT. Statistica. **Statsoft**, 2015. Disponível em: http://documentation.statsoft.com/STATISTICAHelp.aspx. Acesso em: 07 janeiro 2015.

TIAN, F.; LI, H.; SIVAPALAN, M. Model diagnostic analysis of seasonal switching of runoff generation mechanisms in the Blue River basin, Oklahoma. J. Hydrol., 418–419, 136–149, DOI:10.1016/j.jhydrol.2010.03.011. 2012.

TOKAY, A.; SHORT, D.A. Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. Journal of Applied Meteorology 35: 355–371. 1996.

VILLELA, S. M.; MATTOS, A. **Hidrologia Aplicada**. Editora Mc Graw Hill, São Paulo. 1975.

WESTERN, A.W.; GRAYSON, R.B.; BLÖSCHL, G.; WILLGOOSE, G.R.; McMAHON, T.A. **Observed spatial organization of soil moisture and its relation to terrain indices.** Water Resour. Res. 35 (3), 797–810. 1999.

YANGA, T.; SHAO, Q.; HAOA, Z.; CHENA, X.; ZHANGC, Z.; XUD, C.; SUNA, L. Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in the Pearl River Basin, China. Journal of Hydrology, 380, pág. 386-405, 2010.

YONG, B.; CHEN, B.; GOURLEY, J. J.; REN, L.; HONG, Y.; CHEN, X.; WANGA, W.; CHEN, S.; GONG, L. Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low latitudes basins with independent gauge networks: Is the newer version better in both real-time and post-real-time analysis for water resources and hydrologic extremes? Journal of Hydrology, 508, pág. 77-87, 2014.

ZABALETA A.; ANTIGÜEDAD I. **Streamflow response of a small forested catchment on different timescales**. Hydrology and Earth System Science. 17, 211–223. DOI:10.5194/hess-17-211-2013. 2013.

ZHANG, Q.; ZHOU, Y.; SINGH, V. P.; LI, J. Scaling and clustering effects of extreme precipitation distributions. Journal of Hydrology, v.454–455, p.187–194, 2012.

ZHAO, F.; ZHANG, L.; CHIEW, F. H.; VAZE, J.; CHENG, L. The effect of spatial rainfall variability on water balance modelling for south-eastern Australian catchments. Journal of Hydrology, v.493, p.16-29, 2013.

APÊNDICE A

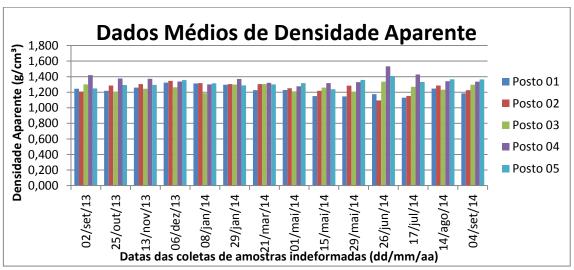


Figura 57 - Dados médios de densidade aparente das amostras de solo de 2013 e 2014

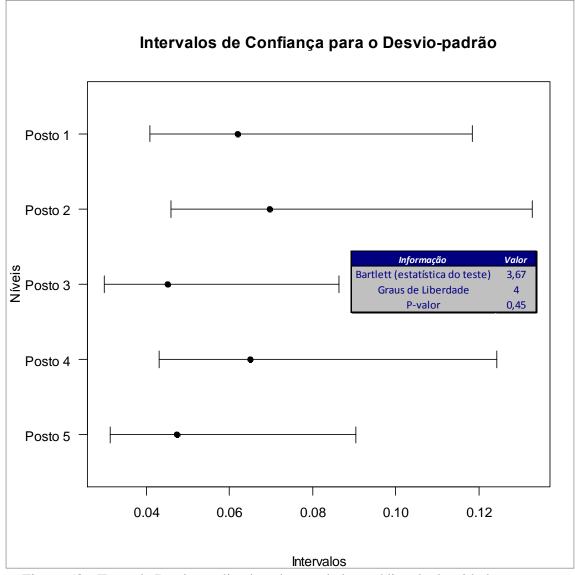


Figura 58 - Teste de Bartlett aplicado sobre os dados médios de densidade aparente.

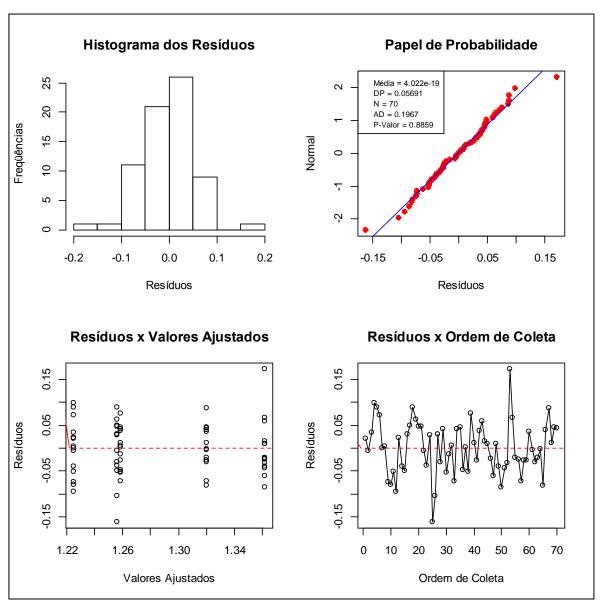


Figura 59 - Teste de homocedasticidade aplicado aos dados médios de densidade aparente do solo no ano hidrológico de 2013-2014, antes do teste ANOVA *one-way*.

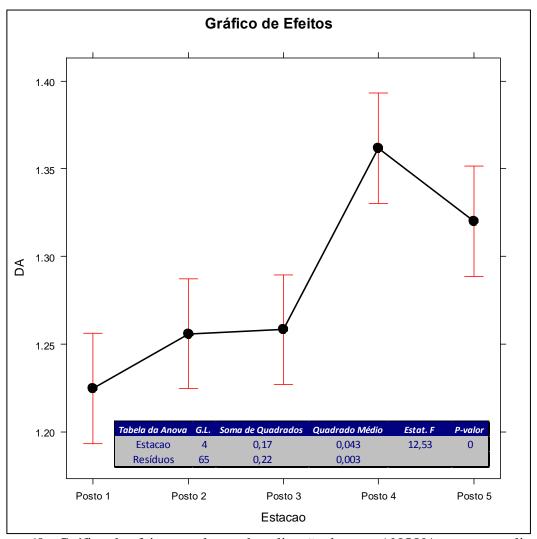


Figura 60 - Gráfico de efeitos resultante da aplicação do teste ANOVA *one-way* aplicado aos dados médios de densidade aparente do solo no ano hidrológico de 2013-2014

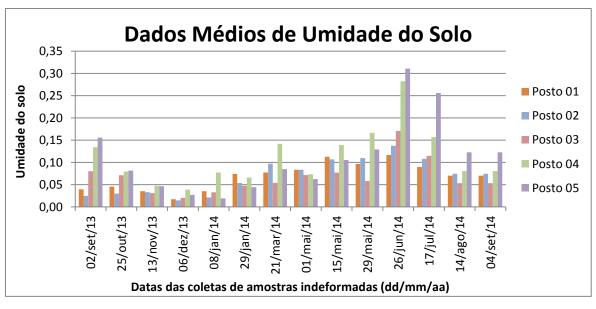


Figura 61 - Dados médios de umidade do solo coletados em 2013 e 2014.

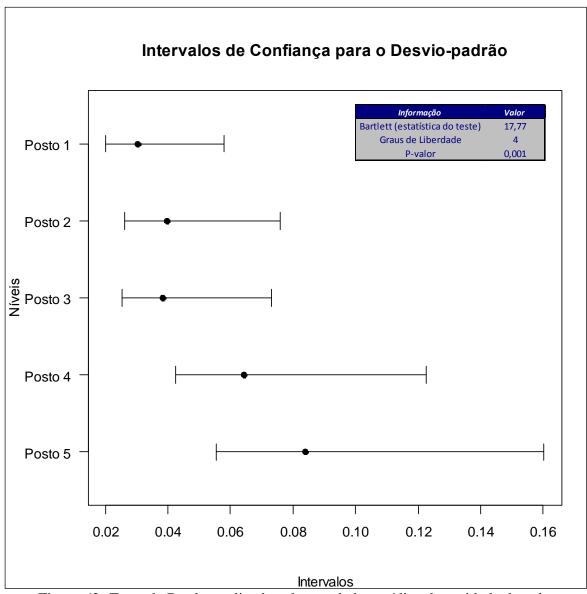


Figura 62- Teste de Bartlett aplicado sobre os dados médios de umidade do solo.

APÊNDICE B

Tabela 15 - Características determinadas dos eventos e seus subeventos (ano 2004, MIT evento 24 horas, MIT subevento 1 hora)

		1	1					I	
ID	D:-		D		1.6	Nº de	Dura-	Intensi-	T
hi-	Dia	Horo	Precipi-	Duração	Intensi-	Sube-	ção	dade mé-	Tempo
dro- gra	Juli- ano	Hora	tação (mm)	(min)	dade (mm/h)	ven- tos	Sube- vento	dia Sube- ventos	Seco (min)
ma	ano		(11111)		(11111/11)	(um)	(min)	(mm/h)	(11111)
1	1	08:52	3,556	180	1,185	2	72	9,015	108
2	5	06:55	2,794	1230	0,136	5	29	13,045	1201
3	8	00:33	†	3548	0,130	11	389	7,063	3159
4	12	00.32	11,684 74,422	4074		8		,	3449
			· · ·		1,096		625	11,479	
5	16	02:31	2,032	1251	0,097	3	87	5,925	1164
6	18	14:27	3,556	189	1,129	2	114	12,178	75
7	19	22:15	62,738	4634	0,812	11	1012	7,84	3622
8	25	18:14	23,622	332	4,269	1	332	4,269	0
9	27	00:03	57,404	15597	0,221	22	1360	14,129	14237
10	113	12:15	10,16	2597	0,235	10	67	14,54	2530
11	120	05:18	3,556	4187	0,051	7	37	13,513	4150
12	124	15:04	92,964	6825	0,817	19	1709	6,753	5116
13	131	09:26	4,572	834	0,329	4	37	10,139	797
14	137	00:00	22,098	7287	0,182	12	525	8,717	6762
15	144	01:35	19,812	5650	0,21	8	449	10,547	5201
16	149	03:40	7,112	1199	0,356	4	56	12,838	1143
17	151	01:21	69,85	4378	0,957	8	447	15,33	3931
18	155	04:09	3,048	218	0,839	2	129	8,275	89
19	156	13:15	12,7	6885	0,111	14	337	10,357	6548
20	162	15:41	14,732	2405	0,368	7	248	8,766	2157
21	165	23:51	217,424	13327	0,979	44	2872	9,422	10455
22	176	06:08	61,214	4914	0,747	17	1096	11,117	3818
23	180	22:11	9,652	2916	0,199	6	158	11,157	2758
24	184	00:00	70,866	2366	1,797	10	854	7,309	1512
25	189	05:46	34,29	2792	0,737	4	476	10,443	2316
26	195	04:54	25,654	701	2,196	2	590	2,495	111
27	197	04:27	153,162	5705	1,611	12	1816	9,74	3889
28	206	23:07	54,102	8993	0,361	24	2232	8,093	6761
29	218	16:49	10,414	3691	0,169	11	353	7,159	3338
30	223	04:40	6,858	1974	0,208	8	196	11,23	1778
31	228	05:02	14,224	7098	0,12	15	537	10,603	6561
32	253	05:41	31,496	2528	0,748	7	274	14,68	2254
33	265	04:57	4,064	865	0,282	4	199	4,68	666
34	268	06:29	10,668	2952	0,217	8	330	8,648	2622
35	273	03:09	2,032	89	1,37	1	89	1,37	0
36	277	21:43	9,144	583	0,941	4	122	4,819	461
37	297	01:22	6,096	1116	0,328	6	201	6,303	915
38	316	04:16	2,286	2402	0,057	4	54	14,208	2348
39	338	02:01	3,302	1810	0,109	5	14	14,935	1796
40	359	06:47	6,858	1379	0,103	4	82	5,448	1297
+∪	559	00.47	0,000	13/3	0,230	_ +	02	J, 11 0	1231

Tabela 16 - Características determinadas dos eventos e seus subeventos (ano 2005, MIT evento 24 horas, MIT subevento 1 hora)

ID						Nº de	Dura-	Intensi-	
hi-	Dia		Precipi-		Intensi-	Sube-	ção	dade mé-	Tempo
dro-	Juli-	Hora	tação	Duração	dade	ven-	Sube-	dia Sube-	Seco
gra	ano	11010	(mm)	(min)	(mm/h)	tos	vento	ventos	(min)
ma			(******)		(*******)	(um)	(min)	(mm/h)	(*****)
1	46	08:10	22,606	2616	0,518	6	291	7,413	2325
2	49	18:22	4,064	1981	0,123	7	17	15,893	1964
3	77	01:01	9,906	1954	0,304	6	328	6,284	1626
4	86	03:34	8,89	1549	0,344	5	161	7,873	1388
5	88	06:54	13,716	1695	0,486	4	45	14,628	1650
6	93	03:26	2,286	117	1,172	2	4	27,94	113
7	99	05:33	14,224	1126	0,758	6	125	9,675	1001
8	104	02:27	42,164	4110	0,616	12	487	10,533	3623
9	108	11:15	4,318	1331	0,195	4	48	10,105	1283
10	110	11:43	7,112	58	7,357	1	58	7,357	0
11	115	03:09	2,286	2091	0,066	4	19	11,521	2072
12	117	22:13	24,892	3472	0,43	9	609	5,48	2863
13	126	22:48	169,926	19634	0,519	64	3891	11,86	15743
14	142	01:36	3,048	2132	0,086	5	45	7,018	2087
15	149	01:10	10,668	10961	0,058	25	125	16,535	10836
16	157	22:06	9,144	3089	0,178	13	433	8,269	2656
17	161	13:44	4,572	2961	0,093	12	71	13,103	2890
18	165	07:11	30,226	1371	1,323	4	635	5,614	736
19	167	23:21	8,382	2302	0,218	6	174	8,929	2128
20	170	22:03	3,048	1555	0,118	3	67	10,942	1488
21	173	00:17	12,192	4235	0,173	14	370	6,609	3865
22	178	07:54	36,83	5689	0,388	18	538	9,518	5151
23	183	22:18	9,398	1824	0,309	8	298	11,066	1526
24	187	05:07	10,414	2727	0,229	7	229	9,06	2498
25	190	14:29	15,748	4720	0,2	10	269	8,567	4451
26	198	00:36	14,732	2337	0,378	6	165	12,836	2172
27	203	10:25	13,716	1075	0,766	2	162	10,128	913
28	211	06:22	13,462	1702	0,475	5	204	8,23	1498
29	213	15:14	57,658	9765	0,354	33	1604	6,382	8161
30	224	01:27	16,256	717	1,36	2	441	8,711	276
31	227	00:53	120,396	16467	0,439	46	2311	8,175	14156
32	239	20:36	59,944	15326	0,235	25	651	10,684	14675
33	254	07:45	3,302	1932	0,103	5	152	6,739	1780
34	258	02:36	7,874	2080	0,227	6	438	3,975	1642
35	269	02:42	9,652	4669	0,124	10	182	12,336	4487
36	280	01:31	5,08	2849	0,107	8	123	9,55	2726
37	287	05:44	3,81	1485	0,154	2	51	4,618	1434
38	308	00:49	2,032	33	3,695	1	33	3,695	0
39	311	04:41	2,032	2515	0,048	4	8	15,24	2507
40	317	19:36	33,02	607	3,264	1	607	3,264	0
41	323	01:55	5,588	418	0,802	4	44	10,107	374
42	331	05:49	6,096	5876	0,062	9	126	14,934	5750
43	337	06:36	6,096	197	1,857	3	34	11,383	163
44	346	02:57	11,938	263	2,723	2	82	17,169	181
45	349	20:49	6,35	867	0,439	5	80	8,801	787

46	352	06:14	7,874	1574	0,3	7	100	11,322	1474
47	356	04:05	12,192	1570	0,466	5	189	7,818	1381
48	362	11:19	2,286	76	1,805	1	76	1,805	0
49	364	19:56	5,588	1027	0,326	8	79	10,746	948

Tabela 17 - Características determinadas dos eventos e seus subeventos (ano 2006, MIT evento 24 horas, MIT subevento 1 hora)

Dia Hora Precipido Lação Cambridade Cambridad						•			T	1
dro-gra ano max Hora ano (mm) tação (mm) Juração (mm) dade (mm) vento (som) dia Sube- ventos (min) (min) Seconomo (min) 1 1 0.2:24 3.81 39 5.862 1 39 5.862 0 2 2 0.7:35 26.924 2909 0.555 9 193 11.007 2716 3 9 23:51 5.842 1978 0.1777 6 54 10.81 1924 4 12 10:29 8,128 904 0.539 3 82 12.065 822 5 14 03:45 92,71 5470 1,017 14 1317 7.407 4152 6 19 12:58 34,544 2641 0,785 7 220 12,134 2421 7 23 22:00 7,62 286 1,599 2 52 11,953 234 8 29 07:32 5,588 3052 0,11							Nº de	Dura-	Intensi-	
			l		Duração					
			Hora							
1 1 02:24 3,81 39 5,862 1 39 5,862 0 2 2 07:35 26,924 2909 0,555 9 193 11,007 2716 3 9 23:51 5,842 1978 0,177 6 54 10,081 1924 4 12 10:29 8,128 904 0,539 3 82 12,065 622 5 14 03:45 92,71 5470 1,017 14 1317 7,407 4153 6 19 12:58 34,544 2641 0,785 7 220 12,134 2421 8 29 07:32 5,588 3052 0,11 6 50 12,047 3002 9 41 00:09 12,446 1607 0,465 6 180 7,368 1427 10 43 17:31 5,08 363 0,84 3 146	_	ano		(mm)	, ,	(mm/n)				(min)
2 2 07:35 26,924 2909 0,555 9 193 11,007 2716 3 9 23:51 5,842 1978 0,177 6 54 10,81 1924 4 12 10:29 8,128 904 0,539 3 82 12,065 822 5 14 03:45 92,71 5470 1,017 14 1317 7,407 4153 6 19 12:58 34,544 2641 0,785 7 220 12,134 2421 7 23 22:00 7,62 286 1,599 2 52 11,953 234 8 29 07:32 5,588 3052 0,11 6 50 12,047 3002 9 41 00:09 12,446 1607 0,465 6 180 7,368 1427 10 43 17:31 5,08 363 0,84 3 146 <td></td> <td>1</td> <td>02:24</td> <td>2 01</td> <td>30</td> <td>5 962</td> <td></td> <td>` ,</td> <td>` ,</td> <td>0</td>		1	02:24	2 01	30	5 962		` ,	` ,	0
3 9 23:51 5,842 1978 0,177 6 54 10,81 1924 4 12 10:29 8,128 904 0,539 3 82 12,065 822 5 14 03:45 92,71 5470 1,017 14 1317 7,407 4153 6 19 12:58 34,544 2641 0,785 7 220 12,134 2421 7 23 22:00 7,62 286 1,599 2 52 11,953 234 8 29 07:32 5,588 3052 0,11 6 50 12,047 3002 9 41 0:009 12,446 1607 0,465 6 180 7,368 1427 10 43 17:31 5,08 363 0,84 3 146 4,648 217 11 46 19:08 44,704 6584 0,407 20 329 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>·</td> <td></td>									·	
4 12 10:29 8,128 904 0,539 3 82 12,065 822 5 14 03:45 92,71 5470 1,017 14 1317 7,407 4153 6 19 12:58 34,544 2641 0,785 7 220 12,134 2421 7 23 22:00 7,62 286 1,599 2 52 11,953 234 8 29 07:32 5,588 3052 0,11 6 50 12,047 3002 9 41 00:09 12,446 1607 0,465 6 180 7,368 1427 10 43 17:31 5,08 363 0,84 3 146 4,648 217 11 46 19:08 44,704 6584 0,407 20 329 13,727 6252 12 52 11:53 125,984 2321 3,257 7 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
5 14 03:45 92,71 5470 1,017 14 1317 7,407 4153 6 19 12:58 34,544 2641 0,785 7 220 12,134 2421 7 23 22:00 7,62 286 1,599 2 52 11,953 234 8 29 07:32 5,588 3052 0,11 6 50 12,047 3002 9 41 00:09 12,446 1607 0,465 6 180 7,368 1427 10 43 17:31 5,08 363 0,84 3 146 4,648 217 11 46 19:08 44,704 6584 0,407 20 329 13,727 6255 12 52 11:53 125,384 292 3,81 1 92 3,81 0 14 59 10:13 21,336 83 15,424 1 83<										
6 19 12:58 34,544 2641 0,785 7 220 12,134 2421 7 23 22:00 7,62 286 1,599 2 52 11,953 234 8 29 07:32 5,588 3052 0,11 6 50 12,047 3002 9 41 00:09 12,446 1607 0,465 6 180 7,368 1427 10 43 17:31 5,08 363 0,84 3 146 4,648 217 11 46 19:08 44,704 6584 0,407 20 329 13,727 6255 12 52 11:53 125,984 2321 3,257 7 470 10,138 1851 13 55 02:45 5,842 92 3,81 1 92 3,81 0 14 59 10:13 21,358 1107 0,95 5 171<										
7 23 22:00 7,62 286 1,599 2 52 11,953 234 8 29 07:32 5,588 3052 0,11 6 50 12,047 3002 9 41 00:09 12,446 1607 0,465 6 180 7,368 1427 10 43 17:31 5,08 363 0,84 3 146 4,648 217 11 46 19:08 44,704 6584 0,407 20 329 13,727 6255 12 52 11:53 125,984 2321 3,257 7 470 10,138 1851 13 55 02:45 5,842 92 3,81 1 92 3,81 0 14 59 10:13 21,336 83 15,424 1 83 15,424 0 15 61 07:04 17,526 1107 0.95 5 171									·	
8 29 07:32 5,588 3052 0,111 6 50 12,047 3002 9 41 00:09 12,446 1607 0,465 6 180 7,368 1427 10 43 17:31 5,08 363 0,84 3 146 4,648 217 11 46 19:08 44,704 6584 0,407 20 329 13,727 6255 12 52 11:53 125,984 2321 3,257 7 470 10,138 1851 13 55 02:45 5,842 92 3,81 1 92 3,81 0 14 59 10:13 21,336 83 15,424 1 83 15,424 0 15 61 07:04 17,526 1107 0,955 5 171 8,573 936 16 63 10:30 2,54 9 16,933 1 9										
9 41 00:09 12,446 1607 0,465 6 180 7,368 1427 10 43 17:31 5,08 363 0,84 3 146 4,648 217 11 46 19:08 44,704 6584 0,407 20 329 13,727 6255 12 52 11:53 125,984 2321 3,257 7 470 10,138 1851 13 55 02:45 5,842 92 3,81 1 92 3,81 0 14 59 10:13 21,336 83 15,424 1 83 15,424 0 15 61 07:04 17,526 1107 0,95 5 171 8,573 936 16 63 10:30 2,54 9 16,933 1 9 16,933 0 17 73 05:49 14 4,7329 1235 121 9										
10 43 17:31 5,08 363 0,84 3 146 4,648 217 11 46 19:08 44,704 6584 0,407 20 329 13,727 6255 12 52 11:53 125,984 2321 3,257 7 470 10,138 1851 13 55 02:45 5,842 92 3,81 1 92 3,81 0 14 59 10:13 21,336 83 15,424 1 83 15,424 0 15 61 07:04 17,526 1107 0,95 5 171 8,573 936 16 63 10:30 2,54 9 16,933 1 9 16,933 0 17 73 05:49 5,588 1359 0,247 2 124 4,329 1235 18 78 23:46 44,958 1501 1,797 7 320				-						
11 46 19:08 44,704 6584 0,407 20 329 13,727 6255 12 52 11:53 125,984 2321 3,257 7 470 10,138 1851 13 55 02:45 5,842 92 3,81 1 92 3,81 0 14 59 10:13 21,336 83 15,424 1 83 15,424 0 15 61 07:04 17,526 1107 0,95 5 171 8,573 936 16 63 10:30 2,54 9 16,933 1 9 16,933 0 17 73 05:49 5,588 1359 0,247 2 124 4,329 1235 18 78 23:46 44,958 1501 1,797 7 320 11,154 1181 19 81 08:57 52,832 5778 0,549 14 67						· ·			-	
12 52 11:53 125,984 2321 3,257 7 470 10,138 1851 13 55 02:45 5,842 92 3,81 1 92 3,81 0 14 59 10:13 21,336 83 15,424 1 83 15,424 0 15 61 07:04 17,526 1107 0,95 5 171 8,573 936 16 63 10:30 2,54 9 16,933 1 9 16,933 0 17 73 05:49 5,588 1359 0,247 2 124 4,329 1235 18 78 23:46 44,958 1501 1,797 7 320 11,154 1181 19 81 08:57 52,832 5778 0,549 14 674 9,812 5104 20 90 03:46 8,636 989 0,524 2 36 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>·</td> <td></td>									·	
13 55 02:45 5,842 92 3,81 1 92 3,81 0 14 59 10:13 21,336 83 15,424 1 83 15,424 0 15 61 07:04 17,526 1107 0,95 5 171 8,573 936 16 63 10:30 2,54 9 16,933 1 9 16,933 0 17 73 05:49 5,588 1359 0,247 2 124 4,329 1235 18 78 23:46 44,958 1501 1,797 7 320 11,154 1181 19 81 08:57 52,832 5778 0,549 14 674 9,812 5104 20 90 03:46 8,636 989 0,524 2 36 10,614 953 21 95 06:34 13,208 3209 0,247 8 210										
14 59 10:13 21,336 83 15,424 1 83 15,424 0 15 61 07:04 17,526 1107 0,95 5 171 8,573 936 16 63 10:30 2,54 9 16,933 1 9 16,933 0 17 73 05:49 5,588 1359 0,247 2 124 4,329 1235 18 78 23:46 44,958 1501 1,797 7 320 11,154 1181 19 81 08:57 52,832 5778 0,549 14 674 9,812 5104 20 90 03:46 8,636 989 0,524 2 36 10,614 953 21 95 06:34 13,208 3209 0,247 8 210 7,906 2999 22 99 00:11 16,51 500 1,981 4 28										
15 61 07:04 17,526 1107 0,95 5 171 8,573 936 16 63 10:30 2,54 9 16,933 1 9 16,933 0 17 73 05:49 5,588 1359 0,247 2 124 4,329 1235 18 78 23:46 44,958 1501 1,797 7 320 11,154 1181 19 81 08:57 52,832 5778 0,549 14 674 9,812 5104 20 90 03:46 8,636 989 0,524 2 36 10,614 953 21 95 06:34 13,208 3209 0,247 8 210 7,906 2999 22 99 00:11 16,51 500 1,981 4 288 8,773 212 23 103 06:23 69,342 3280 1,268 10 <										
16 63 10:30 2,54 9 16,933 1 9 16,933 0 17 73 05:49 5,588 1359 0,247 2 124 4,329 1235 18 78 23:46 44,958 1501 1,797 7 320 11,154 1181 19 81 08:57 52,832 5778 0,549 14 674 9,812 5104 20 90 03:46 8,636 989 0,524 2 36 10,614 953 21 95 06:34 13,208 3209 0,247 8 210 7,906 2999 22 99 00:11 16,51 500 1,981 4 288 8,773 212 23 103 06:23 69,342 3280 1,268 10 442 11,143 2838 24 108 09:23 14,478 49 17,728 1										
17 73 05:49 5,588 1359 0,247 2 124 4,329 1235 18 78 23:46 44,958 1501 1,797 7 320 11,154 1181 19 81 08:57 52,832 5778 0,549 14 674 9,812 5104 20 90 03:46 8,636 989 0,524 2 36 10,614 953 21 95 06:34 13,208 3209 0,247 8 210 7,906 2999 22 99 00:11 16,51 500 1,981 4 288 8,773 212 23 103 06:23 69,342 3280 1,268 10 442 11,143 2838 24 108 09:23 14,478 49 17,728 1 49 17,728 0 25 109 10:17 9,906 2495 0,238 3									·	
18 78 23:46 44,958 1501 1,797 7 320 11,154 1181 19 81 08:57 52,832 5778 0,549 14 674 9,812 5104 20 90 03:46 8,636 989 0,524 2 36 10,614 953 21 95 06:34 13,208 3209 0,247 8 210 7,906 2999 22 99 00:11 16,51 500 1,981 4 288 8,773 212 23 103 06:23 69,342 3280 1,268 10 442 11,143 2838 24 108 09:23 14,478 49 17,728 1 49 17,728 0 25 109 10:17 9,906 2495 0,238 3 48 13,381 2447 26 113 02:22 71,628 4328 0,993 13 <td></td>										
19 81 08:57 52,832 5778 0,549 14 674 9,812 5104 20 90 03:46 8,636 989 0,524 2 36 10,614 953 21 95 06:34 13,208 3209 0,247 8 210 7,906 2999 22 99 00:11 16,51 500 1,981 4 288 8,773 212 23 103 06:23 69,342 3280 1,268 10 442 11,143 2838 24 108 09:23 14,478 49 17,728 1 49 17,728 0 25 109 10:17 9,906 2495 0,238 3 48 13,381 2447 26 113 02:22 71,628 4328 0,993 13 620 10,275 3708 27 118 14:39 27,178 3882 0,42 8 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>						-				
20 90 03:46 8,636 989 0,524 2 36 10,614 953 21 95 06:34 13,208 3209 0,247 8 210 7,906 2999 22 99 00:11 16,51 500 1,981 4 288 8,773 212 23 103 06:23 69,342 3280 1,268 10 442 11,143 2838 24 108 09:23 14,478 49 17,728 1 49 17,728 0 25 109 10:17 9,906 2495 0,238 3 48 13,381 2447 26 113 02:22 71,628 4328 0,993 13 620 10,275 3708 27 118 14:39 27,178 3882 0,42 8 215 11,578 3667 28 123 00:23 27,94 2950 0,568 9 <td></td>										
21 95 06:34 13,208 3209 0,247 8 210 7,906 2999 22 99 00:11 16,51 500 1,981 4 288 8,773 212 23 103 06:23 69,342 3280 1,268 10 442 11,143 2838 24 108 09:23 14,478 49 17,728 1 49 17,728 0 25 109 10:17 9,906 2495 0,238 3 48 13,381 2447 26 113 02:22 71,628 4328 0,993 13 620 10,275 3708 27 118 14:39 27,178 3882 0,42 8 215 11,578 3667 28 123 00:23 27,94 2950 0,568 9 96 18,26 2854 29 132 23:54 13,97 3404 0,246 6 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>· ·</td> <td></td> <td></td> <td>·</td> <td></td>						· ·			·	
22 99 00:11 16,51 500 1,981 4 288 8,773 212 23 103 06:23 69,342 3280 1,268 10 442 11,143 2838 24 108 09:23 14,478 49 17,728 1 49 17,728 0 25 109 10:17 9,906 2495 0,238 3 48 13,381 2447 26 113 02:22 71,628 4328 0,993 13 620 10,275 3708 27 118 14:39 27,178 3882 0,42 8 215 11,578 3667 28 123 00:23 27,94 2950 0,568 9 96 18,26 2854 29 132 23:54 13,97 3404 0,246 6 128 17,413 3276 30 142 07:10 29,718 4200 0,425 9										
23 103 06:23 69,342 3280 1,268 10 442 11,143 2838 24 108 09:23 14,478 49 17,728 1 49 17,728 0 25 109 10:17 9,906 2495 0,238 3 48 13,381 2447 26 113 02:22 71,628 4328 0,993 13 620 10,275 3708 27 118 14:39 27,178 3882 0,42 8 215 11,578 3667 28 123 00:23 27,94 2950 0,568 9 96 18,26 2854 29 132 23:54 13,97 3404 0,246 6 128 17,413 3276 30 142 07:10 29,718 4200 0,425 9 514 5,864 3686 31 149 19:55 9,906 2167 0,274 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>·</td><td></td></t<>									·	
24 108 09:23 14,478 49 17,728 1 49 17,728 0 25 109 10:17 9,906 2495 0,238 3 48 13,381 2447 26 113 02:22 71,628 4328 0,993 13 620 10,275 3708 27 118 14:39 27,178 3882 0,42 8 215 11,578 3667 28 123 00:23 27,94 2950 0,568 9 96 18,26 2854 29 132 23:54 13,97 3404 0,246 6 128 17,413 3276 30 142 07:10 29,718 4200 0,425 9 514 5,864 3686 31 149 19:55 9,906 2167 0,274 11 151 14,196 2016 32 153 04:20 19,558 5725 0,205 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
25 109 10:17 9,906 2495 0,238 3 48 13,381 2447 26 113 02:22 71,628 4328 0,993 13 620 10,275 3708 27 118 14:39 27,178 3882 0,42 8 215 11,578 3667 28 123 00:23 27,94 2950 0,568 9 96 18,26 2854 29 132 23:54 13,97 3404 0,246 6 128 17,413 3276 30 142 07:10 29,718 4200 0,425 9 514 5,864 3686 31 149 19:55 9,906 2167 0,274 11 151 14,196 2016 32 153 04:20 19,558 5725 0,205 17 331 11,206 5394 33 162 16:56 3,556 715 0,298										
26 113 02:22 71,628 4328 0,993 13 620 10,275 3708 27 118 14:39 27,178 3882 0,42 8 215 11,578 3667 28 123 00:23 27,94 2950 0,568 9 96 18,26 2854 29 132 23:54 13,97 3404 0,246 6 128 17,413 3276 30 142 07:10 29,718 4200 0,425 9 514 5,864 3686 31 149 19:55 9,906 2167 0,274 11 151 14,196 2016 32 153 04:20 19,558 5725 0,205 17 331 11,206 5394 33 162 16:56 3,556 715 0,298 3 128 6,792 587 34 164 06:07 37,592 4170 0,541										
27 118 14:39 27,178 3882 0,42 8 215 11,578 3667 28 123 00:23 27,94 2950 0,568 9 96 18,26 2854 29 132 23:54 13,97 3404 0,246 6 128 17,413 3276 30 142 07:10 29,718 4200 0,425 9 514 5,864 3686 31 149 19:55 9,906 2167 0,274 11 151 14,196 2016 32 153 04:20 19,558 5725 0,205 17 331 11,206 5394 33 162 16:56 3,556 715 0,298 3 128 6,792 587 34 164 06:07 37,592 4170 0,541 17 576 9,108 3594 35 168 22:16 128,27 13799 0,558										
28 123 00:23 27,94 2950 0,568 9 96 18,26 2854 29 132 23:54 13,97 3404 0,246 6 128 17,413 3276 30 142 07:10 29,718 4200 0,425 9 514 5,864 3686 31 149 19:55 9,906 2167 0,274 11 151 14,196 2016 32 153 04:20 19,558 5725 0,205 17 331 11,206 5394 33 162 16:56 3,556 715 0,298 3 128 6,792 587 34 164 06:07 37,592 4170 0,541 17 576 9,108 3594 35 168 22:16 128,27 13799 0,558 51 1584 11,508 12215 36 181 07:23 9,906 5559 0,107				-						
29 132 23:54 13,97 3404 0,246 6 128 17,413 3276 30 142 07:10 29,718 4200 0,425 9 514 5,864 3686 31 149 19:55 9,906 2167 0,274 11 151 14,196 2016 32 153 04:20 19,558 5725 0,205 17 331 11,206 5394 33 162 16:56 3,556 715 0,298 3 128 6,792 587 34 164 06:07 37,592 4170 0,541 17 576 9,108 3594 35 168 22:16 128,27 13799 0,558 51 1584 11,508 12215 36 181 07:23 9,906 5559 0,107 11 270 10,577 5289 37 186 18:43 12,954 2091 0,372										
30 142 07:10 29,718 4200 0,425 9 514 5,864 3686 31 149 19:55 9,906 2167 0,274 11 151 14,196 2016 32 153 04:20 19,558 5725 0,205 17 331 11,206 5394 33 162 16:56 3,556 715 0,298 3 128 6,792 587 34 164 06:07 37,592 4170 0,541 17 576 9,108 3594 35 168 22:16 128,27 13799 0,558 51 1584 11,508 12215 36 181 07:23 9,906 5559 0,107 11 270 10,577 5289 37 186 18:43 12,954 2091 0,372 6 320 7,734 1771 38 189 14:06 6,35 1570 0,243				·		· ·				
31 149 19:55 9,906 2167 0,274 11 151 14,196 2016 32 153 04:20 19,558 5725 0,205 17 331 11,206 5394 33 162 16:56 3,556 715 0,298 3 128 6,792 587 34 164 06:07 37,592 4170 0,541 17 576 9,108 3594 35 168 22:16 128,27 13799 0,558 51 1584 11,508 12215 36 181 07:23 9,906 5559 0,107 11 270 10,577 5289 37 186 18:43 12,954 2091 0,372 6 320 7,734 1771 38 189 14:06 6,35 1570 0,243 6 172 6,453 1398 39 192 00:23 27,178 4429 0,368				· · · · · · · · · · · · · · · · · · ·						
32 153 04:20 19,558 5725 0,205 17 331 11,206 5394 33 162 16:56 3,556 715 0,298 3 128 6,792 587 34 164 06:07 37,592 4170 0,541 17 576 9,108 3594 35 168 22:16 128,27 13799 0,558 51 1584 11,508 12215 36 181 07:23 9,906 5559 0,107 11 270 10,577 5289 37 186 18:43 12,954 2091 0,372 6 320 7,734 1771 38 189 14:06 6,35 1570 0,243 6 172 6,453 1398 39 192 00:23 27,178 4429 0,368 13 626 11,794 3803									-	
33 162 16:56 3,556 715 0,298 3 128 6,792 587 34 164 06:07 37,592 4170 0,541 17 576 9,108 3594 35 168 22:16 128,27 13799 0,558 51 1584 11,508 12215 36 181 07:23 9,906 5559 0,107 11 270 10,577 5289 37 186 18:43 12,954 2091 0,372 6 320 7,734 1771 38 189 14:06 6,35 1570 0,243 6 172 6,453 1398 39 192 00:23 27,178 4429 0,368 13 626 11,794 3803										
34 164 06:07 37,592 4170 0,541 17 576 9,108 3594 35 168 22:16 128,27 13799 0,558 51 1584 11,508 12215 36 181 07:23 9,906 5559 0,107 11 270 10,577 5289 37 186 18:43 12,954 2091 0,372 6 320 7,734 1771 38 189 14:06 6,35 1570 0,243 6 172 6,453 1398 39 192 00:23 27,178 4429 0,368 13 626 11,794 3803										
35 168 22:16 128,27 13799 0,558 51 1584 11,508 12215 36 181 07:23 9,906 5559 0,107 11 270 10,577 5289 37 186 18:43 12,954 2091 0,372 6 320 7,734 1771 38 189 14:06 6,35 1570 0,243 6 172 6,453 1398 39 192 00:23 27,178 4429 0,368 13 626 11,794 3803				· ·					-	
36 181 07:23 9,906 5559 0,107 11 270 10,577 5289 37 186 18:43 12,954 2091 0,372 6 320 7,734 1771 38 189 14:06 6,35 1570 0,243 6 172 6,453 1398 39 192 00:23 27,178 4429 0,368 13 626 11,794 3803									·	
37 186 18:43 12,954 2091 0,372 6 320 7,734 1771 38 189 14:06 6,35 1570 0,243 6 172 6,453 1398 39 192 00:23 27,178 4429 0,368 13 626 11,794 3803				-						
38 189 14:06 6,35 1570 0,243 6 172 6,453 1398 39 192 00:23 27,178 4429 0,368 13 626 11,794 3803										
39 192 00:23 27,178 4429 0,368 13 626 11,794 3803								320	-	
									·	1398
40 198 05:48 24,384 1509 0,97 5 346 6,612 1163			00:23	27,178		0,368			11,794	3803
	40	198	05:48	24,384	1509	0,97	5	346	6,612	1163

41	203	23:25	53,848	7619	0,424	16	944	9,86	6675
42	215	12:30	7,366	1386	0,319	4	223	5,214	1163
43	218	02:01	3,556	1714	0,124	4	188	8,314	1526
44	220	18:43	45,212	7875	0,344	25	1016	8,358	6859
45	227	21:05	53,594	4732	0,68	16	1000	7,79	3732
46	243	01:40	14,478	1795	0,484	9	517	8,07	1278
47	250	03:21	7,112	2945	0,145	7	144	12,424	2801
48	253	20:54	4,064	1976	0,123	7	213	5,308	1763
49	259	03:53	8,636	237	2,186	2	60	9,443	177
50	269	20:25	2,54	331	0,46	2	146	15,66	185
51	283	00:35	2,54	1655	0,092	3	75	6,57	1580
52	298	04:40	11,938	1459	0,491	3	16	26,489	1443
53	303	23:57	4,826	458	0,632	2	115	8,823	343
54	318	00:17	40,64	6640	0,367	21	553	9,958	6087
55	353	09:50	16,002	1092	0,879	5	149	9,882	943
56	356	03:36	2,286	192	0,714	2	18	8,61	174
57	362	09:02	10,668	952	0,672	2	186	3,275	766
58	364	10:53	9,398	140	4,028	1	140	4,028	0

Tabela 18 - Características determinadas dos eventos e seus subeventos (ano 2007, MIT evento 24 horas, MIT subevento 1 hora)

ID						Nº de	Dura-	Intensi-	
hi-	Dia		Precipi-	Duração	Intensi-	Sube-	ção	dade mé-	Tempo
dro-	Juli-	Hora	tação	(min)	dade	ven-	Sube-	dia Sube-	Seco
gra	ano		(mm)	(111111)	(mm/h)	tos	vento	ventos	(min)
ma		24.52	44.04	2015		(um)	(min)	(mm/h)	
1	1	01:56	41,91	8215	0,306	22	468	10,627	7747
2	9	02:48	3,81	1571	0,146	4	175	5,231	1396
3	17	05:32	3,048	219	0,835	2	62	8,436	157
4	44	22:09	25,654	738	2,086	5	220	8,637	518
5	49	09:51	86,868	8969	0,581	16	472	16,418	8497
6	57	05:14	91,44	6804	0,806	21	791	13,216	6013
7	62	23:47	48,006	636	4,529	4	171	18,178	465
8	68	09:52	3,81	217	1,053	2	21	10,99	196
9	69	21:27	13,716	703	1,171	4	88	10,922	615
10	73	18:44	50,8	3935	0,775	8	532	15,895	3403
11	86	10:27	7,874	1297	0,364	6	81	10,91	1216
12	89	06:30	9,398	1149	0,491	3	150	11,361	999
13	101	06:16	4,572	15	18,288	1	15	18,288	0
14	102	20:59	16,51	1004	0,987	2	129	11,43	875
15	108	01:06	80,264	4643	1,037	21	1642	6,191	3001
16	113	08:48	5,08	1781	0,171	4	65	10,414	1716
17	118	08:35	53,594	4639	0,693	13	1111	10,545	3528
18	124	05:15	22,606	6117	0,222	23	478	11,768	5639
19	130	23:44	2,286	186	0,737	3	31	11,101	155
20	136	23:11	21,336	3700	0,346	8	377	13,853	3323
21	141	10:19	13,208	4075	0,194	9	544	5,028	3531
22	146	05:33	10,16	2808	0,217	7	217	11,471	2591
23	151	04:30	283,718	5691	2,991	16	2238	9,478	3453
24	156	08:55	142,494	11517	0,742	30	1945	8,055	9572
25	166	20:50	70,104	4988	0,843	19	999	9,694	3989
26	171	21:49	50,546	5125	0,592	20	776	10,284	4349

27	177	00:32	52,07	5788	0,54	19	804	8,617	4984
28	182	05:32	5,334	2748	0,116	6	205	10,594	2543
29	185	12:39	62,23	15933	0,234	41	1690	9,663	14243
30	202	05:21	24,638	4210	0,351	15	556	7,708	3654
31	206	08:27	23,368	6381	0,22	15	349	10,643	6032
32	213	17:15	3,302	816	0,243	5	139	10,096	677
33	216	04:23	13,97	3982	0,21	16	327	10,593	3655
34	220	06:22	2,286	1460	0,094	7	69	13,167	1391
35	222	22:10	109,474	15056	0,436	46	2571	7,976	12485
36	235	21:52	4,064	169	1,443	1	169	1,443	0
37	241	22:54	22,098	2132	0,622	11	399	10,089	1733
38	247	00:38	86,614	17817	0,292	48	2499	8,211	15318
39	270	06:23	2,794	6	27,94	1	6	27,94	0
40	281	02:55	21,082	6273	0,202	17	592	9,457	5681
41	310	23:14	14,478	1922	0,452	6	287	9,157	1635
42	317	05:49	10,16	2715	0,225	7	192	13,858	2523
43	321	06:48	5,08	1224	0,249	6	55	12,582	1169
44	345	03:28	15,748	3118	0,303	7	203	8,064	2915
45	352	07:26	3,302	106	1,869	1	106	1,869	0
46	358	08:52	2,286	1361	0,101	3	46	8,363	1315
47	360	12:28	4,318	1333	0,194	3	66	8,896	1267

APÊNDICE C

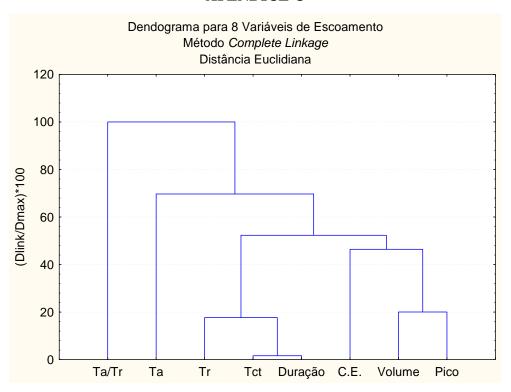


Figura 63 - Dendograma resultante da análise de agrupamento das variáveis de escoamento pelo método *Complete Linkage* (Pico – Pico do hidrograma; Volume – Volume de escoamento; C.E. – Coeficiente de Escoamento; Duração – Duração do hidrograma; Tct – Tempo do início ao centroide; Tr – Tempo de Recessão; Ta - Tempo de ascenção ao pico).

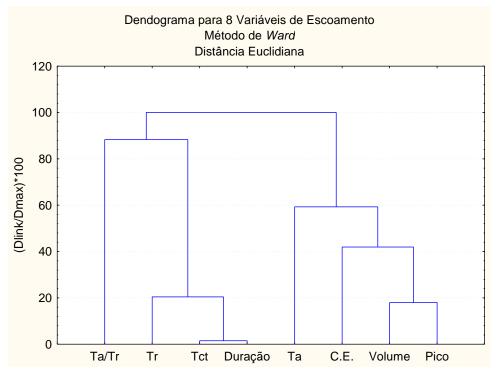


Figura 64 - Dendograma resultante da análise de agrupamento das variáveis de escoamento pelo método *Ward* (Pico – Pico do hidrograma; Volume – Volume de escoamento; C.E. – Coeficiente de Escoamento; Duração – Duração do hidrograma; Tct – Tempo do início ao centroide; Tr – Tempo de Recessão; Ta - Tempo de ascenção ao pico).

Tabela 19 - Valores reais das variáveis de escoamento obtidos na caracterização dos hidrogramas

ID hi- dro gra ma	Sub ba- cia	Data e horário Inicial	Data e horário Final	Pico do Hidro- grama (ℓ.s ⁻¹)	Dura- ção (min)	Temp o de As- cen- ção (min)	Temp o de Re- ces- são (min)	Razão entre Ascen- ção e Reces- são (min)	Temp o ao Cen- tróide (min)	Volume de Es- coa- mento ({\ell.s ⁻¹ })	Coeficiente de Escoa-mento [adm]
1	501	13/02/1 4 23:00	16/02/1 4 01:00	58,59	3000	465	2535	5,45	1500	18,71	0,007
2	501	13/03/1 4 05:15	16/03/1 4 21:00	62,66	5265	330	4935	14,95	2632	44,28	0,021
3	501	19/03/1 4 01:00	22/03/1 4 15:45	107,83	5205	1770	3435	1,94	2587	49,60	0,030
4	501	29/04/1 4 22:00	02/05/1 4 01:30	34,04	3090	885	2205	2,49	1545	7,35	0,003
5	501	03/05/1 4 00:45	05/05/1 4 08:00	103,96	3315	420	2895	6,89	1657	29,85	0,027
6	501	07/05/1 4 00:00	08/05/1 4 23:00	31,84	2820	885	1935	2,19	1409	4,43	0,009
7	501	13/05/1 4 11:30	16/05/1 4 19:00	417,70	4770	630	4140	6,57	2384	119,28	0,045
8	501	20/05/1 4 23:45	25/05/1 4 22:30	43,19	7125	3465	3660	1,06	3562	20,90	0,053
9	501	28/05/1 4 01:45	30/05/1 4 22:00	141,03	4095	1065	3030	2,85	2047	77,61	0,053
10	501	05/06/1 4 23:00	09/06/1 4 00:00	96,03	4380	765	3615	4,73	2197	40,23	0,040
11	501	13/06/1 4 10:30	17/06/1 4 06:00	150,82	5490	2775	2715	0,98	2744	51,66	0,055
12	501	23/06/1 4 05:45	28/06/1 4 06:45	259,55	7260	2775	4485	1,62	3629	288,16	0,189
13	501	12/07/1 4 16:30	14/07/1 4 21:00	121,08	3150	1515	1635	1,08	1590	82,50	0,049
14	501	16/07/1 4 03:15	17/07/1 4 06:45	74,33	1650	345	1305	3,78	825	5,09	0,009
15	501	23/07/1 4 21:00	24/07/1 4 21:15	54,79	1455	660	795	1,20	727	4,08	0,014
16	501	25/07/1 4 09:30	26/07/1 4 16:00	54,79	1830	285	1545	5,42	914	5,25	0,024
17	501	28/07/1 4 03:15	30/07/1 4 01:45	56,48	2790	765	2025	2,65	1395	8,84	0,033
18	501	30/07/1 4 23:15	02/08/1 4 06:00	54,79	3285	1695	1590	0,94	1642	6,72	0,011
19	501	10/08/1 4 04:45	14/08/1 4 21:45	56,48	6780	870	5910	6,79	3344	23,69	0,030
20	501	16/08/1 4 02:30	17/08/1 4 17:45	51,23	2355	765	1590	2,08	1192	4,80	0,015
21	501	28/08/1 4 03:30	31/08/1 4 15:45	79,48	5055	495	4560	9,21	2527	26,46	0,030
22	501	01/09/1 4 04:00	03/09/1 4 19:30	56,48	3810	795	3015	3,79	1882	16,74	0,035
23	501	07/09/1 4 07:30	11/09/1 4 20:15	1011,5 8	6525	1410	5115	3,63	3262	375,37	0,084
24	501	11/09/1 4 23:15	17/09/1 4 20:00	822,10	8445	1845	6600	3,58	4222	255,56	0,122
25	501	07/10/1	09/10/1	40,39	3750	630	3120	4,95	1852	14,69	0,015

		4 01:45	4 16:15								
26	502	09/01/1 4 09:15	14/01/1 4 14:15	50,17	7605	150	7455	49,70	3750	19,50	0,019
27	502	13/02/1 4 22:00	14/02/1 4 22:00	132,09	1440	240	1200	5,00	599	11,84	0,009
28	502	13/03/1 4 00:00	15/03/1 4 10:15	101,88	3495	645	2850	4,42	1754	23,59	0,021
29	502	19/03/1 4 17:45	21/03/1 4 19:30	85,01	2985	780	2205	2,83	1507	21,55	0,025
30	502	29/04/1 4 22:00	01/05/1 4 14:45	52,19	2445	60	2385	39,75	1222	9,30	0,008
31	502	02/05/1 4 22:15	04/05/1 4 15:00	71,49	2445	330	2115	6,41	1207	13,68	0,024
32	502	06/05/1 4 21:00	08/05/1 4 23:15	32,29	3015	405	2610	6,44	1462	4,41	0,017
33	502	13/05/1 4 11:15	17/05/1 4 17:00	158,30	6105	555	5550	10,00	3059	52,36	0,038
34	502	06/06/1 4 00:15	08/06/1 4 20:30	45,65	4095	375	3720	9,92	1987	11,33	0,022
35	502	13/06/1 4 18:45	17/06/1 4 17:30	92,70	5685	2100	3585	1,71	2842	29,02	0,059
36	502	23/06/1 4 08:30	27/06/1 4 22:15	138,48	6585	1155	5430	4,70	3300	142,50	0,180
37	502	12/07/1 4 16:30	15/07/1 4 13:15	71,49	4125	195	3930	20,15	2062	31,97	0,037
38	502	15/07/1 4 23:30	17/07/1 4 17:45	45,65	2535	345	2190	6,35	1260	7,48	0,026
39	502	30/07/1 4 23:30	01/08/1 4 14:45	35,21	2355	945	1410	1,49	1177	4,52	0,015
40	502	10/08/1 4 06:15	12/08/1 4 16:30	35,21	3495	315	3180	10,10	1755	8,39	0,020
41	502	28/08/1 4 02:15	30/08/1 4 17:00	52,19	3765	360	3405	9,46	1882	15,21	0,033
42	502	31/08/1 4 21:30	02/09/1 4 14:30	35,21	2460	780	1680	2,15	1252	6,93	0,028
43	502	07/09/1 4 10:45	10/09/1 4 16:00	476,41	4635	1200	3435	2,86	2332	192,78	0,083
44	502	12/09/1 4 04:00	15/09/1 4 15:30	268,21	5010	1500	3510	2,34	2497	105,26	0,097
45	502	07/10/1 4 00:30	08/10/1 4 19:15	35,21	2565	180	2385	13,25	1297	9,12	0,018
46	503	29/04/1 4 19:30	02/05/1 4 05:30	109,20	3480	225	3255	14,47	1739	17,97	0,005
47	503	03/05/1 4 00:15	04/05/1 4 21:30	132,04	2715	315	2400	7,62	1357	35,25	0,020
48	503	13/05/1 4 10:00	17/05/1 4 17:00	310,49	6180	705	5475	7,77	2864	129,40	0,031
49	503	28/05/1 4 09:00	02/06/1 4 12:00	163,51	7380	600	6780	11,30	3727	82,25	0,036
50	503	06/06/1 4 01:45	09/06/1 4 18:30	91,16	5325	360	4965	13,79	2677	43,76	0,028
51	503	13/06/1 4 04:30	16/06/1 4 19:15	192,17	5205	3075	2130	0,69	2677	74,11	0,051
52	503	23/06/1 4 05:45	29/06/1 4 23:00	336,60	9675	1395	8280	5,94	4845	463,66	0,197
53	503	12/07/1 4 15:30	15/07/1 4 22:15	182,39	4725	975	3750	3,85	2407	143,82	0,055
54	503	15/07/1 4 22:15	17/07/1 4 08:45	98,83	2070	420	1650	3,93	1034	17,90	0,021

55	503	23/07/1 4 20:45	26/07/1 4 20:15	77,57	4290	2415	1875	0,78	2137	28,39	0,036
56	503	28/07/1 4 03:00	30/07/1 4 16:30	86,52	3690	435	3255	7,48	1861	23,52	0,056
57	503	30/07/1 4 22:30	02/08/1 4 04:00	86,52	3210	1095	2115	1,93	1642	24,87	0,027
58	503	10/08/1 4 07:15	13/08/1 4 19:00	77,57	5025	345	4680	13,57	2512	33,76	0,027
59	503	28/08/1 4 03:00	30/08/1 4 20:30	101,20	3930	555	3375	6,08	1965	38,73	0,029
60	503	01/09/1 4 03:30	03/09/1 4 18:30	73,62	3780	780	3000	3,85	1935	21,82	0,029
61	503	07/09/1 4 08:00	11/09/1 4 19:30	1757,9 2	6450	1380	5070	3,67	3247	705,97	0,102
62	503	11/09/1 4 19:30	22/09/1 4 19:15	952,55	15825	2025	13800	6,81	7912	429,59	0,133
63	503	07/10/1 4 00:00	09/10/1 4 21:30	81,73	4170	810	3360	4,15	2084	36,47	0,025

Tabela 20 - Valores normalizados das variáveis de escoamento obtidos na caracterização dos hidrogramas e aplicados nas análises estatísticas

ID hi- dro gra ma	Sub ba- cia	Data e horário Inicial	Data e horário Final	Pico do Hidro- grama (l.s ⁻¹)	Dura- ção (min)	Temp o de As- cen- ção (min)	Temp o de Re- ces- são (min)	Razão entre Ascen- ção e Re- cessão	Temp o ao Cen- tróide (min)	Volume de Esco- amento ({\ell.s^-1})	Coeficiente de Escoamento [adm]
1	501	13/02/1 4 23:00	16/02/1 4 01:00	-0,41	-0,63	-0,62	-0,48	(min) -0,16	-0,63	-0,43	-0,83
2	501	13/03/1 4 05:15	16/03/1 4 21:00	-0,39	0,35	-0,79	0,68	1,01	0,35	-0,23	-0,52
3	501	19/03/1 4 01:00	22/03/1 4 15:45	-0,23	0,32	1,10	-0,04	-0,60	0,31	-0,19	-0,29
4	501	29/04/1 4 22:00	02/05/1 4 01:30	-0,49	-0,59	-0,06	-0,64	-0,53	-0,59	-0,52	-0,93
5	501	03/05/1 4 00:45	05/05/1 4 08:00	-0,25	-0,49	-0,67	-0,30	0,01	-0,49	-0,34	-0,38
6	501	07/05/1 4 00:00	08/05/1 4 23:00	-0,50	-0,71	-0,06	-0,77	-0,57	-0,70	-0,54	-0,80
7	501	13/05/1 4 11:30	16/05/1 4 19:00	0,86	0,14	-0,40	0,30	-0,03	0,14	0,35	0,05
8	501	20/05/1 4 23:45	25/05/1 4 22:30	-0,46	1,15	3,32	0,07	-0,71	1,16	-0,41	0,25
9	501	28/05/1 4 01:45	30/05/1 4 22:00	-0,12	-0,16	0,17	-0,24	-0,49	-0,15	0,03	0,24
10	501	05/06/1 4 23:00	09/06/1 4 00:00	-0,28	-0,03	-0,22	0,05	-0,25	-0,02	-0,26	-0,06
11	501	13/06/1 4 10:30	17/06/1 4 06:00	-0,08	0,45	2,42	-0,39	-0,72	0,45	-0,17	0,29
12	501	23/06/1 4 05:45	28/06/1 4 06:45	0,30	1,21	2,42	0,47	-0,64	1,22	1,67	3,46
13	501	12/07/1 4 16:30	14/07/1 4 21:00	-0,19	-0,56	0,76	-0,91	-0,70	-0,55	0,07	0,15
14	501	16/07/1 4 03:15	17/07/1 4 06:45	-0,35	-1,21	-0,77	-1,07	-0,37	-1,21	-0,54	-0,80
15	501	23/07/1 4 21:00	24/07/1 4 21:15	-0,42	-1,30	-0,36	-1,32	-0,69	-1,29	-0,54	-0,68

16	501	25/07/1 4 09:30	26/07/1 4 16:00	-0,42	-1,14	-0,85	-0,96	-0,17	-1,13	-0,54	-0,43
17	501	28/07/1 4 03:15	30/07/1 4 01:45	-0,41	-0,72	-0,22	-0,72	-0,51	-0,72	-0,51	-0,23
18	501	30/07/1 4 23:15	02/08/1 4 06:00	-0,42	-0,51	1,00	-0,93	-0,72	-0,50	-0,52	-0,74
19	501	10/08/1 4 04:45	14/08/1 4 21:45	-0,41	1,01	-0,08	1,16	0,00	0,97	-0,39	-0,31
20	501	16/08/1 4 02:30	17/08/1 4 17:45	-0,43	-0,91	-0,22	-0,93	-0,58	-0,89	-0,54	-0,67
21	501	28/08/1 4 03:30	31/08/1 4 15:45	-0,33	0,26	-0,58	0,50	0,30	0,26	-0,37	-0,30
22	501	01/09/1 4 04:00	03/09/1 4 19:30	-0,41	-0,28	-0,18	-0,24	-0,37	-0,30	-0,45	-0,19
23	501	07/09/1 4 07:30	11/09/1 4 20:15	2,95	0,90	0,63	0,77	-0,39	0,90	2,35	0,98
24	501	11/09/1 4 23:15	17/09/1 4 20:00	2,29	1,73	1,20	1,49	-0,40	1,73	1,42	1,87
25	501	07/10/1 4 01:45	09/10/1 4 16:15	-0,47	-0,30	-0,40	-0,19	-0,23	-0,32	-0,46	-0,65
26	502	09/01/1 4 09:15	14/01/1 4 14:15	-0,44	1,36	-1,03	1,90	5,29	1,32	-0,42	-0,57
27	502	13/02/1 4 22:00	14/02/1 4 22:00	-0,15	-1,30	-0,91	-1,12	-0,22	-1,41	-0,48	-0,79
28	502	13/03/1 4 00:00	15/03/1 4 10:15	-0,25	-0,42	-0,38	-0,32	-0,29	-0,41	-0,39	-0,51
29	502	19/03/1 4 17:45	21/03/1 4 19:30	-0,31	-0,64	-0,20	-0,64	-0,49	-0,62	-0,41	-0,41
30	502	29/04/1 4 22:00	01/05/1 4 14:45	-0,43	-0,87	-1,15	-0,55	4,07	-0,87	-0,50	-0,81
31	502	02/05/1 4 22:15	04/05/1 4 15:00	-0,36	-0,87	-0,79	-0,68	-0,05	-0,88	-0,47	-0,45
32	502	06/05/1 4 21:00	08/05/1 4 23:15	-0,50	-0,62	-0,69	-0,44	-0,04	-0,66	-0,54	-0,61
33	502	13/05/1 4 11:15	17/05/1 4 17:00	-0,06	0,71	-0,50	0,98	0,40	0,72	-0,17	-0,12
34	502	06/06/1 4 00:15	08/06/1 4 20:30	-0,45	-0,16	-0,73	0,10	0,39	-0,20	-0,49	-0,49
35	502	13/06/1 4 18:45	17/06/1 4 17:30	-0,29	0,53	1,53	0,03	-0,63	0,53	-0,35	0,40
36	502	23/06/1 4 08:30	27/06/1 4 22:15	-0,13	0,92	0,29	0,92	-0,26	0,93	0,54	3,24
37	502	12/07/1 4 16:30	15/07/1 4 13:15	-0,36	-0,14	-0,97	0,20	1,65	-0,14	-0,33	-0,14
38	502	15/07/1 4 23:30	17/07/1 4 17:45	-0,45	-0,83	-0,77	-0,64	-0,05	-0,83	-0,52	-0,40
39	502	30/07/1 4 23:30	01/08/1 4 14:45	-0,49	-0,91	0,01	-1,02	-0,65	-0,91	-0,54	-0,66
40	502	10/08/1 4 06:15	12/08/1 4 16:30	-0,49	-0,42	-0,81	-0,16	0,41	-0,41	-0,51	-0,53
41	502	28/08/1 4 02:15	30/08/1 4 17:00	-0,43	-0,30	-0,75	-0,06	0,33	-0,30	-0,46	-0,22
42	502	31/08/1 4 21:30	02/09/1 4 14:30	-0,49	-0,86	-0,20	-0,89	-0,57	-0,84	-0,52	-0,36
43	502	07/09/1 4 10:45	10/09/1 4 16:00	1,07	0,08	0,35	-0,04	-0,48	0,09	0,93	0,96
44	502	12/09/1 4 04:00	15/09/1 4 15:30	0,33	0,24	0,74	-0,01	-0,55	0,24	0,24	1,28
45	502	07/10/1	08/10/1	-0,49	-0,82	-0,99	-0,55	0,80	-0,80	-0,51	-0,57

		4 00:30	4 19:15								
46	503	29/04/1 4 19:30	02/05/1 4 05:30	-0,23	-0,42	-0,93	-0,13	0,95	-0,42	-0,44	-0,88
47	503	03/05/1 4 00:15	04/05/1 4 21:30	-0,15	-0,75	-0,81	-0,54	0,10	-0,75	-0,30	-0,53
48	503	13/05/1 4 10:00	17/05/1 4 17:00	0,48	0,75	-0,30	0,94	0,12	0,55	0,43	-0,27
49	503	28/05/1 4 09:00	02/06/1 4 12:00	-0,04	1,27	-0,44	1,58	0,56	1,30	0,07	-0,15
50	503	06/06/1 4 01:45	09/06/1 4 18:30	-0,29	0,38	-0,75	0,70	0,86	0,39	-0,23	-0,34
51	503	13/06/1 4 04:30	16/06/1 4 19:15	0,06	0,32	2,81	-0,67	-0,75	0,39	0,00	0,20
52	503	23/06/1 4 05:45	29/06/1 4 23:00	0,57	2,26	0,61	2,30	-0,10	2,27	3,04	3,64
53	503	12/07/1 4 15:30	15/07/1 4 22:15	0,03	0,12	0,05	0,11	-0,36	0,16	0,55	0,30
54	503	15/07/1 4 22:15	17/07/1 4 08:45	-0,27	-1,03	-0,67	-0,90	-0,35	-1,03	-0,44	-0,52
55	503	23/07/1 4 20:45	26/07/1 4 20:15	-0,34	-0,07	1,95	-0,80	-0,74	-0,07	-0,35	-0,16
56	503	28/07/1 4 03:00	30/07/1 4 16:30	-0,31	-0,33	-0,66	-0,13	0,09	-0,31	-0,39	0,32
57	503	30/07/1 4 22:30	02/08/1 4 04:00	-0,31	-0,54	0,21	-0,68	-0,60	-0,50	-0,38	-0,37
58	503	10/08/1 4 07:15	13/08/1 4 19:00	-0,34	0,25	-0,77	0,56	0,84	0,25	-0,31	-0,37
59	503	28/08/1 4 03:00	30/08/1 4 20:30	-0,26	-0,23	-0,50	-0,07	-0,09	-0,22	-0,27	-0,34
60	503	01/09/1 4 03:30	03/09/1 4 18:30	-0,35	-0,29	-0,20	-0,25	-0,36	-0,25	-0,41	-0,32
61	503	07/09/1 4 08:00	11/09/1 4 19:30	5,59	0,86	0,59	0,75	-0,38	0,89	4,93	1,41
62	503	11/09/1 4 19:30	22/09/1 4 19:15	2,75	4,92	1,43	4,97	0,00	4,92	2,78	2,12
63	503	07/10/1 4 00:00	09/10/1 4 21:30	-0,33	-0,12	-0,16	-0,08	-0,33	-0,12	-0,29	-0,43

APÊNDICE D

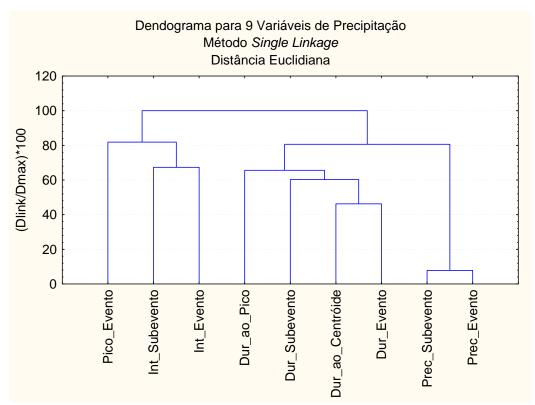


Figura 65 - Dendograma resultante da análise de agrupamento das variáveis dos eventos e subeventos chuvosos pelo método *Single Linkage* (Pico – Pico máximo do hietograma; Int – Intensidade média do hietograma; Dur – Duração total do hietograma)

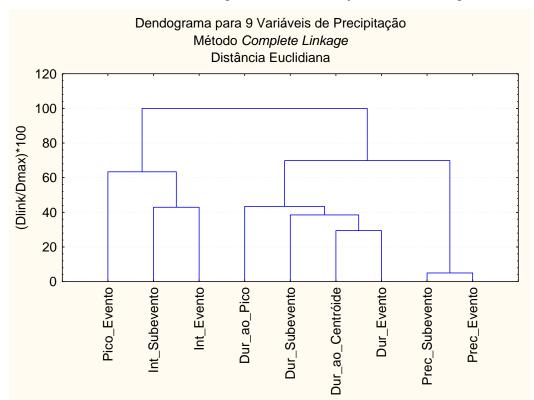


Figura 66 - Dendograma resultante da análise de agrupamento das variáveis dos eventos e subeventos chuvosos pelo método *Complete Linkage* (Pico – Pico máximo do hietograma; Int – Intensidade média do hietograma; Dur – Duração total do hietograma)

Tabela 21 - Valores reais das variáveis dos eventos e subeventos chuvosos obtidos na caracterização dos hietogramas

	1	1	1	1	1	1	1			ı			
											Inten-		_
ID	ID		Dura-		Pico	Dowi	Ta	Taman	Preci-	Dura-	Si-	N	Temp
hi- dr	hi-	Lâmina	ção do	Intonci	Má-	Perí- odo	Tem	Temp	pita-	ção	dade Mé-	ō	0
0-	e-	Total	Event	Intensi- dade do	ximo	Diário	po ao Pico	o ao Cen-	ção	dos	dia	S	seco entre
gr	to-	Preci-	0	Evento	do	de	Má-	tróid	dos	Sube-	dos	u	sube-
a	gr	pitada	Chu-	(mm.h ⁻¹)	Hieto-	Ocor-	ximo	е	Sube-	ven-	Sube-	b	ven-
m	am	(mm)	voso	,	grama	rência	(min)	(min)	ventos	tos	ven-	е	tos
а	а		(min)		(mm)		, ,		(mm)	(mm)	tos	٧.	(min)
											(mm)		
1	8	82,30	307	16,08	1,778	Noite	36	85	82,30	307	16,08	1	0
2	11	70,61	3512	1,21	1,524	Madr.	528	697	58,93	792	4,46	1	2347
3	14	18,54	243	4,58	1,778	Noite	62	91	18,54	243	4,58	1	0
3	15	35,31	712	2,98	1,27	Noite	27	251	35,31	515	4,37	2	197
4	19	71,37	3047	1,41	1,27	Madr.	1327	1455	64,77	1310	2,97	1	1529
5	20	36,83	721	3,06	0,762	Tarde	438	361	36,83	538	3,81	2	183
6	21	16,51	1232	0,80	1,016	Manhã	803	791	16,26	806	1,21	1	425
7	22	88,14	4638	1,14	1,524	Madr.	2458	1609	76,45	816	9,57	2	3338
8	23	12,95	2312	0,34	1,016	Tarde	2	1295	12,45	526	4,88	3	1784
9	24	48,51	2461	1,18	1,016	Madr.	1801	1695	44,96	1302	2,07	1	1030
10	25	23,62	1288	1,10	0,762	Manhã	936	849	23,11	668	2,02	2	614
10	26	9,40	1781	0,32	0,508	Noite	662	1038	8,64	519	1,08	3	1258
11	27	30,99	3932	0,47	0,254	Noite	1	1864	30,73	2976	0,89	4	955
12	28	50,29	6252	0,48	1,016	Madr.	5117	2852	49,53	5616	0,81	2	596
13	29	55,37	3528	0,94	1,27	Tarde	78	499	47,50	945	3,02	1	2065
14	30	18,54	316	3,52	1,27	Madr.	156	111	18,54	316	3,52	1	0
15	32	9,65	833	0,70	1,27	Tarde	1	220	7,87	232	2,04	1	344
16	33	7,11	220	1,94	0,508	Manhã	3	76	7,11	220	1,94	1	0
17	34	8,89	526	1,01	0,508	Noite	394	409	8,64	172	3,01	1	353
18	35	19,56	1400	0,84	1,016	Noite	878	577	18,29	788	1,46	2	438
19	36	26,42	3193	0,50	0,762	Madr.	797	1776	23,62	1716	0,77	2	1106
20	37	10,92	476	1,38	0,254	Noite	1	278	10,92	476	1,38	1	0
21	39	28,96	1627	1,07	0,762	Noite	1604	395	26,92	520	3,11	1	944
22	40	16,00	913	1,05	0,508	Noite	2	451	16,00	728	1,32	2	185
23	41	147,32	5008	1,77	1,016	Tarde	2449	2462	136,65	2569	3,19	1	1803
24	42	69,09	3443	1,20	1,27	Madr.	1885	2351	64,77	1249	3,78	2	1683
25	43	31,50	1623	1,16	1,016	Noite	283	502	26,67	946	1,69	1	323
26	2	38,86	1767	1,32	1,27	Madr.	556	757	31,75	169	11,27	1	1261
26	3	18,29	1042	1,05	0,762	Manhã	527	580	15,75	458	2,06	1	563
26	4	9,14	681	0,81	0,508	Noite	370	304	8,89	437	1,22	1	243
27	8	82,30	307	16,08	1,778	Noite	36	85	82,30	307	16,08	1	0
28	11	70,61	3512	1,21	1,524	Madr.	528	697	58,93	792	4,46	1	2347
29	14	18,54	243	4,58	1,778	Noite	62	91	18,54	243	4,58	1	0
29	15	35,31	712	2,98	1,27	Noite	27	251	35,31	515	4,37	2	197

30	19	71,37	3047	1,41	1,27	Madr.	1327	1455	64,77	1310	2,97	1	1529
31	20	36,83	721	3,06	0,762	Tarde	438	361	36,83	538	3,81	2	183
32	21	16,51	1232	0,80	1,016	Manhã	803	791	16,26	806	1,21	1	425
33	22	88,14	4638	1,14	1,524	Madr.	2458	1609	76,45	816	9,57	2	3338
34	25	23,62	1288	1,10	0,762	Manhã	936	849	23,11	668	2,02	2	614
34	26	9,40	1781	0,32	0,508	Noite	662	1038	8,64	519	1,08	3	1258
35	27	30,99	3932	0,47	0,254	Noite	1	1864	30,73	2976	0,89	4	955
36	28	50,29	6252	0,48	1,016	Madr.	5117	2852	49,53	5616	0,81	2	596
37	29	55,37	3528	0,94	1,27	Tarde	78	499	47,50	945	3,02	1	2065
38	30	18,54	316	3,52	1,27	Madr.	156	111	18,54	316	3,52	1	0
39	35	19,56	1400	0,84	1,016	Noite	878	577	18,29	788	1,46	2	438
40	36	26,42	3193	0,50	0,762	Madr.	797	1776	23,62	1716	0,77	2	1106
41	39	28,96	1627	1,07	0,762	Noite	1604	395	26,92	520	3,11	1	944
42	40	16,00	913	1,05	0,508	Noite	2	451	16,00	728	1,32	2	185
43	41	147,32	5008	1,77	1,016	Tarde	2449	2462	136,65	2569	3,19	1	1803
44	42	69,09	3443	1,20	1,27	Madr.	1885	2351	64,77	1249	3,78	2	1683
45	43	31,50	1623	1,16	1,016	Noite	283	502	26,67	946	1,69	1	323
46	19	71,37	3047	1,41	1,27	Madr.	1327	1455	64,77	1310	2,97	1	1529
47	20	36,83	721	3,06	0,762	Tarde	438	361	36,83	538	3,81	2	183
48	22	88,14	4638	1,14	1,524	Madr.	2458	1609	76,45	816	9,57	2	3338
49	24	48,51	2461	1,18	1,016	Madr.	1801	1695	44,96	1302	2,07	1	1030
50	25	23,62	1288	1,10	0,762	Manhã	936	849	23,11	668	2,02	2	614
50	26	9,40	1781	0,32	0,508	Noite	662	1038	8,64	519	1,08	3	1258
51	27	30,99	3932	0,47	0,254	Noite	1	1864	30,73	2976	0,89	4	955
52	28	50,29	6252	0,48	1,016	Madr.	5117	2852	49,53	5616	0,81	2	596
53	29	55,37	3528	0,94	1,27	Tarde	78	499	47,50	945	3,02	1	2065
54	30	18,54	316	3,52	1,27	Madr.	156	111	18,54	316	3,52	1	0
55	32	9,65	833	0,70	1,27	Tarde	1	220	7,87	232	2,04	1	344
55	33	7,11	220	1,94	0,508	Manhã	3	76	7,11	220	1,94	1	0
56	34	8,89	526	1,01	0,508	Noite	394	409	8,64	172	3,01	1	353
57	35	19,56	1400	0,84	1,016	Noite	878	577	18,29	788	1,46	2	438
58	36	26,42	3193	0,50	0,762	Madr.	797	1776	23,62	1716	0,77	2	1106
59	39	28,96	1627	1,07	0,762	Noite	1604	395	26,92	520	3,11	1	944
60	40	16,00	913	1,05	0,508	Noite	2	451	16,00	728	1,32	2	185
61	41	147,32	5008	1,77	1,016	Tarde	2449	2462	136,65	2569	3,19	1	1803
62	42	69,09	3443	1,20	1,27	Madr.	1885	2351	64,77	1249	3,78	2	1683
63	43	31,50	1623	1,16	1,016	Noite	283	502	26,67	946	1,69	1	323

Tabela 22 - Valores normalizados das variáveis dos eventos e subeventos chuvosos obtidos na caracterização dos hidrogramas e aplicados nas análises estatísticas

			Б		Pico			D	Б	Inten-
		Lâmina	Dura- ção do	Inten-	Má-	Tempo	Tempo	Preci-	Dura- ção	sidade
ID hi-	Sub-	Total	Evento	sidade	ximo	ao Pico	ao	pitação dos	dos	Média
dro-	bacia	Preci-	Chu-	do	do	Má-	Cen-	Sube-	Sube-	dos
grama	500.0	pitada	voso	Evento	Hieto-	ximo	tróide	ventos	ventos	Sube-
		(mm)	(min)	(mm.h ⁻¹)	grama	(min)	(min)	(mm)	(mm)	ventos
1	501	1,29	-1,13	5,42	(mm) 2,03	-0,76	-1,10	1,51	-0,67	(mm) 4,21
2	501	0,93	0,81	-0,22	1,38	-0,76	-0,34	0,73	-0,26	0,40
3	501	-0,67	-1,17	1,06	2,03	-0,74	-1,09	-0,63	-0,20	0,40
3	501	-0,15	-0,88	0,46	0,72	-0,77	-0,89	-0,07	-0,49	0,37
4	501	0,96	0,53	-0,14	0,72	0,34	0,59	0,92	0,18	-0,09
5	501	-0,10	-0,88	0,49	-0,58	-0,42	-0,76	-0,02	-0,47	0,19
6	501	-0,73	-0,57	-0,37	0,07	-0,42	-0,70	-0,71	-0,47	-0,66
7	501	1,47	1,48	-0,37	1,38	1,31	0,78	1,32	-0,23	
8	501	-0,84	0,08	-0,24	0,07	-0,79	0,78	-0,83	-0,24	2,07 0,54
9										
10	501	0,26	0,17	-0,22	0,07	0,75	0,88	0,26	0,17	-0,38
10	501 501	-0,51	-0,54 -0,24	-0,26 -0,55	-0,58 -1,23	0,01 -0,23	-0,16 0,08	-0,48 -0,96	-0,36	-0,40
11	501	-0,95	1,06	-0,33			1,09	-0,90	-0,49 1,60	-0,70 -0,77
12	501	-0,28			-1,88	-0,79				
13	501	0,31	2,46	-0,49	0,07	3,59	2,31	0,41	3,84	-0,79
14		0,47	0,82	-0,32	0,72	-0,73	-0,59	0,34	-0,13	-0,07
-	501	-0,67	-1,12	0,66	0,72	-0,66	-1,06	-0,63	-0,66	0,09
15	501	-0,94	-0,81	-0,41	0,72	-0,79	-0,93	-0,99	-0,73	-0,39
16	501	-1,02	-1,18	0,06	-1,23	-0,79	-1,11	-1,01	-0,74	-0,42
17	501	-0,96	-0,99	-0,29	-1,23	-0,46	-0,70	-0,96	-0,79	-0,07
18	501	-0,64	-0,47	-0,35	0,07	-0,04	-0,49	-0,64	-0,26	-0,58
19	501	-0,42	0,61	-0,48	-0,58	-0,11	0,98	-0,46	0,53	-0,80
20	501	-0,90	-1,03	-0,15	-1,88	-0,79	-0,86	-0,89	-0,53	-0,61
21	501	-0,35	-0,33	-0,27	-0,58	0,58	-0,71	-0,35	-0,49	-0,04
22	501	-0,74	-0,76	-0,27	-1,23	-0,79	-0,65	-0,72	-0,31	-0,62
23	501	3,29	1,71	0,00	0,07	1,30	1,83	3,34	1,25	-0,01
24	501	0,89	0,76	-0,22	0,72	0,82	1,69	0,92	0,13	0,18
25	501	-0,27	-0,33	-0,23	0,07	-0,55	-0,58	-0,36	-0,13	-0,50
26	502	-0,04	-0,25	-0,17	0,72	-0,32	-0,27	-0,19	-0,79	2,63
26	502	-0,67	-0,68	-0,27	-0,58	-0,34	-0,49	-0,72	-0,54	-0,38
26	502	-0,96	-0,90	-0,37	-1,23	-0,48	-0,83	-0,95	-0,56	-0,66
27	502	1,29	-1,13	5,42	2,03	-0,76	-1,10	1,51	-0,67	4,21
28	502	0,93	0,81	-0,22	1,38	-0,34	-0,34	0,73	-0,26	0,40
29	502	-0,67	-1,17	1,06	2,03	-0,74	-1,09	-0,63	-0,73	0,44
29	502	-0,15	-0,88	0,46	0,72	-0,77	-0,89	-0,07	-0,49	0,37
30	502	0,96	0,53	-0,14	0,72	0,34	0,59	0,92	0,18	-0,09
31	502	-0,10	-0,88	0,49	-0,58	-0,42	-0,76	-0,02	-0,47	0,19

32	502	-0,73	-0,57	-0,37	0,07	-0,11	-0,23	-0,71	-0,25	-0,66
33	502	1,47	1,48	-0,24	1,38	1,31	0,78	1,32	-0,24	2,07
34	502	-0,51	-0,54	-0,26	-0,58	0,01	-0,16	-0,48	-0,36	-0,40
34	502	-0,95	-0,24	-0,55	-1,23	-0,23	0,08	-0,96	-0,49	-0,70
35	502	-0,28	1,06	-0,49	-1,88	-0,79	1,09	-0,22	1,60	-0,77
36	502	0,31	2,46	-0,49	0,07	3,59	2,31	0,41	3,84	-0,79
37	502	0,47	0,82	-0,32	0,72	-0,73	-0,59	0,34	-0,13	-0,07
38	502	-0,67	-1,12	0,66	0,72	-0,66	-1,06	-0,63	-0,66	0,09
39	502	-0,64	-0,47	-0,35	0,07	-0,04	-0,49	-0,64	-0,26	-0,58
40	502	-0,42	0,61	-0,48	-0,58	-0,11	0,98	-0,46	0,53	-0,80
41	502	-0,35	-0,33	-0,27	-0,58	0,58	-0,71	-0,35	-0,49	-0,04
42	502	-0,74	-0,76	-0,27	-1,23	-0,79	-0,65	-0,72	-0,31	-0,62
43	502	3,29	1,71	0,00	0,07	1,30	1,83	3,34	1,25	-0,01
44	502	0,89	0,76	-0,22	0,72	0,82	1,69	0,92	0,13	0,18
45	502	-0,27	-0,33	-0,23	0,07	-0,55	-0,58	-0,36	-0,13	-0,50
46	503	0,96	0,53	-0,14	0,72	0,34	0,59	0,92	0,18	-0,09
47	503	-0,10	-0,88	0,49	-0,58	-0,42	-0,76	-0,02	-0,47	0,19
48	503	1,47	1,48	-0,24	1,38	1,31	0,78	1,32	-0,24	2,07
49	503	0,26	0,17	-0,22	0,07	0,75	0,88	0,26	0,17	-0,38
50	503	-0,51	-0,54	-0,26	-0,58	0,01	-0,16	-0,48	-0,36	-0,40
50	503	-0,95	-0,24	-0,55	-1,23	-0,23	0,08	-0,96	-0,49	-0,70
51	503	-0,28	1,06	-0,49	-1,88	-0,79	1,09	-0,22	1,60	-0,77
52	503	0,31	2,46	-0,49	0,07	3,59	2,31	0,41	3,84	-0,79
53	503	0,47	0,82	-0,32	0,72	-0,73	-0,59	0,34	-0,13	-0,07
54	503	-0,67	-1,12	0,66	0,72	-0,66	-1,06	-0,63	-0,66	0,09
55	503	-0,94	-0,81	-0,41	0,72	-0,79	-0,93	-0,99	-0,73	-0,39
55	503	-1,02	-1,18	0,06	-1,23	-0,79	-1,11	-1,01	-0,74	-0,42
56	503	-0,96	-0,99	-0,29	-1,23	-0,46	-0,70	-0,96	-0,79	-0,07
57	503	-0,64	-0,47	-0,35	0,07	-0,04	-0,49	-0,64	-0,26	-0,58
58	503	-0,42	0,61	-0,48	-0,58	-0,11	0,98	-0,46	0,53	-0,80
59	503	-0,35	-0,33	-0,27	-0,58	0,58	-0,71	-0,35	-0,49	-0,04
60	503	-0,74	-0,76	-0,27	-1,23	-0,79	-0,65	-0,72	-0,31	-0,62
61	503	3,29	1,71	0,00	0,07	1,30	1,83	3,34	1,25	-0,01
62	503	0,89	0,76	-0,22	0,72	0,82	1,69	0,92	0,13	0,18
63	503	-0,27	-0,33	-0,23	0,07	-0,55	-0,58	-0,36	-0,13	-0,50

APÊNDICE E

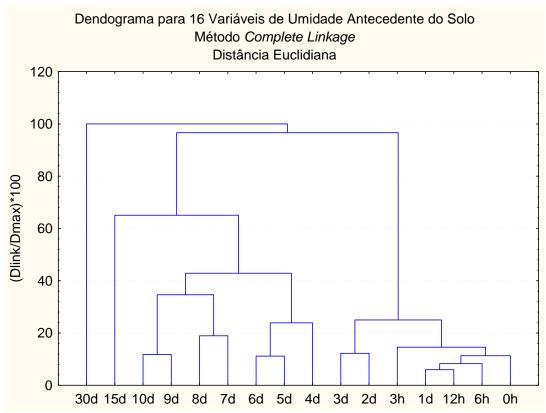


Figura 67 - Dendograma resultante da análise de agrupamento dos valores de umidade antecedente do solo pelo método *Complete Linkage* (h – horas; d – dias)

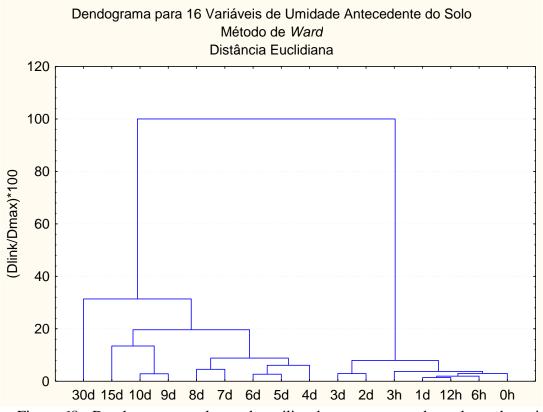


Figura 68 - Dendograma resultante da análise de agrupamento dos valores de umidade antecedente do solo pelo método de *Ward* (h – horas; d – dias)

Tabela 23 - Valores reais das variáveis de umidade do solo obtidos para as antecedências de 0 hora até 5 dias, para cada hidrograma definido (h – horas; d – dias)

ID	Sub-					e Antece	1			
Hid.	bacia	0h	3h	6h	12h	1d	2d	3d	4d	5d
1	501	4,55%	4,56%	4,56%	4,56%	4,58%	4,64%	4,69%	4,75%	4,86%
2	501	5,27%	5,28%	5,38%	5,64%	5,76%	4,31%	4,33%	4,35%	4,37%
3	501	5,50%	5,55%	5,62%	5,94%	5,44%	5,27%	5,45%	5,54%	5,74%
4	501	4,32%	4,30%	4,24%	4,24%	4,24%	4,26%	4,28%	4,30%	4,32%
5	501	5,77%	5,33%	5,03%	5,08%	5,42%	5,11%	5,36%	8,24%	4,24%
6	501	5,85%	5,41%	5,46%	5,51%	5,54%	5,56%	5,56%	5,77%	5,42%
7	501	5,07%	5,10%	5,11%	5,15%	5,21%	5,35%	5,49%	5,66%	5,94%
8	501	7,88%	7,95%	8,09%	8,37%	8,79%	9,76%	10,74%	11,78%	11,26%
9	501	5,80%	5,83%	5,86%	5,89%	5,97%	6,20%	6,55%	6,97%	6,95%
10	501	6,74%	6,49%	6,56%	6,68%	6,84%	7,45%	8,28%	9,29%	10,35%
11	501	6,54%	6,41%	6,44%	6,48%	6,68%	6,92%	7,35%	7,86%	8,52%
12	501	7,03%	7,08%	7,09%	7,22%	7,53%	8,28%	9,27%	10,33%	11,21%
13	501	16,51%	16,70%	16,89%	17,05%	17,51%	18,51%	19,27%	20,16%	20,78%
14	501	25,18%	26,05%	24,08%	24,40%	25,01%	25,67%	22,39%	17,08%	18,14%
15	501	21,71%	21,63%	21,82%	22,16%	22,32%	23,36%	24,56%	25,22%	25,30%
16	501	21,97%	21,71%	21,75%	21,75%	22,24%	22,16%	23,09%	24,28%	25,14%
17	501	20,45%	21,04%	20,56%	20,93%	21,37%	21,93%	21,75%	22,12%	22,28%
18	501	20,09%	20,16%	20,23%	20,60%	20,74%	21,04%	20,52%	21,41%	21,93%
19	501	15,01%	15,01%	14,98%	15,01%	15,46%	16,35%	17,35%	18,34%	19,34%
20	501	13,46%	13,38%	13,57%	13,91%	14,45%	15,49%	16,29%	17,15%	17,67%
21	501	7,97%	11,26%	7,98%	8,17%	8,46%	9,05%	9,80%	10,67%	11,61%
22	501	9,29%	9,21%	9,21%	9,42%	9,82%	10,60%	11,36%	8,13%	8,46%
23	501	7,69%	7,74%	7,75%	7,82%	8,06%	8,62%	9,31%	10,04%	10,74%
24	501	29,68%	29,63%	29,58%	29,95%	29,72%	29,90%	29,99%	10,31%	7,77%
25	501	15,03%	14,92%	15,09%	15,49%	15,52%	16,67%	17,25%	18,28%	19,17%
26	502	6,06%	6,07%	6,08%	6,12%	6,28%	6,54%	6,70%	5,42%	5,51%
27	502	6,21%	6,22%	6,26%	6,35%	6,39%	6,51%	6,72%	6,95%	7,32%
28	502	7,86%	7,54%	7,67%	8,18%	7,45%	5,94%	5,40%	5,41%	5,46%
29	502	7,59%	7,80%	8,06%	8,97%	7,63%	7,22%	6,95%	7,22%	7,67%
30	502	5,25%	5,26%	5,28%	5,27%			5,28%	5,30%	5,34%
31	502	7,04%	6,75%	6,74%	6,83%	6,92%	7,31%	5,66%	5,22%	5,22%
32	502	6,65%	6,67%	6,69%	6,75%	6,77%	6,87%	7,22%	6,98%	6,92%
33	502	6,38%	6,39%	6,39%	6,41%	6,53%	6,70%	6,88%	7,15%	7,60%
34	502				6,27%					
35	502									
36	502									
37	502	6,61%	6,64%	6,68%	6,69%	6,72%	6,86%	6,98%	7,06%	6,88%
38	502	7,60%	7,63%	7,65%	7,77%	7,82%	8,38%	8,97%	6,69%	6,82%
39	502	7,35%	7,36%	7,38%	7,46%	7,54%	7,82%	7,28%	7,52%	7,98%

1 1		i	Ī	Ī	Ī	i	Ì	Ī	Ī	ı i
40	502	6,50%	6,46%	8,53%	6,46%	6,51%	6,62%	6,76%	6,89%	7,03%
41	502	6,36%	6,36%	6,38%	6,44%	6,51%	6,68%	6,86%	7,03%	7,23%
42	502	6,93%	6,95%	6,99%	7,07%	7,12%	7,40%	7,82%	6,36%	6,53%
43	502	6,89%	6,75%	6,75%	6,77%	6,86%	7,04%	7,23%	7,49%	7,90%
44	502	9,65%	9,49%	9,37%	9,48%	9,60%	9,80%	9,57%	11,95%	6,75%
45	502	8,63%	7,77%	7,85%	8,10%	7,74%	6,92%	7,07%	6,98%	7,14%
46	503	4,67%	4,59%	4,59%	4,57%	4,58%	4,59%	4,61%	4,62%	4,64%
47	503	6,24%	5,89%	5,61%	5,67%	6,00%	5,71%	6,00%	8,77%	4,57%
48	503	5,54%	5,54%	5,55%	5,58%	5,67%	5,81%	5,96%	6,17%	6,52%
49	503	7,11%	7,13%	6,68%	6,07%	6,15%	6,35%	6,62%	6,98%	7,33%
50	503				6,52%					
51	503									
52	503									
53	503	13,19%	13,33%	13,44%	13,55%	13,89%	14,60%	15,17%	15,75%	16,11%
54	503	18,48%	18,52%	18,66%	19,07%	19,14%	19,76%	17,78%	13,64%	14,34%
55	503	16,82%	16,77%	16,94%	17,13%	17,28%	18,06%	18,95%	19,37%	19,41%
56	503	15,97%	16,53%	16,05%	16,31%	16,65%	17,16%	16,95%	17,39%	17,22%
57	503	15,76%	15,81%	15,92%	16,16%	16,26%	16,55%	16,02%	16,69%	17,20%
58	503	12,29%	12,10%	12,10%	12,10%	12,36%	13,00%	13,72%	14,41%	15,13%
59	503	7,43%	10,06%	7,43%	7,57%	7,80%	8,24%	8,79%	9,43%	10,12%
60	503	8,48%	9,90%	8,45%	8,62%	8,91%	9,51%	10,08%	7,43%	7,80%
61	503	7,36%	7,39%	7,41%	7,46%	7,63%	8,07%	8,60%	9,17%	9,78%
62	503	22,73%	22,78%	22,92%	23,02%	22,84%	22,95%	23,51%	8,26%	7,47%
63	503	15,93%	12,53%	12,69%	13,01%	12,52%	12,61%		13,76%	14,51%

Tabela 24 - Valores reais das variáveis de umidade do solo obtidos para as antecedências de 6 dias até 30 dias e valores normalizados da umidade do solo à 0 hora, para cada hidrograma definido (h – horas; d – dias)

ID	Sub-				Umidad	le Antece	dente à:		
Hid.	bacia	6d	7d	8d	9d	10d	15d	30d	0h - normalizado
1	501	4,88%	4,44%	4,37%	4,41%	4,34%	4,25%	4,96%	-0,95639
2	501	4,40%	4,44%	4,48%	4,53%	4,57%	4,96%	4,67%	-0,83718
3	501	5,32%	4,58%	4,31%	4,34%	4,36%	4,53%	4,83%	-0,80071
4	501	4,34%	4,36%	4,38%	4,41%	4,44%	4,64%	5,11%	-0,99276
5	501	4,26%	4,28%	4,30%	4,32%	4,34%	4,47%	4,85%	-0,75549
6	501	5,11%	5,36%	8,24%	4,24%	4,26%	4,36%	5,08%	-0,74360
7	501	6,35%	5,52%	5,59%	5,70%	6,15%	4,25%	4,70%	-0,87076
8	501	11,90%	8,50%	5,15%	5,27%	5,40%	5,56%	4,40%	-0,41069
9	501	7,32%	7,84%	8,73%	9,71%	10,70%	5,13%	4,26%	-0,75155
10	501	11,48%	12,65%	13,35%	5,83%	5,97%	7,32%	5,50%	-0,59718
11	501	8,17%	8,64%	6,69%	7,20%	7,93%	13,32%	8,54%	-0,63062
12	501	12,39%	13,54%	9,59%	6,75%	6,44%	8,44%	6,94%	-0,54974
13	501	21,44%	21,82%	22,58%	23,32%	24,44%	28,91%	6,59%	1,00343
14	501	18,96%	19,91%	20,60%	21,22%	21,63%	26,13%	13,60%	2,42361
15	501	25,67%	26,05%	24,08%	24,97%	25,59%	19,95%	18,82%	1,85525

17 501 23,25% 24,48% 25,18% 25,26% 25,76% 22,39% 28,87% 1,64924 18 501 21,75% 22,05% 22,32% 23,32% 24,56% 24,04% 26,18% 1,59010 19 501 20,23% 21,07% 21,52% 22,01% 20,67% 21,93% 18,14% 0,75712 20 501 15,01% 15,49% 16,38% 17,38% 18,38% 22,01% 26,05% 0,50391 21 501 12,57% 13,16% 13,63% 13,93% 13,71% 16,29% 21,04% -0,39614 22 501 9,03% 9,78% 10,65% 11,58% 12,55% 14,02% 21,52% -0,17863 23 501 10,02% 9,74% 10,51% 11,31% 10,17% 11,51% 16,29% -0,44213 24 501 8,17% 8,75% 9,48% 10,17% 10,79% 7,95% 16,29% -0,44213 25 501 19,98% 20,74% 21,71% 22,35% 22,70% 27,07% 7,75% 0,76199 26 502 5,62% 5,78% 5,96% 6,15% 6,33% 6,89% 5,20% -0,70831 27 502 7,61% 6,14% 5,98% 6,22% 6,19% 5,45% 6,98% -0,68461 28 502 5,52% 5,55% 5,67% 5,78% 5,98% 6,92% 6,51% -0,41343 29 502 3,06% 7,73% 5,42% 5,42% 5,44% 5,82% 6,53% -0,45808 30 502 5,39% 5,48% 5,62% 5,28% 5,23% 5,33% -0,45808 30 502 5,39% 5,48% 5,62% 5,22% 5,23% 5,23% 6,83% -0,61119 33 502 8,17% 6,74% 6,93% 7,01% 7,82% 5,23% 5,44% -0,65678 34 502 7,66% 7,65% 7,24% 7,38% 7,01% 7,60% 7,60% -0,45597 35 502 7,66% 7,87% 7,41% 7,65% 7,94% 7,60% -0,45597 39 502 7,66% 7,87% 7,41% 7,65% 7,94% 7,60% -0,45597 39 502 7,66% 7,87% 7,41% 7,65% 7,94% 7,60% -0,65662 44 502 7,46% 7,65% 7,26% 7,94% 7,06% -0,65662 45 503 14,52% 15,56% 15,90% 16,39% 16,69% 7,12% 6,09% -0,28716 46 503 4,65% 4,66% 4,67% 4,79% 4,89% 5,54% 4,89% -0,63605 41 502 7,46% 7,66% 7,66% 7,94% 7,04% 7,06% -0,67822 48 503 14,92% 15,56% 15,90% 16,39% 16,69% 11,576 1,9384 10,0548 503 14,92% 15,56% 15,90% 16,39%	16	501	25,84%	25,97%	26,05%	26,64%	24,93%	19,00%	27,63%	1,89860
18										
19						·	·		·	
20 501 15,01% 15,49% 16,38% 17,38% 18,38% 22,01% 26,05% 0.50391 21 501 12,57% 13,16% 13,63% 13,93% 13,71% 16,29% 21,04% -0.39614 22 501 9,03% 9,78% 10,65% 11,58% 12,55% 14,02% 21,52% -0.17863 23 501 10,02% 9,74% 10,51% 11,31% 10,17% 11,51% 16,29% -0.44213 24 501 8,17% 8,75% 9,48% 10,17% 10,79% 7,95% 16,29% 0,76199 26 502 5,62% 5,78% 5,96% 6,15% 6,33% 6,89% 5,20% 0,70831 27 502 7,61% 6,14% 5,98% 6,19% 5,48% 6,98% -0,68461 28 502 5,52% 5,58% 5,67% 5,78% 5,43% 5,43% 6,93% -0,41343 30 502 5,23										
21 501 12,57% 13,16% 13,63% 13,93% 13,71% 16,29% 21,04% -0,39614 22 501 9,03% 9,78% 10,65% 11,58% 12,55% 14,02% 21,52% -0,17863 23 501 10,02% 9,74% 10,51% 11,31% 10,17% 12,55% 16,29% -0,44213 24 501 8,17% 8,75% 9,48% 10,17% 10,79% 7,55% 16,29% -0,44213 24 501 8,17% 8,75% 9,48% 10,17% 10,79% 7,55% 16,29% 3,16074 25 501 19,98% 20,74% 21,71% 22,35% 22,70% 27,07% 7,55% 0,6199 26 502 5,62% 5,89% 6,22% 6,19% 5,48% 0,68% -0,08461 28 502 7,61% 6,14% 5,98% 6,22% 6,19% 5,43% 7,41% 0,48074 29 502 5,2										
22 501 9,03% 9,78% 10,65% 11,58% 12,55% 14,02% 21,52% -0,17863 23 501 10,02% 9,74% 10,51% 11,31% 10,17% 11,51% 16,29% -0,44213 24 501 8,17% 8,75% 9,48% 10,17% 10,79% 7,95% 16,29% 3,16074 25 501 19,98% 20,74% 21,71% 22,35% 22,70% 27,07% 7,75% 0,76199 26 502 5,62% 5,78% 5,96% 6,15% 6,33% 6,89% 5,00% -0.70831 27 502 7,61% 6,14% 5,98% 6,22% 6,19% 5,45% 6,98% -0,41343 29 502 8,06% 7,73% 5,42% 5,44% 5,82% 6,53% 7,41% -0,48074 31 502 5,23% 5,23% 5,23% 5,23% 5,52% 5,58% -0,61119 33 502 8,17%										
23 501 10,02% 9,74% 10,51% 11,31% 10,17% 11,51% 16,29% -0,44213 24 501 8,17% 8,75% 9,48% 10,17% 10,79% 7,95% 16,29% 3,16074 25 501 19,98% 20,74% 21,71% 22,35% 22,70% 27,07% 7,75% 0,76199 26 502 5,62% 5,78% 5,96% 6,15% 6,33% 6,89% -0,68461 28 502 5,62% 5,58% 5,66% 5,78% 5,98% 6,22% 6,19% 6,51% -0,41343 29 502 8,06% 7,73% 5,42% 5,44% 5,82% 6,53% -0,45808 30 502 5,39% 5,23% 5,24% 5,43% 7,41% -0,84074 31 502 5,39% 5,23% 5,23% 5,23% 5,56% -0,54833 32 502 7,36% 5,40% 5,22% 5,23% 5,23%										
24 501 8,17% 8,75% 9,48% 10,17% 10,79% 7,95% 16,29% 3,16074 25 501 19,98% 20,74% 21,71% 22,35% 22,70% 27,07% 7,75% 0,76199 26 502 5,62% 5,78% 5,96% 6,15% 6,33% 6,89% 5,20% -0,0831 27 502 7,61% 6,14% 5,98% 6,22% 6,19% 5,45% 6,98% -0,68461 28 502 5,52% 5,58% 5,67% 5,78% 5,93% 6,92% 6,51% -0,45808 30 502 8,06% 7,73% 5,42% 5,42% 5,43% 7,41% -0,84074 31 502 5,39% 5,23% 5,23% 5,23% 5,56% -0,54833 32 502 7,36% 5,40% 5,22% 5,23% 5,23% 5,44% -0,65678 34 502 7,36% 7,40% 6,83% 7,01%										
25 501 19,98% 20,74% 21,71% 22,35% 22,70% 27,07% 7,75% 0,76199 26 502 5,62% 5,78% 5,96% 6,15% 6,33% 6,89% 5,20% -0,70831 27 502 7,61% 6,14% 5,98% 6,22% 6,19% 5,45% 6,98% -0,68461 28 502 5,52% 5,58% 5,67% 5,78% 5,93% 6,92% 6,51% -0,41343 29 502 8,06% 7,73% 5,42% 5,42% 5,44% 5,82% 6,53% -0,48074 31 502 5,39% 5,23% 5,23% 5,23% 5,56% -0,54833 32 502 7,36% 5,40% 5,22% 5,22% 5,23% 5,44% -0,65678 34 502 8,37% 6,74% 6,83% 7,01% 7,823 5,44% -0,65678 35 502 7,36% 5,44% -0,65678 -0,5756% <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td>										•
26 502 5,62% 5,78% 5,96% 6,15% 6,33% 6,89% 5,20% -0,70831 27 502 7,61% 6,14% 5,98% 6,22% 6,19% 5,45% 6,98% -0,68461 28 502 5,52% 5,58% 5,67% 5,78% 5,93% 6,92% 6,51% -0,41343 29 502 8,06% 7,73% 5,42% 5,42% 5,44% 5,82% 6,53% -0,45808 30 502 5,33% 5,23% 5,23% 5,23% 5,23% 5,23% 5,23% 5,23% 5,23% 5,23% 5,23% 5,23% 6,833 -0,61119 33 502 7,36% 5,40% 5,22% 5,23% 5,23% 5,44% -0,65678 34 502 7,36% 5,42% 5,23% 5,23% 5,44% -0,65678 35 502 8,17% 6,74% 6,83% 7,01% 7,85% 7,56% 7,46% 7,46% 7,46%								i e		
27 502 7,61% 6,14% 5,98% 6,22% 6,19% 5,45% 6,98% -0,68461 28 502 5,52% 5,58% 5,67% 5,78% 5,93% 6,92% 6,51% -0,41343 29 502 8,06% 7,73% 5,42% 5,42% 5,44% 5,82% 6,53% -0,45808 30 502 5,39% 5,24% 5,62% 5,42% 5,23% 5,56% -0,54833 31 502 5,23% 5,22% 5,23% 5,23% 5,23% 6,05% -0,61119 33 502 7,36% 5,40% 5,22% 5,23% 5,23% 5,44% -0,65678 34 502 8,30% 6,54% 6,80% 7,56% 3 35 502 8,30% 7,16% 6,80% 7,16% 37 502 6,96% 7,05% 7,21% 7,38% -0,61888 38 502 7,69% 7,87% 7,41% <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
28 502 5,52% 5,58% 5,67% 5,78% 5,93% 6,92% 6,51% -0,41343 29 502 8,06% 7,73% 5,42% 5,42% 5,44% 5,82% 6,53% -0,45808 30 502 5,39% 5,48% 5,62% 5,82% 6,05% 5,43% 7,41% -0,84074 31 502 5,23% 5,23% 5,23% 5,23% 5,23% 5,23% 6,05% 5,43% 7,41% -0,84074 32 502 7,36% 5,40% 5,22% 5,23% 5,23% 6,83% -0,61119 33 502 8,17% 6,74% 6,83% 7,01% 7,82% 5,23% 5,44% -0,65678 34 502 8,30% 6,54% 6,80% 7,56% 3 35 502 7,05% 7,21% 7,38% -0,61888 38 502 7,69% 7,89% 7,16% -0,49760 -0,49760 -0,49760 40 </td <td></td>										
29 502 8,06% 7,73% 5,42% 5,42% 5,42% 6,53% -0,45808 30 502 5,39% 5,48% 5,62% 5,82% 6,05% 5,43% 7,41% -0.84074 31 502 5,23% 5,23% 5,23% 5,23% 5,23% 5,23% 5,23% 6,83% -0,61119 33 502 7,36% 5,40% 5,22% 5,23% 5,23% 5,44% -0,65678 34 502 8,17% 6,74% 6,83% 7,01% 7,82% 5,23% 5,44% -0,65678 35 502 6,33% 7,01% 7,82% 5,23% 5,44% -0,65678 36 502 7,05% 7,21% 7,38% 7,70% -0,61888 38 502 6,96% 7,05% 7,21% 7,38% -0,63605 40 502 7,17% 7,35% 7,52% 8,02% 7,69% 7,83% 6,81% -0,63605 41										
30 502 5,39% 5,48% 5,62% 5,82% 6,05% 5,43% 7,41% -0,84074 31 502 5,23% 5,23% 5,23% 5,23% 5,23% 5,23% 5,23% 5,23% 5,23% 5,23% 6,83% -0,61119 33 502 8,17% 6,74% 6,83% 7,01% 7,82% 5,23% 5,44% -0,65678 34 502 8,30% 6,54% 6,80% 7,56% 7,56% 35 502 6,33% 7,01% 7,89% 7,16% 37 502 6,96% 7,05% 7,21% 7,38% -0,61888 38 502 6,96% 7,04% 6,92% 6,94% 7,01% -0,45597 39 502 7,69% 7,87% 7,41% 7,65% 7,94% 7,60% -0,49760 40 502 7,17% 7,35% 7,52% 8,02% 7,69% 7,83% 6,81% -0,63605 41										
31 502 5,23% 5,23% 5,24% 5,23% 5,56% -0,54833 32 502 7,36% 5,40% 5,22% 5,23% 5,23% 6,83% -0,61119 33 502 8,17% 6,74% 6,83% 7,01% 7,82% 5,23% 5,44% -0,65678 34 502 8,30% 6,54% 6,80% 7,56% 35 502 6,33% 7,70% -0,61888 36 502 7,38% 7,04% 6,92% 6,94% 7,01% -0,45597 39 502 7,69% 7,87% 7,41% 7,65% 7,94% 7,60% -0,49760 40 502 7,17% 7,35% 7,52% 8,02% 7,69% 7,83% 6,81% -0,63605 41 502 7,46% 7,55% 7,25% 7,93% 7,61% 7,27% 7,76% -0,65866 42 502 6,69% 6,87% 7,05% 7,26% 7,47%										
32 502 7,36% 5,40% 5,22% 5,22% 5,23% 6,83% -0,61119 33 502 8,17% 6,74% 6,83% 7,01% 7,82% 5,23% 5,44% -0,65678 34 502 8,30% 6,54% 6,80% 7,56% 35 502 6,96% 7,05% 7,21% 7,38% 7,70% 36 502 7,05% 7,21% 7,38% -0,61888 38 502 6,94% 7,04% 6,92% 6,94% 7,01% -0,45597 39 502 7,69% 7,87% 7,41% 7,65% 7,94% 7,60% -0,49760 40 502 7,17% 7,35% 7,52% 8,02% 7,69% 7,83% 6,81% -0,63605 41 502 7,46% 7,58% 7,33% 7,69% 7,38% 7,69% 7,68% -0,63605 42 502 6,69% 6,87% 7,05% 7,26% 7,47%								5,43%		•
33 502 8,17% 6,74% 6,83% 7,01% 7,82% 5,23% 5,44% -0,65678 34 502 8,30% 6,54% 6,80% 7,56% 35 502 7,70% 7,21% 7,38% -0,61888 37 502 6,96% 7,05% 7,21% 7,38% -0,45597 39 502 7,69% 7,87% 7,41% 7,65% 7,94% 7,60% -0,49760 40 502 7,17% 7,35% 7,52% 8,02% 7,69% 7,83% 6,81% -0,63605 41 502 7,46% 7,58% 7,83% 7,94% 7,60% -0,65866 42 502 6,69% 6,87% 7,05% 7,26% 7,47% 7,85% 7,5268 43 502 8,13% 7,06% 7,28% 7,63% 9,58% 7,20% 6,61% -0,57218 44 502 6,88% 7,06% 7,26% 7,54% 8,05%			5,23%	5,23%		5,24%			5,56%	
34 502 8,30% 6,54% 6,80% 7,56% 35 502 7,70% 7,70% 7,70% 36 502 7,89% 7,16% 37 502 6,96% 7,05% 7,21% 7,38% -0,61888 38 502 6,94% 7,04% 6,92% 6,94% 7,01% -0,45597 39 502 7,69% 7,87% 7,41% 7,65% 7,94% 7,60% -0,49760 40 502 7,17% 7,35% 7,52% 8,02% 7,69% 7,83% 6,81% -0,63605 41 502 7,46% 7,58% 7,83% 7,93% 7,61% 7,27% 7,76% -0,65866 42 502 6,69% 6,87% 7,05% 7,26% 7,47% 7,85% 7,63% -0,56625 43 502 8,13% 7,06% 7,28% 7,63% 9,58% 7,20% 6,61% -0,57218 44 502 6,88			7,36%						6,83%	
35 502 6,33% 7,70% 36 502 7,89% 7,16% 37 502 6,96% 7,05% 7,21% 7,38% -0,61888 38 502 6,94% 7,04% 6,92% 6,94% 7,01% -0,45597 39 502 7,69% 7,87% 7,41% 7,65% 7,94% 7,60% -0,49760 40 502 7,17% 7,35% 7,52% 8,02% 7,69% 7,83% 6,81% -0,63605 41 502 7,46% 7,58% 7,83% 7,93% 7,61% 7,27% 7,76% -0,65866 42 502 6,69% 6,87% 7,05% 7,26% 7,47% 7,85% 7,63% -0,56625 43 502 8,13% 7,06% 7,28% 7,63% 9,58% 7,20% 6,61% -0,57218 44 502 6,88% 7,06% 7,26% 7,54% 8,05% 6,55% 7,26% -0,11945	33	502	8,17%	6,74%	6,83%	7,01%	7,82%	5,23%	5,44%	-0,65678
36 502 7,05% 7,21% 7,38% -0,61888 37 502 6,96% 7,05% 7,21% 7,38% -0,45597 38 502 6,94% 7,04% 6,92% 6,94% 7,01% -0,45597 39 502 7,69% 7,87% 7,41% 7,65% 7,94% 7,60% -0,49760 40 502 7,17% 7,35% 7,52% 8,02% 7,69% 7,83% 6,81% -0,63605 41 502 7,46% 7,58% 7,83% 7,93% 7,61% 7,27% 7,76% -0,65866 42 502 6,69% 6,87% 7,05% 7,26% 7,47% 7,85% 7,63% -0,56625 43 502 8,13% 7,06% 7,28% 7,63% 9,58% 7,20% 6,61% -0,57218 44 502 6,88% 7,06% 7,26% 7,54% 8,05% 6,55% 7,26% -0,11945 45 502	34	502				8,30%	6,54%	6,80%	7,56%	
37 502 6,96% 7,05% 7,21% 7,38% -0,61888 38 502 6,94% 7,04% 6,92% 6,94% 7,01% -0,45597 39 502 7,69% 7,87% 7,41% 7,65% 7,94% 7,60% -0,49760 40 502 7,17% 7,35% 7,52% 8,02% 7,69% 7,83% 6,81% -0,63605 41 502 7,46% 7,58% 7,83% 7,93% 7,61% 7,27% 7,76% -0,65866 42 502 6,69% 6,87% 7,05% 7,26% 7,47% 7,85% 7,63% -0,56625 43 502 8,13% 7,06% 7,26% 7,54% 8,05% 6,55% 7,26% -0,57218 44 502 6,88% 7,06% 7,26% 7,54% 8,05% 6,55% 7,26% -0,11945 45 502 7,30% 7,49% 7,68% 7,91% 8,18% 11,66% 9,67%	35	502				6,33%			7,70%	
38 502 6,94% 7,04% 6,92% 6,94% 7,01% -0,45597 39 502 7,69% 7,87% 7,41% 7,65% 7,94% 7,60% -0,49760 40 502 7,17% 7,35% 7,52% 8,02% 7,69% 7,83% 6,81% -0,63605 41 502 7,46% 7,58% 7,83% 7,93% 7,61% 7,27% 7,76% -0,65866 42 502 6,69% 6,87% 7,05% 7,26% 7,47% 7,85% 7,63% -0,56625 43 502 8,13% 7,06% 7,28% 7,63% 9,58% 7,20% 6,61% -0,57218 44 502 6,88% 7,06% 7,26% 7,54% 8,05% 6,55% 7,26% -0,11945 45 502 7,30% 7,49% 7,68% 7,91% 8,18% 11,66% 9,67% -0,28716 46 503 4,65% 4,66% 4,67% 4,70%	36	502						7,89%	7,16%	
39 502 7,69% 7,87% 7,41% 7,65% 7,94% 7,60% -0,49760 40 502 7,17% 7,35% 7,52% 8,02% 7,69% 7,83% 6,81% -0,63605 41 502 7,46% 7,58% 7,83% 7,93% 7,61% 7,27% 7,76% -0,65866 42 502 6,69% 6,87% 7,05% 7,26% 7,47% 7,85% 7,63% -0,56625 43 502 8,13% 7,06% 7,28% 7,63% 9,58% 7,20% 6,61% -0,57218 44 502 6,88% 7,06% 7,26% 7,54% 8,05% 6,55% 7,26% -0,11945 45 502 7,30% 7,49% 7,68% 7,91% 8,18% 11,66% 9,67% -0,28716 46 503 4,65% 4,66% 4,67% 4,70% 4,72% 4,89% 5,39% -0,93660 47 503 4,58% 4,60%	37	502	6,96%	7,05%	7,21%	7,38%				
40 502 7,17% 7,35% 7,52% 8,02% 7,69% 7,83% 6,81% -0,63605 41 502 7,46% 7,58% 7,83% 7,93% 7,61% 7,27% 7,76% -0,65866 42 502 6,69% 6,87% 7,05% 7,26% 7,47% 7,85% 7,63% -0,56625 43 502 8,13% 7,06% 7,28% 7,63% 9,58% 7,20% 6,61% -0,57218 44 502 6,88% 7,06% 7,26% 7,54% 8,05% 6,55% 7,26% -0,11945 45 502 7,30% 7,49% 7,68% 7,91% 8,18% 11,66% 9,67% -0,28716 46 503 4,65% 4,66% 4,67% 4,70% 4,72% 4,89% 5,39% -0,93660 47 503 4,58% 4,60% 4,62% 4,63% 4,64% 5,06% -0,67822 48 503 7,01% 5,94%	38	502	6,94%	7,04%	6,92%	6,94%	7,01%			
41 502 7,46% 7,58% 7,83% 7,93% 7,61% 7,27% 7,76% -0,65866 42 502 6,69% 6,87% 7,05% 7,26% 7,47% 7,85% 7,63% -0,56625 43 502 8,13% 7,06% 7,28% 7,63% 9,58% 7,20% 6,61% -0,57218 44 502 6,88% 7,06% 7,26% 7,54% 8,05% 6,55% 7,26% -0,11945 45 502 7,30% 7,49% 7,68% 7,91% 8,18% 11,66% 9,67% -0,28716 46 503 4,65% 4,66% 4,67% 4,70% 4,72% 4,89% 5,39% -0,93660 47 503 4,58% 4,60% 4,62% 4,63% 4,64% 5,06% -0,67822 48 503 7,01% 5,94% 5,95% 6,16% 6,79% 4,58% 4,96% -0,79394 49 503 7,06% 7,26%	39	502	7,69%	7,87%	7,41%	7,65%	7,94%	7,60%		
42 502 6,69% 6,87% 7,05% 7,26% 7,47% 7,85% 7,63% -0,56625 43 502 8,13% 7,06% 7,28% 7,63% 9,58% 7,20% 6,61% -0,57218 44 502 6,88% 7,06% 7,26% 7,54% 8,05% 6,55% 7,26% -0,11945 45 502 7,30% 7,49% 7,68% 7,91% 8,18% 11,66% 9,67% -0,28716 46 503 4,65% 4,66% 4,67% 4,70% 4,72% 4,89% 5,39% -0,93660 47 503 4,58% 4,60% 4,62% 4,63% 4,64% 5,06% -0,67822 48 503 7,01% 5,94% 5,95% 6,16% 6,79% 4,58% 4,96% -0,79394 49 503 7,06% 7,26% 7,86% 8,57% 9,28% 5,54% 4,58% -0,53670 50 503 16,57% 16,8	40	502	7,17%	7,35%	7,52%	8,02%	7,69%	7,83%	6,81%	
43 502 8,13% 7,06% 7,28% 7,63% 9,58% 7,20% 6,61% -0,57218 44 502 6,88% 7,06% 7,26% 7,54% 8,05% 6,55% 7,26% -0,11945 45 502 7,30% 7,49% 7,68% 7,91% 8,18% 11,66% 9,67% -0,28716 46 503 4,65% 4,66% 4,67% 4,70% 4,72% 4,89% 5,39% -0,93660 47 503 4,58% 4,60% 4,62% 4,63% 4,64% 5,06% -0,67822 48 503 7,01% 5,94% 5,95% 6,16% 6,79% 4,58% 4,96% -0,79394 49 503 7,06% 7,26% 7,86% 8,57% 9,28% 5,54% 4,58% -0,53670 50 503 11,65% 6,05% 6,19% 7,12% 6,09% 51 503 8,00% 17,41% 17,99% 0,45935 <	41	502	7,46%	7,58%	7,83%	7,93%	7,61%	7,27%	7,76%	-0,65866
44 502 6,88% 7,06% 7,26% 7,54% 8,05% 6,55% 7,26% -0,11945 45 502 7,30% 7,49% 7,68% 7,91% 8,18% 11,66% 9,67% -0,28716 46 503 4,65% 4,66% 4,67% 4,70% 4,72% 4,89% 5,39% -0,93660 47 503 4,58% 4,60% 4,62% 4,63% 4,64% 5,06% -0,67822 48 503 7,01% 5,94% 5,95% 6,16% 6,79% 4,58% 4,96% -0,79394 49 503 7,06% 7,86% 8,57% 9,28% 5,54% 4,58% -0,53670 50 503 11,65% 6,05% 6,19% 7,12% 6,09% 51 503 8,00% 11,57% 8,34% 52 503 7,02% 0,45935 54 503 14,92% 15,56% 15,90% 16,39% 16,69% 1,32661 <td>42</td> <td>502</td> <td>6,69%</td> <td>6,87%</td> <td>7,05%</td> <td>7,26%</td> <td>7,47%</td> <td>7,85%</td> <td>7,63%</td> <td></td>	42	502	6,69%	6,87%	7,05%	7,26%	7,47%	7,85%	7,63%	
45 502 7,30% 7,49% 7,68% 7,91% 8,18% 11,66% 9,67% -0,28716 46 503 4,65% 4,66% 4,67% 4,70% 4,72% 4,89% 5,39% -0,93660 47 503 4,58% 4,60% 4,62% 4,63% 4,64% 5,06% -0,67822 48 503 7,01% 5,94% 5,95% 6,16% 6,79% 4,58% 4,96% -0,79394 49 503 7,06% 7,26% 7,86% 8,57% 9,28% 5,54% 4,58% -0,53670 50 503 11,65% 6,05% 6,19% 7,12% 6,09% 51 503 8,00% 11,57% 8,34% 11,57% 8,34% 52 503 7,02% 0,45935 0,45935 1,32661 1,32661 55 503 14,92% 15,56% 15,90% 16,39% 16,69% 1,05458 56 503 17,94% 18,8	43	502	8,13%	7,06%	7,28%	7,63%	9,58%	7,20%	6,61%	-0,57218
46 503 4,65% 4,66% 4,67% 4,70% 4,72% 4,89% 5,39% -0,93660 47 503 4,58% 4,60% 4,62% 4,63% 4,64% 5,06% -0,67822 48 503 7,01% 5,94% 5,95% 6,16% 6,79% 4,58% 4,96% -0,79394 49 503 7,06% 7,26% 7,86% 8,57% 9,28% 5,54% 4,58% -0,53670 50 503 11,65% 6,05% 6,19% 7,12% 6,09% 51 503 8,00% 11,57% 8,34% 52 503 7,02% 53 503 16,57% 16,85% 17,41% 17,99% 0,45935 54 503 14,92% 15,56% 15,90% 16,39% 16,69% 1,32661 55 503 19,61% 19,93% 18,51% 19,18% 19,82% 15,58% 1,05458 56 503 17,94%	44	502	6,88%	7,06%	7,26%	7,54%	8,05%	6,55%	7,26%	-0,11945
47 503 4,58% 4,60% 4,62% 4,63% 4,64% 5,06% -0,67822 48 503 7,01% 5,94% 5,95% 6,16% 6,79% 4,58% 4,96% -0,79394 49 503 7,06% 7,26% 7,86% 8,57% 9,28% 5,54% 4,58% -0,53670 50 503 11,65% 6,05% 6,19% 7,12% 6,09% 51 503 8,00% 11,57% 8,34% 11,57% 8,34% 52 503 7,02% 0,45935 0,45935 0,45935 54 503 14,92% 15,56% 15,90% 16,39% 16,69% 1,32661 55 503 19,61% 19,93% 18,51% 19,18% 19,82% 15,58% 1,05458 56 503 17,94% 18,85% 19,28% 19,35% 19,64% 17,61% 0,91513 57 503 16,97% 16,99% 17,25% 18,00%	45	502	7,30%	7,49%	7,68%	7,91%	8,18%	11,66%	9,67%	-0,28716
48 503 7,01% 5,94% 5,95% 6,16% 6,79% 4,58% 4,96% -0,79394 49 503 7,06% 7,26% 7,86% 8,57% 9,28% 5,54% 4,58% -0,53670 50 503 11,65% 6,05% 6,19% 7,12% 6,09% 51 503 8,00% 11,57% 8,34% 52 503 7,02% 53 503 16,57% 16,85% 17,41% 17,99% 0,45935 54 503 14,92% 15,56% 15,90% 16,39% 16,69% 1,32661 55 503 19,61% 19,93% 18,51% 19,18% 19,82% 15,58% 1,05458 56 503 17,94% 18,85% 19,28% 19,35% 19,64% 17,61% 0,91513 57 503 16,97% 16,99% 17,25% 18,00% 18,92% 18,48% 0,88028 58 503 15,77% 16	46	503	4,65%	4,66%	4,67%	4,70%	4,72%	4,89%	5,39%	-0,93660
49 503 7,06% 7,26% 7,86% 8,57% 9,28% 5,54% 4,58% -0,53670 50 503 11,65% 6,05% 6,19% 7,12% 6,09% 51 503 8,00% 11,57% 8,34% 52 503 7,02% 53 503 16,57% 16,85% 17,41% 17,99% 0,45935 54 503 14,92% 15,56% 15,90% 16,39% 16,69% 1,32661 55 503 19,61% 19,93% 18,51% 19,18% 19,82% 15,58% 1,05458 56 503 17,94% 18,85% 19,28% 19,35% 19,64% 17,61% 0,91513 57 503 16,97% 16,99% 17,25% 18,00% 18,92% 18,48% 0,88028 58 503 15,77% 16,38% 16,76% 17,24% 16,31% 17,11% 14,27% 0,31186	47	503	4,58%	4,60%	4,62%	4,63%	4,64%		5,06%	-0,67822
50 503 11,65% 6,05% 6,19% 7,12% 6,09% 51 503 8,00% 11,57% 8,34% 52 503 7,02% 53 503 16,57% 16,85% 17,41% 17,99% 0,45935 54 503 14,92% 15,56% 15,90% 16,39% 16,69% 1,32661 55 503 19,61% 19,93% 18,51% 19,18% 19,82% 15,58% 1,05458 56 503 17,94% 18,85% 19,28% 19,35% 19,64% 17,61% 0,91513 57 503 16,97% 16,99% 17,25% 18,00% 18,92% 18,48% 0,88028 58 503 15,77% 16,38% 16,76% 17,24% 16,31% 17,11% 14,27% 0,31186	48	503	7,01%	5,94%	5,95%	6,16%	6,79%	4,58%	4,96%	-0,79394
51 503 8,00% 11,57% 8,34% 52 503 7,02% 53 503 16,57% 16,85% 17,41% 17,99% 0,45935 54 503 14,92% 15,56% 15,90% 16,39% 16,69% 1,32661 55 503 19,61% 19,93% 18,51% 19,18% 19,82% 15,58% 1,05458 56 503 17,94% 18,85% 19,28% 19,35% 19,64% 17,61% 0,91513 57 503 16,97% 16,99% 17,25% 18,00% 18,92% 18,48% 0,88028 58 503 15,77% 16,38% 16,76% 17,24% 16,31% 17,11% 14,27% 0,31186	49	503	7,06%	7,26%	7,86%	8,57%	9,28%	5,54%	4,58%	-0,53670
52 503 7,02% 53 503 16,57% 16,85% 17,41% 17,99% 0,45935 54 503 14,92% 15,56% 15,90% 16,39% 16,69% 1,32661 55 503 19,61% 19,93% 18,51% 19,18% 19,82% 15,58% 1,05458 56 503 17,94% 18,85% 19,28% 19,35% 19,64% 17,61% 0,91513 57 503 16,97% 16,99% 17,25% 18,00% 18,92% 18,48% 0,88028 58 503 15,77% 16,38% 16,76% 17,24% 16,31% 17,11% 14,27% 0,31186	50	503			11,65%	6,05%	6,19%	7,12%	6,09%	
53 503 16,57% 16,85% 17,41% 17,99% 0,45935 54 503 14,92% 15,56% 15,90% 16,39% 16,69% 1,32661 55 503 19,61% 19,93% 18,51% 19,18% 19,82% 15,58% 1,05458 56 503 17,94% 18,85% 19,28% 19,35% 19,64% 17,61% 0,91513 57 503 16,97% 16,99% 17,25% 18,00% 18,92% 18,48% 0,88028 58 503 15,77% 16,38% 16,76% 17,24% 16,31% 17,11% 14,27% 0,31186	51	503	8,00%					11,57%	8,34%	
54 503 14,92% 15,56% 15,90% 16,39% 16,69% 1,32661 55 503 19,61% 19,93% 18,51% 19,18% 19,82% 15,58% 1,05458 56 503 17,94% 18,85% 19,28% 19,35% 19,64% 17,61% 0,91513 57 503 16,97% 16,99% 17,25% 18,00% 18,92% 18,48% 0,88028 58 503 15,77% 16,38% 16,76% 17,24% 16,31% 17,11% 14,27% 0,31186	52	503							7,02%	
55 503 19,61% 19,93% 18,51% 19,18% 19,82% 15,58% 1,05458 56 503 17,94% 18,85% 19,28% 19,35% 19,64% 17,61% 0,91513 57 503 16,97% 16,99% 17,25% 18,00% 18,92% 18,48% 0,88028 58 503 15,77% 16,38% 16,76% 17,24% 16,31% 17,11% 14,27% 0,31186	53	503	16,57%	16,85%	17,41%	17,99%				0,45935
56 503 17,94% 18,85% 19,28% 19,35% 19,64% 17,61% 0,91513 57 503 16,97% 16,99% 17,25% 18,00% 18,92% 18,48% 0,88028 58 503 15,77% 16,38% 16,76% 17,24% 16,31% 17,11% 14,27% 0,31186	54	503	14,92%	15,56%	15,90%	16,39%	16,69%			1,32661
57 503 16,97% 16,99% 17,25% 18,00% 18,92% 18,48% 0,88028 58 503 15,77% 16,38% 16,76% 17,24% 16,31% 17,11% 14,27% 0,31186	55	503	19,61%	19,93%	18,51%	19,18%	19,82%	15,58%		1,05458
57 503 16,97% 16,99% 17,25% 18,00% 18,92% 18,48% 0,88028 58 503 15,77% 16,38% 16,76% 17,24% 16,31% 17,11% 14,27% 0,31186	56	503	17,94%	18,85%	19,28%	19,35%	19,64%	17,61%		0,91513
58 503 15,77% 16,38% 16,76% 17,24% 16,31% 17,11% 14,27% 0,31186	57	503								0,88028
	58	503							14,27%	0,31186
00 000 .0,0070 .1,0070 .1,0070 .1,0070 .1,0170 .0,0270	59	503	10,83%	11,26%	11,65%	11,89%	11,64%	13,22%	16,52%	-0,48349
60 503 8,24% 8,79% 9,43% 10,12% 10,83% 11,87% 16,79% -0,31198	60							i e		-0,31198

	61	503	9,38%	8,82%	9,41%	10,05%	10,67%	10,01%	13,00%	-0,49554
Ī	62	503	7,80%	8,27%	8,83%	9,39%	10,00%	7,46%	13,36%	2,02249
Ī	63	503	15,13%	15,73%	16,30%	17,02%	17,53%	21,16%	10,23%	0,90939

APÊNDICE F

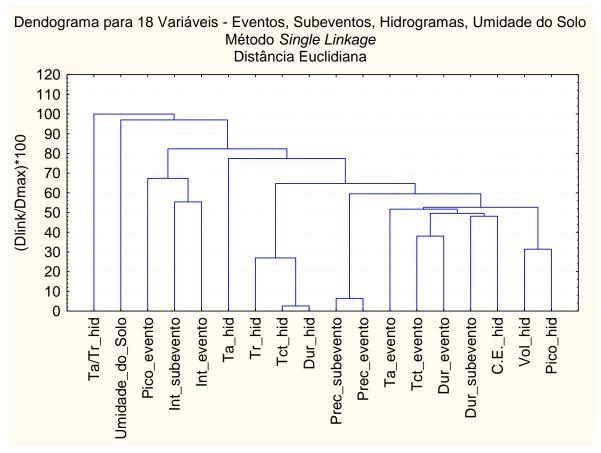


Figura 69 - Dendograma resultante da análise de agrupamento conjunta das variáveis de precipitação, umidade do solo e escoamento pelo método de *Single Linkage* (Pico – Pico máximo; Int – Intensidade média; Dur – Duração total; Ta - Tempo de ascensão ao pico; Tr – Tempo de Recessão; Tct – Tempo ao centroide; C.E. – Coeficiente de Escoamento; Vol – Volume de escoamento; Evento – Evento Chuvoso; Subevento – Subevento Chuvoso; Hid – Hidrograma de Escoamento; Umidade – Umidade do Solo à 0 horas)

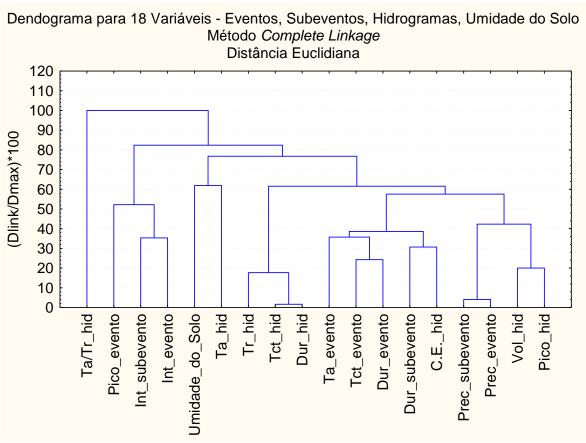


Figura 70 - Dendograma resultante da análise de agrupamento conjunta das variáveis de precipitação, umidade do solo e escoamento pelo método de *Complete Linkage* (Pico – Pico máximo; Int – Intensidade média; Dur – Duração total; Ta - Tempo de ascensão ao pico; Tr – Tempo de Recessão; Tct – Tempo ao centroide; C.E. – Coeficiente de Escoamento; Vol – Volume de escoamento; Evento – Evento Chuvoso; Subevento – Subevento Chuvoso; Hid – Hidrograma de Escoamento; Umidade – Umidade do Solo à 0 horas)

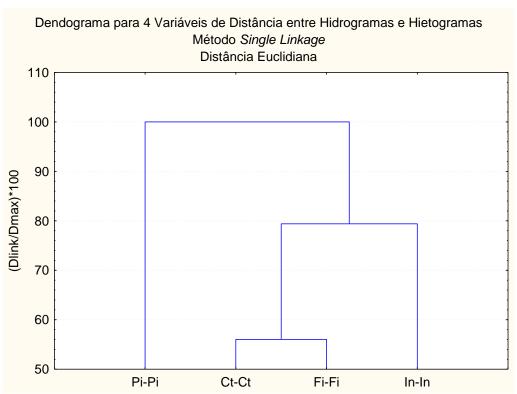


Figura 71 - Dendograma resultante da análise de agrupamento das diferenças de tempo entre hietograma e hidrograma pelo *Single Linkage* (In-In – tempo de início do hietograma ao início do hidrograma; Fi-Fi – tempo fim a fim; Ct-Ct – tempo centroide a centroide; Pi– tempo pico a pico)

Figura 72 - Dendograma resultante da análise de agrupamento das diferenças de tempo entre hietograma e hidrograma pelo *Complete Linkage* (In-In – tempo de início do hietograma ao início do hidrograma; Fi-Fi – tempo fim a fim; Ct-Ct – tempo centroide a centroide; Pi-Pi – tempo pico a pico)

Tabela 25 - Valores reais de distância entre hidrogramas e hietogramas

	· · · · · · · · · · · · · · · · · · ·				
ID	Out to the		entre Hidrogi		
Hidrograma	Sub-bacia	Início a Início	Final a Final	Pico a Pico	Centróide a Centróide
1	501	12	2705	441	1427
2	501	247	2000	49	2182
3	501		3457	707	
		-1036			1300
3	501	65	5027	1773	2561
4	501	1314	1357	872	1404
5	501	415	3009	397	1711
6	501	777	2365	859	1395
7	501	647	779	-1181	1422
8	501	-1047	3766	2416	1220
9	501	1279	2913	543	1631
10	501	-1432	1167	-1329	-272
10	501	741	3833	570	2089
11	501	-647	911	2128	233
12	501	328	1336	-2014	1105
13	501	28	-350	1465	1119
14	501	166	1500	355	880
15	501	186	808	846	693
16	501	156	1766	438	994
17	501	359	2623	730	1345
18	501	68	1953	885	1133
19	501	1617	5204	1690	3185
20	501	268	2147	1033	1182
21	501	245	3673	-864	2377
22	501	341	3238	1134	1772
23	501	1109	2626	70	1909
24	501	1321	6323	1281	3192
25	501	273	2400	620	1623
26	502	555	6288	44	3548
26	502	-2875	3583	-3357	295
26	502	-4916	1903	-5241	-1469
27	502	-48	1085	156	466
28	502	-68	-85	49	989
29	502	-31	2242	722	1225
29	502	1070	3812	1788	2486
30	502	1314	712	47	1081
31	502	265	1989	157	1111
32	502	597	2380	199	1268
33	502	632	2099	-1271	2082
34	502	-1357	957	-1644	-407
34	502	816	3623	255	1954
35	502	-152	1601	1948	826

36	502	493	826	-3469	941
37	502	28	625	145	1591
38	502	-59	2160	130	1090
39	502	83	1038	150	683
40	502	1707	2009	1225	1686
41	502	170	2308	-1074	1657
42	502	-49	1498	729	752
43	502	1304	931	55	1174
44	502	1606	3173	1221	1752
45	502	198	1140	95	993
46	503	1164	1597	62	1448
47	503	385	2379	262	1381
48	503	557	2099	-1196	1812
49	503	1714	6633	513	3746
50	503	-1267	2277	-1569	372
50	503	906	4943	330	2734
51	503	-1007	266	2068	-193
52	503	328	3751	-3394	2321
53	503	-32	1165	865	1876
54	503	-134	1620	130	789
55	503	-2049	2021	363	12
55	503	171	3628	2586	2088
56	503	344	3508	385	1796
57	503	23	1833	240	1088
58	503	1767	3599	1315	2503
59	503	215	2518	-834	1785
60	503	311	3178	1089	1795
61	503	1139	2581	70	1924
62	503	1096	13478	1236	6657
63	503	168	2715	695	1750

Tabela 26 - Sumário da regressão linear múltipla obtida para a duração do hidrograma

Sumário da Regressão para a Variável Dependente: Duração do Hidrograma R= 0,56, R²= 0,31, R² ajustado= 0,28

F(3,67)=10,18, α=0,05, p<0,00, Erro Padrão da Estimativa: 0,82

	Beta	Erro Padrão	В	Erro Padrão	t(67)	p-level
N=71		de Beta		de B		
Intercepto			0,04	0,10	0,36	0,72
Componente 1	-0,49	0,10	-0,23	0,05	-4,88	0,00
Componente 2	-0,22	0,10	-0,12	0,06	-2,14	0,04
Componente 3	0,15	0,10	0,15	0,10	1,46	0,15

134



Figura 73- Gráfico de valores previstos pela regressão pelos valores observados e gráfico de probabilidade normal dos dados previstos para a duração do hidrograma

Tabela 27 - Sumário da regressão linear múltipla obtida para a razão tempo de ascenção pelo tempo de recessão (Ta/Tr)

Sumário da Regressão para a Variável Dependente: Ta/Tr R= 0,28, R²= 0,08, R² ajustado= 0,03

|F(3,67)=1,84, α=0,05, p<0,15, Erro Padrão da Estimativa: 1,28

	Beta	Erro Padrão	В	Erro Padrão	t(67)	p-level
N=71		de Beta		de B		
Intercepto			0,14	0,15	0,90	0,37
Componente 1	0,05	0,12	0,03	0,07	0,41	0,68
Componente 2	0,05	0,12	0,04	0,09	0,45	0,65
Componente 3	-0,27	0,12	-0,36	0,16	-2,27	0,03

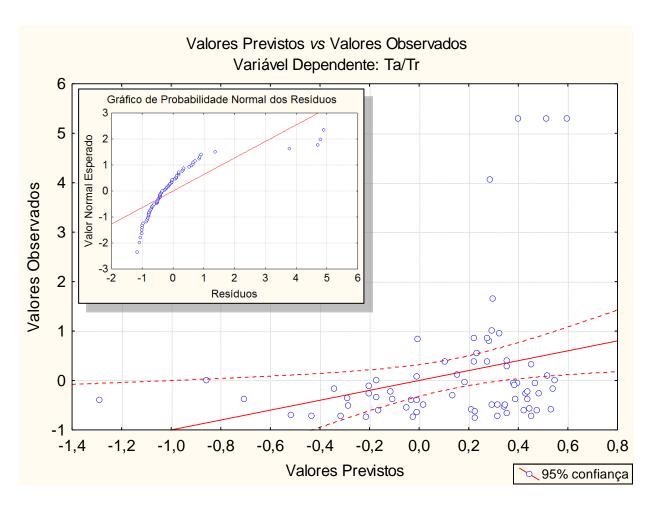


Figura 74 - Gráfico de valores previstos pela regressão pelos valores observados e gráfico de probabilidade normal dos dados previstos para a razão tempo de ascenção pelo tempo de recessão (Ta/Tr)

Tabela 28 - Coordenadas (ou *score*) das componentes principais obtidos para cada hidrograma

ID hidrograma	Sub-bacia	Componente 1	Componente 2	Componente 3
1	501	0,05353	7,28330	-0,28521
2	501	-0,93218	1,32713	-0,36045
3	501	1,70975	2,06072	-0,41731
3	501	1,14597	1,31256	-0,69620
4	501	-1,62864	0,57070	-0,63945
5	501	1,07932	0,61520	-0,97257
6	501	0,95687	-0,56018	-0,83342
7	501	-2,89910	1,98895	-0,14205
8	501	0,83090	-0,19244	-0,44202
9	501	-1,09822	-0,35784	-0,62193
10	501	0,82498	-0,55631	-0,80916
10	501	1,17877	-1,41124	-1,02348
11	501	-0,83039	-2,14967	-1,18023
12	501	-5,21917	-2,51811	-0,30474

13	501	-0,05465	0,28073	1,28304
14	501	2,20997	0,55037	2,58216
15	501	2,24564	-0,33967	1,96330
16	501	2,79410	-0,91367	1,45824
17	501	2,31482	-0,96537	1,25849
18	501	1,24267	-0,81929	1,59361
19	501	-0,29087	-1,66659	0,64824
20	501	2,34412	-1,22686	-0,14534
21	501	0,68225	-0,28554	-0,57077
22	501	1,75819	-0,94903	-0,65203
23	501	-5,13861	0,75348	0,12864
24	501	-1,81128	-0,31953	3,76997
25	501	1,01411	-0,38664	0,74164
26	502	0,39832	2,00115	-0,46598
26	502	1,37740	-0,47457	-0,97783
26	502	1,96550	-0,96419	-1,21715
27	502	0,08924	7,23847	-0,00286
28	502	-0,87650	1,25724	0,07978
29	502	1,75477	2,00421	-0,06134
29	502	1,19100	1,25605	-0,34024
30	502	-1,60866	0,54563	-0,48152
31	502	1,10654	0,54303	-0,75735
32	502	0,97427	-0,58202	-0,69586
33	502	-2,87098	1,95366	0,08026
34	502	0,89883	-0,64900	-0,22532
34	502	1,25261	-1,50394	-0,43964
35	502	-0,75215	-2,24788	-0,56166
36	502	-5,15156	-2,60297	0,22980
37	502	-0,26782	0,54831	-0,40237
38	502	1,83159	1,02533	-0,40943
39	502	0,96835	-0,47494	-0,57529
40	502	-0,47393	-1,43680	-0,79912
41	502	0,64775	-0,24224	-0,84349
42	502	1,70725	-0,88510	-1,05472
43	502	-5,15570	0,77493	-0,00648
44	502	-2,24230	0,22151	0,36219
45	502	0,87625	-0,21360	-0,34832
46	503	-1,62126	0,56144	-0,58111
47	503	1,08947	0,60245	-0,89229
48	503	-2,88901	1,97628	-0,06223
49	503	-1,06998	-0,39328	-0,39872
50	503	0,89883	-0,64900	-0,22532
50	503	1,25261	-1,50394	-0,43964
51	503	-0,75215	-2,24788	-0,56166
52	503	-5,15156	-2,60297	0,22980
02	000	5,10100	2,00201	5,22000

53	503	-0,12614	0,37047	0,71780
54	503	2,06583	0,73131	1,44249
55	503	2,14043	-0,20761	1,13149
55	503	2,68320	-0,77446	0,58139
56	503	2,21836	-0,84429	0,49583
57	503	1,14940	-0,70221	0,85619
58	503	-0,34938	-1,59315	0,18566
59	503	0,67077	-0,27113	-0,66151
60	503	1,74067	-0,92704	-0,79056
61	503	-5,14563	0,76229	0,07315
62	503	-1,96085	-0,13178	2,58744
63	503	1,03348	-0,41096	0,89477