

Universidade Federal da Paraíba Centro de Ciências Agrárias Programa de Pós-graduação em Agronomia

FLORÍSTICA, FITOSSOCIOLOGIA E CITOGENÉTICA DE ANGIOSPERMAS OCORRENTES EM INSELBERGUES

SILVIA ROMEU PITREZ

AREIA - PB 2006

SILVIA ROMEU PITREZ

FLORÍSTICA, FITOSSOCIOLOGIA E CITOGENÉTICA DE ANGIOSPERMAS OCORRENTES EM INSELBERGUES

Tese apresentada ao Programa de Pósgraduação em Agronomia, como parte dos requisitos para obtenção do título de *Doutor em Agronomia*. Área de concentração: Ecologia Vegetal.

Orientadores:

Dr. Leonardo Pessoa Felix

Dr. Leonaldo Alves de Andrade

FLORÍSTICA, FITOSSOCIOLOGIA E CITOGENÉTICA DE ANGIOSPERMAS OCORRENTES EM INSELBERGUES

Silvia Romeu Pitrez

Tese apresentada à banca examinadora

Orientadores:	
	Prof. Dr. Leonardo Pessoa Felix
	Prof. Dr. Leonaldo Alves de Andrade
Examinadores	s:
	Prof. Dr. Jacob Silva Souto
	Pof. Dr. Luiz Antonio Cestaro
	Prof. Dr. Reginaldo de Carvalho

Dedico este trabalho aos meus amigos em retribuição ao amor, apoio e estímulo que sempre me dispensaram e por terem sempre acreditado em mim; em especial a Marcelo e Márcia Nogueira, figuras insubstituíveis nesta caminhada e a minha filha Taiana, meu orgulho e alegria.

AGRADECIMENTOS

À coordenação, professores e funcionários que fazem parte do Programa de Pósgraduação em Agronomia da Universidade Federal da Paraíba;

A Capes pelo apoio financeiro para o desenvolvimento do estudo;

Aos Professores Leonaldo Alves de Andrade e Leonardo Pessoa Felix pela orientação e contribuição na minha formação profissional e acima de tudo pela amizade e compreensão;

Aos Professores Genildo Bandeira Bruno e Antonio de Oliveira Galvão pela ajuda constante durante o tempo em que estavam à frente do Programa de Pós-graduação em Agronomia e Departamento de Fitotecnia respectivamente;

À coordenadora do Curso, professora Riselane Alcantara Bruno, pela compreensão e auxílio nesta última etapa;

A amiga Cícera Eliane Araújo, secretária do Programa pela grande ajuda e companheirismo;

Aos amigos Marinês Ferreira, Saulo Alves e Jacob Soares Dias, pela grande ajuda no laboratório;

A amiga Márcia Marques, bibliotecária do CCB, por toda a ajuda e amizade;

A Ângela Miranda e ao Professor Genaro Viana pelas identificações, amizade e incentivo;

Aos grandes amigos Gentil Trajano (Tita) presença constante durante todo o trabalho e Hélio Martins pelo apoio em todos os momentos;

À amiga de todas as horas Flávia Cartaxo e filhos, que foram minha família aqui;

Aos amigos Hellosman do Monte e Genaro Viana Jr., pelo apoio incondicional;

Aos amigos do Laboratório de Ecologia Vegetal por todo tipo de ajuda que me foi dada, em especial à Gessycar pela amizade e ajuda em todos os momentos e a Juliano e Francieldo pela ajuda com o Mata nativa;

A Dário Bezerra pelo companheirismo e ajuda no trabalho de campo;

Aos amigos Andréa Almeida, Winston Felix pelo companheirismo e principalmente pela grande ajuda no trabalho de campo e neste final da tese;

Às amigas Marlene Mata, Cynthia Neves e Noelma Brito, por terem sempre uma palavra de apoio em todos os momentos;

A Daniella Barros e Helber Nunes, Augusto Santana, Robson, amigos de todas as horas;

A Barbosa, Cláudia, Joésio, Kátia, Luciana, Marinice, Mauro e Ovídio pela amizade e apoio mútuo e aos demais colegas de curso, pela troca de informações e companheirismo;

A minha filhota Taiana, minha incentivadora maior, por estar sempre presente com seu amor e companheirismo, mesmo que distante;

Às minhas mães Diva e Sarah e a minha irmã Eunice que torcem constantemente pelo meu sucesso, de quem sempre tive total apoio e incentivo;

Ao Marcelo companheiro de todo este percurso;

A Márcia, Marcelo, João, Lú e demais familiares, por mais uma vez segurarem comigo todas as barras, sendo meu sustentáculo aqui;

Aos amigos Alcione Santos, Luciano Henriques, Francisco Galvani, Mirella Valério, Jussara Pereira e Marli Charão, meus grandes incentivadores, que mesmo tão distantes foram presenças insubstituíveis, sem as quais seria bem mais penosa esta caminhada;

A cidade de Areia que tão bem me recebeu e onde fiz tantos amigos;

A todos aqueles que de alguma forma colaboraram na execução deste trabalho, obrigada.

SUMÁRIO

Lista de Figuras	i
Lista de Tabelas	iii
RESUMO	iv
1. Introdução	1
2. Revisão de Literatura	3
2.1. Inselbergues	3
2.2. Florística e Fitossociologia	4
2.3. Citogenética	7
3. Referências Bibliográficas	9
Capitulo 1.	
Florística e Fitossociologia de Quatro Inselbergues no	Estado da Paraíba16
RESUMO	17
ABSTRACT	
Introdução	
Material e Métodos	20
Resultados e Discussão	26
Referências Bibliográficas	43
Capítulo 2.	
Números cromossômicos de Angiospermas Coletadas	s em Inselbergues no Nordeste
Brasileiro	49
RESUMO	50
ABSTRACT	51
Introdução	52
Material e Métodos	53
Resultados e Discussão	54
Referências Bibliográficas	65

Capítulo 3.

Cariologia de Algumas Espécies de Convolvulaceae Juss. Ocorre	ntes no Nordeste
Brasileiro com Ênfase em Espécies de Inselbergues	72
RESUMO	72
ABSTRACT	73
Introdução	75
Material e Métodos	76
Resultados e Discussão	80
Referências Bibliográficas	86
4. Anexo	92

LISTA DE FIGURAS

Revisão de Literatura
Figura 1 - Detalhe da retirada de paralelepípedos de um inselbergue no Município d Esperança – PB (foto de Leonardo Pessoa Felix)
Capítulo 1
Figura 1. Mapa da localização das áreas de estudo, Estado da Paraíba, Brasil
Figura 2. A. Diagrama de balanço hídrico do Município de Serraria/PB, no período de 1991-1998; B. Diagrama de balanço hídrico do Município de Esperança/PB no período de 1991-1998.
Figura 3. Distribuição dos táxons por área estudada
Figura 4. Dendrograma de similaridade florística, entre os quatro inselbergues, derivado d análise de agrupamento hierárquico pelo método UPGMA - Jaccard
Figura 5. Figura 5. Dendrograma de similaridade florística, entre 15 inselbergues, derivado da análise de agrupamento hierárquico pelo método UPGMA - Jaccard. Sendo: Esp = Esperança; Fag= Fagundes; Ser = Serraria; Poc = Pocinhos; TB = Fazenda Timbaúba Esperança - Paraíba (Porto 2003); QU = Quixadá - Ceará (Oliveira 2002); ML = Milagres Bahia (França <i>et al.</i> 1997); VI = Viçosa - MG (Caiafa 2002); PA = Pão de Açúcar - Rio de Janeiro (Safford & Martinelli 2000); RJ = Rio de Janeiro (Meirelles <i>et al.</i> , 1999); MAL = Malawi (Porembski 1996) NK = Nama Karoo (Porembski <i>et al.</i> 1996); CM = Costa de Marfim (Porembski 2000); GF = Guiana Francesa (Sarthou & Villiers 1998); BL = Bolívia (Ibisch <i>et al.</i> 1995)
Figura 6. Dendrograma de similaridade florística, entre 15 inselbergues, derivado danálise de agrupamento hierárquico pelo método UPGMA - Jaccard. Sendo: Esperança; Fag= Fagundes; Ser = Serraria; Poc = Pocinhos; TB = Fazenda Timbaúba Esperança - Paraíba (Porto 2003); QU = Quixadá - Ceará (Oliveira 2002); ML = Milagres Bahia (França <i>et al.</i> 1997); VI = Viçosa - MG (Caiafa 2002); PA = Pão de Açúcar - Rio da Janeiro (Safford & Martinelli 2000); RJ = Rio de Janeiro (Meirelles <i>et al.</i> , 1999); MAL = Malawi (Porembski 1996) NK = Nama Karoo (Porembski <i>et al.</i> 1996); CM = Costa da Marfim (Porembski 2000); GF = Guiana Francesa (Sarthou & Villiers 1998); BL = Bolívi (Ibisch <i>et al.</i> 1995).
Figura 7. Espectro das formas de vida encontradas nos inselbergues de Esperança Fagundes, Pocinhos e Serraria

Capítulo 2.

Figura 1. Complemento cromossômico e núcleo interfásico em espécies de inselbergue do Estado da Paraíba. A. *Alstroemeria* sp. (2n=16); B. *Hippeastrum psittacinum* (2n=22); C. *Mandevilla tenuifolia* (2n=20); D. *Rauwolfia ligustrina* (2n=22); E. *Aristolochia birostris*

$(2n=14)$; F. <i>Eupatorium ballotaefolium</i> $(2n=20)$. Setas indicam satélites. Barras correspondem a $10~\mu m$. Barra em E representa a escala para as figuras B - E
Figura 2. Complemento cromossômico em espécies de inselbergue do Estado da Paraíba. A. <i>Pilosocereus pachicladus</i> (2n=44); B. <i>Melocactus bahiensis</i> (2n=44); C. <i>M. ernesti</i> (2n=44); D. <i>Cereus jamacaru</i> (2n=22); E. <i>Clusia nemorosa</i> (2n=60); F. <i>Clusia</i> sp. (2n=60). Setas indicam satélites. Barra corresponde a 10 μm
Figura 3. Complemento cromossômico e núcleo interfásico em espécies de Convolvulaceae de inselbergues do Estado da Paraíba. A. <i>Ipomoea longeramosa</i> (2n=30); B <i>I. marcellia</i> (2n=30); C. <i>I. pikeli</i> (2n=30); D. <i>Merremia aegyptia</i> (2n=30); E. <i>Evovlulus filipis</i> (2n=26); F. <i>E. glomeratus</i> (2n=26); G. <i>Jacquemontia densiflora</i> (2n=18). Setas indicam satélites. Barras correspondem a 10 μm. Barra em G representa a escala para as figuras D-G.
Figura 4. Complemento cromossômico e núcleo interfásico de: A. <i>Tradescantia ambigua</i> (2n=24); B. <i>Euphorbia comosa</i> (2n=40); C. <i>Phyllanthus clausseni</i> (2n=26); D. <i>Stillingia trapezoidea</i> (2n=36); E. <i>Paliavana tenuiflora</i> (2n=28); F. <i>Sinningia nordestina</i> (2n=26); G. <i>Cissus sulcicaulis</i> (2n=34). Setas indicam satélites. Barras correspondem a 10 μm. Barra em G representa a escala para as figuras B-G
Capítulo 3
Figura 1. Metáfase e/ou prometáfase mitótica de espécies de <i>Ipomoea</i> . A, <i>I. asarifolia</i> (2n = 30). B, <i>I. parasítica</i> (2n = 30). C, <i>Ipomoea batatas</i> (2n = 90). D, <i>I alba</i> (2n = 30). E, <i>I. fistulosa</i> (2n = 30). Setas indicam satélites. Barra corresponde a 10 μm
Figura 2. A, <i>I. longeramosa</i> $(2n = 30)$. B, <i>I. marcellia</i> $(2n = 30)$. C, <i>I. pikeli</i> $(2n = 30)$. D, <i>Ipomoea</i> sp. 1 $(2n = 30)$. E, <i>Ipomoea</i> sp. 2 $(2n = 30)$. F, <i>Ipomoea</i> sp. 3 Setas indicam satélites. Barra corresponde a $10 \mu m$.
Figura 3. Metáfase mitótica de espécies de <i>Merremia, Operculina, Evolvulus</i> e <i>Jacquemontia</i> . A, <i>Merremia aegiptia</i> (2n = 30). B, <i>Operculina</i> cf. <i>alata</i> (2n = 30). C, <i>E. filipis</i> (2n = 26). D, <i>E. glomeratus</i> (2n = 26). E, <i>Evolvulus</i> 10799 (2n = 52). F, <i>J densiflora</i> (2n = 18). G, <i>J. nodiflora</i> (2n = 18). Setas indicam satélites. Barra corresponde a 10 μm.

LISTA DE TABELAS

Capítulo 1

(FV) encontradas nos inselbergues de Esperança (E), Pocinhos (P), Fagundes (F) e Serraria (S).
Tabela 2. Comparação das formas de vida de Raunkier entre inselbergues do Brasil e de outras regiões do mundo. Esp = Esperança; Fag = Fagundes; Poc = Pocinhos; Ser = Serraria; TB = Timbaúba, Esperança -PB (Porto, 2003); PA = Pão de Açúcar - RJ (Safford & Martinelli, 2000); V = Venezuela (Gröger, 2000); Z = Zimbabue (Seine <i>et al.</i> , 1998); CM = Costa do Marfim (Porembski <i>et al.</i> , 1996)
Tabela 3. Análise da diversidade de espécies nos inselbergues da Paraíba. NI = Número de Indivíduos; NE = Número de Espécies; H' = Índice de Diversidade de Shannon-Weaver; C = Índice de Equabilidade de Pielou; J = Índice de Simpson
Tabela 4. Parâmetros fitossociológicos das espécies do inselbergue da Fazenda Santa Helena, Serraria, PB, Brasil. NI = Número de Indivíduos; FA = Frequência Absoluta; FR = Frequência Relativa; DR = Densidade Relativa; DoAt = Dominância Absoluta do Táxon; DoRt = Dominância Relativa do Táxon e VI = Valor de Importância
Tabela 5. Parâmetros fitossociológicos das espécies do inselbergue da Pedra de Santo Antônio, Fagundes, PB, Brasil. NI = Número de Indivíduos; FA = Freqüência Absoluta; FR = Frequência Relativa; DR = Densidade Relativa; DoAt = Dominância Absoluta do Táxon; DoRt = Dominância Relativa do Táxon e VI = Valor de Importância
Tabela 6. Parâmetros fitossociológicos das espécies do inselbergue de Lagoa de Pedra, Esperança, PB, Brasil. NI = Número de Indivíduos; FA = Freqüência Absoluta; FR = Frequência Relativa; DR = Densidade Relativa; DoAt = Dominância Absoluta do Táxon; DoRt = Dominância Relativa do Táxon e VI = Valor de Importância
Tabela 7. Parâmetros fitossociológicos das espécies do inselbergue de Parque das Pedras, Pocinhos, PB, Brasil. NI = Número de Indivíduos; FA = Frequência Absoluta; FR = Frequência Relativa; DR = Densidade Relativa; DoAt = Dominância Absoluta do Táxon; DoRt = Dominância Relativa do Táxon e VI = Valor de Importância
Capítulo 2.
Tabela 1. Lista dos táxons analisados, com as respectivas referências de coleta, locais de coleta, números cromossômicos observados e fontes
Capítulo 3
Tabela 1. Lista dos táxons analisados, com as respectivas referências de herbário, locais de coleta, números cromossômicos observados e contagens prévias. (*) indivíduos provenientes de inselbergues

RESUMO

Com o intuito de caracterizar e comparar a estrutura, a similaridade florística e a tendência dos padrões de evolução cariotípica em quatro inselbergues das microrregiões do Brejo Paraibano e Agreste da Borborema, Estado da Paraíba, foram realizadas análises florística e fitossociológica, bem como do número e morfologia cromossômica de espécies coletadas sobre esses afloramentos. Foram incluídas na amostragem todas as angiospermas que se individualizaram ao nível do solo, excluindo as trepadeiras. As famílias de maior riqueza específica foram Leguminosae (23), Convolvulaceae e Euphorbiaceae (13), Poaceae e Rubiaceae (10). A maior similaridade florística entre os inselbergues foi entre Esperança e Fagundes (20%), sendo Pocinhos menos similar floristicamente. O maior VI foi registrado para Melocactus ernestii (36,7%) em Esperança. Fagundes, o afloramento mais antropizado, apresentou a maior diversidade florística (H' = 2,81) que parece estar sujeita não só à ação antrópica, mas também às influências climáticas, tamanho do inselbergue, inclinação e quantidade de microhabitats em todos os afloramentos. Foi observado um aumento na diversidade específica do brejo para o agreste, confirmando dados obtidos em outros estudos desenvolvidos no Nordeste brasileiro. Para testar a hipótese de que espécies com populações de ambientes rupícolas teriam um nível de ploidia mais elevado do que populações atuais ou ancestrais terrestres ou epifiticas, foi analisado o número cromossômico de 25 espécies pertencentes a 20 gêneros de 11 famílias de angiospermas coletadas sobre inselbergues, além de nove espécies da família Convolvulaceae coletadas em ambientes não rupícolas. Dessas espécies, 22 tiveram seus números cromossômicos reportados pela primeira vez e para Mandevilla, Melocactus e Paliavana, as contagens são inéditas também para os gêneros. As contagens para Evolvulus sp. e Pilosocereus pachicladus, constituem os primeiros registros de poliploidia para os gêneros. Em conjunto, os dados obtidos no presente trabalho não suportam a hipótese de que espécies de inselbergues teriam um nível de ploidia diferenciado em relação a populações da mesma espécie, porém ocupando habitats terrestres. Todavia, em espécies com ancestrais epifíticos, observou-se um nível de ploidia mais elevado, especialmente nas famílias Bromeliaceae e Orchidaceae.

1. INTRODUÇÃO

Inselbergues são afloramentos rochosos do período Pré-cambriano, considerados como formas naturais de ilhas terrestres. Estes ambientes destacam-se pelo fato de estarem ecologicamente isolados da vegetação do entorno e por apresentar espécies endêmicas, além de táxons em processo de especiação (Porembski, 2002) como consequência do isolamento geográfico (Grant, 1989).

Muitos desses ecossistemas constituem paisagens de destacada beleza cênica, sendo amplamente utilizados como locais de recreação e religiosidade, a exemplo do Pão de Açúcar, no Rio de Janeiro (Safford & Martinelli, 2000), o Monte do Galo, em Carnaúba dos Dantas no Rio Grande do Norte, ou a Pedra de Santo Antônio em Fagundes na Paraíba. Apesar disso, apenas recentemente a importância dos inselbergues para pesquisas de biodiversidade tem sido reconhecida, o que pode ser comprovado pelo aumento no número de artigos relativos a esse tema, observado nos últimos anos (revisado por Porembski & Barthlott, 2000; Burke, 2003_a). Esses ecossistemas formam excelentes modelos para pesquisas de biodiversidade, especialmente pelo fato de serem ecologicamente bem demarcados (Porembski, 2002).

Para avaliar a diversidade florística, o nível de isolamento reprodutivo e os processos de evolução cariotípica, atuantes nesse tipo de ambiente e em outras formações vegetais, são utilizados estudos florísticos, fitossociológicos e citogenéticos entre outros (ver, respectivamente, França *et al.*, 1997; Andrade *et al.*, 2002; Felix & Guerra, 2000). Como são escassas as informações sobre a biologia das espécies de inselbergue no Brasil, torna-se praticamente impossível a elaboração de um diagnóstico preciso do estado de conservação desses ecossistemas. Isto impossibilita a adoção de medidas preservacionistas para esses ambientes, por inviabilizar a delimitação de áreas e seu manejo sustentável. Vale ressaltar que muitos inselbergues constituem ambientes ameaçados, tanto pela retirada de matéria-prima para confecção de brita e paralelepípedos como pela coleta de plantas ornamentais e queimadas para obtenção de caça.

A flora de inselbergues é originada a partir de ancestrais provenientes de ambientes terrícolas ou epifíticos mais estáveis (Porembski *et al.*, 2000). Espécies de orquídeas tipicamente epifíticas, porém vegetando em habitats rupestres, apresentam nível de ploidia mais elevado do que espécies relacionadas, porém de habitat epifítico (Blumenschein, 1960; Felix & Guerra, 2000; Felix, 2001). Neste sentido, seria razoável supor que em

outras famílias adaptadas aos inselbergues possa também ser encontrado um nível de ploidia diferenciado.

O presente trabalho consiste de um estudo florístico, fitossociológico e citogenético de quatro inselbergues de duas microrregiões da Paraíba, de forma a avaliar a estrutura da vegetação desses ambientes e identificar o número e a morfologia cromossômica nos grupos com maior diversidade florística. Além de fornecer uma idéia da variação da estrutura vegetacional de inselbergues submetidos a diferentes pressões ambientais, objetivou-se ainda identificar os processos envolvidos na evolução cromossômica numérica de plantas de inselbergues. Em conjunto, os dados obtidos no presente estudo podem vir a suprir carências no conhecimento sobre a estrutura florística e evolução de plantas de inselbergues, tornando possível a utilização sustentável desses ambientes. Vale salientar que as áreas estudadas são representativas de diferentes formações fisionômicas do Nordeste e por isso os dados resultantes da pesquisa poderão dar suporte a políticas de preservação a serem adotadas para esses ecossistemas em diferentes biomas da Região.

2. REVISÃO DE LITERATURA

2.1 Inselbergues

Inselbergues são elementos da paisagem, formados principalmente por afloramentos de rochas graníticas e gnáissicas, que se destacam abruptamente em meio a paisagens predominantemente planas. Estão distribuídos no mundo todo, mas nas regiões tropicais estão suas ocorrências mais notáveis (Bigarella et al., 1994; Sarthou *et al.*, 2003; Krieger et al., 2003). No Brasil são amplamente distribuídos no escudo cristalino, e ocorrem tanto nas regiões tropicais quanto subtropicais (Porembski *et al.*, 1998).

O termo inselbergue foi criado por Bornhardt em 1900 (do alemão inse = ilha e berg = montanha) e designa rochas precambrianas com uma cobertura vegetal claramente delimitada em termos ecológicos (Porembski & Barthlott, 2000; Krieger et al., 2003; Oumorou & Lejoly, 2003), caracterizando-os como sistemas independentes. Esses afloramentos são também conhecidos como *Bornhardt* e *monadnocks*, porém estes são termos restritos à forma da rocha. Variam tanto no formato quanto no tamanho e isolamento nas paisagens, embora não haja influência morfogenética, pois a fisionomia dos afloramentos depende da intensidade das intempéries a que foi submetido ao longo dos anos. Geologicamente o termo designa apenas as formações montanhosas que se destacam abruptamente da paisagem, geralmente em forma de domos, originando verdadeiras ilhas rochosas (Bremer & Sander, 2000). Todavia, em termos ecológicos e florísticos, o termo refere-se a todas as formações rochosas, que comportam uma vegetação característica diferenciada da vegetação do entorno, incluindo afloramentos fragmentados (Porembski & Barthlott, 2000; Burke, 2003_a). Atualmente, a palavra designa formações rochosas isoladas em paisagens naturais, independente de sua origem geológica (Burke, 2002_a).

Os inselbergues são frequentes em todo território brasileiro, sendo especialmente comuns na caatinga, região Nordeste. Essa ampla área de ocorrência torna os inselbergues potencialmente importantes para estudar a relação entre diversidade local e regional, questões que podem afetar a biologia da conservação (Caley & Schulter, 1997).

Estudos mais aprofundados nesse tipo de ecossistema têm sido desenvolvidos em muitos países da África como Malawi (Porembski, 1996, Seine & Becker, 2000), Tanzânia, Quênia e Somália (Seine e Becker, 2000), Zimbabwe (Seine et al., 1998), Namíbia (Burke, 2002_a, _b, 2003_b, _c), Gabão, Guiné Equatorial (Parmantier, 2003), Camarões, Nigéria, Benine (Porembski, 2000) e Costa do Marfim (Krieger et al., 2000,

2003; Porembski et al., 1996), além de ecossistemas perfeitamente isolados como nas ilhas Seychelles (Biedinger & Fleischmann, 2000). Foram desenvolvidos também, estudos em inselbergues do leste da Austrália (Hunter, 2003) e na América do Sul, na Venezuela (Gröger & Barthlott, 1996; Gröger, 2000) Guiana Francesa (Sarthou & Villiers, 1998; Sarthou et al., 2003) e na Bolívia (Ibisch et al., 1995).

Inselbergues são ecossistemas fragmentados em microhabitats expostos na superficie da rocha (Kluge & Brulfert, 2000). Uma série de microhabitats distintos fisionomicamente, responsáveis pelo estabelecimento das mais diversas espécies vegetais são observados nesses ambientes (Barthlott et al., 1993; Porembski et al., 2000) O surgimento desses microhabitats está relacionado com as condições edáficas e fatores microclimáticos ocasionando alta diversidade regional das comunidades vegetais (Kluge & Brulfert, 2000). Em vista disso, a vegetação que ocorre nos inselbergues está amplamente espalhada por todas as divisões de plantas. Tanto as espécies vasculares quanto as não vasculares que ocorrem nestes afloramentos estão perfeitamente adaptadas a condições de estresse hídrico e alta radiação, fatores que têm sido a força motriz da evolução e adaptação das espécies a esses ambientes (Kluge & Brulfert, 2000). Apesar das severas condições, os inselbergues apresentam uma importante riqueza florística, inclusive no que diz respeito à ocorrência de plantas não vasculares como algas, liquens (Büdel et al., 2000) e briófitas (Frahm, 2000). No entanto, são as plantas vasculares que representam o mais importante componente florístico, tanto nos inselbergues das regiões temperadas, quanto tropicais (Barthlott & Porembski, 2000; Porto, 2003), desenvolvendo ampla gama de adaptações reprodutivas (Biedinger et al., 2000) e ecofisiológicas (Kluge & Brulfert, 2000).

Estes ecossistemas formam excelentes modelos para pesquisas de biodiversidade, devido principalmente ao fato de ser ecologicamente bem demarcados (Porembski, 2002). São considerados como formas naturais de ilhas devido à fragmentação e isolamento ecológico de sua vegetação em relação à vegetação adjacente (Porembski & Barthlott, 2000; Porembski et al., 2000; Porembski, 2002).

2.2 Florística e Fitossociologia

Embora o número de estudos concernentes a inselbergues venha aumentando com o passar dos anos, grandes lacunas ainda existem no conhecimento dos atributos básicos desse ecossistema. A escassez de levantamentos florísticos e estruturais das cominidades

desses ambientes isolados, torna-se ainda mais preocupante quando se tem conhecimento da intensa exploração comercial dessas formações, tanto para a produção de paralelepípedos, como de pisos e revestimentos (Fig. 1). Além da carência de conhecimentos sobre a vegetação dos inselbergues em certas regiões, existe grande deficiência de informações sobre a estrutura e a correlação entre espécies desses ecossistemas (Barthlott & Porembski, 2000).

Figura 1 - Detalhe da retirada de paralelepípedos de um inselbergue no Município de Esperança – PB (foto Leonardo Pessoa Felix).

Vários parâmetros estruturais têm sido determinados para as comunidades vegetais, como densidade, altura das plantas, área basal dos caules, área de projeção das copas, entre outros (Müler-Dombois & Ellemberg, 1974). Além de sua contribuição para o conhecimento da estrutura das comunidades e de algumas populações, trabalhos utilizando estes parâmetros trazem uma valiosa contribuição ao conhecimento da flora regional (Sampaio, et al. 1996). Somado a isto, o conhecimento da composição florística e das características estruturais é de fundamental importância para subsidiar o manejo, a recuperação e ou conservação dos ecossistemas (Nascimento, 2002), portanto, pode constituir o ponto de partida para nortear atividades conservacionistas. Apesar disso, há ainda relativamente poucos trabalhos publicados referentes à composição da maioria dos ecossistemas tropicais.

Recentemente tem havido um significativo aumento na produção de trabalhos abordando principalmente a florística de vegetações abertas, especialmente cerrados, campos rupestres e caatinga (ver por exemplo Romero & Nakajima, 1999; Ratter et al.,

2003; Barbeiro, 2005; Amorim et al., 2005). Estudos demonstram uma grande diversidade e um alto índice de endemismo em campos rupestres (Stannard, 1995; Romero, 2002). Estes ambientes apresentam condições ecológicas próximas daquelas observadas em inselbergues como variação na topografia, declividade e a natureza do substrato. No entanto, apesar da ampla ocorrência de inselbergues nas regiões tropicais, estes têm sido frequentemente ignorados como assuntos de pesquisas de ecossistemas (Barthlott & Porembski, 2000).

No Brasil, ainda que alguns estudos tenham mostrado a ocorrência de espécies altamente especializadas em afloramentos rochosos (Safford & Martinelli, 2000), aspectos florísticos ainda são pouco abordados, destacando-se Safford & Martinelli, 2000; França et al., 1997, Carneiro et al., 2002 e publicações envolvendo aspectos da fitossociologia, ecofisiologia e evolução em inselbergues brasileiros, ainda são escassas. Alguns estudos florísticos foram desenvolvidos nos Estados de São Paulo, Rio de Janeiro e Espírito Santo (Porembski et al., 1998; Meirelles et al., 1999), bem como em formações de campos rupestres em Minas Gerais e Bahia (França et al. 1997; Romero & Nakajima, 1999; Caiafa, 2002).

A flora dos inselbergues do Brasil é bastante diferenciada e caracteriza-se por um grande número de espécies vegetais extremamente bem adaptadas com distribuição muito restrita, onde inselbergues geograficamente próximos apresentam inventários florísticos distintos (Barthlott et al., 1993). Porembski et al. (1998) avaliaram a saxícola de diversidade e padrões ecológicos da vegetação inselbergues localizados nos Estados do Rio de Janeiro, Espírito Santo e Bahia, utilizando o método fitossociológico por percentual de cobertura de Braun-Blanquet para analisar a Posteriormente, Safford & Martinelli (2000) estrutura das populações. desenvolveram amplo estudo abrangendo aspectos sistemáticos, biogeográficos e ecológicos de inselbegues do sudeste brasileiro. Caiafa (2002) desenvolveu trabalho em Minas Gerais contendo lista florística e dados da estrutura da vegetação de um afloramento rochoso no Parque Estadual da Serra do Brigadeiro, onde foram coletadas 81 espécies de plantas vasculares, sendo Orchidaceae, Asteraceae, Melastomataceae e Cyperaceae as famílias mais representativas.

Na Região Nordeste também são poucos os trabalhos mais abrangentes sobre esse tipo de vegetação. Levantamentos florísticos foram desenvolvidos na região de Milagres, BA (França et al., 1997), onde foi registrada a presença de 78 famílias com 266 espécies

em dois inselbergues, com Euphorbiaceae, Bromeliaceae e Leguminosae Papilionoideae sendo as famílias mais representativas. Carneiro et al. (2002), desenvolveram um estudo sobre a família Euphorbiaceae na flora de inselbergues, também da região de Milagres, onde a família está representada por 30 espécies distribuídas em 16 gêneros. Na Paraíba, Porto (2003) registrou a presença de 126 espécies distribuídas em 99 gêneros e 52 famílias, em um único inselbergue na cidade de Esperança. Recentemente, Almeida (2004) conduziu um estudo envolvendo florística e estrutura da família Orchidaceae em três inselbergues nos Municípios de Esperança, Fagundes e Serraria, onde foi registrada a ocorrência de nove espécies de orquídeas amplamente distribuídas em todos os inselbergues.

2.3. Citogenética

A utilização de dados citogenéticos na taxonomia vegetal, vem sendo feita desde o início do século passado como instrumento importante para a compreensão das relações de parentesco e dos mecanismos de evolução das espécies (Guerra, 1990). Caracteres citológicos, tais como número e morfologia dos cromossomos mitóticos e ainda a análise do comportamento cromossômico meiótico podem contribuir para o conhecimento da evolução e das relações entre diferentes populações e espécies (Heywood, 1978). Diferenças adaptativas entre indivíduos e populações são usualmente baseadas nas interações entre vários genes distribuídos ao longo dos cromossomos (Stebins, 1971). Um dos parâmetros citotaxonômicos amplamente utilizados em vegetais tem sido a variação no número cromossômico (Guerra, 2000). Essa variabilidade numérica é consequência de dois processos de evolução cariotípica atuantes nos vegetais: as alterações estruturais que modificam a morfologia e/ou ocasionam pequenas variações numéricas (1-2 pares) e a poliploidia, que duplica todo o conjunto cromossômico (Stebbins, 1971).

A poliploidia é o tipo de variação cromossômica dominante na evolução vegetal (Guerra, 1988). Estima-se que cerca de 95% das pteridófitas e acima de 80% das angiospermas sejam poliplóides (Leitch & Bennet, 1997) e, em termos geológicos, todo o conjunto das fanerógamas teria sofrido eventos de poliploidia seguidos de perda de material genético ou diploidização (Bowers et al. 2003).

Em orquídeas, a ocorrência de espécies pertencentes a gêneros tipicamente epifíticos, porém vegetando em habitats terrestres ou rupestres, muitas vezes apresenta

eventos de poliploidização, como nos gêneros *Laelia* (Blumenschein, 1960), *Oncidium* (Felix & Guerra, 2000) e *Epidendrum* (Felix, 2001). Os inselbergues abrigam uma flora originada a partir de ancestrais provenientes de ambientes terrícolas ou epifíticos mais estáveis (Porembski et al., 2000), sendo provável que outras famílias adaptadas aos inselbergues também possam apresentar um nível de ploidia diferenciado.

Nos trópicos é comum observar uma forte afinidade entre a flora epifitica e a flora de inselbergues, sendo esta relação especialmente acentuada na América do Sul (Barthlott & Porembski, 2000). Certo número de famílias como Bromeliaceae e Orchidaceae, possuem traços adaptativos de epífitas, os quais são de grande importância em ambientes como os inselbergues. As condições abióticas desses ecossistemas são caracterizadas por severas condições microclimáticas e edáficas, principalmente pelo estresse hídrico. Em muitos aspectos, as plantas vasculares epífitas têm sofrido pressão muito similar (Benzing & Atwood, 1984). Deste modo, certas características adaptativas a ambientes xéricos como a ocorrência de plantas com metabolismo CAM, com cutícula espessa, grande número de estômatos (Esau, 1974) e provavelmente a poliploidia sejam compartilhadas entre plantas epífitas e de afloramentos rochosos. No caso das epífitas e especialmente nas orquídeas, uma família de plantas paleopoliplóides (Felix & Guerra, 1998, 1999), tem sido registrados números cromossômicos excepcionalmente altos. Em Oncidium aff. flexuosum, por exemplo, foi registrado 2n= ca. 168 em uma população rupícola de Pernambuco, enquanto outra população epífita do Rio Grande do Sul apresenta 2n= 56 (Felix & Guerra, 2000), o que já seria um nível octoplóide em relação ao número básico primário da família de $x_1 = 7$ (Felix & Guerra, 1999). Um outro exemplo é Epidendrum cinnabarinum Salsm., uma espécie de habitat rupícola que apresenta o maior número cromossômico conhecido para as orquídeas, 2n= ca. 240 (Guerra, 2000). A grande maioria das espécies epífitas de Epidendrum apresenta 2n=40, um número provavelmente hexaplóide com base em $x_1=7$ (Felix, 2001).

3. REFERÊNCIAS BIBLIOGRÁFICAS

Almeida, A. Estudo florístico e estrutural da família Orchidaceae em três inselbergues da Paraíba, Brasil. 2004. 74f. Dissertação (Mestrado em Agronomia) — Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia.

Andrade, L. A. et al. Análise da vegetação arbóreo-arbustiva, espontânea, ocorrente em taludes íngremes no município de Areia - Estado da Paraíba. **Árvore,** v. 26, n. 2, p. 165-172, 2002.

Amorim, I. L.; Sampaio, E. V. S. B.; Araújo, E. L. Flora e estrutura da vegetação arbustivo-arbórea de uma área de caatinga do Seridó, RN, Brasil. **Acta Bot. Brás.**, v. 19, n.3, p. 615-623, 2005.

Barbeiro, S.M.C. Florística e fitossociologia de formações vegetais ocorrentes em tabuleiro costeiro, na Reserva Biológica Guaribas, Paraíba. 2005. 102f. Tese (Doutorado em Botânica) – Universidade Federal Rural de Pernambuco, Recife.

Barthlott, W.; Porembski, S. Vascular Plants on inselbergs: systematic overview. In: Porembski S.; Barthlott, W. (Eds.). **Inselbergs:** biotic diversity of isoleted rock outcrops in tropical and temperate regions. Berlin: Springer-Verlag, 2000. p. 103-116.

Barthlott, W.; Gröger, A.; Porembski, S. Some remarks on the vegetation of tropical inselbergs: diversity and ecological differentiation. **Biogeographica**, v.69, n. 3, p. 105-124, 1993.

Benzing, D.H.; Atwood Jr., J.T. Orchidaceae: ancestral habitats and current status in Forest Canopies. **Systematic Botany**, v. 9, n. 2, p. 155-165, 1984.

Biedinger, N.; Fleischmann, K. Seychelles. In: Porembski S.; Barthlott, W. (Eds.). **Inselbergs:** biotic diversity of isolated rock outcrops in tropical and temperate regions. Berlin: Springer-Verlag, 2000. p. 277-290.

Biedinger, N.; Porembski, S.; Barthlott, W. Vascular plants on inselbergs: vegetative and reproductive strategies. In: Porembski, S.; Barthlott, W. (Eds.). **Inselbergs:** biotic diversity of isoleted rock outcrops in tropical and temperate regions. Berlin: Springer-Verlag, 2000. p. 117-142.

Bigarella, J. J. et al. **Estrutura e origem das paisagens tropicais e subtropicais**. Florianópolis: Ed. UFSC, 1994.

Bowers, J.E. et al. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. **Nature**, v. 422, p. 433-438, 2003.

Blumenschein, A. **Estudo sobre a evolução no subgênero Cyrtolaelia (Orchidaceae).** 1960. Tese (Livre-Docência) — Escola Superior de Agricultura "Luis de Queiroz", Universidade de São Paulo, Piracicaba.

Bremer, H.; Sander, H. Inselbergs: geomorphology and geoecology. In: Porembski S.; Barthlott, W. (Eds.). **Inselbergs:** biotic diversity of isoleted rock outcrops in tropical and temperate regions. Berlin: Springer-Verlag, 2000. p.7-35.

Büdel, B. et al. Algae, fungi, and lichens on inselbergs. In: Porembski S.; Barthlott, W. (Eds.). **Inselbergs:** biotic diversity of isoleted rock outcrops in tropical and temperate regions. Berlin: Springer-Verlag, 2000. p. 69-90.

Burke, A. Islands-matrix relationships in Nama Karoo inselbergs landscapes. Part I: Do inselbergs provide a refuge for matrix species? **Plant Ecology**, v. 160, p. 79-90, 2002a.

Burke, A. Properties of soil pockets on arid Nama Karoo inselbergs - the effect of geology and derived landsforms. **Journal of Arid Environments**, v. 50, p. 219-234, 2002_b.

Burke, A.. Inselbergs in a changing world – global trends. **Diversity and Distributions**, v. 9, p. 375-383. 2003_a.

Burke, A. How special are Etendeka mesas? Flora and elevation gradients in an arid landscape in north-west Namibia. **Journal of Arid Environments**, v. 55, p. 747-764, 2003_b.

Burke, A. The role of Namibian inselbergs in contributing to local and regional plant richness. **Biodiversity and Conservation**, v. 12, p. 469-486, 2003_c.

Caiafa, A. N. Composição florística e estrutura da vegetação sobre um afloramento rochoso no Parque Estadual da Serra do Brigadeiro, MG. 2002. 55f. Dissertação (Mestrado) – Universidade Federal de Viçosa, Viçosa.

Caley M. J.; Schulter, D. The relationship between local and regional diversity. **Ecology**, v. 78, p. 70-80, 1997.

Carneiro, D. S; Cordeiro, I; França, F. A família Euphorbiaceae na flora de inselbergs da região de Milagres, Bahia, Brasil. **Bol. Bot. Univ. São Paulo**, v. 20, p. 31-47. 2002.

Esau, K. **Anatomia das plantas com sementes**. Traduzido por Berta Lange de Morretes. São Paulo: Edgard Blücher, 1974. 293p.

Felix, L.P. Citogenética e citotaxonomia de orquídeas do Brasil. 2001 221f. Tese (Doutorado em Botânica) – Universidade Federal Rural de Pernambuco, Recife.

Felix, L. P.; Guerra, M. Cytogenetics studies on species of *Habenaria* (Orchidoideae: Orchidaceae) occurring in the Northeast of Brazil. **Lindleyana**, v. 13, n. 4, p. 224-230, 1998.

Felix, L. P.; Guerra, M. Chromosome analysis in *Psygmorchis pusilla* (L.) Dodson & Dressler: the smallest chromosome number known in Orchidaceae. **Caryologia**, v. 23, p. 957-978, 1999.

Felix, L. P.; Guerra, M. Cytogenetics and cytotaxonomy of some Brazilian species of Cymbidioid orchids. **Gen. Mol. Biol.**, v. 23, p. 957-978, 2000.

Frahm, J. P. Bryophytes. In: Porembski S.; Barthlott, W. (Eds.). **Inselbergs**: biotic diversity of isoleted rock outcrops in tropical and temperate regions. Berlin: Springer-Verlag, 2000. p. 91-102.

França, F.; Melo, E.; Santos, C. C. Flora de inselbergs da região de Milagres Bahia, Brasil: I. Caracterização da vegetação e lista de espécies de dois inselbergs. **Sitientibus**, Feira de Santana, v. 17, p. 163-184, 1997

Grant, V. Especiación vegetal. México: Noriega Editores, 1989. 587p.

Gröger, A. Flora and vegetation of inselbergs os Venezuelan Guayana. In: Porembski S.; Barthlott, W. (Eds.). **Inselbergs:** biotic diversity of isoleted rock outcrops in tropical and temperate regions. Berlin: Springer-Verlag, 2000. p. 291-313.

Gröger, A.; Barthlott, W. Biogeography and diversity of the inselberg (Laja) vegetation of southern Venezuela. **Biodiversity letters**, v. 3, p. 165-179, 1996.

Guerra, M. A situação da citotaxonomia de angiospermas nos trópicos e, em particular, no Brasil. **Acta Botânica Brasílica**, v. 4, n. 2, p. 75-86. 1990.

Guerra, M. Introdução à citogenética geral. Rio de Janeiro. Editora Guanabara, 1988.

Guerra, M. Chromosome number variation and evolution in monocots. In: Wilson, K. L.; Morrison, D. A. (Eds.). **Monocots II -** Systematics and Evolution. Collingwood: CSIRO Publ., 2000. p. 127-136.

Heywood, V. H. Flowering plants of the world. Osford: 1978.

Hunter, J. T. Factors affecting range size differences for plant species on rock outcrops in eastern Australia. **Diversity and Distributions**, v. 9, p. 211-220, 2003.

Ibisch, P. L. et al. Floristic, biogeographical, and vegetational aspects of pre-cambrian rocks outcrops (inselbergs) in eastern Bolivia. **Flora**, v. 190, p. 299-314, 1995.

Kluge, M.; Brulfert, J. Ecophysiology of vascular plants on inselbergs. In: Porembski S.; Barthlott, W. (Eds.). **Inselbergs:** biotic diversity of isoleted rock outcrops in tropical and temperate regions. Berlin: Springer-Verlag, 2000. p. 143-176.

Krieger, A.; Porembski, S.; Barthlott, W. Vegetation of seasonal rock pools on inselbergs situated in the savanna zone of the Ivory Coast (West Africa). **Flora**, v. 195, p. 257-266, 2000.

Krieger, A.; Porembski, S.; Barthlott, W. Temporal dynamics of an ephemeral plant community species turnover in seasonal rocks pools on Ivorian inselbergs. **Plant Ecology**, v. 167, p. 283-292, 2003.

Leitch, I. J.; Bennett, M. D. Polyploidy in angiosperms. **Trends Pl. Sci.**, v. 2, p. 170-476, 1997.

Meirelles, S. T.; Pivello, V. R.; Joly, C. A. The vegetation of granite rock outcrops in Rio de Janeiro, Brazil, and the need for its protection. **Environmental Conservation**, v. 26, n. 1, p. 10-20, 1999.

Müeller-Dumbois, D.; Ellemberg, H. **Aims and methods of vegetation ecology.** New York: John Wiley & Sons, 1974. 547p.

Nascimento, I. S. Levantamento florístico e análise da estrutura fitossociológica do estrato arbóreo das matas ciliares ocorrentes na reserva ecológica estadual da Mata do Pau-Ferro – Areia, Paraíba. 2002. (Dissertação Mestrado em Agronomia) – Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia.

Oumorou, M.; Lejoly, J. Écologie, flore et vegetation de l'inselberg Sobakpérou (nord-Bénin). **Acta Bot. Gallica**, v.150, n. 1, p. 65-84, 2003.

Parmantier, I. Study of the vegetation composition in three inselbergs from continental Equatorial Guinea (Western Central Africa): effects of site, soil factors and position relative to forest fringe. **Belg. Journ. Bot.**, v. 136, n. 1, p. 63-72, 2003.

Porembski, S. Notes on the vegetation of inselbergs in Malawi. Flora, v.191, p. 1-8, 1996.

Porembski, S. West African Inselberg vegetation. In: Porembski, S.; Barthlott, W. (Eds.). **Inselbergs**: biotic diversity of isoleted rock outcrops in tropical and temperate regions. Berlin: Springer-Verlag, 2000. p. 177-211.

Porembski, S. Terrestrial habitat islands as model systems for biodiversity research. In: Araújo, E. L. et al (Eds.). **Biodiversidade conservação e uso sustentável da flora do Brasil**. Recife: UFRPE; Recife: SBB, 2002. p. 158- 161.

Porembski, S.; Barthlott, W. (Eds.) **Inselbergs:** biotic diversity of isoleted rock outcrops in tropical and temperate regions. Berlin: Springer-Verlag, 2000. 524 p.

Porembski, S.; Becker, U.; Seine, R. Islands on Islands: Habitats on inselbergs. In: Porembski, S.; Barthlott, W. (Eds.). **Inselbergs:** biotic diversity of isoleted rock outcrops in tropical and temperate regions. Berlin: Springer-Verlag, 2000. p. 339-390.

Porembski, S. et al. Diversity and ecology of saxicolous vegetation mats on inselbergs in the Brazilian Atlantic rainforest. In: **Diversity and Distribution**, v. 4, p. 107-119, 1998.

Porembski, S. et al. Biodiversity and vegetation of small-sized inselbergs in a West-African rain forest (Taï, Ivory Coast). **Journal of Biogeography**, v. 23, p. 47-55, 1996.

Porto, P. A. F. Estudo florístico de um inselbergues no distrito de Lagoa de Pedra, Município de Esperança - PB. 2003. 30f. Monografia (Graduação em Ciências Biológicas) – Universidade Estadual da Paraíba, Campina Grande.

Ratter, J. A.; Bridgewater, S.; Ribeiro, J. F. Analysis of the floristic composition of the brazilian cerrado vegetation III: Comparison of the woody vegetation of 376 areas. **Edinburg Journal of Botany**, v. 60, n. 1, p. 57-109, 2003.

Romero, R. Diversidade da flora dos campos rupestres de Goiás, sudoeste e sul de Minas Gerais. In: Araújo, E. L. et al. **Biodiversidade conservação e uso sustentável da flora do Brasil**. Recife: UFRPE; Recife: SBB, 2002. p. 81- 86.

Romero, R.; Nakajima, J. N. Espécies endêmicas do Parque da Serra da Canastra, Minas Gerais. **Revista Brasileira de Botânica**, v. 22, n. 2, p. 259-265, 1999.

Safford, H. D.; Martinelli, G. Southeast Brazil. In: Porembski, S.; Barthlott, W. (Eds.). **Inselbergs:** biotic diversity of isoleted rock outcrops in tropical and temperate regions. Berlin: Springer-Verlag, 2000. p. 339-390.

Sampaio, E. V. S. B.; Mayo, S. J.; Barbosa, M. R. (Eds.). **Pesquisa botânica nordestina:** progresso e perspectivas. Recife: Sociedade Botânica do Brasil/ Seção Regional Pernambuco, 1996. 415 p.

Sarthou, C.; Villiers, J. Epilithic plant communities on inselbergs in French Guiana. **Journal of Vegetation Science**, v. 9, p. 847-860, 1998.

Sarthou, C.; Villiers, J.; Ponge, J. Shrub vegetation on tropical granitic inselbergs in French Guiana. **Journal of Vegetation Science**, v. 14, p. 645-652, 2003.

Seine, R.; Becker, U. East and Southeast Africa. In: Porembski, S.; Barthlott, W. (Eds.). **Inselbergs**: biotic diversity of isoleted rock outcrops in tropical and temperate regions. Berlin: Springer-Verlag, 2000. p. 213-235.

Seine, R. et al. Vegetation of inselbergs in Zimbabwe. Edin. J. Bot., v. 55, n. 2, p. 267-293, 1998.

Stannard, B. L. (Ed.) Flora do Pico das Almas Chapada Diamantina - Bahia, Brazil. Kew: Royal Botanical Gardens, 1995. 853p.

Stebbins, G. L. **Chromosomal evolution in higher plants**. London: Edward Arnold, 1971. 216p.

Pitrez, S.R. Florística, Fitossociologia e Citogenética de Angiospermas	16
Capítulo 1	
Florística e Fitossociologia de Quatro Inselbergues no Estado da Paraíba	
Artigo a ser enviado ao perióc Acta Botanica Brasi	

Florística e Fitossociologia de Quatro Inselbergues no Estado da Paraíba

Silvia Romeu Pitrez², Leonaldo Alves de Andrade³ e Leonardo Pessoa Felix³

RESUMO – (Florística e Fitossociologia de Quatro Inselbergues no Estado da Paraíba). Com o objetivo de caracterizar e comparar a estrutura e a similaridade florística entre quatro inselbergues do Estado da Paraíba, foram realizadas análises florística e fitossociológica de quatro inselbergues nas microrregiões do Brejo Paraibano e Agreste da Borborema. As áreas foram amostradas através da alocação de dez parcelas permanentes de 5 x 5m, distribuídas aleatoriamente sobre os inselbergues de Esperança, Fagundes, Pocinhos e Serraria. Foram tomadas medidas de todas as angiospermas que se individualizaram ao nível do solo, excluindo os cipós e as trepadeiras. Foram registradas 219 espécies, distribuídas entre 151 gêneros de 62 famílias, destacando-se como mais ricas em espécies as famílias Leguminosae (23), Convolvulaceae e Euphorbiaceae (13), Poaceae e Rubiaceae (10). Das espécies coletadas, Anthurium affine, A. petrophilum, Cnidosculus urens, Crotalaria vitelina, Cyrtopodium polyphyllum, Encholirium spectabile, Euphorbia comosa, Marsdenia loniceroides, Melocactus ernestii, Orthophytum disjunctum, Prescottia phleiodes, Staelia virgata e Tibouchina grandifolia, ocorreram em todas as áreas estudadas. Foi observada uma maior similaridade entre os inselbergues de Esperança e Fagundes (20%), ao passo que o afloramento de Pocinhos foi o mais dissimilar floristicamente. As espécies que apresentaram maior VI foram: Melocactus ernestii (36,7%) - Esperança; Encholirium spectabile (27,4%) - Pocinhos; Epidendrum cinnabarinum (28,9%) - Serraria e Euphorbia comosa (8,9%) - Fagundes. A maior diversidade florística foi observada no afloramento mais antropizado, Fagundes (H' = 2,81). A diversidade florística dos inselbergues parece estar sujeita às influências climáticas, tamanho do inselbergue, inclinação e quantidade de microhabitats, bem como pela ação antrópica. Os resultados indicaram um aumento na diversidade específica do brejo para o agreste, confirmando dados obtidos em outros estudos desenvolvidos no Nordeste brasileiro.

Palavras-chave: Inselbergue, florística, fitossociologia, diversidade, afloramento rochoso

¹Parte da tese de doutorado do primeiro autor. Bolsista CAPES.

²Programa de Pós-graduação em Agronomia, Universidade Federal da Paraíba.

e-mail: spitrez@yahoo.com.br

³Departamento de Fitotecnia, Universidade Federal da Paraíba, 58397-000 Areia - PB

Floristic and phytossociology of Four Inselbergs in the Paraíba State

ABSTRACT-(Floristic and Phytossociology of Four Inselbergs in the Paraíba State).

With the aim to characterize and compare flowering similarity and structure among four inselberg in the Paraíba State, it had been carried out floristic and phytosociological analysis of four inselberg at Brejo Paraibano and Agreste da Borborema. Areas were showed through places of ten fixed plots of 5m x 5m, distributed betwen Esperança, Fagundes, Pocinhos and Serraria's inselberg. Measurement were done in all angiosperms which were individuals to soil level, apart from climbing plants. It had been registered 219 species, distributed among 151 genus of 62 families, being the richest Leguminosae's family (23), Convolvulaceae and Euphorbiaceae (13), Poaceae and Rubiaceae (10). To the collected species, Anthurium affine, A. petrophilum, Cnidosculus urens, Crotalaria vitelina, Cyrtopodium polyphyllum, Encholirium spectabile, Euphorbia comosa, Marsdenia loniceroides, Melocactus ernestii, Orthophytum disjunctum, Prescottia phleiodes, Staelia virgata and Tibouchina grandifolia, ocurred in all studied areas. It was observed a higher similarity among Esperança and Fagundes inselbergs (20%), but Pocinhos' floristic had the lowest one. Species with the biggest VI were: Melocactus ernestii (36.7%) - Esperança; Encholirium spectabile (27.4%) - Pocinhos; Epidendrum cinnabarinum (28.9%) - Serraria and Euphorbia comosa (8.9%) - Fagundes. The biggest floristic diversity was observed in Fagundes (H ' = 2.81). Floristic diversity seems to be subject to the climatic changes, inselberg size, inclination and microhabitats quantity as well as by antropic action. Results showed a specific diversity increase from brejo to agreste, confirmed to data from other developed studies in the Brazilian Northeast Region.

Keywords: Inselberg, floristic, phytossociology, diversity, rock outcrops

Introdução

Inselbergues são elementos da paisagem, formados principalmente por afloramentos rochosos graníticos ou gnaissicos, que se destacam abruptamente em meio a paisagens predominantemente planas. Ocorrem tanto nas regiões temperadas quanto nas tropicais, tendo algumas de suas ocorrências mais notáveis na América do Sul, principalmente no Brasil (Bigarella *et al.* 1994). São ambientes fragmentados cuja vegetação é ecologicamente isolada da vegetação adjacente e devido a isto, considerados formas naturais de ilhas terrestres (Porembski & Barthlott 2000; Porembski 2002).

As espécies que ocorrem nesses ambientes estão amplamente espalhadas por todas as divisões de plantas e perfeitamente adaptadas às condições de estresse hídrico e alta radiação, sendo estas condições rigorosas as principais responsáveis pela evolução e adaptação das espécies rupículas (Kluge & Brulfert 2000). Apesar das severas condições, esses afloramentos apresentam importante riqueza florística, inclusive com ampla ocorrência de plantas não vasculares (Büdel et al. 2000; Frahm 2000), embora as plantas vasculares sejam seus principais componentes (Barthlott & Porembski 2000; Porto 2003), as quais desenvolveram uma gama de adaptações reprodutivas (Biedinger *et al.* 2000) e ecofisiológicas (Kluge & Brulfert 2000) a estes ambientes. Inselbergues não são ecossistemas uniformes, apresentando a superficie rochosa fragmentada em microhatitats condicionados por fatores microclimáticos e edáficos (Kluge & Brulfert 2000). Porembski, *et al.* (2000) citaram a ocorrência de um conjunto de microhabitats distintos fisionomicamente e correlacionados com o componente vegetacional.

Apenas recentemente tem sido desenvolvidas pesquisas de biodiversidade em inselbergues destacando a importância desses ambientes ecologicamente bem demarcados e ricos em táxons endêmicos (Porembski 2002). Isto tem alavancado os estudos nos últimos anos, com o aumento do número de publicações relativas a este tema (revisado por Porembski & Barthlott 2000). Apesar do impulso tomado pelas pesquisas, no Brasil ainda são poucos os trabalhos relativos à inselbergues, principalmente no que tange à fitossociologia desses ambientes (França *et al.* 1997; Porembski *et al.* 1998; Safford & Martineli 2000; Almeida 2004).

Estudos florísticos (França *et al.* 1997), fitossociológicos (Caiafa 2002; Almeida 2004) e citogenéticos (Felix & Guerra 2000), têm sido utilizados na avaliação da diversidade florística e da evolução cromossômica nesse tipo de ambiente. Todavia, são escassas as informações sobre a biologia das espécies de inselbergues no Brasil, o que

dificulta a elaboração de um diagnóstico preciso do estado de conservação desses ecossistemas e impossibilita a adoção bem fundamentada de medidas preservacionistas. É importante ressaltar que muitos inselbergues constituem ambientes ameaçados, tanto pela retirada de paralelepípedos e brita, quanto pela coleta de plantas ornamentais, além de queimadas para obtenção de caça. No Nordeste do Brasil, os inselbergues são fontes importantes de endemismos, como na espécie *Sinningia nordestina* Chautems, Baracho & Siqueira-Filho, da família Gesneriaceae (Chautems *et al.* 2000) ou no gênero monotípico *Ameroglossum* da família Scrophulariaceae (Fischer *et al.* 1999), este último citado para uma única formação no município de Brejo da Madre de Deus, Pernambuco. Logo, o conhecimento da diversidade e da estrutura florística dos inselbergues nessa região, é de fundamental importância para nortear medidas conservacionistas que preservem esses ambientes e sua riqueza genética.

O presente trabalho consistiu de um estudo florístico e fitossociológico de quatro inselbergues localizados em duas diferentes microrregiões do Estado da Paraíba, de forma a avaliar a estrutura vegetacional e sua diversidade florística. A escolha de áreas representativas de diferentes formações fisionômicas do Estado objetivou ampliar a representatividade da amostragem, suportando assim políticas de preservação a serem adotadas para esses ecossistemas em diferentes biomas da Região.

Material e Métodos

Área de estudo - Foram realizados levantamentos florístico e fitossociológico das espécies de angiospermas ocorrentes em quatro inselbergues localizados nos municípios de Serraria, Esperança, Fagundes e Pocinhos, no estado da Paraíba, na região Nordeste do Brasil (Fig.1).

De acordo com Moreira (1985), os municípios estão localizados nas microrregiões Brejo Paraibano (Serraria) e Agreste da Borborema (Esperança, Pocinhos e Fagundes). O primeiro município pertence ao bioma Mata Atlântica e os demais, ao bioma Caatinga (Fernandes & Bezerra 1990; IBGE 2000). O inselbergue do município de Serraria localizase na Fazenda Santa Helena (6°0'S; 35°0'W) a 562m de altitude, com cerca de 25m entre a base e o topo e uma área total de cerca de 2,0 ha. Este inselbergue, diferentemente dos demais, apresenta uma vegetação de entorno bem preservada e representa um remanescente da Mata Atlântica dos Brejos de Altitude e uma superficie rochosa mais homogênea.

Outro inselbergue estudado está localizado em Lagoa de Pedra, distrito do município de Esperança (7º0'S, 35º53'W), a uma altitude de 699m, com cerca de 40m da base ao topo e uma área de aproximadamente 10 hectares. O afloramento possui faces diferenciadas quanto à inclinação e estrutura da superfície; é circundado por uma área de solo arenoso utilizada para cultivo de subsistência, restando muito pouco da cobertura vegetal original de seu entorno.

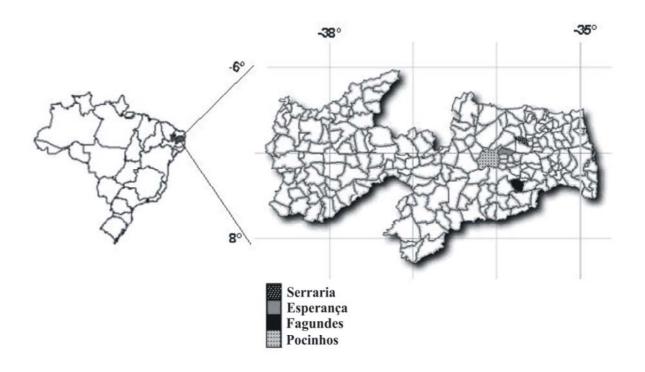


Figura 1. Mapa da localização das áreas de estudo, Estado da Paraíba, Brasil.

O terceiro inselbergue, denominado Pedra de Santo Antônio (7°2'S; 35°5'W), dista cerca de 10 km da cidade de Fagundes e está a uma altitude de 730m acima do nível do mar. Esta área apresenta-se fragmentada em diversos lajedos, dos quais foi estudado um deles, com frente a barlavento e com uma área de cerca de dois hectares. Este inselbergue apresenta faces distintas com acentuada inclinação. É um afloramento utilizado para visitação de religiosos e em conseqüência disso, apresenta parte do seu entorno totalmente descaracterizada, inclusive com construções. A área restante do entorno é composta por capoeiras, com espécies arbustivo-arbóreas e vegetação ruderal.

O inselbergue denominado Parque das Pedras (7°0'S; 36°1'W), está localizado no Município de Pocinhos a 650m de altitude, cerca de 30m da base ao topo e uma área

aproximada de 20 hectares. Este é o afloramento maior e de superfície rochosa mais uniforme de todos os estudados. Apesar de apresentar parte de seu entorno substituído por cultivos de subsistência, ainda possui uma parte da vegetação adjacente preservada.

Clima - A microrregião do Brejo Paraibano, onde está inserido o município de Serraria, apresenta elevações e platôs onde ventos úmidos condensam o excesso de vapor, ocasionando o fenômeno da chuva orogênica. Essa condição favorece o aparecimento de ambientes de maior umidade, também conhecidos como Brejos de Altitude, caracterizados por apresentarem uma cobertura vegetal ombrófila com maior diversidade de espécies (Fernandes & Bezerra 1990). Possui clima dominantemente quente e úmido, com temperaturas oscilando entre 24°C e 27°C, índices pluviométricos em torno de 900 a 1800mm ao ano e umidade relativa em torno de 80%.

A microrregião do Agreste da Borborema, onde são encontrados os inselbergues de Esperança, Pocinhos e Fagundes, apresenta um clima seco onde se registram altas médias de temperatura (entre 25°C e 30°C), índices pluviométricos mais baixos (entre 300 e 1000mm) e taxas de evapotranspiração acentuadas por uma distribuição irregular dos totais de chuvas anuais, interferindo significativamente nos componentes hídricos locais. Isto condiciona a presença de uma vegetação marcadamente xerófita, de solos rasos e pedregosos (Lima & Heckendorff 1985; Lima & Melo 1985). Os dados metereológicos de pluviosidade e temperatura foram fornecidos pelo Departamento de Ciências Atmosféricas (DCA), da Universidade Federal de Campina Grande (UFCG) e a classificação de clima utilizada foi a de Thornthwaite (Vianello & Alves 1991). Os diagramas dos balanços hídricos dos Municípios de Serraria e Esperança (Fig. 2A e B) ilustram as diferenças entre as Microregiões do Brejo Paraibano e Agreste da Borborema, respectivamente.

Serraria apresenta média pluviométrica de 1277mm/ano e temperatura mais amena do que nos demais inselbergues estudados, com deficiência hídrica moderada no inverno (subúmido, megatérmico), do tipo C2 w A' a'. Em Esperança, onde o clima é mais quente, as médias anuais de temperatura estão em torno de 21,9°C e índices pluviométricos mais baixos, próximos de 700 mm/ano e elevada evapotranspiração. O clima é subúmido seco, com excesso de água pequeno ou nulo, mesotérmico (tipo C1 d B'4 a'). Este mesmo tipo de clima ocorre também em Fagundes, que apresenta precipitação de 850mm/ano e temperatura média anual de 22,7°C e Pocinhos, que apresenta precipitação de 700mm/ano e temperatura média anual de 25°C.

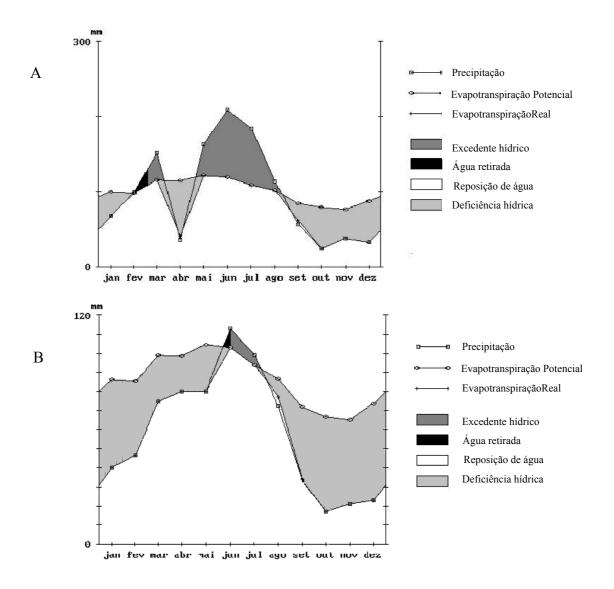


Figura 2. Diagramas de balanço hídrico dos município de Serraria/PB (A), e de Esperança/PB (B) para o período de 1991 a 1998.

Coleta e análise de dados – Para o levantamento das espécies ocorrentes nas áreas de estudo, foram efetuadas coletas através de caminhamentos, durante o período de abril de 2002 a dezembro de 2004. Todo o material coletado foi prensado e herborizado de acordo com as técnicas recomendadas por Bridson & Forman (1999) e as exsicatas depositadas no Herbário Jayme Coelho de Moraes (EAN) do Centro de Ciências Agrárias da Universidade Federal da Paraíba. As espécies foram identificadas com base na literatura pertinente e também por comparação com materiais previamente identificados. Quando necessário, alguns espécimes foram enviados a especialistas para identificação. As espécies foram ordenadas em família segundo a classificação do APG II (2003).

Todas as espécies foram classificadas pela forma de vida segundo o sistema proposto por Raunkiaer, adaptado por Müller-Dombois & Ellenberg (1974). Nesta classificação, é levada em consideração a posição das partes regenerativas dos vegetais e adaptações às condições ambientais; assim, as espécies foram classificadas como caméfitas (C), epífitas (E) fanerófitas (F), geófitas (G), hemicriptófitas (H), terófitas (T) e trepadeiras (TR).

Os inselbergues apresentam a superficie fragmentada em diversos microhabitats descritos de acordo com Barthlott et al. (1993), com adaptações de Ibisch et al. (1995) e Safford & Martinelli (2000). Superfície de rocha é um tipo de microhabitat onde as espécies estão adaptadas a sobreviver diretamente sobre rocha, com um mínimo de matéria orgânica, através de seu sistema radicular amplo, que fixa detritos orgânicos. Fendas, ocorrem tanto no sentido vertical como horizontal da rocha, onde o substrato tem origem tanto da esfoliação da própria rocha, como do acúmulo de matéria orgânica. Esse microhabitat é colonizado principalmente por espécies herbáceas. Quando ocorrem rachaduras e por consequência disto um maior acúmulo de substrato, espécies de maior porte como alguns arbustos e pequenas árvores podem se estabelecer. Depressões da rocha é o tipo de microhabitat onde existe maior acúmulo de substrato com textura arenosa e pedregosa favorecendo o desenvolvimento de maior número de espécies. Nesses microhabitats podem surgir associações monoespecíficas de monocotiledôneas que se destacam na vegetação tipo mosaico chamadas "tapetes de vegetação". Também surgem sazonalmente sobre a superfície da rocha a "vegetação efêmera" que geralmente está associada a depressões e está diretamente relacionada aos períodos de chuva que ocorrem na região.

Utilizando-se o método de parcelas (Daubenmire, 1968; Müller-Dombois & Ellemberg, 1974; Kent & Coker, 1992), foram plotadas dez parcelas semipermanentes medindo 5m x 5m, interespaçadas de no mínimo 15m. Como esse tipo de formação apresenta uma cobertura vegetal fragmentada, formando mosaicos de vegetação sobre a rocha, as parcelas foram distribuídas aleatoriamente nas áreas providas de vegetação, no sentido transversal e longitudinal do afloramento.

Foram tomadas medidas de todas as angiospermas que se individualizaram ao nível do solo, excluindo as trepadeiras. Foram caracterizados quatro grupos de espécies, definindo-se uma metodologia específica de amostragem para cada grupo, conforme seu hábito de crescimento (adaptado de Almeida 2004). Grupo 1: plantas relativamente bem individualizadas ao nível do solo; Grupo 2: plantas apresentando ramificação abundante

(vários ramicaules); Grupo 3: espécies que formam tapetes de vegetação, densamente agrupadas, impossibilitando a individualização dos espécimes; Grupo 4: espécies pertencentes à família Bromeliaceae.

Os indivíduos que apresentaram parte do caule dentro da parcela também foram amostrados. Com o auxílio de um paquímetro foram medidas a altura total e diâmetro do caule ao nível do solo (DNS) das espécies de todos os grupos. Em indivíduos perfilhados foi medido cada perfilho como se fosse um indivíduo. Em plantas com vários ramicaules (Grupo 2), definiu-se como sendo um indivíduo o conjunto de ramicaules visualmente ligados por um rizoma ou brotações de inflorescência tomando-se a medida de 25% dos ramicaules e multiplicando-se as médias pelo número total de ramicaules. A altura dos indivíduos foi medida do nível do solo até a extremidade mais distal. Pleurothallis ochreata (Grupo 3) é uma orquídea que forma densos tapetes de vegetação sobre a rocha. Devido à impossibilidade de delimitar os indivíduos separadamente, cada agregado foi considerado como um indivíduo. Estes agregados foram subdivididos em subamostras através de um gabarito de ferro, medindo 50x50cm, subdividido em células de10x10cm. O gabarito foi colocado sequencialmente sobre estes tapetes até cobrir toda a área, de forma a não haver sobreposições. Em cada célula do gabarito, foi estimado visualmente o percentual ocupado pelos ramicaules. A célula foi considerada cheia quando as quatro laterais eram tocadas internamente pelos ramicaules. De cada quatro células cheias, uma foi escolhida para a contagem do número de ramicaules ocorrentes dos quais 25% foram aferidos. Nas bromélias (Grupo 4) foi medido, além da altura, o diâmetro da base da roseta foliar.

Os parâmetros fitossociológicos estimados foram: Densidade absoluta do táxon (DA); Densidade Relativa do táxon (DR) = (DA/DT) . 100; Freqüência Absoluta do táxon (FA), Freqüência Relativa do táxon (FR) = (FA/∑FA) . 100, Dominância Absoluta do táxon (DoAt), Dominância Relativa do táxon (DoRt) = (DoAt/Dot) . 100; e índice de Valor de Importância do táxon (VI), além de outros parâmetros fitossociológicos como similaridade e riqueza florística para famílias, gêneros e espécies (Müller-Dombois & Ellemberg 1974; Rodal *et al.* 1992).

A similaridade florística entre as áreas estudadas e outros levantamentos reportados na literatura, foi analisada através de agrupamento por média de grupo (UPGMA), utilizando o índice de Jaccard [IS_J = (c/a +b +c) . 100] (Müller-Dombois & Ellemberg 1974). Foram comparados os dados de dez inselbergues brasileiros, três da África, um da Bolívia e um da Guiana Francesa.

A diversidade e a riqueza taxonômica foram avaliadas através do índice de diversidade de Shannon-Wiener (H') e do índice de Riqueza das Espécies (RE).

Os dados de diversidade obtidos para cada inselbergue foram comparados utilizando-se o Índice de Diversidade Ecológica de Shannon-Wiener (H'), o Índice de Equabilidade de Pielou (C) e o Índice de Simpson (J) (Müller-Dombois & Ellemberg 1974; Krebs 1986; Rodal *et al.* 1992). Os parâmetros foram calculados utilizando o Software Mata Nativa (CIENTEC 2002).

Resultados e Discussão

Riqueza e diversidade florística - O número total de táxons encontrado em todo o levantamento, incluindo aqueles coletados fora das parcelas foi de 219 espécies, distribuídas entre 152 gêneros de 62 famílias (Tabela 1). Em todo o estudo, as famílias Leguminosae (23 espécies), Convolvulaceae e Euphorbiaceae (13) e Poaceae e Rubiaceae (10) apresentaram a maior riqueza específica, representando 31% das espécies amostradas, enquanto um total de 22 famílias (35%) apresentou apenas uma espécie.

Foram observados nos inselberques estudados os microhabitats: superfície da rocha, fendas e depressões da rocha. A variedade de microhabitats possibilita o estabelecimento de espécies com diferentes requerimentos, podendo assim refletir em uma maior riqueza específica para estas áreas (Barthlot et al. 1993; Ibisch et al. 1995; Safford & Martinelli 2000). Segundo Ratter et al. (2003), em áreas de cerrado, um elevado número de famílias com somente uma espécie, indica um padrão característico de locais de alta diversidade. O número relativamente alto de famílias representadas por uma única espécie foi também observado em outros trabalhos desenvolvidos em inselbergues. Na região Nordeste, pesquisas desenvolvidas por França et al. (1997), Oliveira (2002) e Porto (2003) registraram respectivamente 37%, 62% e 48% das famílias apresentando uma única espécie. Da mesma forma, na região Sudeste, Meirelles (1999) 53%, Caiafa (2002) 54% e Porembski et al. (1998) 61%.

Tabela 1. Famílias com suas espécies e respectivas formas de vida (FV) encontradas nos inselbergues nos municípios de Esperança (E), Pocinhos (P), Fagundes (F) e Serraria (S), Paraíba.

FAMÍLIA	ESPÉCIE	N coletor	FV	ÁREA
Acanthaceae	Haporchilus phacocarpus Nees	Sp 315	F	P
Agavaceae	Agave sisalana Perr.		C	E
Alstroemeriaceae	Alstroemeria sp.	Sp 431	G	P
Amaryllidaceae	Hippeastrum psitacinum Herb.	Sp 587	G	F, P, S
	Zephyranthes sp.	Sp 500	G	P
Anacardiaceae	Schinus terebenthifolius Raddi.	Sp 266	F	P
Apocynaceae	Allamanda blanchetii A. DC.	Sp 273	F	E, S
	Mandevilla microphylla (Stadelm.) M.F. Sales	Sp 403	G	F
	Mandevilla moricandiana (A. DC.) R. E. Woodson	Sp 426	TR	S
	Mandevilla scabra K. Schum.	Sp 212	F	S
	Mandevilla tenuifolia (Mikan) R. E. Woodson.	Sp 507	G	E, P, S
	Peschiera cf. affinis Miers.	Sp 221	F	\mathbf{S}
Araceae	Anthurium affine Schott.	Aa 256	C	E, F, P, S
	Anthurium petrophyllum K. Krause.	Aa 264	C	E, F, P, S
	Philodendron imbe Engl.	Aa 369	TR	Ś
Aristolochiaceae	Aristolochia birostris Duch.	Aa 383	TR	E
Asclepiadaceae	Ditassa cf. hispida (Vell.) J. Fontella Pereira	Sp 244	TR	P
r	Marsdenia loniceroides Fourn.	Sp 473	F	E, F, P, S
Asteraceae	Acmella cf. uliginosa (Sw.) Cass.	Sp 285	T	E E
	Ageratum conizoides L.	Sp 626	T	F
	Ageratum sp	Sp 640	T	F
	Bidens cf. bipinnata Baill.	Sp 401	Ť	F
	Bidens sp	Sp 625	T	F
	Blainvillea latifolia (L.) DC	Sp 624	T	E, F
	Emilia sagitata DC	Sp 613	T	E
	Eupatorium ballotaefolium H.B.K.	Aa 394	T	P, S
	Platypodanthera melissaefolium DC.	Sp 279	T	E
	Vernonia chalybaea DC.	Sp 201	T	E, P
	Vernonia scorpioides Pers.	Aa 367	T	S
	Wulffia stenoglossa DC.	Aa 338	F	S
	Wulfia sp.	Sp 445	F	E
Begoniaceae	Begonia sp. 1	Sp 384	F	F, S
Degomaceae	Begonia sp. 2	Sp 230	F	S
	Begonia sp. 3	Sp 289	F	E
	Begonia sp. 4	Sp 584	F	F, P
Bignoniaceae	Lundia cordata DC.	Aa 361	TR	S
Dignomaccac	Macfadyena unguis-cati (L.) A. H. Gentry	Aa 252	TR	E
	Tabebuia impetiginosa (DC) Toledo	Sp 580	F	E
Boraginaceae	Cordia globosa DC.	Aa 388	F	P
Doraginaceae	Cordia sp.	Sp 536	F	S
	Heliotropium angiospermum Murr.	Aa 398	T	P
				r P
Bromeliaceae	Heliotropium sp.	Sp 254	T C	
Diomenaceae	Encholirium spectabile Schult. f.	Sp 463		E, F, P, S
	Hohenbergia catingae Ule	Sp 203	C	E, F, S
	Orthophytum disjunctum L. B. Smith	Sp 589	C	E, F, P, S
	Tillandsia recurvata Baker.	Sp 320	E	P
	Tillandsia sp. 1	Sp 643	C	F
	Tillandsia sp.2	Sp 628	C	F

Tabela 1. Continuação

FAMÍLIA	ESPÉCIE	N coletor	FV	ÁREA
Cactaceae	Melocactus cf. ernestii Vaupel	Aa 240	С	E, F, P, S
	Melocactus cf. oreas Miq.		C	P
	Opuntia inamoena K. Schum.	Sp 295	C	E, P
	Opuntia palmadora Britton & Rose	Sp 505	F	P
	Pilosocereus gounellei (F.A.C. Weber) Byles &			F
	Rowley		F	
	Pilosocereus pachicladus Ritter		F	F, P, S
Capparaceae	Cleomi affinis DC.	Sp 399	T	F
	Cleome cf. pernambucensis	Sp 539	T	S
	Cleome sp.	Sp 630	T	F
Clusiaceae	Clusia polysepala Engl.	Sp 497	F	F
	Clusia nemorosa G.F.W. Mey		F	S
Commelinaceae	Callisia filiformis (Martens & Galeotti) D.R. Hunt	Sp 293	T	E
	Callisia repens L.	1	T	F
	Commelina obliqua Vahl.	Sp 636	T	E, F, P
	Commelina erecta L.	1	T	F
	Tradescantia ambigua Mart.	Sp 601	Н	P
Connaraceae	Cannarus cymosus Planch.	Sp 223	TR	S
Convolvulaceae	Evolvulus cordatus Choisy.	Aa 403	T	P
	Evolvulus glomeratus Choisy	Aa 405	T	P
	Ipomoea bahiensis Roem. & Schult.	Sp 294	TR	E
	Ipomoea cf. carnea Forst. f.	Sp 597	TR	P
	Ipomoea longeramosa Choisy	Aa 396	TR	P
	Ipomoea marcellia Meissn.	Aa 379	TR	E, P
	Ipomoea martii Meissn.	Sp 606	TR	P
	<i>Ipomoea nil</i> (L.) Roth	Aa 401	TR	P
	Ipomoea regnellii Meisn.	Sp 301	TR	S
	Ipomoea sp. 1	F	TR	P
	Ipomoea sp. 2		TR	P
	Jacquemontia densiflora Hallier f.	Sp 409	TR	P
	Merremia aegyptia (L.) Gamble	Aa 386	TR	P
Crassulaceae	Kalanchoe brasiliensis Cambess.	Sp 382	C	E, F
	Kalanchoe sp.	Sp 641	C	ŕ
Cucurbitaceae	Gurania sp.	Sp 503	TR	P
			TR	S
	Wilbrandia sp.	Aa 364	TR H	S P
	Wilbrandia sp. Bulbostylis capillaris (L.) C. B. Clarke	Aa 364 Sp 437	Н	P
	Wilbrandia sp. Bulbostylis capillaris (L.) C. B. Clarke Bulbostylis scabra (Presl.) C. B. Clarke	Aa 364 Sp 437 Sp 391	H H	P F, P, S
	Wilbrandia sp. Bulbostylis capillaris (L.) C. B. Clarke Bulbostylis scabra (Presl.) C. B. Clarke Cyperus ferax Benth.	Aa 364 Sp 437 Sp 391 Sp 609	H H H	P F, P, S P
	Wilbrandia sp. Bulbostylis capillaris (L.) C. B. Clarke Bulbostylis scabra (Presl.) C. B. Clarke Cyperus ferax Benth. Cyperus schomburgkianus Nees.	Aa 364 Sp 437 Sp 391 Sp 609 Sp 443	Н Н Н Н	P F, P, S P E
Cyperaceae	Wilbrandia sp. Bulbostylis capillaris (L.) C. B. Clarke Bulbostylis scabra (Presl.) C. B. Clarke Cyperus ferax Benth. Cyperus schomburgkianus Nees. Rhynchospora barbata (Vahl) Kunth	Aa 364 Sp 437 Sp 391 Sp 609 Sp 443 Sp 622	H H H H H	P F, P, S P E E, P
Cyperaceae	Wilbrandia sp. Bulbostylis capillaris (L.) C. B. Clarke Bulbostylis scabra (Presl.) C. B. Clarke Cyperus ferax Benth. Cyperus schomburgkianus Nees. Rhynchospora barbata (Vahl) Kunth Dioscorea campestris Grisieb.	Aa 364 Sp 437 Sp 391 Sp 609 Sp 443 Sp 622 Sp227	H H H H G	P F, P, S P E E, P F, S
Cyperaceae Dioscoreaceae	Wilbrandia sp. Bulbostylis capillaris (L.) C. B. Clarke Bulbostylis scabra (Presl.) C. B. Clarke Cyperus ferax Benth. Cyperus schomburgkianus Nees. Rhynchospora barbata (Vahl) Kunth Dioscorea campestris Grisieb. Dioscorea aff. rumicoides Griseb.	Aa 364 Sp 437 Sp 391 Sp 609 Sp 443 Sp 622 Sp227 Sp 417	H H H H G G	P F, P, S P E E, P F, S P, S
Cyperaceae Dioscoreaceae Eriocaulaceae	Wilbrandia sp. Bulbostylis capillaris (L.) C. B. Clarke Bulbostylis scabra (Presl.) C. B. Clarke Cyperus ferax Benth. Cyperus schomburgkianus Nees. Rhynchospora barbata (Vahl) Kunth Dioscorea campestris Grisieb. Dioscorea aff. rumicoides Griseb. Paepalanthus sp.	Aa 364 Sp 437 Sp 391 Sp 609 Sp 443 Sp 622 Sp227 Sp 417 Sp 632	H H H H G G T	P F, P, S P E E, P F, S P, S E, F
Cyperaceae Dioscoreaceae Eriocaulaceae	Wilbrandia sp. Bulbostylis capillaris (L.) C. B. Clarke Bulbostylis scabra (Presl.) C. B. Clarke Cyperus ferax Benth. Cyperus schomburgkianus Nees. Rhynchospora barbata (Vahl) Kunth Dioscorea campestris Grisieb. Dioscorea aff. rumicoides Griseb. Paepalanthus sp. Acalifa cf. multicaulis Muell. Arg.	Aa 364 Sp 437 Sp 391 Sp 609 Sp 443 Sp 622 Sp227 Sp 417 Sp 632 Sp 518	H H H H G G T F	P F, P, S P E E, P F, S P, S E, F S
Cyperaceae Dioscoreaceae Eriocaulaceae	Wilbrandia sp. Bulbostylis capillaris (L.) C. B. Clarke Bulbostylis scabra (Presl.) C. B. Clarke Cyperus ferax Benth. Cyperus schomburgkianus Nees. Rhynchospora barbata (Vahl) Kunth Dioscorea campestris Grisieb. Dioscorea aff. rumicoides Griseb. Paepalanthus sp. Acalifa cf. multicaulis Muell. Arg. Cnidoscolus urens Arthur	Aa 364 Sp 437 Sp 391 Sp 609 Sp 443 Sp 622 Sp227 Sp 417 Sp 632 Sp 518 Sp 205	H H H H G G T F	P F, P, S P E E, P F, S P, S E, F S E, F, P, S
Cyperaceae Dioscoreaceae Eriocaulaceae	Wilbrandia sp. Bulbostylis capillaris (L.) C. B. Clarke Bulbostylis scabra (Presl.) C. B. Clarke Cyperus ferax Benth. Cyperus schomburgkianus Nees. Rhynchospora barbata (Vahl) Kunth Dioscorea campestris Grisieb. Dioscorea aff. rumicoides Griseb. Paepalanthus sp. Acalifa cf. multicaulis Muell. Arg. Cnidoscolus urens Arthur Croton heliotropiifolius H. B. & K.	Aa 364 Sp 437 Sp 391 Sp 609 Sp 443 Sp 622 Sp227 Sp 417 Sp 632 Sp 518 Sp 205 Aa 393	H H H H G G T F F	P F, P, S P E E, P F, S P, S E, F S E, F, P, S
Cyperaceae Dioscoreaceae Eriocaulaceae	Wilbrandia sp. Bulbostylis capillaris (L.) C. B. Clarke Bulbostylis scabra (Presl.) C. B. Clarke Cyperus ferax Benth. Cyperus schomburgkianus Nees. Rhynchospora barbata (Vahl) Kunth Dioscorea campestris Grisieb. Dioscorea aff. rumicoides Griseb. Paepalanthus sp. Acalifa cf. multicaulis Muell. Arg. Cnidoscolus urens Arthur Croton heliotropiifolius H. B. & K. Croton lundianus Muell. Arg	Aa 364 Sp 437 Sp 391 Sp 609 Sp 443 Sp 622 Sp227 Sp 417 Sp 632 Sp 518 Sp 205 Aa 393 Sp 271	H H H H G G T F F T	P F, P, S P E E, P F, S P, S E, F S E, F, P, S
Cyperaceae Dioscoreaceae Eriocaulaceae Euphorbiaceae	Wilbrandia sp. Bulbostylis capillaris (L.) C. B. Clarke Bulbostylis scabra (Presl.) C. B. Clarke Cyperus ferax Benth. Cyperus schomburgkianus Nees. Rhynchospora barbata (Vahl) Kunth Dioscorea campestris Grisieb. Dioscorea aff. rumicoides Griseb. Paepalanthus sp. Acalifa cf. multicaulis Muell. Arg. Cnidoscolus urens Arthur Croton heliotropiifolius H. B. & K. Croton lundianus Muell. Arg Dalechampia cf. ficifolia Lam.	Aa 364 Sp 437 Sp 391 Sp 609 Sp 443 Sp 622 Sp227 Sp 417 Sp 632 Sp 518 Sp 205 Aa 393 Sp 271 Sp 217	H H H H G G T F F T T TR	P F, P, S P E E, P F, S P, S E, F S E, F, P, S P E S
Cyperaceae Dioscoreaceae Eriocaulaceae	Wilbrandia sp. Bulbostylis capillaris (L.) C. B. Clarke Bulbostylis scabra (Presl.) C. B. Clarke Cyperus ferax Benth. Cyperus schomburgkianus Nees. Rhynchospora barbata (Vahl) Kunth Dioscorea campestris Grisieb. Dioscorea aff. rumicoides Griseb. Paepalanthus sp. Acalifa cf. multicaulis Muell. Arg. Cnidoscolus urens Arthur Croton heliotropiifolius H. B. & K. Croton lundianus Muell. Arg Dalechampia cf. ficifolia Lam. Euphorbia comosa Vell.	Aa 364 Sp 437 Sp 391 Sp 609 Sp 443 Sp 622 Sp227 Sp 417 Sp 632 Sp 518 Sp 205 Aa 393 Sp 271 Sp 217 Sp 446	H H H H G G T F F T T F TR	P F, P, S P E, P F, S P, S E, F S E, F, P, S P E S E, F, P, S
Cyperaceae Dioscoreaceae Eriocaulaceae	Wilbrandia sp. Bulbostylis capillaris (L.) C. B. Clarke Bulbostylis scabra (Presl.) C. B. Clarke Cyperus ferax Benth. Cyperus schomburgkianus Nees. Rhynchospora barbata (Vahl) Kunth Dioscorea campestris Grisieb. Dioscorea aff. rumicoides Griseb. Paepalanthus sp. Acalifa cf. multicaulis Muell. Arg. Cnidoscolus urens Arthur Croton heliotropiifolius H. B. & K. Croton lundianus Muell. Arg Dalechampia cf. ficifolia Lam. Euphorbia comosa Vell. Euphorbia insulana Vell.	Aa 364 Sp 437 Sp 391 Sp 609 Sp 443 Sp 622 Sp227 Sp 417 Sp 632 Sp 518 Sp 205 Aa 393 Sp 271 Sp 217 Sp 446 Sp 450	H H H H G G T F F T F TR F	P F, P, S P E E, P F, S P, S E, F S E, F, P, S P E S E, F, P, S E
Cyperaceae Dioscoreaceae Eriocaulaceae	Wilbrandia sp. Bulbostylis capillaris (L.) C. B. Clarke Bulbostylis scabra (Presl.) C. B. Clarke Cyperus ferax Benth. Cyperus schomburgkianus Nees. Rhynchospora barbata (Vahl) Kunth Dioscorea campestris Grisieb. Dioscorea aff. rumicoides Griseb. Paepalanthus sp. Acalifa cf. multicaulis Muell. Arg. Cnidoscolus urens Arthur Croton heliotropiifolius H. B. & K. Croton lundianus Muell. Arg Dalechampia cf. ficifolia Lam. Euphorbia comosa Vell.	Aa 364 Sp 437 Sp 391 Sp 609 Sp 443 Sp 622 Sp227 Sp 417 Sp 632 Sp 518 Sp 205 Aa 393 Sp 271 Sp 217 Sp 446	H H H H G G T F F T T F TR	P F, P, S P E E, P F, S P, S E, F S E, F, P, S P E S E, F, P, S

Tabela 1. Continuação

FAMÍLIA	ESPÉCIE	N coleto	r FV	ÁREA
	Mabea sp.	Sp 535	F	S
	Manihot glaziovii Muell. Arg.		F	E, P
	Stillingia trapezoidea Ule	Sp 583	F	E
Gentianaceae	Schultesia guyanensis (Aubl.) Malme	Sp 620	T	E, F
Gesneriaceae	Paliavana tenuiflora Mansf.	Sp379	F	F
	Sinningia nordestina Chatems & Baracho	Aa 363	T	S
Heliconiaceae	Heliconia psittacorum Sesse & Moc.	Sp 220	Н	S
Lamiaceae	Hypenia salzmanni J.A. Schmidt	Sp 435	T	P
	Hyptis martiusi Benth.	Sp 307	T	P
Leguminosae				
Caesalpinoideae		Sp 274	F	Е
	Caesalpinia pyramidalis Tul.	Sp 268	F	P
	Chamaecrista diphylla Greene	Sp 538	T	S
	Chamaecrista flexuosa (L.) Greene	Sp 318	T	P
	Senna macranthera (Colladon) H.S. Irwin & Barneby	Sp 418	F	P
	Senna martiana (Benth.) H.S. Irwin & Barneby	Aa 245	F	E
	Senna obtusifolia (L.) H.S. Irwin & Barneby	Sp 282	T	E
	Senna rizini H.S. Irwin & Barneby	Sp 247	F	P
	Senna splendida (Vogel) H.S. Irwin & Barneby	Aa 243	F	E, P
Mimosoideae	Mimosa arenosa Poir.	Sp 276	F	E, P
	Mimosa cf hypoglauca Mart.	9973	F	P
	Mimosa paraibana Barneby	Aa 391	F	P
Papilionoideae	Bowdichia virgilioides H. B. & K.		F	E
	Canavalia brasiliensis Benth.	Sp 275	TR	E
	Centrosema cf sagittatum Malme	Aa 382	TR	E
	Cratylia nuda Tul.	Sp 389	TR	F
	Crotalaria sp.	Sp 278	F	E
	Crotalaria vitellina Ker-Gawl.	Sp 207	F	E, F, P, S
	Dioclea cf. violacea Benth.	Sp 287	TR	E, P
	Macroptilium atropurpureum Urb.	Sp 302	TR	P
	Phaseolus reptans Ducke.	Aa 384	TR	E
	Phaseolus sp.	Sp 616	TR	E
	Vigna peduncularis Fawcett. & Rendle	Aa 360	TR	S
	Zornia brasiliensis Vog.	Aa 397	T	P
	indeterminada	Aa 242	C	E, P
Loazaceae	Loaza rupestris Gardn.	Sp 309	Н	P
Loranthaceae	Phoradendron sp.	Sp 303	E	P
Lythraceae	Lafoencia cf. glyptocarpa Koehne	Sp 319	C	P
Malpighiaceae	Byrsonima gardnerana A. Juss.	Sp 502	F	P
	Heteropteris coriacea A. Juss.	Aa 253	TR	E
	Stigmaphyllon paralias A. Juss.	Sp 316	T	P, S
	Stigmaphyllon rotundifolium A. Juss.	Sp 420	TR	P
Malvaceae	Herissanthia cf. tiubae (K. Schum.) Briz.	Sp 412	T	P
	Pavonia cancellata Cav.	Sp 405	C	P
	Sida galheirensis Ulbr.	Sp 248	T	P
Marantaceae	Maranta cf. noctiflora Kegel & Koern.	Sp 300	Н	S
Marcgraviaceae	Norantea brasiliense Choisy	Sp 498	F	F
Melastomataceae	Clidemia hirta D. Don.	Aa 340	C	S
	indeterminada	Sp 623	F	F
	Siphanthera arenaria Cogn.	Sp 434	F	P
	Tibouchina grandifolia Cogn.	Sp 376	F	E, F, P, S

Tabela 1. Continuação

FAMÍLIA	ESPÉCIE	N coletor	FV	ÁREA
Myrsinaceae	Myrsine rapanea Roem. & Schult.	Aa 368	F	S
	Rapane sp.			
Myrtaceae	Eugenia sp. 1	Sp 204	F	E
	Eugenia sp. 2	Sp 581	F	S
Onagraceae	Ludwigia sp.		C	F
Orchidaceae	Brassovola tuberculata Hook.	Sp 522	Н	E
	Cyrtopodium intermedium Brade		Н	F, P
	Cyrtopodium polyphyllum (Vell.) Pabst ex F. Barros	Sp 467	Н	E, F, P, S
	Encyclia longifolia Schlechter.	Aa 276	Н	E, F
	Epidendrum cinnabarinum Salzm. ex Lindl.	Sp444	Н	E, F, S
	Epidendrum secundum Jacq.	9796	Н	É, F
	Habenaria obtusa Lindl.	Sp 388	G	E, F, P
	Pleurothallis ochreata Lindl.	Aa 263	Н	E, F, P
	Prescotia pleiodes Lindl.	Sp 615	G	E, F, P, S
Oxalidaceae	Oxalis psoraleoides Mart.	Aa 381	F	E
3.1 4 11440040	Oxalis sp. 1	Aa 400	F	P
	Oxalis sp. 2	Sp 395	F	F
Phytolaccaceae	Microtea glochidiata Moq.	Sp 253	T	P
Piperaceae	Peperômia blanda (Jacq.) H.B. & K.	Sp 233 Sp 218	C	S
Plumbaginaceae	Plumbago scandens L.	Sp 216 Sp 415	C	P
Poaceae	Anthephora hermaphrodita (L.) Kuntze	Sp 261a	T	P
roaceae	Aristida adscensionis L.	-	T	r P
		Sp 262	T	
	Digitaria insularis Ekman	Sp 483		E, P
	Olyra latifolia L.	Sp 299	T	S
	Panicum trichoides Chand. & Schlecht	Sp 390	T	F
	Panicum velutinosum Trin.	Sp 608	T	P
	Rynchelytrum repens (Willd.) C.E. Hubbard	Sp 442	T	E, P
	Setaria geniculata Beauv.	Sp 607	T	P
	Tragus berteronianus Schult.	Sp 261b	T	P
- ·	Tripogon spicatus (Nees) Ekman	Sp 264	T	P
Polygalaceae	Bredemeyera sp	Sp 629	F	F
	Polygala sp.	Sp 618	T	E
	Polygala glochidiata H. B. & K.	Sp 537	T	E <u>,</u> S
Pontederiaceae	Eichornia paniculata Solms.	Sp 284	T	_ E
Portulacaceae	Portulaca cf. halimoides L.	Sp 600	T	E, F, P
	Portulaca sp. 1	Sp 480	T	Е
	Portulaca sp. 2	Sp 239	T	P
	Talinum sp.	Sp 637	T	F
Rubiaceae	Borreria verticilada G. F. W. Mey.	Sp 306	C	P, S
	Diodia apiculata (Roem. & Schult.) K. Schum.	Sp 602	C	P, S
	Guettarda sericea Muell. Arg.	Aa 291	F	E
	Manettia cordifolia Mart.	Sp 298	F	S
	Mitracarpus frigidus (Roem. & Schult.) K. Schum.	Sp 449	C	E
	Mitracarpus scabellus Benth.	So 605	C	F, P
	Palicourea crocea Roem. & Schult.	9746	F	S
	Psycotria bracteocardia Muell. Arg.	9751	F	S
	Richardia grandiflora Britton	Sp 283	C	E
	Staelia virgata (Roem. & Schult.) K. Schum.	Sp 378	C	E, F, P, S
Sapindaceae	Alophylus laevigatus Radlk.	Sp 516	F	S
1	Cardiospermum halicacabum L.	Sp 280	TR	Ë
	Serjania marginata Casar	Sp 421	TR	P
	, ,	•		Continua

Tabela 1. Continuação

FAMÍLIA	ESPÉCIE	N coletor	FV	ÁREA
Scrophulariaceae	Ameroglossum sp. nv.	Sp 474	С	E, S
-	Angelonia sp 1	Sp 406	T	P
	Angelonia sp 2	Sp 647	T	P
	Scoparia dulcis L.	Sp 267	T	P
Smilacaceae	Smilax brasiliensis Spreng.	Aa 293	Н	E
Solanaceae	Solanum cf. americanum Mill.	Sp 404	F	P
	Solanum sp.	•	F	F
Sterculiaceae	Melochia tomentosa L.	Sp 291	F	E, P
	Walteria sp.	Sp 482	F	E
Tiliaceae	Luehea sp.	9962	F	P
Turneraceae	Turnera indica	Sp 255	T	P
Verbenaceae	Lantana camara L.	Sp 256	F	P
	Lantana sp.	Sp 436	F	P
	Starchytarpheta sp.	Sp 612	T	E
Vitaceae	Cissus cf. sulcicaulis Planch	Sp 566	TR	Е
	Cissus cf. ternata J. F. Gmel.	Sp 504	TR	P
	Cissus erosa Rich.	Sp 534	TR	F, S
	Cissus quinquefolia Desf.	Sp 292	TR	É
Zingiberaceae	Costus cf. brasiliensis K. Schum.	Aa 342	Н	S

Os gêneros mais representativos foram *Ipomoea* com nove espécies, seguido por *Senna* com cinco espécies e *Mandevilla* e *Cissus* com quatro espécies cada.

O inselbergue de Pocinhos foi a área de estudo que apresentou maior riqueza de táxons, com 104 espécies, seguida da área de Esperança (79), Serraria (62) e Fagundes (58), relação mantida quando se refere ao número de famílias e gêneros (Fig. 3). O total de táxons exclusivos de cada área de estudo foi de 72%, onde 65 espécies (30%) ocorreram somente em Pocinhos, 38 espécies (17%) em Esperança, 30 espécies (14%) em Serraria e 24 espécies (11%) em Fagundes. Os demais táxons comuns a duas ou três áreas, perfizeram apenas 28% das espécies. Do total das espécies coletadas, *Anthurium affine*, *A. petrophilum*, *Cnidosculus urens*, *Crotalaria vitelina*, *Cyrtopodium polyphyllum*, *Encholirium spectabile*, *Euphorbia comosa*, *Marsdenia loniceroides*, *Melocactus ernestii*, *Orthophytum disjunctum*, *Prescottia phleiodes*, *Staelia virgata* e *Tibouchina grandifolia*, representando apenas 6% das espécies, estiveram presentes em todas as áreas estudadas.

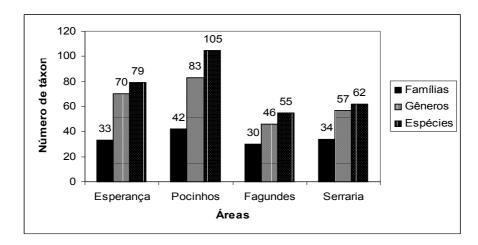


Figura 3. Distribuição da riqueza dos táxons por área estudada em quatro inselbergues da Paraíba.

Observando a presença e ausência das espécies para os quatro inselbergues analisados utilizando o índice de Jaccard, (Fig. 4), foi possível identificar uma maior similaridade dos inselbergues Esperança e Fagundes entre espécies (20%) e gêneros (33%). Estes municípios encontram-se micorregião, na mesma juntamente com Pocinhos que apresentou similaridade de 15% em relação Esperança e Fagundes e de 13% em relação Serraria.

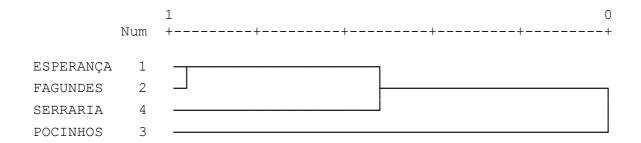


Figura 4. Dendrograma de similaridade florística, entre os quatro inselbergues, derivado da análise de agrupamento hierárquico pelo método UPGMA - Jaccard.

Comparando as espécies encontradas nos inselbergues estudados com as de outros afloramentos do Brasil, observou-se que na região Nordeste, a maior similaridade foi entre os inselbergues de Timbaúba (Porto 2003) e Esperança (12%), Timbaúba e Pocinhos (10%), Milagres e Pocinhos (7%) e Quixadá (Oliveira 2002)e Esperança (6%). Esta similaridade maior com o inselbergue Timbaúba já era esperada, visto que a área estudada por Porto (2003) situava-se cerca de dois quilômetros do inselbergue de Lagoa de Pedra,

Esperança e a mesma observação foi feita por Almeida (2004) ao estudar as populações de orquídeas nestes mesmos Inselbergues. No entanto, é surpreendente que a similaridade entre esses dois inselbergues seja menor do que a encontrada quando se compara aos inselbergues estudados, onde qualquer das comparações resultou em similaridade acima de 14%, já que distam pelo menos 150 km entre si. Todas estas características devem, provavelmente, estar ligadas ao tamanho, topografia e posição dos inselbergues, o que influencia na diversidade de microhabitats sobre a rocha, determinando assim a ocorrência de diferentes espécies (Barthlott *et al.* 1993; Ibisch *et al.* 1995, Safford & Martinelli 2000).

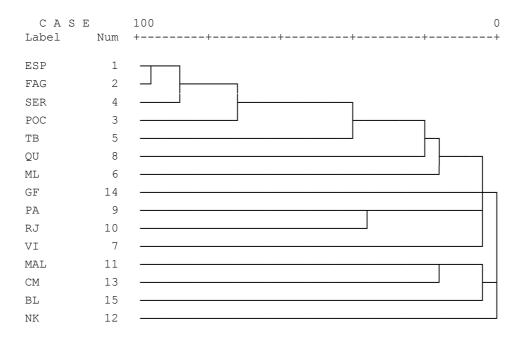


Figura 5. Dendrograma de similaridade florística, entre 15 inselbergues, derivado da análise de agrupamento hierárquico pelo método UPGMA - Jaccard. Sendo: Esp = Esperança; Fag= Fagundes; Ser = Serraria; Poc = Pocinhos; TB = Fazenda Timbaúba, Esperança - Paraíba (Porto 2003); QU = Quixadá - Ceará (Oliveira 2002); ML = Milagres - Bahia (França *et al.* 1997); VI = Viçosa - MG (Caiafa 2002); PA = Pão de Açúcar - Rio de Janeiro (Safford & Martinelli 2000); RJ = Rio de Janeiro (Meirelles *et al.*, 1999); MAL = Malawi (Porembski 1996) NK = Nama Karoo (Porembski *et al.* 1996); CM = Costa do Marfim (Porembski 2000); GF = Guiana Francesa (Sarthou & Villiers 1998); BL = Bolívia (Ibisch *et al.* 1995).

Ao comparar os resultados obtidos com os de outras regiões brasileiras, 3% de similaridade foi encontrado entre os inselbergues Rio de Janeiro e Esperança, 2% entre Viçosa e Fagundes, Pão de Açúcar e Esperança. Inselbergues de outras regiões do mundo apresentaram similaridade de 1% ou menos com relação às quatro áreas estudadas (Fig. 5). Quando a comparação se dá em nível genérico (Fig. 6), os inselbergues brasileiros estudados mais próximos são Pocinhos e Timbaúba; Pocinhos e Quixadá com 36% e 25%

de similaridade respectivamente. Entre os inselbergues de outras regiões do mundo, a maior similaridade foi de 13% entre Esperança e Guiana Francesa.

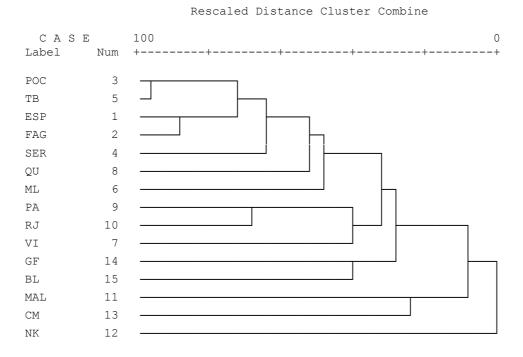


Figura 6. Dendrograma de similaridade florística, entre os 15 inselbergues, em nível genérico, derivado da análise de agrupamento hierárquico pelo método UPGMA - Jaccard. Sendo: Esp = Esperança; Fag= Fagundes; Ser = Serraria; Poc = Pocinhos; TB = Fazenda Timbaúba, Esperança - Paraíba (Porto, 2003); QU = Quixadá - Ceará (Oliveira *et al.*, 2002); ML = Milagres - Bahia (França *et al.*, 1997); VI = Viçosa - MG (Caiafa, 2002); PA = Pão de Açúcar - Rio de Janeiro (Safford & Martinelli, 2000); RJ = Rio de Janeiro (Meirelles *et al.*, 1999); MAL = Malawi (Porembski, 1996) NK = Nama Karoo (Porembski *et al.*, 1996); CM = Costa do Marfim (Porembski, 2000); GF = Guiana Francesa (Sarthou & Villiers, 1998); BL = Bolívia (Ibisch *et al.*, 1995).

Comparando a presença e ausência de famílias entre os afloramentos brasileiros, as áreas mais similares foram novamente Esperança e Timbaúba (57%) e Pocinhos e Milagres (50%). Se comparados aos de outras regiões do mundo considerados neste estudo, o mais próximo em termos de famílias foi o da Guiana Francesa com 42% de similaridade com Serraria.

As 220 espécies encontradas nos quatro inselbergues estudados, podem ser agrupadas por suas formas de vida, refletindo parcialmente a estrutura da cobertura vegetal. De modo geral, entre as espécies encontradas nos inselbergues da Paraíba, as fanerófitas foram as mais representativas (30%), seguidas de terófitas (27%), trepadeiras (17%) e caméfitas (13%) (Fig. 7). Estes resultados coincidem com os levantamentos obtidos por Porto (2003) e Oliveira (2002), ambos em inselbergues do nordeste brasileiro, refletindo provavelmente, a disponibilidade hídrica semelhante entre as áreas.

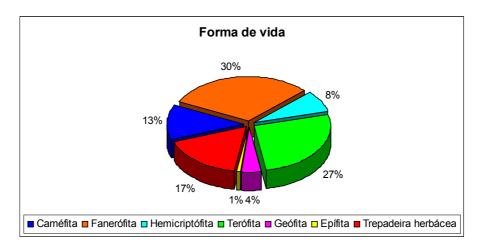


Figura 7. Espectro das formas de vida encontradas nos inselbergues de Esperança, Fagundes, Pocinhos e Serraria (PB).

Tabela 2. Comparação em termos percentuais das formas de vida de Raunkier entre inselbergues do Brasil e de outras regiões do mundo. Esp = Esperança; Fag = Fagundes; Poc = Pocinhos; Ser = Serraria; TB = Timbaúba, Esperança -PB (Porto 2003); PA = Pão de Açúcar - RJ (Safford & Martinelli 2000); V = Venezuela (Gröger, 2000); Z = Zimbabue (Seine *et al.* 1998); CM = Costa do Marfim (Porembski *et al.* 1996).

	ESP	FAG	POC	SER	ТВ	PA	V	Z	CM
Caméfita	14	20	16	16	12	42,1	11	15,3	21,7
Fanerófitas	37	22	24	37	40	38,9	39	22,5	18,3
Geófitas	5	7	6	5	-	5,3	5	7,7	8,3
Hemicriptófitas	10	17	9	10	4,8	8,4	13	13,1	6,7
Terófitas	22	27	24	15	42	5,3	16	34,6	45
Trepadeira herbácea	12	7	19	18	-	5,1	10	2,7	-

Fanerófitas são arbustos ou pequenas árvoretas, que mostram afinidades ecológicas com habitats rochosos ou habitats abertos que não suportam árvores maiores. Em Fagundes são as espécies terófitas que apresentam maior percentual (Tabela 2). Germinando e frutificando num curto espaço de tempo, elas são bem adaptadas aos habitats de inselbergues, que secam drasticamente após a estação chuvosa (Seine *et al.*, 1998). Os resultados obtidos neste trabalho mostram que as trepadeiras herbáceas são as formas de vida com relativa representatividade nos inselbergues da Paraíba. Apesar de sua ocorrência ser mais incomum nos inselbergues de outras regiões do mundo, também foram abundantes nos inselbergues da Guiana venezuelana (Gröger 2000), onde seu hábito trepador é suportado pela presença de muitas fanerófitas. Caméfitas e Hemicriptófitas são menos importantes nos quatro inselbergues da Paraíba, assim como para Zimbabue (Seine *et al.* 1998) e Venezuela (Gröger 2000). Em contraste, caméfitas apresentaram-se com destaque no Pão de Açúcar (Safford & Martinelli 2000) e Costa do Marfim (Porembski *et al.* 1996).

Além das epífitas, geófitas são as formas mais raras nos inselbergues estudados. Provavelmente a escassa cobertura de solo dos inselbergues seja a principal barreira para o estabelecimento de espécies com esta forma de vida. O mesmo foi observado por Seine *et al.* (1998) nos inselbergues de Zimbabue.

Fitossociologia - Foram medidos 5409 indivíduos pertencentes a 114 espécies, 104 gêneros e 66 famílias de Angiospermas nas parcelas das quatro áreas estudadas. Destes espécimes, 2155 indivíduos ocorreram no inselbergue de Serraria, 1482 no de Fagundes, 932 no de Esperança e 840 no afloramento de Pocinhos (Tab. 3).

Tabela 3. Análise da diversidade de espécies nos inselbergues da Paraíba. NI = Número de Indivíduos na amostra; NE = Número de Espécies; H' = Índice de Diversidade de Shannon-Weaver; C = Índice de Equabilidade de Pielou; J = Índice de Simpson.

Inselbergues	NI	NE	H'	С	J
Serraria	2155	17	1,55	0,70	0,55
Fagundes	1482	36	2,81	0,91	0,78
Esperança	932	31	2,48	0,88	0,72
Pocinhos	840	30	2,31	0,83	0,68

A espécie que apresentou maior número de indivíduos nos quatro inselbergues foi Cyrtopodium polyphyllum com 1186, seguida de Encholirium spectabile com 688, Epidendrum cinnabarinum (648), Hohenbergia catingae, (340), e de Euphorbia comosa (306). As demais espécies tiveram menos que 260 indivíduos registrados. Das três espécies mais abundantes, Cyrtopodium polyphyllumn e Encholirium spectabile forma as que ocorreram em todos os inselbergues estudados e Epidendrum cinnabarinum em três dos quatro afloramentos. As espécies com maior VI em cada um dos inselbergues foram: Melocactus ernestii (36,7%) - Esperança; Encholirium spectabile (27,4%) - Pocinhos; Epidendrum cinnabarinum (28,9%) - Serraria e Euphorbia comosa (8,9%) - Fagundes.

Os valores do Índice de Diversidade de Shannon-Wiener (H') foram maiores nos afloramentos mais antropizados (Tab. 3). Fagundes e Esperança são os inselbergues que sofrem maior influência da população. O inselbergue de Esperança, não apresenta praticamente nada da vegetação original no seu entorno, constituído atualmente quase que exclusivamente de cultivos de subsistência. Apesar das áreas circunvizinhas ao inselbergue de Pocinhos também apresentarem alguns pontos com culturas de subsistência, parte de sua vegetação de entorno ainda está preservada. Serraria, com menor índice de diversidade

apresentou uma vegetação florestal de entorno relativamente bem preservada e representa um remanescente da Mata Atlântica dos Brejos de Altitude. Em estudo desenvolvido com orquídeas em três dos quatro inselbergues estudados, Almeida (2004) também encontrou maior diversidade específica (H' = 1,732) no mesmo inselbergue de Fagundes.

A diversidade florística dos inselbergues parece estar sujeita às influências climáticas, tamanho do inselbergue, inclinação e quantidade de microhabitats que apresentam, bem como à ação antrópica sofrida. O índice de Shannon-Wiener (H') mostrou um aumento na diversidade específica no sentido do brejo para o agreste, confirmando os dados obtidos por Almeida (2004). Observações feitas por Porembski e Barthlott (1997) em inselbergues africanos, indicam uma maior diversidade nos inselbergues da savana africana em relação à inselbergues próximos a florestas tropicais. Estudos na África Ocidental revelaram que uma maior variação microclimática influencia a florística e fisionomia da vegetação sobre o afloramento e adjacências (Szarzynski 2000).

O inselbergue de Serraria foi o que apresentou menor valor para o índice de Diversidade de Shannon-Wiener (H'), seguido de Pocinhos, Esperança e Fagundes com o maior índice de todos. Provavelmente o fato de apresentar uma vegetação de entorno preservada e superfície mais homogênea, torne o inselbergue de Serraria mais estável do que os demais (Porembski 2002; Parmantier 2003; Almeida 2004).

A maior abundância de espécies ocorreu em Fagundes, como indica o índice de equabilidade de Pielou (C) enquanto em Serraria foi encontrada a menor abundância. Apesar de restrita à família Orquidaceae, Almeida (2004) encontrou em seus estudos, a mesma relação observada entre os inselbergues de Fagundes, Serraria e Esperança.

No inselbergue de Serraria foram registrados 2155 indivíduos (Tab. 4), pertencentes a 17 espécies e 17 gêneros de 13 famílias. O maior número de indivíduos foi observado em *Cyrtopodium polyphyllum*, representando 46% do total de indivíduos levantados, *Epidendrum cinnabarinum* (26%), *Encholirium spectabile* (11%) e *Hohenbergia catingae* (7%), que juntos totalizaram 89%. *Encholirium spectabile*, *Marsdenia loniceroides* e *Epidendrum cinnabarinum* ocorreram em 100% das parcelas.

Tabela 4. Parâmetros fitossociológicos das espécies do inselbergue da Fazenda Santa Helena, Serraria, PB, Brasil. NI = Número de Indivíduos; FA = Freqüência Absoluta; FR = Frequência Relativa; DR = Densidade Relativa; DoAt = Dominância Absoluta do Táxon; DoRt = Dominância Relativa do Táxon e VI = Valor de Importância.

Espécies	NI	FA	FR	DR	DoAt	DoRt	VI	VI (%)
Epidendrum cinnabarinum Lindl.	552	100	13,0	25,6	48,4	48,0	86,6	28,9
Cyrtopodium polyphyllum (Vell.) F. Barros	996	70	9,0	46,2	23,1	22,9	78,2	26,0
Encholirium spectabile Schult. f.	227	100	13,0	10,5	16,4	16,3	39,8	13,2
Hohenbergia catingae Ule	148	80	10,4	6,9	7,6	7,6	24,8	8,3
Marsdenia loniceroides Fourn.	60	100	13,0	2,8	2,7	2,7	18,5	6,2
Euphorbia comosa Vell.	104	80	10,4	4,8	0,5	0,5	15,7	5,2
Tibouchina grandifolia Cogn.	21	90	11,7	1,0	0,3	0,3	12,9	4,3
Hippeastrum psitacinum Herb.	7	30	3,9	0,3	0,1	0,1	4,3	1,4
Ortophytum disjunctum L. B. Smith.	12	20	2,6	0,6	0,8	0,8	3,9	1,3
Pilosocereus pachicladus Ritter	8	20	2,6	0,4	0,6	0,6	3,6	1,2
Cnidoscolus urens Arthur	8	20	2,6	0,4	0,2	0,2	3,2	1,1
Prescottia phleoides Lindl.	4	10	1,3	0,2	0,0	0,0	1,5	0,5
Clusia nemorosa G.F.W. Mey	2	10	1,3	0,1	0,0	0,0	1,4	0,5
Anturium petrophyllum K. Krause.	2	10	1,3	0,1	0,0	0,0	1,4	0,5
Bulbostylis scabra (Presl.) C. B. Clarke	2	10	1,3	0,1	0,0	0,0	1,4	0,5
Rapanea sp.	1	10	1,3	0	0,0	0,0	1,4	0,4
Begonia sp. 1	1	10	1,3	0	0,0	0,0	1,4	0,5
Total	2155	770	100	100	100,7	100	300	100

Os maiores valores de freqüência relativa e índice de valor de importância foram da orquídea *Epidendrum cinnabarinum*, que também apresentou a maior dominância absoluta. Esta espécie é encontrada em grande abundância sobre a rocha e apresenta-se muitas vezes com profusa ramificação chegando a formar touceiras sobre o afloramento.

No inselbergue de Fagundes com 36 espécies, 30 gêneros e 17 famílias, as espécies que apresentaram o maior número de indivíduos foram: *Tilandsia* sp 1 (258), representando 17% do total de indivíduos levantados, seguida de *Epidendrum secundum* (251) e *Euphorbia comosa* (150). Para as demais espécies foram registrados menos de 100 indivíduos por espécie. Apenas *Euphorbia comosa* ocorreu em 100% das amostras analisadas e apresentou freqüência relativa de 7,4%. A maior dominância absoluta foi registrada por *Encholirium spectabile*. Todavia, *Euphorbia comosa* e *Cyrtopodium intermedium* apresentaram o maior Valor de Importância (26,7%) (Tab. 5). Diferentemente do inselbergue de Serraria, em Fagundes observou-se maior número de táxons e houve melhor distribuição dos indivíduos entre as espécies.

Tabela 5. Parâmetros fitossociológicos das espécies do inselbergue da Pedra de Santo Antônio, Fagundes, PB, Brasil. NI = Número de Indivíduos; FA = Freqüência Absoluta; FR = Frequência Relativa; DR = Densidade Relativa; DoAt = Dominância Absoluta do Táxon; DoRt = Dominância Relativa do Táxon e VI = Valor de Importância.

Espécies	NI	FA	FR	DR	DoAt	DoRt	VI	VI (%)
Euphorbia comosa Vell.	150	100	7,4	10,1	1,9	9,2	26,7	8,9
Cyrtopodium intermedium Brade	95	30	2,2	6,4	3,7	18,0	26,7	8,9
Hohenbergia catingae Ule	61	40	3,0	4,1	3,9	18,9	26,0	8,7
Tilandsia sp 1	258	30	2,2	17,4	1,3	6,4	26,0	8,7
Encholirium spectabile Schult. f.	36	40	3,0	2,4	4,1	19,5	24,9	8,3
Epidendrum secundum Jacq.	251	50	3,7	16,9	0,4	2,1	22,7	7,6
Cnidoscolus urens Arthur	41	80	5,9	2,8	1,2	5,7	14,3	4,8
Staelia virgata (Roem. & Schult.) K. Schum.	75	70	5,2	5,1	0,0	0,2	10,5	3,5
Prescottia phleoides Lindl.	72	60	4,4	4,9	0,0	0,1	9,4	3,1
Marsdenia loniceroides Fourn.	16	70	5,2	1,1	0,6	3,0	9,3	3,1
Tibouchina grandifolia Cogn.	24	80	5,9	1,6	0,2	1,0	8,6	2,9
Ortophytum disjunctum L. B. Smith.	24	60	4,4	1,6	0,3	1,6	7,7	2,6
Anthurium affine Schott.	12	60	4,4	0,8	0,4	2,0	7,2	2,4
Habenaria obtusa Lindl.	68	30	2,2	4,6	0,0	0,2	7,0	2,4
Epidendrum cinnabarinum Lindl.	68	20	1,5	4,6	0,1	0,4	6,4	2,2
Pilosocereus pachicladus Ritter	5	40	3,0	0,3	0,6	2,8	6,1	2,0
Paliavana tenuiflora Mansf.	9	60	4,4	0,6	0,1	0,7	5,8	1,9
Ageratum conyzoides L.	58	20	1,5	3,9	0,0	0,1	5,5	1,8
Norontea brasiliense Choisy.	7	40	3,0	0,5	0,3	1,6	5,0	1,7
Bidens cf.bipinata Baill.	17	50	3,7	1,1	0,0	0,1	4,9	1,6
Commelina obliqua D. Don.	21	40	3,0	1,4	0,0	0,1	4,4	1,5
Tilandsia sp. 2	29	30	2,2	2,0	0,0	0,2	4,4	1,5
Hippeastrum psitacinum Herb.	9	40	3,0	0,6	0,1	0,6	4,2	1,4
Melocactus ernesti Vaupel	2	20	1,5	0,1	0,5	2,6	4,2	1,4
Pleurothallis ochreata Lindl.	3	20	1,5	0,2	0,4	1,7	3,4	1,1
Mitracarpus scabellus Benth.	27	20	1,5	1,8	0,0	0,1	3,4	1,1
Schultesia guyanensis (Aubl.) Malme	16	30	2,2	1,1	0,0	0,0	3,3	1,1
Anturium petrophyllum K. Krause.	9	10	0,7	0,6	0,2	0,8	2,1	0,7
Portulaca sp.	8	20	1,5	0,5	0,0	0,0	2,0	0,7
Begonia sp. 1	3	20	1,5	0,2	0,0	0,2	1,8	0,6
Blainvillea latifolia (L.f.) DC.	3	20	1,5	0,2	0,0	0,0	1,7	0,6
Pilosocereus gounellei (F.A.C. Weber) Byles & Rowley	1	10	0,7	0,1	0,1	0,3	1,1	0,4
Begonia sp 4	1	10	0,7	0,1	0,0	0,0	0,8	0,3
Commelina erecta L.	1	10	0,7	0,1	0,0	0,0	0,8	0,3
Cleomi affinis DC.	1	10	0,7	0,1	0,0	0,0	0,8	0,3
Callisia repens L.	1	10	0,7	0,1	0,0	0,0	0,8	0,3
Total	1482	1350	100	100	20,8	100	300	100

Em Esperança foram registrados 932 indivíduos (Tab. 6), pertencentes a 31 espécies e 29 gêneros de 19 famílias. As espécies que se destacaram com maior número de indivíduos foram: *Cyrtopodium polyphyllumn* (190), *Encholirium spectabile* (155), representando 30% do total de indivíduos inventariados na área, além de *Hohenbergia catingae* com 131 e *Melocactus ernestii* com 124.

Tabela 6. Parâmetros fitossociológicos das espécies do inselbergue de Lagoa de Pedra, Esperança, PB, Brasil. NI = Número de Indivíduos; FA = Freqüência Absoluta; FR = Frequência Relativa; DR = Densidade Relativa; DoAt = Dominância Absoluta do Táxon; DoRt = Dominância Relativa do Táxon e VI = Valor de Importância.

Dominancia relativa do Taxon e vi	v aloi		F					
Espécies	NI	FA	FR	DR	DoAt	DoRt	VI	VI (%)
Melocactus ernesti Vaupel	124	100	10,1	13,3	203,3	86,6	110,0	36,7
Encholirium spectabile Schult. f.	155	100	10,1	16,6	12,8	5,4	32,2	10,7
Cyrtopodium polyphyllum (Vell.) F. Barros	190	40	4,0	20,4	6,7	2,8	27,3	9,1
Hohenbergia catingae Ule	131	80	8,1	14,1	6,3	2,7	24,8	8,3
Euphorbia comosa Vell.	50	90	9,1	5,4	0,8	0,4	14,8	4,9
Anturium petrophyllum K. Krause	34	60	6,1	3,6	0,6	0,3	10,0	3,3
Ortophytum disjunctum L. B. Smith.	56	30	3,0	6,0	0,6	0,3	9,3	3,1
Pleurothallis ochreata Lindl.	8	80	8,1	0,9	0,5	0,2	9,2	3,1
Tibouchina grandifolia Cogn.	19	50	5,1	2,0	0,4	0,2	7,3	2,4
Marsdenia loniceroides Fourn.	12	50	5,1	1,3	0,1	0,1	6,4	2,1
Encyclia longifolia Schlechter.	36	20	2,0	3,9	0,6	0,3	6,1	2,1
Epidendrum cinnabarinum Lindl.	28	30	3,0	3,0	0,0	0,0	6,0	2,0
Schultesia guyanensis (Aubl.) Malme	10	30	3,0	1,1	0,0	0,0	4,1	1,4
Staelia virgata (Roem. & Schult.) K. Schum. Ameroglossum pernambucense E. B. Fischer,	25	10	1,0	2,7	0,0	0,0	3,7	1,2
S. Vogel & A. Lopes	11	20	2,0	1,2	0,1	0,0	3,2	1,1
Cnidoscolus urens Arthur	2	20	2,0	0,2	0,1	0,0	2,3	0,8
Anthurium affine Schott.	2	20	2,0	0,2	0,0	0,0	2,3	0,8
Crotalaria vitellina Ker-Gawl.	2	20	2,0	0,2	0,0	0,0	2,2	0,8
Rhynchospora barbata (Vahl) Kunth	2	20	2,0	0,2	0,0	0,0	2,2	0,7
Epidendrum secundum Jacq.	8	10	1,0	0,9	0,0	0,0	1,9	0,6
Agave sisalana Perr.	3	10	1,0	0,3	1,2	0,5	1,9	0,6
Habenaria obtusa Lindl.	7	10	1,0	0,7	0,1	0,0	1,8	0,6
Tabebuia impetiginosa (DC.) Toledo	3	10	1,0	0,3	0,3	0,1	1,5	0,5
Bowdichia virgilioides H. B. & K.	3	10	1,0	0,3	0,1	0,0	1,4	0,5
Commelina obliqua Vahl.	3	10	1,0	0,3	0,0	0,0	1,3	0,4
Eugenia sp. 2	2	10	1,0	0,2	0,0	0,0	1,2	0,4
Portulaca sp.	2	10	1,0	0,2	0,0	0,0	1,2	0,4
Vernonia chalybaea DC.	1	10	1,0	0,1	0,1	0,0	1,1	0,4
Stillingia trapezoidea Ule	1	10	1,0	0,1	0,0	0,0	1,1	0,4
Croton lundianus Muell. Arg.	1	10	1,0	0,1	0,0	0,0	1,1	0,4
Smilax brasiliensis Spreng.	1	10	1,0	0,1	0,0	0,0	1,1	0,4
Total	932	990	100	100	234,8	100	300	100

Para as demais espécies, foram registrados menos de 100 indivíduos por espécie. *Encholirium spectabile* e *Melocactus ernestii* foram as mais distribuídas na área, ocorrendo em 100% das amostras analisadas e apresentaram o mesmo valor de FR. A maior DR e VI foram registrados em *Melocactus ernestii*, devido à estrutura desta espécie e abundância sobre a rocha, seguido de *Encholirium spectabile* e *Cyrtopodium polyphyllumn*.

Tabela 7. Parâmetros fitossociológicos das espécies do inselbergue de Parque das Pedras, Pocinhos, PB, Brasil. NI = Número de Indivíduos; FA = Frequência Absoluta; FR = Frequência Relativa; DR = Densidade Relativa; DoAt = Dominância Absoluta do Táxon; DoRt = Dominância Relativa do Táxon e VI = Valor de Importância.

Espécies	NI	FA	FR	DR	DoAt	DoRt	VI	VI (%)
Encholirium spectabile Schult. f.	270	100	11,6	32,1	44,2	38,6	82,3	27,5
Melocactus ernesti Vaupel	38	90	10,5	4,5	61,7	53,9	68,9	23,0
Habenaria obtusa Lindl.	167	30	3,5	19,9	0,1	0,1	23,4	7,8
Euphorbia phosphorea Mart.	81	80	9,3	9,6	2,9	2,5	21,4	7,1
Staelia virgata (Roem. & Schult.) K. Schum.	58	40	4,7	6,9	0,0	0,0	11,6	3,9
Prescottia phleoides Lindl.	46	40	4,7	5,5	0,0	0,0	10,2	3,4
Bromelia sp. 1	36	20	2,3	4,3	2,2	1,9	8,5	2,8
Anthurium affine Schott.	14	50	5,8	1,7	0,8	0,7	8,2	2,7
Cnidoscolus urens Arthur	16	50	5,8	1,9	0,5	0,4	8,1	2,7
Mitracarpus scabellus Benth.	24	30	3,5	2,9	0,1	0,1	6,4	2,1
Opuntia palmadora Britton & Rose	12	20	2,3	1,4	0,9	0,8	4,5	1,5
Setaria geniculata Beauv.	7	30	3,5	0,8	0,0	0,0	4,3	1,4
Pleurothallis ochreata Lindl.	3	30	3,5	0,4	0,3	0,3	4,1	1,4
Digitaria insularis Mea & Ekman	5	30	3,5	0,6	0,0	0,0	4,1	1,4
Begonia sp. 4	12	20	2,3	1,4	0,2	0,2	4,0	1,3
Marsdenia loniceroides Fourn.	8	20	2,3	0,9	0,3	0,3	3,6	1,2
Commelina obliqua Vahl.	7	20	2,3	0,8	0,0	0,0	3,2	1,1
Panicun velutinosum Trin.	5	20	2,3	0,6	0,0	0,0	2,9	1,0
Manihot sp.	3	20	2,3	0,4	0,0	0,0	2,7	0,9
Haporchilus phacocarpus Nees	3	20	2,3	0,4	0,0	0,0	2,7	0,9
Leguminosae sp.	7	10	1,2	0,8	0,0	0,0	2,0	0,7
Jatropha gossypifolia L.	5	10	1,2	0,6	0,1	0,1	1,9	0,6
Euphorbia comosa Vell.	2	10	1,2	0,2	0,0	0,0	1,4	0,5
Hippeastrum psitacinum Herb. Pilosocereus gounellei (F. A. C. Weber)	2	10	1,2	0,2	0,0	0,0	1,4	0,5
Byles & Rowley	1	10	1,2	0,1	0,2	0,2	1,4	0,5
Pilosocereus pachicladus Ritter	2	10	1,2	0,2	0,0	0,0	1,4	0,5
Portulaca cf. halimoides L.	2	10	1,2	0,2	0,0	0,0	1,4	0,5
Bulbostylis capillaris	2	10	1,2	0,2	0,0	0,0	1,4	0,5
Byrsonima gardnerana A. Juss.	1	10	1,2	0,1	0,0	0,0	1,3	0,4
Alstroemeria sp.	1	10	1,2	0,1	0,0	0,0	1,3	0,4
Total	840	860	100	100	114,5	100	300	100

Foram registrados 840 indivíduos, pertencentes a 30 espécies e 28 gêneros de 19 famílias (Tab. 7) no inselbergue do Parque das Pedras em Pocinhos. As espécies que se destacaram com maior número de indivíduos foram: *Encholirium spectabile* (270), representando 32,1% do total de indivíduos levantados, *Habenaria obtusa* (167) e *Euphorbia phosphorea* (81). Para as demais espécies foram registrados menos que 60 indivíduos por táxon. Apenas *Encholirium spectabile* ocorreu em 100% das amostras analisadas e apresentou o maior valor de VI (27,5%), seguido de *Melocactus ernestii* (23%) e *Habenaria obtusa* (7,8%). No entanto, a maior DA foi observada em *Melocactus ernestii* (61,7).

Algumas espécies destacaram-se por ser exclusivas de determinado inselbergue e por apresentarem ampla distribuição sobre o afloramento. Este foi o caso de *Euphorbia phosphorea*, um arbusto latescente, cactiforme, perene e bastante ramificado, formando grandes touceiras e dando ao inselbergue de Pocinhos um aspecto paisagístico totalmente distinto dos demais. Esta espécie também foi coletada por Carneiro *et al.* (2002) no inselbergue da região de Milagres na Bahia. Notável também, foi a presença de duas espécies de *Tillandsia* que ocorrem em Fagundes, formando verdadeiros tapetes de vegetação.

O domínio de orquídeas e bromélias na estrutura vegetacional dos afloramentos é evidente e constituem componentes de destaque na maioria dos inselbergues. Valores altos de estrutura dessas famílias nos afloramentos divergem fortemente dos observados em ecossistemas terrestres, mesmo quando restritos a levantamento de herbáceas onde a ocorrência de orquídeas e bromélias é rara (Vieira & Pessoa, 2001; Barbeiro, 2005). Todavia, em relação a epífitas, os dados de estrutura e composição florística são mais similares, evidenciando uma vegetação fortemente dominada por essas famílias. Gonçalves & Waechter (2002), observaram maior número de espécies epífitas nas famílias Orchidaceae, Bromeliaceae e Cactaceae, com espécies bem adaptadas ao estresse hídrico, em planície costeira no Rio Grande do Sul. Kersten & Silva (2002) estudando a estrutura do componente epifítico em floresta no Paraná, encontraram maior riqueza nas famílias Orchidaceae, Polypodiaceae e Bromeliaceae. Essas mesmas famílias foram registradas em outras formações do Sul do país (Rogalski & Zanin 2003; Borgo & Silva 2003) como as de maior riqueza específica. Em conjunto, esses dados indicam que os principais componentes florísticos dos inselbergues são provenientes de ancestrais epifiticos, o que também é corroborado por evidências anatômicas e fisiológicas observadas em várias espécies de inselbergues (Biedinger et al. 2000; Kluge & Brulfert 2000).

Algumas espécies encontradas em inselbergues são facilmente observadas habitando outros ambientes, porém existem espécies endêmicas destes afloramentos. *Ameroglossum* é um gênero monotípico recentemente descrito (Fischer *et al.* 1999), endêmico dos inselbergues nordestinos. Tanto em Esperança como em Serraria foi encontrada uma espécie de *Ameroglossum* ainda desconhecida para a ciência, coletada também por Porto (2003) em outro inselbergue no Município de Esperança. A existência de táxons endêmicos em áreas relativamente pequenas, resultado de especiação alopátrica, bem como espécies ainda não descritas, apontam para a necessidade de novos estudos no sentido de possibilitar uma interpretação mais segura dos processos evolutivos ali envolvidos.

Referências Bibliográficas

Almeida, A. 2004. Estudo florístico e estrutural da família Orchidaceae em três inselbergues da Paraíba, Brasil. (Dissertação de Mestrado). Areia - PB. UFPB. 74p.

Barbeiro, S.M.C. 2005. Florística e fitossociologia de formações vegetais ocorrentes em tabuleiro costeiro, na Reserva Biológica Guaribas, Paraíba. (Tese). Recife - PE. UFRPE. 102 p.

Barthlott, W. & Porembski, S. 2000. Vascular Plants on inselbergs: systematic overview. In: Porembski S.; Barthlott, W. (eds). **Inselbergs: biotic diversity of isoleted rock outcrops in tropical and temperate regions**. Berlin: Springer-Verlag. p. 103-116.

Barthlott, W.; Gröger, A. & Porembski, S. 1993. Some remarks on the vegetation of tropical inselbergs: diversity and ecological differentiation. **Biogeographica. 69** (3): 105-124.

Biedinger, N.; Porembski, S. & Barthlott, W. 2000. Vascular Plants on Inselbergs: Vegetative and Reproductive Strategies. In: Porembski S.; Barthlott, W. (eds). **Inselbergs:** biotic diversity of isoleted rock outcrops in tropical and temperate regions. Berlin: Springer-Verlag. p. 117-142.

Bigarella, J.J.; Becker, R.D.; Santos, G.F.; Passos, E. & Suguio, K. 1994. Estrutura e origem das paisagens tropicais e subtropicais. Florianópolis: Ed. UFSC. v. 3. p. 351-384.

Bridson, D. & Forman, L. 1999. **The herbarium handbook**. In: Royal Botanic Gardens-Kew. 334p.

Borgo, M. & Silva, S. M. 2003. Epífitos vasculares em fragmentos de Floresta Ombrófila Mista, Curitiba, Paraná, Brasil. **Revista Brasil. Bot**. **26**(3):391-401.

Büdel, B.; Becker, U.; Follmann, G. & Sterflinger, K. 2000. Algae, Fungi, and Lichens on Inselbergs. In: Porembski S.; Barthlott, W. (eds). **Inselbergs: biotic diversity of isoleted rock outcrops in tropical and temperate regions**. Berlin: Springer-Verlag. p. 69-90.

Caiafa, A. N. 2002. Composição florística e estrutura da vegetação sobre um afloramento rochoso no Parque Estadual da Serra do Brigadeiro, MG. (Dissertação de Mestrado). Viçosa, MG. 55p.

Carneiro, D.S.; Cordeiro, I. & França, F. 2002. A família euphorbiaceae na flora de *Inselbergs* na região de Milagres, Bahia, Brasil. **Bol. Bot. Univ. São Paulo. 20:** 31-47.

Chautems, A., Baracho, G.S. & Siqueira-Filho, J.A. 2000. A new specie of *Siningia* (Gesneriaceae) from Northeastern Brazil.

CIENTEC (Consultoria e Desenvolvimento de Sistemas Ltda.), **Mata Nativa –Sistema** para análise fitossociológica e elaboração de planos de manejo de florestas nativas. São Paulo. 2002. 126 p.

Daubenmire, R. 1968. **Plant communities – a textbook of plant sinecology**. New York: Harper & Sons. 300 p.

Felix, L.P. & Guerra, M. 2000. Cytogenetics and cytotaxonomy of some Brazilian species of Cymbidioid orchids. **Gen. Mol. Biol. 23**: 957-978.

Fernandes, A. & Bezerra, P. 1990. **Estudos fitogeográficos do Brasil**. Styles Comunicações. Fortaleza.

Fischer, E.; Vogel, S. & Lopes, A.V. 1999. *Ameroglossum*, a new monopypic genus of Scrophulariaceae-Scrophularioideae from Brazil. **Feddes Repertorium 110** (7-8): 529-534.

Frahm, J.P. 2000. Bryophytes. In: Porembski S.; Barthlott, W. (eds), **Inselbergs: biotic diversity of isoleted rock outcrops in tropical and temperate regions.** Berlin: Springer-Verlag. p. 91-102.

França, F.; Melo, E. & Santos, C.C. 1997. Flora de inselbergs da região de Milagres Bahia, Brasil: I. Caracterização da vegetação e lista de espécies de dois inselbergs. **Sitientibus**. **17**: 163-184.

Gonçalves, C.N. & Waechter, J.L. 2002. Aspectos florísticos e ecológicos de epífitos vasculares sobre figueiras isoladas no norte da planície costeira do Rio Grande do Sul. **Acta bot. bras. 17** (1): 89-100, 2003.

Gröger, A. 2000. Flora and vegetation of inselbergs os Venezuelan Guayana. In: Porembski S.; Barthlott, W. (eds), **Inselbergs: biotic diversity of isoleted rock outcrops in tropical and temperate regions.** Berlin: Springer-Verlag. 2000. p. 291-313.

IBGE. 2000. **Atlas Nacional do Brasil**. 3 ed. Ministério do Planejamento, Orçamento e Gestão. Diretoria de Geociências. Rio de Janeiro. 262p.

Ibisch, P.L.; Rauer, G.; Rudolph, D. & Barthlott, W. 1995. Floristic, biogeographical, and vegetational aspects of pre-cambrian rocks outcrops (inselbergs) in eastern Bolivia. **Flora. 190**: 299-314.

Kent, M. & Coker, P. 1992. **Vegetation description and analysis: a practical approach.** Chichester: John Wiley & Sons. 363 p.

Kersten, R.A. & Silva, E.S.M. 2002. Florística e estrutura do componente epifítico vascular em floresta ombrófila mista aluvial do rio Barigüi, Paraná, Brasil. **Revista Brasil. Bot. 25**(3): 259-267.

Kluge, M. & Brulfert, J. 2000. Ecophysiology of vascular plants on inselbergs. In: Porembski S.; Barthlott, W. (eds.). **Inselbergs: biotic diversity of isoleted rock outcrops in tropical and temperate regions**. Berlin: Springer-Verlag. p. 143-176.

Krebs, C.J. 1986. **Ecologia: analisis experimental de la distribuicion de abundancia.** 3 ed. Madri: Ed. Pirâmide. 782p.

Lima, P.J. & Heckendorff, W.D. 1985. Climatologia. In.: **Atlas geográfico do Estado da Paraíba.** João Pessoa, p.34-43.

Lima, A.G.M. & Melo, A.M.B.L. 1985. Relevo. In.: Atlas geográfico do Estado da Paraíba. João Pessoa, p.26-29.

Meirelles, S.T.; Pivello, V.R. & Joly, C.A. 1999. The vegetation of granite rock outcrops in Rio de Janeiro, Brazil, and the need for its protection. **Environmental Conservation 26**(1): 10-20.

Moreira, E.R.F. 1985. Situação e localização. In: **Atlas geográfico do Estado da Paraíba.** João Pessoa, p.12-15.

Müeller-Dumbois, D. & Ellemberg, H. 1974. **Aims and methods of vegetation ecology.** New York, John Wiley & Sons. 547p.

Oliveira, R.F. 2002. Caracterização florística e estrutural de um inselbergue no Município de Quixadá, CE. (Monografia). Universidade Federal do Ceará.

Parmantier, I. 2003. Study of the vegetation composition in three inselbergs from continental Equatorial Guinea (Western Central Africa): effects of site, soil factors and position relative to forest fringe. **Belg. Journ. Bot. 136** (1): 63-72.

Porembski, S. 1996. Notes on the vegetation of inselbergs in Malawi. Flora. 191: 1-8.

Porembski, S. 2000. West African Inselberg vegetation. In: Porembski, S.; Barthlott, W. (Eds.). **Inselbergs: biotic diversity of isoleted rock outcrops in tropical and temperate regions.** Berlin: Springer-Verlag, p. 177-211.

Porembski, S. 2002. Terrestrial habitat islands as model systems for biodiversity research. In: Araújo, E. L.; Moura, A. N.; Sampaio, E. V. S. B.; Gestinari, L. M. S.; Carneiro, J. M. T. **Biodiversidade conservação e uso sustentável da flora do Brasil.** Recife, UFRPE, SBB. p. 158-161.

Porembsky, S. & Barthlott, W. 1997. Seasonal Dynamics of Plant Diversity on Inselbergs in the Ivory Coast. (West Africa). **Bot. Acta. 110**: 466-472.

Porembski, S. & Barthlott, W. 2000. **Inselbergs: biotic diversity of isoleted rock outcrops in tropical and temperate regions**. Berlin: Springer-Verlag. 524 p.

Porembski, S.; Becker, U. & Seine, R. 2000. Islands on islands: habitats on inselbergs. In: Porembski, S.; Barthlott, W. (eds.). **Inselbergs: biotic diversity of isoleted rock outcrops in tropical and temperate regions.** Berlin: Springer-Verlag. p. 49-67.

Porembski, S.; Martinelli, G.; Ohlemüller, R. & Barthlott, W. 1998. Diversity and ecology of saxicolous vegetation mats on inselbergs in the Brazilian Atlantic rainforest. **Diversity and Distributions 4**: 107-119.

Porembski, S; Szarzynski, J.; Mund, J-P & Barthlott, W. 1996. Biodiversity and vegetation of small-sized inselbergs in a West-African rain forest (Taï, Ivory Coast). **J. Biogeo 23**: 47-55.

Porto, P.A.F. 2003. Estudo florístico de um inselbergues no distrito de Lagoa de Pedra, Município de Esperança - PB. (Monografia). Campina Grande: UEPB. 30p.

Ratter, J.A.; Bridgewater, S. & Ribeiro, J.F. 2003. Analysis of the floristic composition of the brazilian cerrado vegetation III: Comparison of the woody vegetation of 376 areas. **Edinburg journal of Botany 60**: (1): 57-109.

Rodal, M.J.N.; Sampaio, E.V.S.B. & Figueiredo, M.A. 1992. Manual sobre métodos de estudo florístico e fitossociológico: ecossistema caatinga. 24p.

Rogalski, J.M. & Zanin E.E.M. 2003. Composição florística de epífitos vasculares no estreito de Augusto César, Floresta Estacional Decidual do Rio Uruguai, RS, Brasil. **Revista Brasil. Bot. 26**(4):551-556.

Safford, H.D & Martinelli, G. 2000. Southeast Brazil. In: Porembski, S.; Barthlott, W. (Eds.). In.: **Inselbergs: biotic diversity of isoleted rock outcrops in tropical and temperate regions.** Berlin: Springer-Verlag, 2000. p. 339-390.

Sarthou, C. & Villiers, J-F. 1998. Epilithic plant communities on inselbergs in French Guiana. **Journal of Vegetation Science. 9**: 847-860.

Seine, R.; Becker, U.; Porembski, S.; Follmann, G. & Barthlott, W. 1998. Vegetation of inselbergs in Zimbabwe. **Edinb. J. Bot. 55(2)**:267-293.

Szarynski, J. 2000. Xeric islands: environmental conditions on inselbergs. In: Porembski, S.; Barthlott, W. (eds.). **Inselbergs: biotic diversity of isoleted rock outcrops in tropical and temperate regions**. Berlin: Springer-Verlag. p. 409-434.

Vianello, R.L. & Alves, A.R. 1991. **Metereologia Básica e Aplicações**. Viçosa: Imprensa Universitária. 449 p.

Vieira, C.M. & Pessoa, S.V.A. 2001. Estrutura e composição florística do estrato herbáceo-subarbustivo de um pasto abandonado na Reserva Biológica de Poço das Antas, município de Silva Jardim, RJ. **Rodriguésia 52** (80): 17-29.

Pitrez, S.R. Florística, Fitossociologia e Citogenética	de Angiospermas	49
C	apítulo 2	
Números evemessâmicos de engicanormo	ns ocorrentes em inselbergues do Nordeste	
Numeros cromossonneos de angiosperma	is ocorrentes em miserbergues do nordeste	Ī
haaa	ilaina	
bras	ileiro	
bras	Artigo a ser enviado ao periódi	co
bras		
bras	Artigo a ser enviado ao periódi	
bras	Artigo a ser enviado ao periódi	

Números cromossômicos de angiospermas ocorrentes em inselbergues do Nordeste brasileiro

RESUMO – (Números cromossômicos de angiospermas de inselbergues do Nordeste brasileiro). Para testar a hipótese de que espécies com populações de ambientes rupícolas teriam um nível de ploidia mais elevado do que populações atuais ou ancestrais terrestres ou epifiticas, foi analisado o número cromossômico de 26 espécies pertencentes a 21 gêneros de 12 famílias de angiospermas coletadas sobre inselbergues. Além dessas, 14 espécies de dez gêneros pertencentes a quatro famílias, previamente citadas na literatura, porém ocorrentes como rupícolas nas áreas estudadas, também foram incluídas na análise. Doze espécies tiveram seus números cromossômicos reportados pela primeira vez: Mandevilla tenuifolia (2n=20), Rauwolfia ligustrina (2n=22), Aristolochia birostris (2n=14), Melocactus bahiensis (2n=44), M. ernesti (2n=44), Pilosocereus pachicladus (2n=44), Clusia nemorosa (2n=60), Euphorbia comosa (2n=40), Phyllanthus clausseni (2n=26), Stillingia trapezoidea (2n=36), Paliavana tenuiflora (2n=28) e Sinningia nordestina (2n=26). Dessas, os registros cromossômicos para Mandevilla tenuifolia, Paliavana tenuiflora, Melocactus ernesti e M. bahiensis constituem a primeira referência de número cromossômico para os gêneros. Dentre as demais espécies analisadas, apenas Eupatorium ballotaefolium apresentou número cromossômico diferente daqueles previamente citados na literatura, enquanto as demais espécies tiveram seus números cromossômicos confirmados. Em conjunto, esses dados não suportam a hipótese de que espécies de inselbergues teriam um nível de ploidia diferenciado em relação à populações da mesma espécie, porém ocupando habitas terrestres. Todavia, em espécies com ancestrais epifíticos, observou-se um nível de ploidia mais elevado, especialmente nas famílias Bromeliaceae e Orchidaceae.

Palavras-chave: citogenética; inselbergue, poliploidia.

Chromosome number of Angiosperms occurrenci in inselberg of the Brazilian Northeast Region

ABSTRACT-(Chromosome number of Angiosperms of inselberg of the Brazilian Northeast Region). To testify hypothesis of species with rupiculous habitat had a ploidy level higher than real or ancients, it was analyzed chromosome number of 26 species from 21 genus of 12 angiosperms families collected about inselbergs. So, 14 species of ten genus to de same families were included to analisis, previously cited in literature. Twelve species had its chromosome numbers reported for the first time: Mandevilla tenuifolia (2n=20), Rauwolfia ligustrina (2n=22), Aristolochia birostris (2n=14), Melocactus bahiensis (2n=44), M. ernesti (2n=44), Pilosocereus pachicladus (2n=44), Clusia nemorosa (2n=60), Euphorbia comosa (2n=40), Phyllanthus clausseni (2n=26), Stillingia trapezoidea (2n=36), Paliavana tenuiflora (2n=28) and Sinningia nodestina (2n=26). From these ones, chromosome registrations to Mandevilla tenuifolia, Paliavana tenuiflora, Melocactus ernesti and M. bahiensis constitute the first reference to chromosome number to the genus. Among other species, only Eupatorium ballotaefolium showed different chromosome number from those cited on literature, while other species had its chromosome numbers confirmed. Linked, these data does not bear hypothesis that inselbergs had a different ploidy level relating to the same species, but in different terrestrial habitats. So, in ancient species, it had been observed a higher ploidy level, especially in the Bromeliaceae and Orchidaceae families.

Keywords: Cytogenetic, inselberg, poliploidy.

Introdução

A utilização de dados citogenéticos na taxonomia vegetal é um importante instrumento para a compreensão das relações de parentesco e dos mecanismos de evolução cariotípica em plantas (Guerra 1990). O número cromossômico é um dos parâmetros mais utilizados para a caracterização citológica das espécies, podendo auxiliar em estudos citotaxonômicos de diversas famílias ou grupos vegetais (Pedrosa *et al.* 1999), bem como revelar diferentes estratégias adaptativas para níveis de ploidia diferenciados.

Diferenças adaptativas entre indivíduos e populações podem estar relacionadas com interações entre vários genes distribuídos ao longo dos cromossomos (Stebins, 1971). A poliploidia, multiplicação de todo o conjunto cromossômico haplóide, é um dos tipos de variação cromossômica mais frequente na evolução vegetal (Bowers *et al.* 2003; Freeman & Herron 2004). A ocorrência de cópias duplicadas de genes adaptativos muitas vezes produz citotipos melhor adaptados o que permite a ocupação de novos habitats e nichos ecológicos. Em orquídeas, a ocorrência de espécies pertencentes a gêneros tipicamente epifíticos, porém vegetando em habitats terrestres ou rupestres, parece muitas vezes relacionada a eventos de poliploidia. No gênero *Laelia*, por exemplo, todas as espécies rupícolas apresentaram-se tetraplóides 2x=4n=80 enquanto aquelas epifíticas foram diplóides 2x=2n=40 (Blumenchein 1960). Outros gêneros como *Oncidium* (Felix & Guerra 2000) e *Epidendrum* (Felix 2001), da mesma subtribo, também apresentam espécies ou grupos de espécies rupícolas ou terrestres associadas a eventos de poliploidia. Todas essas espécies ocorrem tipicamente em inselbergues ou campos rupestres.

Inselbergues são afloramentos rochosos que se destacam pelo fato de serem ecologicamente isolados e por apresentarem espécies endêmicas (ver, por exemplo, Fischer *et al*, 1999), além de táxons em processo de especiação (Porembski 2002). As espécies que ocorrem nestes afloramentos, estão perfeitamente adaptadas às condições de estresse hídrico e alta irradiação a que estão expostas, o que tem concorrido para a diferenciação simpátrica em relação às espécies do entorno (Kluge & Brulfert 2000). Esses ambientes abrigam uma flora originada a partir de ancestrais provenientes de ambientes terrícolas ou epifíticos mais estáveis (Porembski *et al*. 2000).

Sendo os inselbergues ambientes de forte pressão ecológica onde há ocorrência de orquídeas rupícolas com elevados níveis de ploidia (Blumenschein, 1960; Felix & Guerra, 2000; Felix, 2001), é provável que outras famílias adaptadas a esses ambientes também possam apresentar um nível de ploidia aumentado. Para testar essa hipótese foi estudada a

variação cromossômica numérica em 25 espécies representando 11 famílias de angiospermas ocorrentes em vários inselbergues do Estado da Paraíba. Para ampliar a amostragem, também foram adicionalmente incluídas 14 espécies encontradas em inselbergues com registros cariológicos prévios e de ocorrência confirmada nas áreas de estudo.

Material e métodos

Todo o material investigado foi coletado sobre inselbergues ocorrentes no Estado da Paraíba, principalmente em quatro afloramentos dos Municípios de Esperança, Fagundes, Pocinhos e Serraria, onde foi também desenvolvido um estudo florístico e fitossociológico das comunidades, que subsidiou o presente estudo (Pitrez *et al.*, em preparação). O material coletado foi cultivado em jarros plásticos no jardim experimental do Laboratório de Citogenética do Departamento de Fitotecnia, da Universidade Federal da Paraíba. Exsicatas das espécies analisadas foram processadas de acordo com as técnicas recomendadas por Bridson & Forman (1999) e encontram-se depositadas no Herbário EAN do Centro de Ciências Agrárias da Universidade Federal da Paraíba.

A Tabela 1 contém a relação das espécies analisadas, números cromossômicos e locais de coleta, bem como dados de outras espécies de inselbergues, compiladas com base em publicações e/ou contagens inéditas, mas com ocorrência confirmada para as áreas de estudo (Pitrez *et al.*, em preparação).

A preparação das lâminas seguiu a metodologia de Guerra e Souza (2002). As pontas de raízes foram pré-tratadas com 8-hidroxiquinoleína 0,002 M por 4 horas, podendo chegar até 24 horas em geladeira a cerca de 4° C. Posteriormente, foram fixadas em Carnoy (etanol absoluto/ácido acético 3:1, v/v) por um período de 3 a 24 horas à temperatura ambiente e estocadas em freezer a -20°C até posterior confecção das lâminas e análise. Para o preparo das lâminas as pontas de raízes foram inicialmente lavadas, duas vezes por cinco minutos em água destilada e em seguida hidrolisadas em ácido clorídrico 5N por 20 minutos à temperatura ambiente. Depois foram novamente lavadas em água destilada e o meristema esmagado em ácido acético 45%. As lamínulas foram retiradas por congelamento em nitrogênio líquido e postas para secar a temperatura ambiente. Posteriormente, foram coradas convencionalmente com Giemsa 2% (Guerra 1983) ou Hematoxilina-alúmem férrico a 1% (Guerra & Souza, 2002) e montadas em Entellan. Para a análise do padrão de condensação profásica e núcleos interfásicos foram seguidas as

terminologias sugeridas por Guerra (1985) e Yokota (1990) respectivamente. As melhores células foram fotografadas com uma máquina digital Olympus D-540 adaptada a um microscópio Olympus BX41.

Resultados e discussão

Foram analisadas 26 espécies pertencentes a 21 gêneros de 12 famílias de angiospermas coletadas sobre afloramentos rochosos (Tabela 1). Doze delas, *Mandevilla tenuifolia*, *Rauwolfia ligustrina*, *Aristolochia birostris*, *Pilosocereus pachicladus*, *Melocactus bahiensis*, *Melocactus ernesti*, *Clusia nemorosa*, *Euphorbia comosa*, *Phyllanthus clausseni*, *Stillingia trapezoidea*, *Paliavana tenuiflora* e *Sinningia nordestina*, tiveram seus números cromossômicos referidos pela primeira vez. As demais espécies confirmaram pelo menos uma das contagens cromossômicas prévias, com exceção de *Eupatorium ballotaefolium* com 2n=20 (Figura 1F), que embora seja um número frequentemente encontrado no gênero (Federov, 1969; Goldblatt, 1984, 1985; Goldblatt & Johnson, 1996), divergiu de contagens prévias para a espécie de 2n=10, 30 (Moore, 1973).

A maioria das espécies apresentou núcleos interfásicos do tipo semi-reticulado com filamentos de cromatina fracamente corados, cromocentros de formato irregular e cromossomos com padrão de condensação profásica proximal (Guerra 1985). Apenas *Alstroemeria* sp., *Hipeastrum psitacinum* e *Tradescantia ambigua* apresentam núcleos interfásicos do tipo reticulado, caracterizado por apresentar cromatina difusa densa e relativamente uniforme e padrão de condensação cromossômica uniforme.

Tabela 1. Lista dos táxons analisados, com as respectivas referências de coleta, locais de coleta, números cromossômicos observados e fontes.

Taxa	Coletor e número	Proveniência	Nºs cromossômicos 2n	Fontes
Alstroemeriaceae				
Alstroemeria sp.	Spitrez 392	Fagundes, PB	16	Presente trabalho
Amaryllidaceae				
Hippeastrum psittacinum Herb	S.Pitrez 587	Fagundes, PB	22	Presente trabalho
Zephyranthes sp.	S. Pitrez 500	Pocinhos, PB	42 + IB	Pessoa, em preparação
Apocynaceae				
Mandevilla tenuifolia (Mikan) R.E. Woodson	S.Pitrez 507	Serraria, PB	20	Presente trabalho
Rauwolfia ligustrina Willd. Ex Roem. & Schult.	S.Pitrez 355	Araruna, PB	22	Presente trabalho
Aristolochiaceae				
Aristolochia birostris Duch.	A. Almeida 383	Esperança, PB	14	Presente trabalho
Asteraceae				
Eupatorium ballotaefolium H. B. & K	S.Pitrez 640	Fagundes, PB	20	Presente trabalho
Bromeliaceae				
Hohenbergia catigae Ule			50	Cotias-de-Oliveira et al.
				2000
Cactaceae				
Cereus jamacaru DC	S.Pitrez s/n	Esperança, PB	22	Presente trabalho
Melocactus ernesti Vaupel	A. Almeida 240	Esperança, PB	44	Presente trabalho
Melocactus bahiensis (Britton & Rose) Luetzelb.	S.Pitrez s/n	Pocinhos, PB	44	Presente trabalho
Pilosocereus pachicladus Ritter	S.Pitrez s/n	Pocinhos, PB	44	Presente trabalho

Tabela 1. Continuação

Taxa	Coletor e número	Proveniência	N ^{os} cromossômicos 2n	Fontes
Clusiaceae				
Clusia nemorosa G. F. W Mey.	S.Pitrez		60	Presente trabalho
Clusia sp.	L.P.Felix s/n	Araruna – PB	60	Presente trabalho
Commelinaceae				
Callisia filiformis (Martens & Galeotti) D.R.Hunt		Fernando de Noronha -	14	Pitrez 1998
		PE		
Callisia repens L.		Bezerros – PE	12	Pitrez 1998
Commelina erecta L.		Camaragibe, PE	60	Pitrez et al., 2001
Commelina obliqua Vahl		Bezerros, Bonito,	60	Pitrez et al., 2001
		Camaragibe, PE		
Tradescantia ambígua Mart.	S.Pitrez 601	Pocinhos, PB	24	Presente trabalho
Convolvulaceae				
Ipomoea longeramosa Choisy	A.Almeida 396	Pocinhos, PB	30	Presente trabalho
I. marcellia Meisn.	S.Pitrez 250	Pocinhos, PB	30	Presente trabalho
I. pikeli Hoehne	A.Almeida 411	Araruna, PB	30	Presente trabalho
Merremia aegyptia (L.) Urb.	S.Pitrez 562	Pocinhos, PB	30	Presente trabalho
Evolvulus glomeratus Nees et Mart.	A.Almeida 405	Pocinhos, PB	26	Presente trabalho
E. filipes Mart.	L.P.Felix 10202	Teixeira, PB	26	Presente trabalho
Jacquemontia densiflora Hallier. F.	S.Pitrez 409	Pocinhos, PB	18	Presente trabalho

Tabela1. Continuação

Taxa	Coletor e número	Proveniência	N ^{os} cromossômicos 2n	Fontes
Euphorbiaceae		-		_
Euphorbia comosa Vell.	S.Pitrez 446	Esperança, PB	40	Presente trabalho
Phyllanthus clausseni Müell. Arg.	S.Pitrez 335	Araruna, PB	26	Presente trabalho
Stillingia trapezoidea Ule	S.Pitrez 200	Esperança, PB	36	Presente trabalho
Gesneriaceae				
Paliavana tenuiflora Mansf.	S.Pitrez 379	Fagundes, PB	28	Presente trabalho
Sinningia nordestina Chatems & Baracho	A. Almeida 363	Serraria, PB	26	Presente trabalho
Orchidaceae				
Brassavola tuberculata Hook.		Camocim de São	40	Felix, 2001
		Felix, PE		
Cyrtopodium intermedium Brade		Bezerros, PE	46	Felix, 2001
Cyrtopodium polyphyllum (Vell.) Pabst ex F. Barros		Bezerros, PE	46	Felix, 2001
Epidendrum cinnabarinum Salzm. ex Lindl.		Camocim de São	ca. 240	Felix, 2001
		Felix, PE		
Epidendrum secundum Jacq.		Camocim de São	68	Felix, 2001
		Felix, PE		
Habenaria obtusa Lindl.		Bonito, PE	50, ca. 75	Felix, 2001
Pleurothallis ochreata Lindl.		Bezerros, PE	40	Felix, 2001
Prescottia phleoides Lindl.		Bezerros, PE	48	Felix, 2001
Vitaceae				
Cissus sulcicaulis Planch	L.P.Felix s/n	Barra de Santa Rosa -	34	Presente trabalho
		PB		

Alstroemeria sp. (Figura 1A), com 2n=16, apresentou cariótipo bimodal, com dois pares metacêntricos, o par maior, medindo cerca de 19,3 μm e o menor 7,3 μm. Os demais cromossomos do complemento são formados por cromossomos acrocêntricos que diminuem gradualmente de tamanho, desde 9,3 a 6,1 μm. Foi observado um satélite terminal no braço curto de um dos pares acrocêntricos. O gênero *Alstroemeria* tem como centro de diversidade a região central do Chile, com satélite de distribuição no centro e leste do Brasil. Todas as espécies conhecidas cariologicamente até o momento apresentam cariótipo com as mesmas características encontradas no presente trabalho tanto com relação à morfologia quanto ao número cromossômico (Buitendijk *et al.*, 1997, 1998; Kamstra *et al.*, 1999).

Na família Amaryllidaceae, foi analisada *Hippeastrum psittacinum* com 2n=22, cromossomos medindo de 4,6 a 11,3 μm. (Figura 1B) e cariótipo formado por quatro pares de cromossomos metacêntricos pequenos e sete pares submetacêntricos e acrocêntricos grandes. O número cromossômico encontrado é o mesmo de várias contagens prévias relatadas para esta e outras espécies do gênero (Duhlti, 1989), onde é rara a ocorrência de poliploidia. O cariótipo observado no presente trabalho coincide com o descrito anteriormente por Guerra (1986) para uma população de Pernambuco desta mesma espécie.

Para a família Apocynaceae foram analisadas duas espécies: Mandevilla tenuifolia (Figura 1C) com 2n=20 e Rauwolfia ligustrina, com 2n=22 (Figura 1D). A primeira apresentou cromossomos maiores (1 a 1,7 µm) e predominantemente metacêntricos a submetacêntricos, enquanto na segunda os cromossomos foram menores (0,3 a 1,3 μm), ambas espécies apresentaram morfologia difícil de ser definida. Satélites não foram visualizados para a amostra utilizada. A família Apocynaceae (incluindo as Asclepiadaceae sensu APG II, 2003) é um grupo bastante estável cariologicamente com o predomínio de 2n=22 na grande maioria das espécies, ou poliplóides com 2n=44 e 66, sendo grande parte das contagens cromossômicas fora desse número modal consideradas errôneas (Van Der Lan & Arends, 1985). O presente registro de 2n=20 em M. tenuifoia é o primeiro para o gênero, uma espécie exclusiva dos inselbergues e campos rupestres do Nordeste (Freitas, 1995). A redução displóide de um par cromossômico diverge da maioria das contagens para a família e contradiz a hipótese de evolução por poliploidia para espécies de inselbergues. Todavia, o número 2n= 20 tem sido reportado para outros gêneros de Apocynaceae como Strophanthus e Trachaelospermun, além de 2n=18 para Allamanda, Pachypodium e Prestonia (Van Der Lan & Arends, 1985).

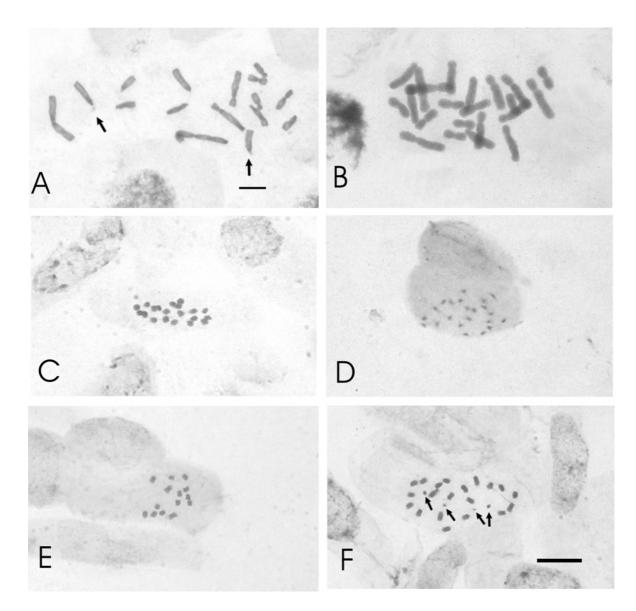


Figura 1. Complemento cromossômico e núcleo interfásico em espécies de inselbergue do Estado da Paraíba. A. *Alstroemeria* sp. (2n=16); B. *Hippeastrum psittacinum* (2n=22); C. *Mandevilla tenuifolia* (2n=20); D. *Rauwolfia ligustrina* (2n=22); E. *Aristolochia birostris* (2n=14); F. *Eupatorium ballotaefolium* (2n=20). Setas indicam satélites. Barras correspondem a 10 μm. Barra em F representa a escala para as figuras B - E. Observe núcleo interfásico do tipo semi-reticulado em C e F.

Na família Aristolochiaceae, *Aristolochia birostris* uma espécie também frequentemente encontrada em habitats terrestres (Hoehne, 1944), apresentou um conjunto cromossômico formado por 2n=14 (Figura 1E), cromossomo metacêntricos e submetacêntricos, medindo de 1 μm a 1,7 μm. Apesar de ser o primeiro registro para a espécie, o número encontrado coincide com o mais frequentemente registrado na literatura para o gênero (Federov, 1969; Goldblatt, 1981; Goldblatt, 1985; Goldblatt & Johnson, 1991; Goldblatt & Johnson, 1996).

A contagem de 2n=20 para *Eupatorium ballotaefolium* (Figura 1F), uma espécie de Asteraceae comum em inselbergues e em outros ambientes terrestres, inclusive como invasora de culturas (Kissmann, 1999) não confirmou as contagens de 2n=10, 30 anteriormente reportadas para a espécie (Moore, 1973). Nesta espécie foi observado um par cromossômico submetacêntrico com constrição secundária terminal e outro metacêntrico com constrição secundária proximal evidentes. Apresenta um cariótipo simétrico formado por um par acrocêntrico e os demais submetacêntrico a metacêntricos, medindo entre 1,2 e 2,1μm. Outras espécies de Asteraceae ruderais e invasoras de culturas ocorrentes em vegetação de caatinga do estado da Paraíba e Rio Grande do Norte também se apresentaram variáveis com relação a contagens cromossômicas prévias, provavelmente em decorrência da existência de espécies crípticas (Ramalho, 2006) o que pode concorrer para a existência de identificações taxonômicas equivocadas. Nessa mesma família, *E. sonchifolia* (2n=10) e *E. sagittata* (2n=20), ambas as espécies ruderais e muito relacionadas taxonomicamente, ilustram bem esse tipo de variação cariotípica (Guerra & Nogueira, 1990) não relacionada ao ambiente.

Para a família Cactaceae foram analisadas quatro espécies, todas de ampla distribuição na região Nordeste, tanto em afloramentos rochosos como em ambientes terrestres. A contagem para *Pilosocereus pachicladus* (2n=44) (Figura 2A) é inédita e representa o primeiro registro de poliploidia para o gênero. *Pilosocereus lanuginosus* (L.) Byles & Rowley, com 2n=22 era até então o único registro para o gênero (Baker, 2002). Em *Melocactus bahiensis* e *M. ernesti* (Figuras 2B-C) as contagens são inéditas também para o gênero. Apresentaram cariótipos simétricos com 2n=4X=44, cromossomos metacêntricos e submetacêntricos. *P. pachicladus* apresentou cromossomos maiores, medindo de 1,3 a 2,6 μm, enquanto que em *Melocactus* os cromossomos foram um pouco menores, medindo entre 1 e 2,1 μm. A observação de 22 cromossomos metacêntricos em *Cereus jamacaru* (Figura 2D), confirmou a única contagem prévia para essa espécie realizada por Pedrosa *et al.* (1999) para uma população de Pernambuco.

Duas espécies de Clusiaceae foram analisadas, *Clusia nemorosa* (Figura 2E) e *Clusia* sp (Figura 2F), ambas com 2n=60 cromossomos pequenos. Este mesmo número foi também referido para outras cinco espécies analisadas por Cruz *et al.* (1990), indicando ser x=30 o número básico para a maioria das espécies do gênero, aparentemente sem nenhuma correlação entre habitat rupícola e poliploidia. Para a família Commelinaceae, foi analisada a espécie *Tradescantia ambigua* (Figura 4A), com 2n=24 e cariótipo simétrico com todos os cromossomos metacêntricos grandes, medindo 5 a 8,7 μm. O número observado na

presente amostra confirma os registros prévios para outras populações não rupícolas dessa espécie (Jones & Kenton, 1984; Martinez & Ginzo, 1985; Pitrez *et al.* 2001) e também não apresenta nenhuma correlação cariológica com o habitat rupícola.

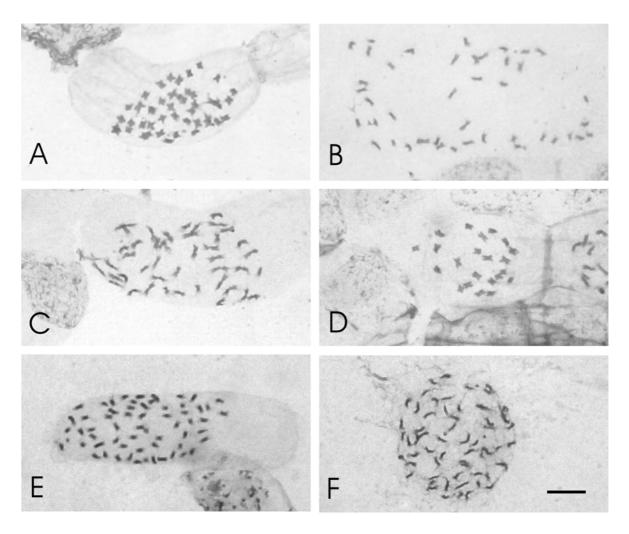


Figura 2. Complemento cromossômico em espécies de inselbergue do Estado da Paraíba. A. *Pilosocereus pachicladus* (2n=44); B. *Melocactus bahiensis* (2n=44); C. *M. ernesti* (2n=44); D. *Cereus jamacaru* (2n=22); E. *Clusia nemorosa* (2n=60); F. *Clusia* sp. (2n=60). Barra corresponde a 10 μm.

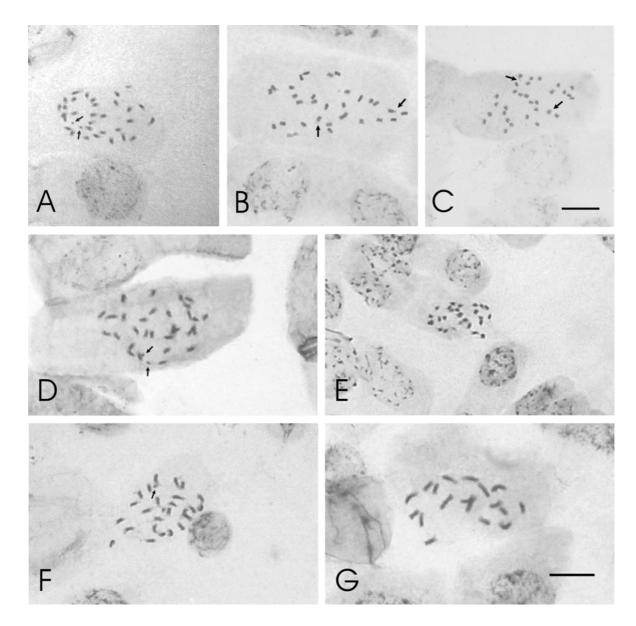


Figura 3. Complemento cromossômico e núcleo interfásico em espécies de Convolvulaceae de inselbergues do Estado da Paraíba. A. *Ipomoea longeramosa* (2n=30); B *I. marcellia* (2n=30); C. *I. pikeli* (2n=30); D. *Merremia aegyptia* (2n=30); E. *Evovlulus filipis* (2n=26); F. *E. glomeratus* (2n=26); G. *Jacquemontia densiflora* (2n=18). Setas indicam satélites. Barras correspondem a 10 µm. Barra em G representa a escala para as figuras D-G.

Sete espécies da família Convolvulaceae foram analisadas. No gênero *Ipomoea* todas as espécies apresentaram 2n=30, cariótipos simétricos e cromossomos metacêntricos a submetacêntricos (Figuras 3A-C). Satélites foram observados em algumas células de *I. longeramosa* (Figura 3A), *I. marcellia* (Figura 3B) e *I. pickeli* (Figura 3C), confirmando a ocorrência comum de constrições secundárias para outras espécies do gênero (Sampathkumar, 1979; Sinhá & Sharma, 1992). *Evolvulus filipis* (Figura 3E) e *E. glomeratus* (Figura 3F) apresentaram cariótipos simétricos com 2n=26. Não foi encontrado

nenhum registro citogenético prévio para estas espécies, embora este número já tenha sido observado em outras espécies do gênero (Goldblatt & Johnson 1990, 1994, 1996). Os cromossomos de maior tamanho entre as convolvuláceas foram observados na espécie *Jacquemontia densiflora* (Figura 3G) que apresentou cariótipo simétrico com 18 cromossomos predominantemente submetacêntricos e um par cromossômico satelitado. Nenhum registro prévio na literatura foi encontrado, porém o número cromossômico observado coincide com o de maior freqüência no gênero. A contagem de 2n=30 (Moore 1973, 1974) para *Merremia aegyptia* (Figura 3A) foi confirmada. Todavia, não foi confirmado o registro de Lewis *et al.* (1967) *apud* Moore (1973) que observou 2n=28 para esta mesma espécie e para *M. umbellata* (L.) Hall. f. *M. aegyptia* apresentou cariótipo simétrico com cromossomos meta a submetacêntricos e constrição secundária terminal em um dos pares submetacêntricos.

Para a família Euphorbiaceae, três espécies foram estudadas: *Euphorbia comosa* com 2n=40 (Figura 4B), espécie amplamente distribuída por todos os afloramentos; *Phyllanthus clausseni* Müell. Arg. (Figura 4C) apresentou um complemento cromossômico com 2=26 e *Stillingia trapezoidea*, 2n=36 (Figura 4D) e pelo menos um par de cromossomos com constrição secundária. As contagens são inéditas para as três espécies. No entanto, esses números cromossômicos encontrados já foram citados para outras espécies destes três gêneros. *Euphorbia* e *Phyllanthus* apresentam ampla variabilidade numérica, desde 2n=12 a ca. 208 (Federov, 1969; Moore, 1973; Goldblatt, 1984; Goldblatt & Johnson, 1990, 2000). *Stillingia* é dos três, o gênero menos estudado, com apenas três registros na literatura, 2n=22, 36 (Federov, 1969; Goldblatt & Johnson, 1990, 1996). Os números cromossômicos observados, não evidenciam nenhuma relação entre o nível de ploidia e o habitat rupestre.

Para família Gesneriaceae foram estudadas *Paliavana tenuiflora* (2n=28) (Figura 4E) e *Sinningia nordestina* com 2n=26 (Figura 4F). Ambas apresentaram cromossomos pequenos, de morfologia difícil de ser definida. Registro de 2n=26 também foi encontrado na literatura para espécie *Sinningia incarnata* (Goldblatt, 1984). As Gesneriaceae neotropicais são epífitas, em sua maioria (Souza & Lorenzi, 2005) e provavelmente as espécies rupícolas representam uma adaptação de um habitat ancestral epifítico. Todavia, aparentemente alterações cromossômicas numéricas não estão correlacionadas à adaptação a esse ambiente.

Cissus sulcicaulis apresentou 2n=34 e cromossomos pequenos de metacêntricos a submetacêntricos (Figura 4G). Esta espécie da família Vitaceae é frequentemente

encontrada nos afloramentos rochosos do Nordeste. Apesar de *Cissus* apresentar números cromossômicos variando de 2n=22-96 (Federov, 1969; Moore, 1973; Goldblatt, 1981, 1984; Goldblatt & Johnson, 1994), 2n=34 é citado pela primeira vez para o gênero.

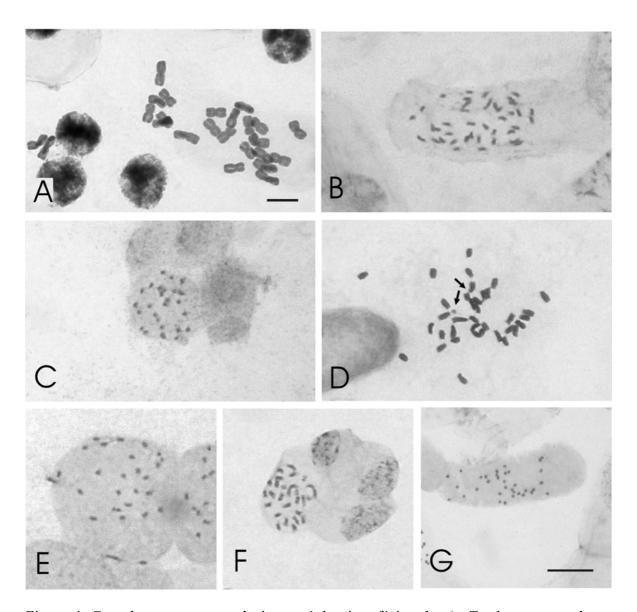


Figura 4. Complemento cromossômico e núcleo interfásico de: A. *Tradescantia ambigua* (2n=24); B. *Euphorbia comosa* (2n=40); C. *Phyllanthus clausseni* (2n=26); D. *Stillingia trapezoidea* (2n=36); E. *Paliavana tenuiflora* (2n=28); F. *Sinningia nordestina* (2n=26); G. *Cissus sulcicaulis* (2n=34). Setas indicam satélites. Barras correspondem a 10 μm. Barra em G representa a escala para as figuras B-G.

Algumas das espécies ocorrentes nos inselbergues estudados já foram analisadas cariologicamente. Dentre elas, algumas espécies de Commelinaceae. *Callisia repens* (2n=12), apresenta um cariótipo bimodal formado por dois pares de cromossomos grandes, um metacêntrico e outro submetacêntrico e quatro pares acrocêntricos pequenos. *C.*

filiformis apresentou complemento cromossômico com 2n=14 e cromossomos acrocêntricos (Pitrez, 1998; Pitrez et al., 2001). Commelina erecta e Commelina obliqua, ambas com 2n=60, apresentaram característica cariológicas muito semelhantes. Outras espécies de Commelina de habitat predominantemente terrestre apresentaram 2n=30 (Pitrez et al., 2001).

A família Orchidaceae apresentou uma ampla variação em números cromossômicos em espécies de inselbergues: Das espécies com registro para os inselbergues estudados, *Brassavola tuberculata* apresentou 2n=40, *Cyrtopodium intermedium* e *C. polyphyllum* 2n=46, *Epidendrum cinnabarinum* 2n=ca. 240, *E. secundum* 2n=68, *Habenaria obtusa*, 2n=50, *Pleurothallis ochreata*, 2n=40 e *Prescottia phleoides*, 2n=48 (Felix e Guerra, 2000; Felix, 2001; Felix e Guerra, 2005). Dessas espécies, *Habenaria* e *Prescottia* são tipicamente terrestres ou rupícolas, enquanto as demais são gêneros tipicamente epifíticos. Estes registros apontam nível de ploidia diferenciado apenas em *E. secundum* e *E. cinnabarinum*, sendo as demais espécies diplóides, em relação aos seus supostos ancestrais epifíticos. Por outro lado, todas as espécies de *Oncidium* (Felix & Guerra, 2000) e *Laelia* (Blumenschein, 1960) com habitat rupícola derivado de ancestrais epifíticos apresentam níveis de ploidia elevados. Em Bromeliaceae, um grupo de plantas tipicamente epifítico, mas freqüente em ambiente rupícola, também tem muitas espécies com nível de ploidia ampliado quando estabelecidas neste ambiente (Cotias-de-Oliveira *et al.*, 2000; Gitaí *et al.*, 2005).

Como pôde ser observado, altos níveis de ploidia só foram encontrados em algumas espécies de orquídeas e bromélias originalmente epífitas vegetando sobre os afloramentos. A maioria das espécies rupícolas de outras famílias com ancestrais supostamente epifiticos ou terrestres, não apresentaram nenhuma alteração cariotípica, quando comparadas com dados da literatura, que pudesse estar associada ao ambiente rupícola.

Referências Bibliográficas

APG II (Angiosperm Phylogeny Group). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. **Bot. Journ.Lin. Soc.** v. 141, p. 399-436, 2003.

Baker, M. A. 2002. Chromosome numbers and their significance in some Opuntioideae and Cactoideae (Cactaceae) of Mainland Ecuador and Peru. **Haseltonia 9**: 69-77.

Blumenschein, A. 1960. **Estudo sobre a evolução no subgênero Cyrtolaelia** (**Orchidaceae**). Tese de Livre-Docência. Escola Superior de Agricultura "Luis de Queiroz", Universidade de São Paulo, Piracicaba.

Bowers, J. E.; Chapman, B. A.; Rong, J. & Paterson, A. H. 2003. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events **Nature 422**: 433-438.

Bridson, D. & Forman, L. 1999. **The herbarium handbook**.: Royal Botanic Gardens-Kew. 334p.

Buitendijk, J. H.; Boon, E.; Ramanna, M. S. 1997. Nuclear DNA content in twelve species of *Alstroemeria* L. and some their hybrids. **Annals of Botany 79**: 343-353.

Buitendijk, J. H.; Peters, A.; Quené, R.; Ramanna, M. S. 1998. Genome size variation and C-band polymorphism in *Alstroemeria aurea*, *A. ligtu* and *A. magnifica* (Alstroemeriaceae). **Pl. Syst. Evol. 212**: 87-106.

Cotias-de-Oliveira, A. L. P.; Assis, J. G. A.; Bellintami, M. C.; Andrade, J. C. S.; Guedes, M. L. S. 2000. Chromosome numbers in Bromeliaceae. **Genetics and Molecular Biology 23** (1): 173-177.

Cruz, N., D. Boaventura, Y., M., S. Sellito, Y., M. 1990. Cytological studies of some species of the genus *Clusia* L. (Guttiferae). **Rev. Bras. Genet.** 13: 335.345.

Dultieh, J.H.A., 1989. Morphological variation in a population of *Hippeastrum* Herb. **Herbertia 45**: 152-155.

Federov, A. M. A. 1969. Chromosome numbers of flowering plants.: Komarov Botanical Institute. Leningrado.

Felix, L. P. 2001. Citogenética e citotaxonomia de orquídeas do Brasil, com ênfase no gênero *Habenaria* Willd. (Tese). Recife. UFPE. 221p.

Felix, L. P. & Guerra, M. 2000. Cytogenetics and cytotaxonomy of some Brazilian species of Cymbidioid orchids. **Genetics and Molecular Biology 23** (4): 957-978

Felix, L. P.; Guerra, M. 2005. Basic chromosome numbers of terrestrial orchids. **Pl. Syst. Evol. 254**: 131–148

Fischer, E.; Vogel, S. & Lopes, A. V. 1999. Ameroglossum, a new monotypic genus of Scrophulariaceae – Scrophularioideae from Brazil.: **Feddes Repertorium 110**.(7-8): 529-534.

Freeman, S.; Herron, J. C. 2004. Evolutionary analysis. Pearson Education, 802p.

Freitas, A. M. M. 1995. A subfamília Echitoideae K. Schum. (Apocynaceae) no estado de Pernambuco, Brasil. (Dissertação de Mestrado) Recife, UFRPE. 200p.

Gitai, J.; Horres, R.; Benko-Iseppon, A. M. 2005. Chromosomal features and evolution of Bromeliaceae. **Pl. Syst. Evol.** 253: 65-80.

Goldblatt, P. 1981. **Index to plant chromosome numbers 1975-1978**. Missouri Botanical Garden. St. Louis.

Goldblatt, P. 1984. **Index to plant chromosome numbers 1979-1981**. Missouri Botanical Garden. St. Louis.

Goldblatt, P. 1985. **Index to plant chromosome numbers 1982-1983**. Missouri Botanical Garden. St. Louis.

Goldblatt, P. & Johnson, D. E. 1990. **Index to plant chromosome numbers 1986-1987**. Missouri Botanical Garden. St. Louis.

Goldblatt, P. & Johnson, D. E. 1991. **Index to plant chromosome numbers 1988-1989**. Missouri Botanical Garden. St. Louis.

Goldblatt, P. & Johnson, D. E. 1994. **Index to plant chromosome numbers 1990-1991**. Missouri Botanical Garden. St. Louis.

Goldblatt, P. & Johnson, D. E. 1996. **Index to plant chromosome numbers 1992-1993**. Missouri Botanical Garden. St. Louis.

Goldblatt, P. & Johnson, D. E. 2000. **Index to plant chromosome numbers 1994-1995**. Missouri Botanical Garden. St. Louis.

Guerra, M. 1983. O uso do Giemsa na citogenética vegetal – comparação entre a coloração simples e o bandeamento. **Ciência e Cultura 35**: 190-193.

Guerra, M. 1985. Estrutura e diversificação dos núcleos interfásicos em plantas. In: Aguiar-Perecin, M.; Martins, P. & Bandel, G. (eds.) **Tópicos de citogenética e evolução de plantas**. Sociedade Brasileira de Genética, Ribeirão Preto. p. 137-151.

Guerra, M. 1986. Citogenética de angiospermas coletadas em Pernambuco. I. **Rev. Bras. Genet.** IX, 1: 21-40.

Guerra, M. 1990. A situação da citotaxonomia de angiospermas nos trópicos e, em particular, no Brasil. **Acta Bot. Brasil. 4**: 75-86.

Guerra, M. & Nogueira, M.T.M. 1990. The cytotaxonomy of *Emilia* spp. (Asteraceae: Senecione) occurring in Brazil. **Pl. Syst. Evol. 170**: 229-236.

Guerra, M. & Souza, M. J. Como observer cromossomos: um guia de técnicas em citogenética vegetal, animal e humana. Ribeirão Preto, SP. 2002, 131p.

Hoehne, F.C. 1944. Duas novas Aristolochia a serem acrescentadas. **Arquivos de Botânica do Estado de São Paulo. 1(6)**: 135-137.

Jones, K. Kenton, A. 1984. Mechanisms of chromosomes change in the evolution of the Tribe Tradescantieae (Commelinaceae). In: Sharma, A.K.; Sharma, A. (eds) Chromosomes in evolution of eukaryotic groups. Groups. Vol. II. pp 103-141.

Kamstra, S. A.; Kuipers, A. G. J.; De Jeu, M. J.; Ramanna, M. S.; Jacobsen, E. 1999. The extent and position of homoeologous recombination in a distant hybrid of *Alstroemeria*: amolecular cytogenetic assessment of first generation backcross progenies. **Chromosoma** 108: 52-63.

Kissmann, K. G.; Groth, D. 1999. **Plantas infestantes e nocivas**. Tomo II: Plantas inferiores dicotiledôneas. São Paulo, BASF 976p.

Kluge, M. & Brulfert, J. 2000. Ecophysiology of vascular plants on inselbergs. In: Porembski S.; Barthlott, W. (eds.). **Inselbergs: biotic diversity of isoleted rock outcrops in tropical and temperate regions**. Berlin: Springer-Verlag. p. 143-176.

Martinez, A.; Ginzo, H. 1985. DNA content in *Tradescantia*. Canadian Journal of Genetics and Cytology 27: 766-775.

Moore, R. J. 1973. **Index to plant chromosome numbers 1967-1971**. Regnum Vegetabile 90: 1-539.

Moore, R. J. 1974. **Index to plant chromosome numbers for 1972**. Regnum Vegetabile 91: 1-108.

Pedrosa, A; Gitaí, J. Silva, A. E. B.; Felix, L. P. & Guerra, M. 1990. Citogenética de angiospermas coletadas em Pernambuco – V. **Acta Bot. Brás. 13** (1): 49-60.

Pitrez, S. R. 1998. Números cromossômicos de Commelinaceae no Noedeste do Brasil. Dissertação de Mestrado. Universidade Federal de Recife, Recife.

Pitrez, S. R.; Felix, L. P.; Barreto, R. & Guerra, M. 2001. Números cromossômicos de espécies de Commelinaceae R. Br. Ocorrentes no nordeste do Brasil. **Bol. Bot. Univ. São Paulo 19**: 7-14.

Pitrez, S. R.; Felix, L. P.; Andrade, L. A. (em preparação) Cariologia de algumas espécies de Convolvulaceae Juss. ocorrentes no Nordeste brasileiro com ênfase em espécies de inselbergues.

Porembski, S. 2002. Terrestrial habitat islands as model systems for biodiversity research. In: Araújo, E. L.; Moura, A. N.; Sampaio, E. V. S. B.; Gestinari, L. M. S.; Carneiro, J. M. T. **Biodiversidade conservação e uso sustentável da flora do Brasil.** Recife, UFRPE, SBB. p. 158-161.

Porembski, S.; Becker, U.; Seine, R. 2000. Islands on Islands: Habitats on inselbergs. *In*: Porembski, S.; Barthlott, W. (eds.). **Inselbergs**: biotic diversity of isoleted rock outcrops in tropical and temperate regions. Berlin: Springer-Verlag. P. 339-390.

Ramalho, F. C. 2006. Avaliação dos impactos causados pela invasão da algaroba (*Prosopis juliflora* (sw.) dc.) sobre a diversidade e a composição florística do estrato herbáceo da caatinga. (tese de doutorado) Areia, UFPB. 87p.

Sampathkumar, R. 1979. Karyomorphological studies in some south Indian Convolvulaceae. **Cytologia 44**: 275-286.

Sinha, S. & Sharma, S.N. 1992. Taxonomic significance of karyomorphology in *Ipomoea* spp. **Cytologia 57**: 289-293.

Souza, V. C.; Lorenzi, F. 2005. **Botânica sistemática:** guia ilustrado para identificação das famílias de Angiospermas da flora brasileira, baseado em APG II. Nova Odessa: Instituto Plantarum. 640p.

Sttebbins, G. L. 1971. Chromosomal Evolution in Higher Plants. London: Edward Arnold.

Van der Lan, F.M.; Arends J.C. 1985. Cytotaxonomy of the Apocynaceae. **Genetica 68**: 3-35.

Yokota, M. 1990. Karyomorphological studies on *Habenaria*, Orchidaceae, and allied genera from Japan. **J. Sci. Hiroshima Univ. 23**: 53-161.

Pitrez, S.R. Florística, Fitossociologia e Citogenética de Angiospermas	72
Capítulo 3	
Cariologia de algumas espécies de Convolvulaceae Juss. ocorrentes no Nordeste	
brasileiro com ênfase em espécies de inselbergues	
Artigo a ser enviado ao periód	
Botanical Journal of de Linnean Socie	ety

CARIOLOGIA DE ALGUMAS ESPÉCIES DE CONVOLVULACEAE JUSS. OCORRENTES NO NORDESTE BRASILEIRO COM ÊNFASE EM ESPÉCIES DE INSELBERGUES

SILVIA ROMEU PITREZ

Programa de Pós-graduação em Agronomia, CCA, UFPB, Areia, PB, Brasil, 58.397-000

LEONARDO PESSOA FELIX

Departamento de Fitotecnia, CCA, UFPB, Areia, PB, Brasil, 58.397-000

LEONALDO ALVES DE ANDRADE

Departamento de Fitotecnia, CCA, UFPB, Areia, PB, Brasil, 58.397-000

RESUMO - Foram analisadas citologicamente 18 espécies pertencentes a cinco gêneros de Convolvulaceae que ocorrem no Nordeste brasileiro, com o objetivo de identificar possíveis variações cromossômicas numéricas intraespecíficas e interespecíficas, principalmente em espécies que ocorram em ambientes rupestres e não rupestres. Oito destas espécies (Ipomoea longeramosa Choisy, I. marcellia Meisn., I. pikeli Hoehne, com 2n=30, Operculina cf. alata, com 2n=30, Evolvulus glomeratus Nees et Mart., E. filipes Mart., com 2n=26, Jacquemontia densiflora Hallier. f. e J. nodiflora G. Don, com 2n=18) não apresentavam registros anteriores na literatura. Das seis espécies com registros prévios, os números observados foram confirmados apenas parcialmente coincidindo, entretanto, com ao menos um deles. A contagem 2n=56 em Evolvulus sp., uma espécie tetraplóide, constitui o primeiro registro de poliploidia para o gênero. De forma geral, as espécies apresentaram cariótipos simétricos, com cromossomos pequenos e morfologia difícil de ser observada. A similaridade entre o cariótipo das espécies dos gêneros Ipomoea, Merremia e Operculina sugere que x=15 seja o número básico secundário para estes gêneros, enquanto x=13 encontrado no gênero Evolvulus é provavelmente o número básico da família. O gênero Jacquemontia, com 2n=18 e cromossomos bem maiores, se distinguiu cariologicamente dos demais gêneros de Convolvulaceae. Não foram detectadas variações cromossômicas numéricas intraespecíficas, ou mesmo qualquer variação relacionada à ocupação do habitat rupestre dos inselbergues, indicando que a família é cariotipicamente mais estável do que outros grupos onde formas poliplóides são relacionadas a esse tipo de habitat. É discutida a variação cromossômica numérica, os números básicos e sua implicação na evolução dos principais grupos de Convolvulaceae.

Palavras-Chave: - Convolvulaceae - número cromossômico - inselbergue - núcleo interfásico - variação numérica - citogenética.

KARIOLOGY OF SOME SPECIES OF CONVOLVULACEAE JUSS. OCURRING IN THE BRAZILIAN NORTHEAST REGION WITH EMPHASIS IN INSELBERG SPECIES

ABSTRACT - It was citologically analyzed 18 species of Convolvulaceae family of the Northeast of Brazil, with the aim to identify possible chromosomic variations between individuals of some species, specially occurring in both terrestrial or rupicolous habitats. Eight species (Ipomoea longeramosa Choisy, I. marcellia Meisn., I. pikeli Hoehne, with 2n=30, Operculina cf. alata, with 2n=30, Evolvulus glomeratus Nees et Mart., E. filipes Mart., with 2n=26, Jacquemontia densiflora Hallier. f. and J. nodiflora G. Don, with 2n=18) have not previous chromosome reports, while previous reports by six species were confirmed partially. The record of 2n=56 for *Evolvulus* sp., a tetraploid species is the first polyploid report for this genus. The analyzed species showed symmetrical karyotypes, with small chromosomes with morphology of difficult observation. The karyotype similarities among *Ipomoea*, *Merremia* and Operculina species suggest that x=15 is the secondary basic number for these genera, while x=13 is probably the basic number of *Evolvulus*. Jacquemontia, with 2n=18 and bigger chromosomes, was kariologicaly distinguished of the other genera of Convolvulaceae. Intraspecific chromosome numeric variations weren't detected, or even any variation related at the rupicolus habitat, indicating a stable karyotype in this family, than other groups where form polyploids related to that habitat type. It is discussed chromosome numeric variation, basic numbers and its implication in the evolution of main groups of Convolvulaceae.

Keywords: Convolvulaceae - chromosome number - inselberg - interphase nuclei - numeric variation - cytogenetic.

Introdução

A família Convolvulaceae compreende aproximadamente 50 gêneros e cerca de 2000 espécies com ampla distribuição desde as regiões temperadas, sendo particularmente abundantes nas regiões tropicais, com muitos gêneros endêmicos para cada continente. Exibe uma rica diversidade de caracteres morfológicos e ocupa os mais variados habitats (Barroso *et al.*, 1991; Stefanović, *et al.*, 2002; Souza & Lorenzi, 2005). Entre todos os países do Novo Mundo o Brasil é detentor do maior número de taxa da família, que ocorrem nas mais diversas formações vegetais, com várias espécies endêmicas (Austin & Cavalcanti, 1982). Dentre os gêneros que ocorrem no Brasil. *Ipomoea* L. possui 146 espécies, *Evolvulus* L. (63), *Jacquemontia* Choisy (33) e *Merremia* Dennst. (30) são os mais frequentes (Meisner, 1869; Austin & Staples, 1983; Simão-Bianchini, 1991). Alguns estudos regionais como os de Austin & Cavalcante (1982), Maia & Figueiredo (1992) e Simão-Bianchini (1991, 1995, 1998) vem contribuindo para o conhecimento da taxonomia das Convolvulaceae no Brasil. No entanto, não se conhece nenhuma abordagem taxonômica mais recente para a família como um todo, sendo conhecida apenas a revisão de Meisner (1869) para a Flora Brasiliensis de Martius.

Em inselbergues da Paraíba, é comum a ocorrência de convolvuláceas de vários gêneros (Porto, 2003; Pitrez et al., em preparação). Esses ambientes destacam-se pelo fato de serem ecologicamente isolados e por apresentarem espécies endêmicas, além de taxa em processo de especiação alopátrica (Fischer et al., 1999; Porembski, 2002). As espécies que ocorrem nestes afloramentos, estão perfeitamente adaptadas às condições de estresse hídrico e alta irradiação a que estão expostas, o que tem contribuído para a diferenciação simpátrica em relação às espécies do entorno (Kluge & Brulfert, 2000). Contudo, muitas espécies de inselbergues também são comuns ao entorno, especialmente em ambientes xéricos (Burke, 2002). Diferenças adaptativas entre indivíduos e populações são usualmente baseadas nas interações entre vários genes distribuídos ao longo dos cromossomos (Stebins, 1971), sendo a poliploidia, duplicação de todo o conjunto cromossômico haplóide, um dos tipos de variação cromossômica mais frequente na evolução vegetal (Bowers et al., 2003; Freeman & Herron, 2004). Espécies poliplóides geralmente apresentam extensa amplitude de distribuição, sendo frequentes em ambientes submetidos a estresse como nos inselbergues. Na família Orchidaceae, por exemplo, muitas espécies de gêneros tipicamente epifiticos quando adaptadas a ambientes rupestres, têm o seu nível de ploidia aumentado (Felix & Guerra, 2000; Felix & Guerra, 2005). Assim como as orquídeas, as convolvuláceas também apresentam várias espécies ocupando habitats terrestres ou rupestres e por isso constituem um grupo taxonômico adequado para avaliar a variação no nível de ploidia em diferentes ambientes.

A utilização de dados citogenéticos na taxonomia vegetal é um importante instrumento para a compreensão das relações de parentesco e dos mecanismos de evolução cariotípica das espécies (Guerra, 1990). Estudos cariológicos para a família Convolvulaceae têm sido desenvolvidos ao longo dos anos, porém apenas cerca de 13% delas tem seu número cromossômico registrado na literatura (Federov, 1969; Moore, 1973, 1974; Goldblatt, 1981, 1984, 1985, 1988; Goldblatt & Johnson, 1990, 1991, 1994, 1996, 2000). Apesar de algumas dessas espécies, principalmente as cosmopolitas ocorrerem também no Brasil, a maioria das espécies cariologicamente documentadas ocorre em outras regiões do globo, especialmente no Velho Mundo. O presente trabalho consiste na contagem cromossômica em representantes brasileiros da família Convolvulaceae ocorrentes no Nordeste do Brasil, objetivando responder as seguintes perguntas: 1. Terão os representantes da família Convolvulaceae que ocorrem em inselbergues o mesmo nível de ploidia que as mesmas espécies ou espécies próximas que ocorram em ambientes não rupestres? 2. A relação entre números cromossômicos e grupos taxonômicos observada na literatura será a mesma nos representantes da família Convolvulaceae ocorrentes no Nordeste do Brasil? 3. Quais os processos de evolução cariotípica envolvidos nos representantes brasileiros da família? Para tanto, foi estudada a variação cromossômica numérica em representantes de várias tribos da família Convolvulaceae ocorrentes em inselbergues e em outros tipos de ambientes com menos estresse, bem como outras espécies exclusivas de ambientes mésicos.

Material e Métodos

As espécies foram coletadas nos Estados da Paraíba, Pernambuco, Rio Grande do Norte e Bahia. A Tabela 1 relaciona todos os táxons analisados, com os números cromossômicos observados, contagens prévias, proveniência e espécimes testemunhos, estes depositados no Herbário EAN e processados de acordo com as técnicas recomendadas por Bridson & Forman (1999). Todo o material coletado foi cultivado em jarros plásticos de 5 a 10 kg, no jardim experimental do Laboratório de Citogenética do Departamento de Fitotecnia, da Universidade Federal da Paraíba.

Para as análises convencionais seguiu-se o protocolo de Guerra e Souza (2003). Foram utilizadas pontas de raízes pré-tratadas com 8-hidroxiguinoleína (8-HQ) 0,002 M por 4 a 24 horas em geladeira a cerca de 4º C. Posteriormente, foram fixadas em Carnov (etanol absoluto/ácido acético 3:1, v/v) por um período de 3 a 24 horas à temperatura ambiente e estocadas em freezer a -20°C por tempo indeterminado. Para o preparo das lâminas, as pontas de raízes foram inicialmente lavadas duas vezes por cinco minutos em água destilada e em seguida, hidrolisadas em ácido clorídrico 5N por 20 minutos à temperatura ambiente, lavadas em água destilada e o meristema esmagado em ácido acético 45%. As lamínulas foram retiradas por congelamento em nitrogênio líquido e ambiente. Posteriormente, para secar a temperatura foram convencionalmente com Giemsa 2% (Guerra, 1983) e montadas em Entellan. Medidas cromossômicas foram feitas a partir das melhores metáfases. Para a análise do padrão de condensação profásica e tipos de núcleos interfásicos foram seguidas as terminologias adotadas por Guerra (1985) e Yokota (1990) respectivamente.

As melhores células foram fotografadas com uma máquina digital Olympus D-54 adaptada a um microscópio Olympus BX41.

Tabela 1. Lista dos táxons analisados, com as respectivas referências de herbário, locais de coleta, números cromossômicos observados e contagens prévias. (*) indivíduos provenientes de inselbergues.

Taxa	Coletor e número	número Proveniência N. cromo		Contagens prévias		Fontes
			2n	n	2n	_
TRIBO IPOMOEEAE						
Ipomoea L.						
I. alba L.	S. Pitrez 646	Areia – PB	30	15	30	a, b, c, d
I. asarifolia (Desr.) Roemer & Schultes	S.Pitrez 644	Areia – PB	30		30	e, f
I. batatas (L.) Lamarck		Areia – PB	ca. 90		84, 90	a, c, e
I. fistulosa Mart. Ex Choisy	S.Pitrez 574/	Itabaiana – PB	30	15	30	b, e
I. longeramosa Choisy	575 A.Almeida 396;	*Pocinhos – PB	30			
	L.P.Felix 10581	Caicó – RN				
I. marcellia Meisn.	A.Almeida 379;	*Esperança – PB	30			
	S.Pitrez 250	*Pocinhos – PB				
I. parasitica G. Don	S.Pitrez 577	Monteiro – PB	30		30	e
I. pikeli Hoehne	A.Almeida 411	*Araruna – PB	30			
<i>Ipomoea</i> sp. 1	S.Pitrez 593	Itambé – PE	30			
<i>Ipomoea</i> sp. 2	S.Pitrez 533	Juazeiro – BA	30			
<i>Ipomoea</i> sp. 3	L.P.Felix10797	Goiana – PE	30			

Tabela 1 (Cont.)

Taxa	Coletor e número	Proveniência	N. cromossômicos	nicos Contagens prévias		Fontes
			2n	n	2n	
TRIBO MERREMIEAE						
Merremia Dennst.						
M. aegyptia (L.) Urb.	A.Almeida 406;	Araruna - PB	30		28, 30	a, b
	S.Pitrez 562	*Pocinhos - PB				
Operculina Silva Manso						
Operculina cf. alata	L.P.Felix 10531	Araçagi - PB	30			
TRIBO CRESSEAE						
Evolvulus L.						
E. glomeratus Nees et Mart.	A.Almeida 405;	*Pocinhos - PB	26			
	S.Pitrez 523	Barra de Santa Rosa -				
		PB				
E. filipes Mart.	S.Pitrez 554;	Taperoá - PB	26			
	L. P. Felix 10202	*Teixeira - PB				
Evolvulus sp.	L. P. Felix 10799	São J. dos Ramos - PB	52			
TRIBO CONVOLVULEAE						
Jacquemontia Choisy						
J. densiflora Hallier. f.	S.Pitrez 409	*Pocinhos - PB	18			
J. nodiflora G. Don	S.Pitrez 359	Araruna - PB	18			
a, Moore 1973; b, Moore, 1974; c	, Goldblatt & Johnson	1996; d, Goldblatt & J	ohnson 2000; e, Fede	erov 196	9; f, Goldbla	tt 1984.

Resultados e Discussão

Foi analisado um total de 18 espécies pertencentes a cinco gêneros da família Convolvulaceae representando quatro tribos. De forma geral, as espécies apresentaram um cariótipo simétrico, cromossomos corados uniformemente, pequenos, medindo de 0,3 a 2,3 µm, geralmente com morfologia difícil de ser observada. Não foram detectadas variações cromossômicas intra ou interpopulacionais em nenhuma das espécies analisadas, nem mesmo quando uma espécie ocorreu em habitats terrícola e rupícola como no caso de *I. longeramosa* e *E. glomeratus*.

A família Convolvulaceae apresenta relativa estabilidade cromossômica numérica em vários de seus gêneros, como por exemplo, 2n=30 na maioria dos representantes de Ipomoea e Merremia, com registros de variações numéricas ocasionais em algumas espécies desses dois gêneros (Federov, 1969; Moore, 1973; Goldblatt & Johnson, 1991; Goldblatt & Johnson, 2000; Chiarini, 2000). Essa estabilidade numérica, especialmente nos representantes de inselbergue, difere quando comparada a outros grupos de plantas, como na família Orchidaceae que apresenta espécies ou citotipos poliplóides relacionados à ocupação do habitat rupestre como nos gêneros Epidendrum L. (Felix, 2001) e Oncidium Sw. (Felix & Guerra, 2000) ou em espécies rupícolas do gênero Laelia Adans. (Blumenschein, 1960). Nessas espécies a alteração do habitat epifitico para o habitat rupícola foi acompanhada por um ou vários eventos de poliploidia como no caso de Epidendrum cinnabarinum Salzm. com 2n= ca.240, o maior número cromossômico conhecido para a família (Guerra, 2000). Por outro lado, em gêneros de orquídeas de habitat tipicamente terrestre, não foi observada nenhuma correlação de poliploidia entre espécies rupícolas e terrestres como nos gêneros *Habenaria* Willd. (Felix & Guerra, 1998) e Prescottia Lindl. (Felix & Guerra, 2005). As Convolvulaceae são igualmente de habitat principalmente terrestre e quando rupícolas possuem ao mesmo tempo representantes terrestres, especialmente em região de caatinga, uma floresta xerófila típica do Nordeste do Brasil. Trata-se de uma mudança menos radical no habitat, quando comparada com as orquídeas epífitas e que não foi acompanhada por nenhum evento de poliploidia.

Todos os taxa estudados apresentaram núcleos interfásicos do tipo semi-reticulado, com filamentos de cromatina fracamente corados, cromocentros de formato irregular e cromossomos com padrão de condensação profásico proximal (Figuras 1a e 1d). A constância no tipo de núcleo interfásico e no padrão de condensação cromossômico pode indicar Convolvulaceae como um grupo natural. Similaridade nestes padrões pode ser vista

também em alguns grupos de monocotiledôneas como na maioria dos gêneros de Commelinaceae (Pitrez *et al.*, 2001), no gênero *Zephyranthes* das Amaryllidaceae (Naranjo, 1974) assim como em vários gêneros de Bromeliaceae (Gitaí *et al.*, 2005). Todavia, no gênero *Habenaria* (Felix & Guerra, 1998) e nas Rutaceae (Guerra, 1987) observa-se uma importante variabilidade para esses caracteres.

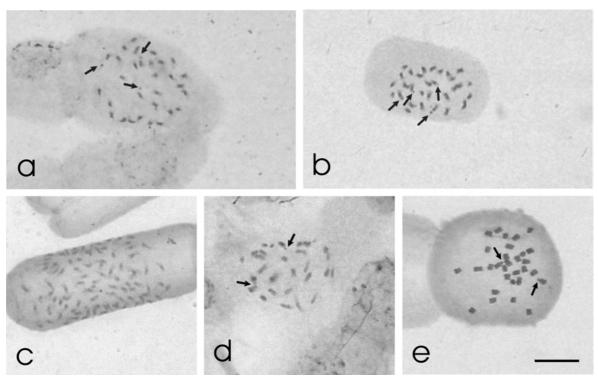


Figura 1. Prometáfase e Metáfase e mitótica de espécies de *Ipomoea*. a, *I. asarifolia* (2n = 30). b, *I. parasítica* (2n = 30). c, *Ipomoea batatas* (2n = 90). d, *I alba* (2n = 30). e, *I. fistulosa* (2n = 30). Setas indicam satélites. Barra corresponde a 10 μm.

A maioria das espécies observadas apresentou 2n=30, porém 2n=18, 26, 52 e ca. 90 também foram observados. O número cromossômico de 12 espécies foi determinado pela primeira vez e para apenas seis das espécies analisadas havia registro prévio (Tabela 1).

No gênero *Ipomoea*, *I. asarifolia*, *I. parasitica*, *I. alba* e *I. fistulosa* (Figuras 1 a, b, d, e) tiveram seus registros anteriores confirmados. O tamanho cromossômico variou entre 0,3 μm e 1,6 μm, com cariótipo simétrico e cromossomos metacêntricos a submetacêntricos e todas as espécies com 2n=30, exceto *I. batatas* com 2n= ca. 90 (Fig. 1c). Dois satélites foram observados em algumas células de *I. alba*, *I. fistulosa* (Fig. 1d, e), *I. longeramosa* (Fig. 2a), *I. marcellia* (Fig. 2b), *I. pickeli* (Fig. 2c), *Ipomoea* sp. 1 (Fig. 2d), enquanto *I. asarifolia*, *I. parasitica* (Figs 1a, b), *Ipomoea* sp. 2 (Fig. 2e) e *Ipomoea* sp. 3 (Fig. 2f), exibiram até quatro satélites. A ocorrência de satélites claramente visíveis também foi observada por Sampathkumar (1979) e Sinhá & Sharma (1992) em outras

espécies de *Ipomoea*. Constrições secundárias são regiões descondensadas do cromossomo que correspondem a sítios geralmente ativos de DNA ribossomal (Hasterok et al., 2006) e constituem uma característica cromossômica importante na análise cariotípica. Cada conjunto cromossômico apresenta pelo menos um par de cromossomos com constrição secundária (Stebins, 1971) que pode ser visível ou não, dependendo do tamanho e da localização dos mesmos ao longo dos cromossomos. Este número de constrições geralmente aumenta de maneira correspondente a cada evento de poliploidização. No gênero Passiflora L., por exemplo, todas as espécies que apresentaram cariótipo tetraplóide, tiveram também seu número de satélites dobrados (Melo et al., 2001). A presença de dois pares cromossômicos satelitados em espécies com 2=30 indica que *Ipomoea* é um gênero paleopoliplóide com número básico x = 15. Apesar de 90% dos registros do gênero *Ipomoea* apresentarem 2n = 30, poliploidia também foi observada em algumas espécies com 2n = 60 (Jones, 1968; Chiarini, 2000), e outras com 2n = 90 (Federov, 1969), sugerindo a ocorrência de séries poliplóides em algumas espécies (Yen et al., 1992). O registro de poliploidia em I. batatas confirmou observações anteriores para essa espécie (Moore, 1973; Fedorov, 1969; Sinha & Sharma, 1992), uma espécie cultivada (batata doce) e considerada um alohexaplóide natural (Sinha & Sharma, 1992). A contagem de 2n = 30 para *I. batatas* var. *leucantha* por Nishiyama (1971) *apud* Moore (1973), assim como 2n=84 (Kano, 1929 apud Moore, 1973) são os únicos registros divergentes de 2n=90. Contagens cromossômicas que divergem do padrão de evolução cariotípica de um determinado grupo taxonômico são muitas vezes consequência de contagens incorretas ou erros de identificação taxonômica (Ehrendorfer, 1970).

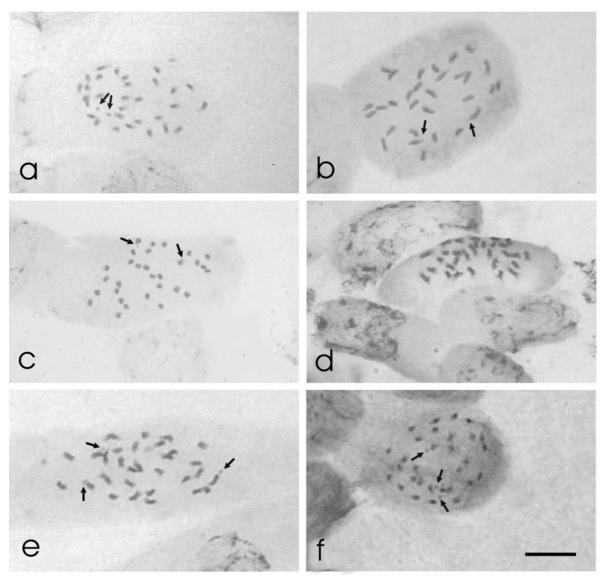


Figura 2. a, *I. longeramosa* (2n = 30). b, *I. marcellia* (2n = 30). c, *I. pikeli* (2n = 30). d, *Ipomoea* sp. 1 (2n = 30). e, *Ipomoea* sp. 2 (2n = 30). f, *Ipomoea* sp. 3 Setas apontam satélites. Barra corresponde a $10 \mu m$.

A contagem de 2n=30 (Moore 1973, 1974) para *Merremia aegyptia* (Figura 3a) foi confirmada tanto para a população proveniente do inselbergue de Pocinhos, como para a população de Araruna proveniente de uma capoeira perturbada, indicando que a ocupação do habitat rupícola não interferiu na estrutura cariotípica dessa espécie. Todavia, não foi confirmado o registro de Lewis *et al.* (1967) *apud* Moore (1973) que observaram 2n=28 para esta mesma espécie e para *M. umbellata* (L.) Hall. f. *M. aegyptia* apresentou cariótipo simétrico com cromossomos meta a submetacêntricos, variando entre 0,6 a 2,0 μm e constrição secundária terminal em um dos pares submetacêntricos. Contagem com 2n=28 também foi realizada por Sharma & Chatterji (1957) para *M. emarginata* Hallier f., enquanto uma discrepância ainda maior foi registrada para *M. gemella* (Burm. f.) Hall. f.,

com 2n = 22 (Jones, 1968) e 2n = 58 (Watanabe, 1939 *apud* Federov, 1969; Yeh & Tsai, 1995 *apud* Goldblatt & Johnson, 2000).

Em *Operculina* cf. *alata* com 2n=30 (Fig. 3b), as medidas cromossômicas variaram entre 0,3 e 1,0 µm e dois satélites foram observados em um dos pares cromossômicos. Este é o primeiro registro para a espécie e confirma o número citado para as demais espécies cariologicamente analisadas do gênero.

A similaridade entre o cariótipo das espécies dos gêneros *Ipomoea*, *Merremia* e *Operculina* sugere que x =15 seja o número básico secundário para estes gêneros, visto que registros prévios na literatura apontam raras exceções em *Ipomoea* e *Merremia*. É provável que existam alguns erros nas contagens cromossômicas prévias e que estes se devam à má qualidade das preparações, número pequeno de indivíduos analisados ou à carência de material para confirmação dos dados pelos autores, sem contar que muitos estudos datam de mais de 30 ou 40 anos, quando as técnicas citogenéticas ainda não estavam completamente aprimoradas (Guerra, 2000). O número básico x = 15 é confirmado por Yen *et al.* (1992) para o gênero *Ipomoea* ao estudarem espécies nativas ou introduzidas na Austrália. Sampathkumar (1979) sugere que *Merremia* e *Operculina* representam membros de uma série derivada de um mesmo ancestral e que a similaridade destes com *Ipomoea*, pode representar um paralelismo evolutivo. Contudo, esta similaridade cariotípica parece de fato refletir uma relação filogenética mais aproximada entre esses gêneros. Stefanović *et al.* (2002), utilizando seqüências de DNA do cloroplasto, demonstraram que os membros das tribos Merremieae e Ipomoeeae são realmente grupos irmãos.

Dos representantes da tribo Cresseae, *Evolvulus filipis* (Fig 3c) e *E. glomeratus* (Fig. 3d) apresentaram cariótipo simétrico com 2n=26, com satélite em um dos pares cromossômicos e comprimento variando entre 0,3 e 1 μm. Não foi encontrado nenhum registro citogenético prévio para estas espécies, embora este número já tenha sido observado em outras espécies do gênero (Goldblatt & Johnson, 1990, 1994, 1996), exceto para *E. nummularius* L. com 2n=24 (Federov, 1969). Em uma espécie indeterminada de ambiente não rupícola, *Evolvulus* sp (Fig 3e), foi observado 2n=4x=52 sendo este o primeiro registro de poliploidia para o gênero, confirmando seu número básico x=13.

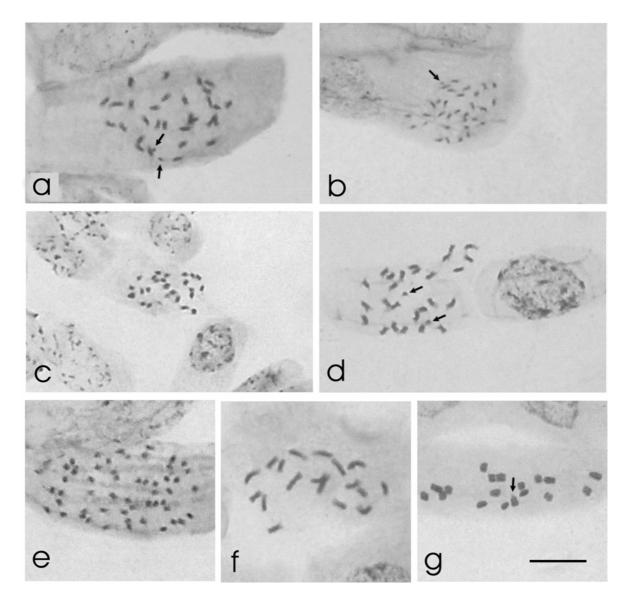


Figura 3. Metáfase mitótica de espécies de *Merremia, Operculina, Evolvulus* e *Jacquemontia*. a, *Merremia aegiptia* (2n = 30). b, *Operculina* cf. *alata* (2n = 30). c, *E. filipis* (2n = 26). d, *E. glomeratus* (2n = 26). e, *Evolvulus* sp. (2n = 52). f, *J densiflora* (2n = 18). g, *J. nodiflora* (2n = 18). Setas apontam satélites. Barra corresponde a $10 \mu m$.

As espécies analisadas de *Jacquemontia* apresentaram os cromossomos de maior tamanho dentre os taxa analisados, variando entre 1 e 2,3 μm. Tanto *J. densiflora* (Fig. 3f) como *J. nodiflora* (Fig. 3g) apresentaram cariótipos simétricos com 2n=18, cromossomos predominantemente submetacêntricos e um par cromossômico satelitado. Nenhuma dessas duas espécies apresentou registro prévio na literatura, porém o número cromossômico observado coincide com o de maior freqüência no gênero. Alguns registros apontam exceções como 2n=20 em *J. blancheti* Moric. (Jones, 1968), *J. havanensis* (Jacq.) Urban (Moore, 1973) e *J. pentantha* (Jacq.) Don (Jones, 1968). O número cromossômico incomum do gênero *Jacquemontia*, bem como o tamanho de seus cromossomos, sugere

uma linha evolutiva especial na família Convolvulaceae, sendo seus representantes considerados membros primitivos da família, onde n=10 seria derivado de n=9 (Sampathkumar, 1979). A análise filogenética molecular de Stefanović *et al.* (2002) para as Convolvulaceae foi inconclusiva em relação à *Jacquemontia*, sendo necessário a inclusão de mais dados, abrangendo um maior número de caracteres e de taxa, para melhor avaliar o posicionamento filogenético do gênero.

Referências Bibliográficas

Austin, D. F.; Cavalcante, P. B. 1982. **Convolvuláceas da Amazônia**. *In*: Publ. Avulsas do Museu Goeldi, INPA.

Barroso, G.M.; *et al.* 1991. **Sistemática da Angiospermas do Brasil**. vol.3. Viçosa: Imprensa Universitária /UFV. 326p.

Blumenschein, A. 1960. **Números cromossômicos de algumas espécies de orquídeas.** *In:* Publicações científicas da Universidade de São Paulo 1: 45-50.

Bowers, J. E.; Chapman, B. A.; Rong, J.; Paterson, A. H. 2003. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events *In:* Nature 422: 433-438.

Bridson, D.; Forman, L. 1999. **The herbarium handbook**. *In*: Royal Botanic Gardens-Kew. 334p.

Burke, A. 2002. Island-matrix relationships in Nama Karoo inselbergs landscapes Part I: Do inselbergs provide a refuge for matrix species? *In:* Plant Ecology. vol. 160. p. 79-90.

Chiarini, F.E. 2000 **Números cromosómicos en dos espécies de** *Ipomoea* (Convolvulaceae) argentinas. Tomo 28(2): 309-311. 2000.

Ehrendorfer, F. 1970. Evolutionary pattern and strategies in seed plants. *In:* Taxon 19: 185-195.

Federov, A. M. A. 1969. **Chromosome numbers of flowering plants**. *In*: Komarov Botanical Institute. Leningrado.

Felix, L. P. 2001. Citogenética e citotaxonomia de orquídeas do Brasil, com ênfase no gênero *Habenaria* Willd. (Tese). Recife. UFPE. 221p.

Felix, L. P.; Guerra, M. 1998. Cytogenetic studies on species of *Habenaria* (Orchidoideae: Orchidaceae) occurring in the northeast of Brazil. *In*: Lindleyana 13(4): 224-230.

Felix, L. P.; Guerra, M. 2000. O cariótipo de *Nothoscordum pulchellum* (Alliaceae), com ênfase na heterocromatina e nos sítios de DNAr. *In:* Bol. Soc. Argent. Bot. 35 (3-4): 283-289.

Felix, L. P.; Guerra, M. 2005. **Basic chromosome numbers of terrestrial orchids.** *In:* Pl. Syst. Evol. 254: 131–148.

Fischer, E.; Vogel, S.; Lopes, A. V. 1999. Ameroglossum, a new monotypic genus of Scrophulariaceae – Scrophularioideae from Brazil. *In:* Feddes Repertorium. 110.(7-8): 529-534.

Gitai, J.; Horres, R.; Benko-Iseppon, A. M. 2005. Chromosomal features and evolution of Bromeliaceae. *In:* Pl. Syst. Evol. 253: 65-80.

Goldblatt, P. 1981. Index to plant chromosome numbers 1975-1978. Missouri Botanical Garden. St. Louis.

Goldblatt, P. 1984. Index to plant chromosome numbers 1979-1981. Missouri Botanical Garden. St. Louis.

Goldblatt, P. 1985. Index to plant chromosome numbers 1982-1983. Missouri Botanical Garden. St. Louis.

Goldblatt, P. 1988. . Index to plant chromosome numbers 1984-1985. Missouri Botanical Garden. St. Louis.

Goldblatt, P.; Johnson, D. E. 1990. Index to plant chromosome numbers 1986-1987. Missouri Botanical Garden. St. Louis.

Goldblatt, P.; Johnson, D. E. 1991. Index to plant chromosome numbers 1988-1989. Missouri Botanical Garden. St. Louis.

Goldblatt, P.; Johnson, D. E. 1994. Index to plant chromosome numbers 1990-1991. Missouri Botanical Garden. St. Louis.

Goldblatt, P.; Johnson, D. E. 1996. Index to plant chromosome numbers 1992-1993. Missouri Botanical Garden. St. Louis.

Goldblatt, P.; Johnson, D. E. 2000. Index to plant chromosome numbers 1984-1985. Missouri Botanical Garden. St. Louis.

Grant, V. 1989. Especiación vegetal. México. Noriega Editores. 586 p.

Guerra, M. 1983. O uso do Giemsa na citogenética vegetal – comparação entre a coloração simples e o bandeamento. Ciência e Cultura 35: 190-193.

Guerra, M. 1985. Estrutura e diversificação dos núcleos interfásicos em plantas. *In*: Aguiar-Perecin, M.; Martins, P.; Bandel, G. (eds.) **Tópicos de citogenética e evolução de plantas**. Sociedade Brasileira de Genética, Ribeirão Preto. p. 137-151.

Guerra, M. 1987. Cytogenetics of Rutaceae IV. Structure and systematic significance of interphase nuclei. Cytologia 52: 213-222.

Guerra, M. 1988. Introdução à citogenética geral. Rio de Janeiro. Editora Guanabara.

Guerra, M. 1990. A situação da citotaxonomia de angiospermas nos trópicos e, em particular, no Brasil. Acta Bot. Brasil. 4: 75-86.

Guerra, M. 2000. Chromosome number variation and evolution in monocots. *In*: Wilson, K. L.; Morrison, D. A. (eds.) **Monocots: Systematics and Evolution** CSRIRO, Melbourne, pp. 127-136.

Guerra M.; Souza M.J., 2003. - Como observar cromossomos: Um guia de técnicas em citogenética vegetal, animal e humana. Funcec, Recife

Kluge, M.; Brulfert, J. 2000. Ecophysiology of vascular plants on inselbergs. *In*: Porembski S.; Barthlott, W. (eds.). **Inselbergs: biotic diversity of isoleted rock outcrops** in tropical and temperate regions. Berlin: Springer-Verlag. p. 143-176.

Maia, D. C.; Figueiredo, N. 1992. O gênero *Ipomoea* L. (Convovulaceae) na ilha de São Luís. MA. *In:* PPPG, Ed Universidade Federal do Maranhão. 104 p.

Meisner, C. F. 1869. Convolvulaceae. *In*: Martius, C. P. F.; Eichler, A. G. (eds.) **Flora Brasiliensis** 7: 199-370, tab. 72-124.

Melo, N. F.; Cervi, A. C.; Guerra, M. 2001. **Karyology and cytotaxonomy of the genus** *Passiflora L.* (Passifloraceae). *In:* Plant. Syst. Evol. 226: 69-84.

Miller, R. E.; McDonald, J. A.; Manos, P. S. 2004. Systematics of *Ipomoea* subgenus *Quamoclit* (Convolvulaceae) Based on ITS sequence data and a Bayesian phylogenetic analysis. *In:* American Journal of Botany 91 (8): 1208-1218.

Moore, R. J. 1973. Index to plant chromosome numbers 1967-1971. Regnum Vegetabile 90: 1-539.

Moore, R. J. 1974. Index to plant chromosome numbers for 1972. Regnum Vegetabile 91: 1-108.

Naranjo C. A. 1974. Karyotypes of four Argentine species of *Habranthus and Zephyranthes* (Amaryllidaceae). *In:* Phython, 32: 61-71.

Pitrez, S. R.; Felix, L. P.; Barreto, R.; Guerra, M. 2001. **Números cromossômicos de espécies de Commelinaceae R. Br. Ocorrentes no nordeste do Brasil**. *In:* Bol. Bot. Univ. São Paulo 19: 7-14.

Porembski, S. 2002. Terrestrial habitat islands as model systems for biodiversity research. *In:* Araújo, E. L.; Moura, A. N.; Sampaio, E. V. S. B.; Gestinari, L. M. S.; Carneiro, J. M. T. **Biodiversidade conservação e uso sustentável da flora do Brasil.** Recife, UFRPE, SBB. p. 158-161.

Porto, P. A. F. 2003. Estudo florístico de um inselbergues no distrito de Lagoa de Pedra, Município de Esperança - PB. (Monografía). Campina Grande: UEPB. 30p.

Sampathkumar, R. 1979. **Karyomorphological studies in some south Indian Convolvulaceae**. *In:* Cytologia 44: 275-286.

Simão-Bianchini, R. 1991. **Convolvulaceae da Serra do Cipó, Minas Gerais, Brasil**. Dissertação de mestrado, Univ. S. Paulo: 260p.

Simão-Bianchini, R. 1995. Convolvulaceae. *In*: Stannard, B.L. (ed.) **Flora of the Pico das Almas.** Royal BotanicalGardens, Kew: 277-281.

Simão-Bianchini, R. 1998. *Ipomoea* L. (Convolvulaceae) no sudeste do Brasil. Tese de Doutorado, Univ. S. Paulo. 476p.

Sinha, S.; Sharma, S.N. 1992. **Taxonomic significance of karyomorphology in** *Ipomoea* **spp.** Cytologia **57**: 289-293.

Souza, V. C.; Lorenzi, H. 2005. **Botânica sistemática: guia ilustrado para identificação das famílias de Angiospermas da flora brasileira, baseado em APG II**. Nova Odessa, SP: Instituto Plantarum 553-556.

Stebbins, G. L. 1971. **Chromosomal Evolution in Higher Plants**. London: Edward Arnold.

Stefanović, S.; Krueger, L.; Olmstead, R. G. 2002. Monophyly of the Convolvulaceae and circumscription of their major lineages based on DNA sequences of multiple chloroplast loci. *In*: American Journal of Botany. 89 (9): 1510-1522.

Yen, D. E.; Gaffey, P. M.; Coates, D. J. 1992. Chromosome numbers of Australian species of *Ipomoea* L. (Convolvulaceae). Austrobaileya 3 (4): 749-755.

Yokota, M. 1990. **Karyomorphological studies on** *Habenaria***, Orchidaceae, and allied genera from Japan.** *In:* J. Sci. Hiroshima Univ. 23: 53-161.

ANEXO

Figura 1 - Aspecto geral do inselbergue de Lagoa de Pedra, Município de Esperança - PB (Foto: Almeida, 2002).

Figura 2 - Aspecto geral do inselbergue da Pedra de Santo Antônio, Município de Fagundes - PB (Foto: Pitrez, 2003).

Figura 3 – Aspecto geral do inselbergue do Parque das Pedras, Município de Pocinhos – PB (Foto: Pitrez, 2003).

Figura 4 – Detalhe do inselbergue da Fazenda Santa Helena, Município de Serraria – PB (Foto: Pitrez, 2003)

Tabela 1. Números cromossômicos referidos para a família Convolvulaceae R. Br, organizada em ordem alfabética.

ESPÉCIE	n	2n	INDEX
Aniseia Choisy			
A. martinicensis Choisy		60	Federov, 1969
Argyreia Lour.			
A. argentea Arn. Ex Choisy		28	Federov, 1969
A. bella (C. B. Clarke) Raiz.	4.4	28	Goldblat, 1984
A. campanulata Chois.	14	20	Moore, 1974
A. cuneata Ker Gawler		30	Goldblat, 1984
A. hirsute Arn.		30	Goldblat, 1984
A. nervosa		30	Federov, 1969
A. wallichii Choisy		30	Goldblat & Johnson, 1990, 1991
Astripomoea A. Meeuse A. malvaceae (Klotzsch) Meeuse var. volkensii		30	Goldblat, 1985
Bonamia Thou.		30	Goldblat, 1983
B. cymosa Hall. f.		30	Federov, 1969
B. mossambicensis (Klotzsch) Hall. f.	15	30	Goldblat, 1984
B. humanistrata (Walt.) A. Gray	13	28	Federov, 1969
B. pickeringii (Torr.) A. Gray		28	Federov, 1969
Calonyction Choisy		26	reactor, 1909
C. aculeatum (L.) House		30, 38	Federov, 1969; Goldbltt &
C. acateatum (E.) House		30, 36	Johnson, 1999; Goldblat &
			Johnson, 1991
C. album (L.) House		30	Goldblat & Johnson, 1990, 1991
C. muricatum House		30	Federov, 1969
Calystegia R. Br.		30	redelov, 1909
C. dahurica (Herb.) Choisy		22	Goldblat & Johnson, 1990
C. davurica (Sims) Choisy		22	Goldblat & Johnson, 1991
C. hederaceae Wall		22	Federov, 1969; Goldblat &
C. neueraceae wan		22	Johnson, 1991
C. japonica (Thunb.) Choisy		22	Federov, 1969; Goldblat &
e. Jupomea (Thuno.) Choisy		22	Johnson, 1991, 1994
C. pulchra Brummit & Heywood	11	22	Moore, 1973, 1974
C. sepium (L.) R. Br.	11, 12	22, 24	Moore, 1973, 1974; Federov,
C. sepium (E.) K. Bi.	11, 12	22, 27	1969; Goldblat, 1981, 1984;
			Goldblat & Johnson, 1990, 1994
C. sepium (L.) R. Br. ssp. americana (Sims) Brummitt		22	Goldblat, 1985
C. sepium (L.) R. Br. var. americana (Sims) Kitagawa		22	Goldblat & Johnson, 1991
C. sepium (L.) R. Br.ssp. roseata Brummitt	11		Moore, 1974
C. sepium (L.) R. Br. ssp. sepium	11	22	Moore, 1974
C. silvatica (Waldst.) Griseb.	11	22	Moore, 1973
C. soldanella R. Br.	••	22	Moore, 1973, 1974; Federov,
C. Solidantila II. 21.			1969; Goldblat, 1984; Goldblat
			& Johnson, 1991, 1996
C. sylvestris (Willd.) Roem. & Schult.		22	Goldblat, 1981
C. althaeoides L.		40	Moore, 1973
C. althaeoides L.	10		Moore, 1974; Federov, 1969;
e. dimineolius E.	10		Goldblat, 1988
C. altheoides L. ssp. altheoides		40	Goldblat, 1984
C. arvensis L.	12, 24, 25	48, 50	Moore, 1973, 1974; Federov,
C. W. 1011515 E.	12, 21, 20	10, 20	1969; Goldblatt, 1984, 1985,
			1988; Goldblat & Johnson, 1990,
			1991, 1994, 1996
C. canariensis L.		24	Moore, 1973
C. cantabrica L.	15	22, 30	Moore, 1973, Federov, 1969;
		,	Goldblatt, 1984, 1985, 1988
C. cantabricus L.		30	Goldblat & Johnson, 1994
C. caput-medusae Lowe		30	Goldblat & Johnson, 1990, 1991
C. cneorum L.		30	Goldblat & Johnson, 1991
C. cneorum L. ssp. cneorum		30	Goldblat, 1984
C. dorycnium L.		30	Goldblat & Johnson, 1991
C. elongatus		22	Federov, 1969
C. farinosus L.		24	Moore, 1973
C. fatmensis Kunze		20	Moore, 1973
C. fischeranus V. Petrov		44	Goldblat, 1988
C. floridus L. f.		30	Moore, 1973; Federov, 1969
C. gharbensis Choisy		22	Moore, 1973, Federov, 1909 Moore, 1973
C. glomeratus Choisy	14		Moore, 1973; Goldblat &
0			Johnson, 1994

Continua...

Tabela 1. Continuação

ESPÉCIE	n	2n	INDEX
C. hermanniae L'Heritier	12		Goldblat & Johnson, 1996
C. humilis Jacq.		22, 24	Moore, 1973; Goldblat, 1984
C. incanus Vahl	12		Goldblat, 1988
C. lineatus L.		30	Federov, 1969; Goldblat, 1984, 1988
C. meonanthus Hoffmg. & Link		26	Moore, 1973; Goldblat, 1984
C. microphyllus Sieb. ex Spreng	9, 12	18, 36	Federov, 1969; Goldblatt, 1984; Goldblat & Johnson, 1990
C. neonanthus Hoffmans. & Link		24	Moore, 1974
C. persicus L.		26	Goldblat, 1981
C.pluricaulis Chois.	9, 18	20, 36, 40	Moore, 1973, Federov, 1969; Goldblatt, 1984; Goldblat &
			Johnson, 1990
C.pluricaulis Chois. var macra	18		Moore, 1974
C.pluricaulis Chois. var pluricaulis	9		Moore, 1974
C. prostatus Forsk.	18, 20		Goldblat & Johnson, 1994
C. sabatius subsp. mauritanicus (Boiss.) Murb.		40	Goldblat, 1988; Goldblat & Johnson, 1994
C. sebatius Viv.		22	Moore, 1973
C. scammonia L.		24	Moore, 1973; Federov, 1969
C. scoparius L. f.		30	Moore, 1973; Goldblat & Johnson, 1991
C. sepium L.		22, 24	Federov, 1969
C. siculus L.		22, 44	Federov, 1969; Moore, 1974; Goldblat & Johnson, 1996
C. siculus L. var. elongatus (Willd.) Batt.		22	Moore, 1973
C. siculus L. var. siculus		44	Moore, 1973, 1974
C. siculus L. ssp. siculus		44	Goldblat, 1984
C. spithamaeus L.		22	Federov, 1969
C. soldanella L.	0	22	Federov, 1969; Moore, 1973, 1974; Goldblat & Johnson, 1996
C. stachydifolius Choisy	9	44.46	Goldblat, 1984
C. supinus Coss. et Kral. C. tauricus (Bornm.) Juz.	30	44-46 60	Federov, 1969 Federov, 1969; Moore, 1973
C. tenuissimus Sibth. & Sm.	30	24	Goldblat & Johnson, 1990
C. tricolor L.	10	20	Federov, 1969; Moore, 1973; Goldblat, 1985
C. undulatus Cressa L.		≈ 22	Federov, 1969
C. cretica L.	14	28	Federov, 1969; Moore, 1973, 1974; Goldblat, 1984
C. nudicaulis Griseb.	14		Goldblat & Johnson, 1996
C. traxillensis H.B. et K. Cuscuta L.	17	28	Federov, 1969
C. aproximata Babingt.		28	Federov, 1969
C. arvensis Beyr.		56	Federov, 1969
C. australis R. Br.		56	Goldblat & Johnson, 2000
C. babilonica Choisy		8	Goldblat & Johnson, 1990; Pazy & Plitmann, 1994
C. campestris Juncker	28	56	Federov, 1969; Goldblat, 1988; Goldblat & Johnson, 1991
C. cephalanthi Engelm.		60	Federov, 1969
C. chinensis Lamk.		28, 56	Goldblat, 1984; Goldblat & Johnson, 1991
C. compacta Juss.		≈ 30	Federov, 1969
C. coryli Engelm.		30	Federov, 1969
C. cupulata Engelm.		14	Federov, 1969
C. epilinum Weihe		42	Federov, 1969
C. epithymum (L.) Murray		14	Federov, 1969; Goldblat & Johnson, 2000
C. epithymum Murr. subsp. epithymum		14	Goldblat & Johnson, 1994, 1996
C. epithymum Murr. subsp. Kotschyi (Desmoulins) Arcangeli	7	14 14	Goldblat & Johnson, 1994 Federov, 1969; Moore, 1973;
C. europaea L.			Goldblat & Johnson, 2000
		1.4	
C. europaea L. ssp. Halophyta (Fries) Hartman	15	14	Goldblat, 1988
C. europaea L. ssp. Halophyta (Fries) Hartman C. glomerata Choisy	15	30	Federov, 1969; Goldblat & Johnson, 1991
C. europaea L. ssp. Halophyta (Fries) Hartman	15 14, 30		Federov, 1969; Goldblat &

Continua...

Tabela 1. Continuação

ESPÉCIE	n	2n	INDEX
C. indecora Choisy var. neuropetala (Engelm.) Hitch.		30	Federov, 1969
C. lupuliformis Krocker		28	Federov, 1969
C. planifolia Tenore	14		Moore, 1973
C. odorata Ruiz et Pav.		32	Federov, 1969
C. pedicellata Ledeb.		10	Goldblat & Johnson, 1994
C. pentagona Engelm.		56	Federov, 1969
C. planiflora Tem.		14, 28	Goldblat & Johnson, 1991, 1994
C. reflexa Roxb.	14, 16, 16+(0-1F), 16+3f, 18+2f, 18, 14+1fragm., 15+0- 1 fragms	28, 32, 42, 48, 28+0-2 fragms 30+0-2 fragms., 32+2 fragms	Federov, 1969; Moore, 1974; Goldblat, 1988; Goldblat & Johnson, 1990; Goldblat & Johnson, 199
C. suaveolens Seringe C. viciae Koch. Schn. Et Schoen.	14	14	Goldblat, 1988 Federov, 1969
Dichondra Forst.			
D. brevifolia BuchHam.		30	Federov, 1969
D. micrantha Urb.		28	Goldblat & Johnson, 2000
D. repens Forst.		24, 30	Moore, 1973; Federov, 1969
Evolvulus L. E. alsinoides L.	11, 12, 13	26	Federov, 1969; Moore,
E. distributes E.	11, 12, 13	20	1974; Goldblat & Johnson, 1990; Goldblat & Johnson, 1994
E. nummularius L.		24	Federov, 1969
E. sericeus Sw. var. sericeus Grammica Lour.	13	26	Goldblat & Johnson, 1996
Gronovii (Willd.) Hadac & Chtek. Hewittia Wight et Arn.		60	Goldblat, 1985
H. bicolor Wight et Arn.		30	Federov, 1969
H. sublobata (L.) Kuntze	15	30	Federov, 1969; Goldblat & Johnson, 1994, 2000
Ipomoea L.			
I. aculeata Blume		30	Goldblat & Johnson, 1996
I. acuminate (Vahl) Roem. & Schult.		30	Goldblat & Johnson, 2000
I. alba L.	15	30	Moore, 1973
I. alba L.		30	Moore, 1973, 1974; Goldblat & Johnson, 1996, 2000
I. albivenia Sweet		30	Federov, 1969
I. amnicola (Morong) Shinners	15	30	Moore, 1973
I. amoena Choisy	13	30	Federov, 1969
I. amparoana Pilger		30	Moore, 1973
I. angulata Bojer		28, 30	Federov, 1969
I. aquatica Forsk.	15	30	Federov, 1969; Moore,
I. aquanca 1 orsa.	10	30	1973, 1974; Goldblat & Johnson, 1990, 1991,
I. arborescens (HBX) G. Don	15II	60	1994, 1996 Federov, 1969; Moore, 1973; Goldblat, 1985
I. argillicola R. W. Johnson		30	Goldblat & Johnson, 1996
I. asarifolia (Desr.) Roem. Schult.		30	Federov, 1969; Goldblat & Johnson, 1994
I. batatas (L) Lamarck		90	Federov, 1969; Moore, 1973; Goldblat & Johnson, 1996
I. batatas (L.) Lam. var. batatas f. trifida Nishiyama		84, 90	Federov, 1969; Moore, 1973
I. batatas (L.) Lam. var. batatas		90	Moore, 1973
I. batatas (L.) Lam. var. leucantha (Jacq.) Nishiyama		30	Moore, 1973
I. batatas (L.) Lam. var. littoralis (Blume) Nishiyama		60	Moore, 1973
I. biloba Forssk	13, 30	30	Federov, 1969; Moore, 1973; Goldblat & Johnson,
I. bona-nox L. = I. aculeata Blume	15	30	1991 Federov, 1969; Moore,
I hongriousis Hook		20	1974 Magra 1973
I. bonariensis Hook.		30	Moore, 1973
I. brassii C. White		30	Goldblat & Johnson, 1996
I. bullata Oliv.		30	Moore, 1973

Continua...

Tabela 1. Continuação

ESPÉCIE	n	2n	INDEX
I. cairica (L.) Sweet = I. palmata	15	30, 60	Federov, 1969; Moore,
			1973; Goldblat & Johnson,
			1990, 1994, 2000;
			Chiarini, F. E., 2000
I. carnea Jacq. = I. denticulata	15	30	Federov, 1969; Moore,
			1974; Goldblat & Johnson,
			1994, 1996
I. carolina Pursh		30	Federov, 1969
I. campanulata Am. ex Steud.		30	Federov, 1969
I. cathartica Poir		30	Federov, 1969
I. coccinea L. = I. hederifolia	1.5	28	Federov, 1969
I. coccinea L. var. coccinea	15	20	Goldblat, 1988
I. congesta R. Br.	15	30	Moore, 1973, 1974;
Lagrange (L) Both ov Boom & Cobult = L diagnosts		20 20	Goldblat & Johnson, 1994
I. coptica (L.) Roth ex Roem. & Schult. = I. dissecta		28, 30	Goldblat & Johnson, 1994,
Locatata E Muell Ex Donthom		20	1996 Coldblot & Johnson, 1006
I. costata F. Muell. Ex Bentham		30	Goldblat & Johnson, 1996
I. crassicaulis (Benth.) Robins. I. diamantinesis J. M. Black		30 30	Federov, 1969
	15	30	Goldblat & Johnson, 1996 Moore, 1974
I. dichroa Choisy = I. pilosa	15	30	Federov, 1969
I. digitata I. dissecta Willd. = I. sinuata		30	· · · · · · · · · · · · · · · · · · ·
I. disercia Willa. = I. sinuata I. diversifolia R. Br. = I. dissecta		30	Federov, 1969
v		30	Goldblat & Johnson, 1996
I. dumetorum Willd I. edibilis		84	Federov, 1969 Federov, 1969
	15	30	Moore, 1974; Goldblat &
I. eriocarpa R. Br.	13	30	
I. fistulosa Choisy	15	30	Johnson, 1990, 1996 Federov, 1969; Moore,
1. Jistutosa Choisy	13	30	1974
I. gracilis R. Br.	30	30, 60; 30+ 0- 1B	Federov, 1969; Moore,
1. gracius R. Di.	30	30, 00, 30 · 0- 1D	1973; Goldblat & Johnson,
			1975, Goldolat & Johnson, 1996, 2000
I. grandiflora Parodi = I. aculeata Blume = I. bona-nox L		30	Federov, 1969
I. hederacea (L.) Jacq.	15	30	Federov, 1969; Moore,
1. heueracea (E.) sacq.	13	30	1974; Goldblat & Johnson,
			1990, 1996
I. hederifolia	14	30	Federov, 1969; Moore,
1. neuerijonu	17	30	1974
I. hirsutula Jacq. = I. hederacea		30	Federov, 1969
I. involucrata Beauv. = I. pileata		30	Federov, 1969
I. lacunosa L.		30	Federov, 1969; Moore,
I. Memosa E.		50	1973; Goldblat & Johnson,
			2000
I. leari Paxt.		30	Federov, 1969
I. leptophylla Torr.		30	Federov, 1969
I. leucantha Jacq.		30	Moore, 1973
I. littocantha		90	Moore, 1973
I. littoralis Blume		60	Moore, 1973
I. lonchophylla J.M. Black		60	Goldblat & Johnson, 1996
I. macrantha Roem. & Schult. = I. murucoides		30	Goldblat & Johnson, 1996
I. mauritiana Jacq. = I. digitata		30	Goldblat & Johnson, 1996
I. muelleri Bentham		30	Goldblat & Johnson, 1996
I. muricata Cav. = I. armata	15	30	Federov, 1969; Moore,
			1974
I. murucoides R. & Sch.		30	Moore, 1973
I. mutabilis Lindl. = I. acuminata	15		Moore, 1974
I. nil (L.) Roth	15	30; 30+0-3B	Federov, 1969; Moore,
()		,	1973; Goldblat & Johnson,
			1990, 2000
I. nítida Griseb.		30	Federov, 1969
I. obscura (L.) Ker-Gawl.		30; 30+0-3B	Federov, 1969; Moore,
` /		, 	1973; Goldblat & Johnson,
			2000
I. ochraceae G. Don	15	30	Federov, 1969; Moore,
	-		1973
I. ochraceae G. Don		30	
I. oenotherae (Vatke) Hall. F.		30	Moore, 1973
I. palmate Forsk.	15, 15+(0-1B)	30	Federov, 1969; Moore,
<u> </u>	-, .= (* 12)		1974; Goldblat & Johnson,
			1990, 1996

Continua...

Tabela 1. Continuação

Aquinquefolia L. Aquinquefol	ESPÉCIE	n	2n	INDEX
Landharva G. F.W. Mey.	I. palmata Forsk. var. indica Hall. F.	15		Goldblat & Johnson, 1990
Laparasitica G. Don	I. palmeri S. Wats.		30	Moore, 1973
	I. pandurata G.F.W. Mey.	15	30	Federov, 1969; Moore, 1973
pendula Choisy = 1, palmata 30 Federov, 1969 pesc-aprae (L.) Roth - 1, biloba 15 30 Federov, 1969, Goldblat & Johnson, 191 pesc-aprae (L.) Sweet sp. prasiliensis Ooststr. 15 30 Moore, 1973; Goldblat & Johnson, 190 pesc-aprae subsp. brasiliensis (L.) Ooststr. 15 30 Goldblat & Johnson, 1900, 2000 pess-rigidis L. var. capitelluta Cl. 30 Goldblat & Johnson, 1900, 2000 pess-rigidis L. var. capitelluta Cl. 30 Goldblat & Johnson, 1900, 1906 pest-rigidis L. var. capitelluta Cl. 30 Goldblat & Johnson, 1900, 1906 pest-rigidis L. var. capitelluta Cl. 30 Goldblat & Johnson, 1900, 1906 pest-rigidis L. var. capitelluta Cl. 30 Goldblat & Johnson, 1900, 1906 pest-rigidis L. var. capitelluta Cl. 30 Goldblat & Johnson, 1900, 1906 pilosa Sweet = 1 dichroa 30 Goldblat & Johnson, 1900, 1906 pilosa Sweet = 1 dichroa 30 Goldblat & Johnson, 1906, 2000 pilosa Sweet = 1 dichroa 30 Goldblat & Johnson, 1906 polymorpha R. W. Johnson 30 Goldblat & Johnson, 1906 polymorpha R. W. Johnson 30 Goldblat & Johnson, 1906 polymorpha R. W. Johnson 50 Goldblat & Johnson, 1906 polymorpha R. W. Johnson 50 Goldblat & Johnson, 1906 polymorpha R. W. Johnson 50 Goldblat & Johnson, 1906 purga (Wender) Hayne 24-28 Federov, 1969 purga (Wender) Hayne 24-28 Federov, 1969 purga (Wender) Hayne 30 Federov, 1969 purga (Wender) Hayne 30 Federov, 1969 purga (Wender) Hayne 30 Federov, 1969 quinquefoila L. 15 30 Federov, 1969 quinquefoila L. 15 30 Federov, 1969 quinquefoila L. 16 16 16 16 16 16 ramoni Choisy 30 Moore, 1973 repens Lam. 30 Federov, 1969 repans (L.) Poir. 30 Federov, 1969 reparation (Choisy) 30 70 Federov, 1969 reparation (Choisy) 30 70 Federov, 1969 reparation (I. parasitica G. Don		30	Federov, 1969
	I. pedicellaris Benth		30	Federov, 1969
penthylida lacq. 30 Federov. 1969; Goldblat & Johnson, 199 pes-caprae (L.) Sweet sp. Praxillensis Ooststr. 15 30 Moore, 1973; Goldblat & Johnson, 199 pes-caprae (L.) Sweet sp. Praxillensis (L.) Ooststr. 15 30 Goldblat & Johnson, 1996; 2000 pes-rigidis L. var. capitellata Cl. 30 Goldblat & Johnson, 1996; 2000 pes-rigidis L. var. capitellata Cl. 30 Goldblat & Johnson, 1996; 2000 pes-rigidis L. var. capitellata Cl. 5 30 Goldblat & Johnson, 1996; 2000 pes-rigidis L. var. capitellata Cl. 5 30 Goldblat & Johnson, 1996; 2000 pes-rigidis L. var. capitellata Cl. 5 30 Goldblat & Johnson, 1996; 2000 pes-rigidis L. var. capitellata Cl. 5 30 Goldblat & Johnson, 1996; 2000 pes-rigidis L. var. capitellata Cl. 5 30 Goldblat & Johnson, 1996; 2000 pes-rigidis L. var. capitellata Cl. 5 30 Goldblat & Johnson, 1996; 2000 pes-rigidis L. var. capitellata Cl. 5 30 Goldblat & Johnson, 1996; 2000 pes-rigidis L. var. capitellata Cl. 5 30 Goldblat & Johnson, 1996; 2000 pes-rigidis L. var. capitellata Cl. 5 30 Goldblat & Johnson, 1996 pes-rigidis L. 5 30 Federov. 1969; Moore, 1973; 1974; Goldblat & Johnson, 1990 pes-rigidis L. 5 5 5 5 5 5 5 5 5	I. pendula Choisy = I. palmata		30	Federov, 1969
L pes-caprae (L.) Roth - 1. biloba 15 30 Federov, 1969; Goldblat & Johnson, 198 L pes-caprae subsp. brasiliensis (L.) Ooststr. 15 30 Moore, 1973; Goldblat & Johnson, 1990; Goldblat & Johnson, 1990; Goldblat & Johnson, 1990; Goldblat & Johnson, 1990; Goldblat & Johnson, 2000 Goldblat & Johnson, 1990; Goldblat & Johnson, 1990; Goldblat & Johnson, 1990; Goldblat & Johnson, 1990; 1996 Goldblat & Johnson, 1990; 1999; 19			30	
pes-carpace (L.) sweet ssp. brasillensis (L.) Ooststr. 15 30 Moore, 1973; Goldblat 1, 1985 pes-carpace subsp. brasillensis (L.) Ooststr. 15 30 Goldblat 2, 1985, 1996, Moore, 1973, 1974; Goldblat 2, 1985 Goldblat 2, 1985, 1985 Goldblat 2, 19		15	30	
Less-trigidis L. var. capitellata Cl. 15 30 Goldblat & Johnson, 1996, 2000				
L. pes-trigidis L. var. capitellata Cl. 30 Federov, 1969. Moore, 1973, 1974; Goldblat & Chinson, 2000				
Des-trigidis L. var. capitellata Cl. 30 Goldbhiat, 1988 September Description Description	1 1 1	15		
1. pestojidis L. Var. capitellata Cl. 50 Goldbita & Johnson, 1996, 2000 1. pestojida Choisy 15 50 Goldbita & Johnson, 1996, 2000 1. pilosa Sweet = 1. dichroa 15 30 Goldbita & Johnson, 1996, 2000 1. polyha R. W. Johnson 30 Goldbita & Johnson, 1996 1. polyha R. W. Johnson 30 Goldbita & Johnson, 1996 1. polyha R. W. Johnson 28 Goldbita & Johnson, 1996 1. polyha R. W. Johnson 28 Goldbita & Johnson, 1996 1. polyha R. W. Johnson 28 Goldbita & Johnson, 1996 1. polyha R. W. Johnson 28 Goldbita & Johnson, 1991 1. purga (Meder) Hayne 24-28 Federov, 1969 1. purga (Medder) Hayne 15, 16 30 Federov, 1969; Moore, 1973; 1974; Goldbita & Johnson, 1990 1. purga (Mender) Hayne 15 30 Federov, 1969; Moore, 1973; 1974; Goldbita & Johnson, 1990, 1996, 2000 1. quinquefolia L. 30 Federov, 1969 Moore, 1973; 1974; Goldbita & Johnson, 1990, 1996, 2000 1. quinquefolia L. 30 Federov, 1969 Moore, 1973 1. racemigera F. Muell. 60 Goldbita & Johnson, 1996 1. ramoun Choisy 30 Moore, 1973 1. rependa 15 30 Moore, 1973 1. repanda 15 30 Moore, 1973 1. repanda 15 30 Federov, 1969 1. ramoun Choisy	1. pes inguis E.	13	50	
L. petaloidea Choisy	L. pes-trigidis L. var. capitellata Cl.		30	
		15	20	· · · · · · · · · · · · · · · · · · ·
			30	
Lipolpha R.W. Johnson 30	•	13		
Institute Inst				
Image				
L pulchella Roth				
J. purgar (Wender) Hayne				,
L. purpurea (L.) Roth				
L. quamoclit L. 15 30 Federov, 1969; Moore, 1974; Goldblat & Johnson, 1990 1996, 2000 L. quinquefolia L. 30 Federov, 1969 1996, 2000 L. quinquefolia L. 60 Goldblat & Johnson, 1996 1996, 2000 L. racemigera F. Muell. 60 Goldblat & Johnson, 1996 L. ramoni Choisy 30 Moore, 1973 L. repanda 15 30 Moore, 1973 L. repanda 15 30 Moore, 1973 L. repanta Lam. 30 Federov, 1969 L. rateria (L.) Poir. 30 Federov, 1969 L. rubra (Vahl.) Millsp. 30 Federov, 1969 L. rubriflora O'Donell 28 Chiarni, F.E. 2000 L. rubriflora O'Donell 28 Chiarni, F.E. 2000 L. rubriflora O'Donell 30 Federov, 1969 L. rubriflora Choisy 30 Federov, 1969 L. sugistata Cav. 30 Federov, 1969 L. sugistata Cav. 30 Federov, 1969 L. sugistata Cav. 30 Federov, 1969 L. suinata Ort. = L. dissecta 15 30 Federov, 1969; Moore, 1973 L. sinuata Ort. = L. dissecta 30 Federov, 1969; Moore, 1973 L. sinuata Ort. = L. dissecta 30 Federov, 1969; Moore, 1973 L. staphylina Roem. & Schult. 32 Federov, 1969 L. trichocarpa Ell. 4x. torreyanna (Gray) Shinners 30 Federov, 1969 L. trichocarpa Ell. 4x. torreyanna (Gray) Shinners 30 Moore, 1973 L. trichocarpa Ell. 4x. torreyanna (Gray) Shinners 30 Moore, 1973 L. trichocarpa Ell. 4x. torreyanna (Gray) Shinners 30 Moore, 1973 L. trichocarpa Ell. 4x. torreyanna (Gray) Shinyama 30 Moore, 1973 L. trichocarpa Ell. 4x. triloba L. var. triloba f. traumoni (Choisy) Nishiyama 30 Moore, 1973 L. triloba L. var. triloba f. traumoni (Choisy) Nishiyama 30 Moore, 1973 L. triloba L. var. triloba f. triloba 1. turba f. triloba	I. purga (Wender) Hayne		24-28	
L. quamoclit L. 15 30 Federov, 1969; Moore, 1974; Goldblat & Johnson, 1990, 1996, 2000 L. quinquefolia L. 30 Federov, 1969 L. racemigera F. Muell. 60 Goldblat & Johnson, 1996 L. ramoni (Choisy 30 Moore, 1973 L. repenad 15 30 Moore, 1973 L. repenad 15 30 Federov, 1969 L. reptans (L.) Poir. 30 Federov, 1969 L. reptans (L.) Poir. 30 Federov, 1969 L. rubriylora O'Donell 28 Chiarni, F.E. 2000 L. rubriv-caerulea Hook 30 Federov, 1969 L. rubriv-caerulea Hook 30 Federov, 1969 L. setista Cav. 30 Federov, 1969 L. stolont F. L. dissecta 30 Federov, 1969 L. stolont F. C. 30 Federov, 1969 L. strichocarpa Ell. Var. torreyanna (Gray) Shinners 30 Moore, 1973 L. trichocarpa Ell. Var. triloba f. Lacunosa (Jacq.) Nishiyama 30 Moore, 1973 L. triloba L. Var. triloba f. tratoni (Choisy) Nishiyama 30 Moore, 1973 L. triloba L. Var. triloba f. tratoni (Choisy) Nishiyama 30 Moore, 1973 L. triloba L. Var. triloba f. tratoni (Choisy) Nishiyama 30 Moore, 1973 L. triloba L. Var. triloba f. tratoni (Choisy) Nishiyama 30 Moore, 1973 L. tubersa ca. A. Rich. 30 Federov, 1969 L. verbascolate Choisy 30	I. purpurea (L.) Roth	15, 16	30	Federov, 1969; Moore, 1973; 1974;
Lquinquefolia L. Johnson, 1990, 1996, 2000 Lquinquefolia L. Lquinquefolia L. Lquinquefolia L. Lquinquefolia L. Lquinqefolia L				Goldblat & Johnson, 1990
Langinguefolia Lang	I. quamoclit L.	15	30	Federov, 1969; Moore, 1974; Goldblat &
Lancemigera F. Muell.				Johnson, 1990, 1996, 2000
L racemigera F. Muell.	I. quinquefolia L.		30	Federov, 1969
I. repnafa	I. racemigera F. Muell.		60	Goldblat & Johnson, 1996
1. repanda	ĕ			· · · · · · · · · · · · · · · · · · ·
1. repens Lam.	•	15		
1. reptans (L.) Poir. 30 Federov, 1969 1. rubri (Vahl.) Millsp. 30 Federov, 1969 1. rubri (Vahl.) Millsp. 30 Federov, 1969 1. rubri (Vahl.) Millsp. 28 Chiarini, F.E. 2000 1. rubri (Toloisy 30 Federov, 1969 1. sagiriata Cav. 30 Federov, 1969 1. sagiriata Cav. 30 Federov, 1969 1. setosa Ker. 15 30 Federov, 1969; Moore, 1973 1. setosa Ker. 15 30 Federov, 1969; Moore, 1973 1. sinuata Ort. = 1. dissecta 30 Federov, 1969; Moore, 1974; Goldblat (Institute of the control of the cont				
1. rubra (Vahl.) Millsp. 30 Federov, 1969 1. rubriflora O'Donell 28 Chiarini, F.E. 2000 1. rubro-caerulea Hook 30 Federov, 1969 1. sagitata Cav. 30 Federov, 1969 1. sagitata Cav. 30 Federov, 1969 1. setifera Poir. 30 Federov, 1969 1. setifera Poir. 30 Federov, 1969; Moore, 1973 1. setosa Ker. 15 30 Federov, 1969; Moore, 1973 1. sinuata Ort. = I. dissecta 30 Federov, 1969; Moore, 1974 1. sinuata Ort. = I. dissecta 30 Federov, 1969; Moore, 1974 1. stoleri (H.D. House) van Ooststr. 58 Federov, 1969 1. stolonifera (Cyrill.) Poir. 32 Federov, 1969 1. stolonifera (Cyrill.) Poir. 32 Federov, 1969 1. ternata Jacq. 30 Federov, 1969; Moore, 1973; Goldblat & Johnson, 2000 1. ternata Jacq. 30 Federov, 1969; Moore, 1973 1. trichocarpa Ell. var. torreyanna (Gray) Shinners 30 Federov, 1969; Moore, 1973 1. trichocarpa Ell. var. torreyanna (Gray) Shinners 30 Moore, 1973 1. trichoba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Moore, 1973 1. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 1. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 1. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 1. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 1. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 1. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 1. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 1. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 1. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 1. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 1. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Federov, 1969; Goldblat & Johnson, 190 1. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30				
L. rubriflora O'Donell 28 Chiarini, F.E. 2000 L. rubro-caerulea Hook 30 Federov, 1969 L. rubro-caerulea Hook 30 Federov, 1969 L. sagittata Cav. 30 Federov, 1969 L. setifera Poir. 30 Federov, 1969; Moore, 1973 L. setosa Ker. 15 30 Federov, 1969; Moore, 1973 L. sinuata Ort. = I. dissecta 30 Federov, 1969; Moore, 1973 L. sinuata Ort. = I. dissecta 30 Federov, 1969; Moore, 1974; Goldblat & Johnson, 1996 L. stoleri (H.D. House) van Ooststr. 58 Federov, 1969; Moore, 1974; Goldblat & Johnson, 1996 L. stolonifera (Cyrill.) Poir. 30 Federov, 1969 L. stolonifera (Cyrill.) Poir. 30 Federov, 1969; Moore, 1973; Goldblat & Johnson, 2000 L. ternata Jacq. 30 Federov, 1969; Moore, 1973; Goldblat & Johnson, 2000 L. tilacea (Willd.) Choisy 30 30, 60 Federov, 1969; Moore, 1973 L. trichocarpa Ell. 30 Federov, 1969; Moore, 1973 L. trichocarpa Ell. var. torreyanna (Gray) Shinners 30 Moore, 1973 L. trichoba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Moore, 1973 L. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 L. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 L. tuba (Sch.) Don = L. grandiflora 30 Federov, 1969; Goldblat & Johnson, 190 L. tupehum R. Br. 30 Federov, 1969; Goldblat & Johnson, 190 L. tupethum R. Br. 30 Federov, 1969; Goldblat & Johnson, 190 L. verbascoidea Choisy 30 Federov, 1969; Moore, 1973 L. versicolor Meissn. 28 30 Federov, 1969; Moore, 1974 L. vitifolia (Burman f.) Sweet. 30 Federov, 1969; Moore, 1974 L. vitifolia (Burman f.) Sweet. 30 Federov, 1969; Moore, 1974 L. vitifolia (Burman f.) Sweet. 30 Federov, 1969; Moore, 1974 L. vitifolia (Burman f.) Sweet. 30 Federov, 1969; Moore, 1974 L. vitifolia (Burman f.) Sweet. 30 Federov, 1969; Moore, 1974 L. vitifolia (Burman f.) Sweet. 30 Federov, 1969; Moore, 1974 L. vitifolia (Burman f.) Sw				
I. rubro-caerulea Hook 30 Federov, 1969 I. rumicifolia Choisy 30 Federov, 1969 I. sagitata Cav. 30 Federov, 1969 I. setifera Poir. 30 Federov, 1969 I. setifera Poir. 30 Federov, 1969; Moore, 1973 I. setisosa Ker. 15 30 Federov, 1969; Moore, 1973 I. sinuata Ort. = I. dissecta 30 Federov, 1969; Moore, 1974; Goldblat & Johnson, 1996 I. sloteri (H.D. House) van Ooststr. 58 Federov, 1969 I. stolonifera (Cyrill.) Poir. 30 Federov, 1969 I. stolonifera (Cyrill.) Poir. 30 Federov, 1969; Moore, 1973; Goldblat & Johnson, 2000 I. ternata Jacq. 30 Federov, 1969; Moore, 1973; Goldblat & Johnson, 2000 I. tilacea (Willd.) Choisy 30 30, 60 Federov, 1969; Moore, 1973 I. trichocarpa Ell. 30 Federov, 1969; Moore, 1973 I. trichocarpa Ell. var. torreyanna (Gray) Shinners 30 Moore, 1973 I. trichocarpa Ell. var. torreyanna (Gray) Shinners 30 Moore, 1973 I. triloba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. triloba f				
I. rumicifolia Choisy 30 Federov, 1969 1. sagittata Cav. 30 Federov, 1969 1. setifera Poir. 30 Federov, 1969; Moore, 1973 1. setiosa Ker. 15 30 Federov, 1969; Moore, 1973 1. sinuata Ort. = I. dissecta 30 Federov, 1969; Moore, 1974; Goldblat & Johnson, 1996 1. stophylina Roem. & Schult. 32 Federov, 1969 1. stophylina Roem. & Schult. 30 Federov, 1969; Moore, 1973; Goldblat & Johnson, 2000 1. ternata Jacq. 30 Federov, 1969; Moore, 1973; Goldblat & Johnson, 2000 1. trichocarpa Ell. 30 Federov, 1969; Moore, 1973 1. trichocarpa Ell. 30 Federov, 1969; Moore, 1973 1. trichocarpa Ell. 30 Moore, 1973 1. tricolor Cav. 30 Moore, 1973 1. tricolor Cav. 30 Moore, 1973 1. triloba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Moore, 1973 1. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 1. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 1. tulba (Sch.) Don = 1. grandiflora 30 Moore, 1973 1. tuberosa A. Rich. 30 Federov, 1969; Goldblat & Johnson, 1960; I. turberbum R. Br. 30 Federov, 1969; Goldblat & Johnson, 1960; I. turberbum R. Br. 30 Federov, 1969; Goldblat & Johnson, 1960; I. turberbum R. Br. 30 Federov, 1969; Goldblat & Johnson, 1960; I. turberbum R. Br. 30 Federov, 1969; Goldblat & Johnson, 1960; I. verbascoidea Choisy 30 Federov, 1969; Moore, 1973 1. tricolor Meissn. 28 30 Federov, 1969; Moore, 1974 1. vitifolia (Burman f.) Sweet. 30 Federov, 1969; Moore, 1974 1. vitifolia (Burman f.) Sweet. 30 Federov, 1969; Moore, 1974 1. vitifolia (Burman f.) Sweet. 30 Goldblat & Johnson, 1996 30 30 30 30 30 30 30 3	v			
1. sagituata Cav. 30 Federov, 1969 1. setifera Poir. 30 Federov, 1969; Moore, 1973 1. setosa Ker. 15 30 Federov, 1969; Moore, 1973 1. sinuata Ort. = 1. dissecta 30 Federov, 1969; Moore, 1974; Goldblat & Johnson, 1996 1. sloteri (H.D. House) van Ooststr. 58 Federov, 1969 1. stolonifera (Cyrill.) Poir. 30 Federov, 1969 1. stolonifera (Cyrill.) Poir. 30 Federov, 1969 1. ternata Jacq. 30 Federov, 1969 1. tilacea (Willd.) Choisy 30 30, 60 Federov, 1969 1. tirichocarpa Ell. 30 Federov, 1969; Moore, 1973 1. trichocarpa Ell. var. torreyanna (Gray) Shinners 30 Moore, 1973 1. trichocarpa Ell. var. torreyanna (Gray) Shinners 30 Moore, 1973 1. triloba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Federov, 1969; Goldblat & Johnson, 1990 1. triloba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Moore, 1973 1. triloba L. var. triloba f.				
I. setifera Poir. 30 Federov, 1969; Moore, 1973 I. setosa Ker. 15 30 Federov, 1969; Moore, 1973 I. sinuata Ort. = I. dissecta 30 Federov, 1969; Moore, 1974; Goldblat & Johnson, 1996 I. stoteri (H.D. House) van Ooststr. 58 Federov, 1969 I. stataphylina Roem. & Schult. 32 Federov, 1969 I. stolonifera (Cyrill.) Poir. 30 Federov, 1969; Moore, 1973; Goldblat & Johnson, 2000 I. ternata Jacq. 30 Federov, 1969 I. tilacea (Willd.) Choisy 30 Federov, 1969; Moore, 1973 I. trichocarpa Ell. 30 Federov, 1969; Moore, 1973 I. tricloolor Cav. 30 Moore, 1973 I. tricloor Cav. 30 Moore, 1973 I. triloba L. 30 Federov, 1969; Moore, 1973 I. triloba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Federov, 1969; Goldblat & Johnson, 19 I. triloba L. var. triloba f. triloba 30 Moore, 1973 I. triloba L. var. triloba f. triloba 30 Moore, 1973 I. triloba L. var. triloba f. triloba 30 Moore, 1973 I. triloba Ch. var. triloba f. triloba 30 Federov, 1969; Goldblat				*
I. seiosa Ker. 15 30 Federov, 1969; Moore, 1973 I. sinuata Ort. = I. dissecta 30 Federov, 1969; Moore, 1974; Goldblat & Johnson, 1996 I. sloteri (H.D. House) van Ooststr. 58 Federov, 1969 I. staphylina Roem. & Schult. 32 Federov, 1969 I. stolonifera (Cyrill.) Poir. 30 Federov, 1969; Moore, 1973; Goldblat & Johnson, 2000 I. ternata Jacq. 30 Federov, 1969 I. tilacea (Willd.) Choisy 30 Federov, 1969 I. tilacea (Willd.) Choisy 30 Federov, 1969; Moore, 1973 I. trichocarpa Ell. 30 Federov, 1969; Moore, 1973 I. triclor Cav. 30 Moore, 1973 I. tricloba (L. var. triloba (L. var. tr				
I. sinuata Ort. = I. dissecta 30 Federov, 1969; Moore, 1974; Goldblat & Johnson, 1996 I. sloteri (H.D. House) van Ooststr. 58 Federov, 1969 I. staphylina Roem. & Schult. 32 Federov, 1969 I. stolonifera (Cyrill.) Poir. 30 Federov, 1969; Moore, 1973; Goldblat & Johnson, 2000 I. ternata Jacq. 30 Federov, 1969; Moore, 1973 I. trichocarpa Ell. 30 Federov, 1969; Moore, 1973 I. trichocarpa Ell. var. torreyanna (Gray) Shinners 30 Moore, 1973 I. tricloor Cav. 30 Moore, 1973 I. triloba L. 30 Federov, 1969; Moore, 1973 I. triloba L. 30 Federov, 1969; Moore, 1973 I. triloba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. triloba 30 Moore, 1973 I. tuberosa A. Rich. 30 Federov, 1969; Goldblat & Johnson, 2000 I. turpethum R. Br. 30 Federov, 1969; Goldblat & Johnson, 1996 I. versicolor Meissn. 28 30 Federov, 1969 I. violacea L. 30 Goldb	V			
Johnson, 1996		15		
I. sloteri (H.D. House) van Ooststr. 58 Federov, 1969 I. staphylina Roem. & Schult. 32 Federov, 1969 I. stolonifera (Cyrill.) Poir. 30 Federov, 1969; Moore, 1973; Goldblat & Johnson, 2000 I. ternata Jacq. 30 Federov, 1969; Moore, 1973 I. tilacea (Willd.) Choisy 30 30, 60 Federov, 1969; Moore, 1973 I. trichocarpa Ell. 30 Moore, 1973 I. tricloor Cav. 30 Moore, 1973 I. triclot H. B. et K.) G. Don 45-90 Federov, 1969; Moore, 1973 I. triloba L. 30 Federov, 1969; Goldblat & Johnson, 19000 I. triloba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. triloba 30 Moore, 1973 I. triloba L. var. triloba f. triloba 30 Moore, 1973 I. triloba L. var. triloba f. triloba 30 Moore, 1973 I. triloba C. var. triloba f. triloba 30 Moore, 1973 I. triloba C. var. triloba f. triloba 30 Moore, 1973 I. triloba C. var. triloba f. triloba 30 Federov,	I. sinuata Ort. = I. dissecta		30	Federov, 1969; Moore, 1974; Goldblat &
I. staphylina Roem. & Schult. 32 Federov, 1969 I. stolonifera (Cyrill.) Poir. 30 Federov, 1969; Moore, 1973; Goldblat & Johnson, 2000 I. ternata Jacq. 30 Federov, 1969 I. tilacea (Willd.) Choisy 30 30, 60 Federov, 1969; Moore, 1973 I. trichocarpa Ell. 30 Federov, 1969; Moore, 1973 I. tricolor Cav. 30 Moore, 1973 I. trifida (H. B. et K.) G. Don 45-90 Federov, 1969; Moore, 1973 I. triloba L. 30 Federov, 1969; Moore, 1973 I. triloba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. triloba 30 Moore, 1973 I. tuberosa A. Rich. 30 Federov, 1969; Goldblat & Johnson, 2000 I. tuberosa A. Rich. 30 Federov, 1969; Goldblat & Johnson, 1900 I. verbascoidea Choisy 30 Moore, 1973 I. versicolor Meissn. 28 30 Federov, 1969; Moore, 1974 I. vitifolia (Burman f.) Sweet. 30<				
I. stolonifera (Cyrill.) Poir. 30 Federov, 1969; Moore, 1973; Goldblat & Johnson, 2000 I. ternata Jacq. 30 Federov, 1969 Moore, 1973 I. tilacea (Willd.) Choisy 30 30, 60 Federov, 1969; Moore, 1973 I. trichocarpa Ell. 30 Moore, 1973 I. trichocarpa Ell. var. torreyanna (Gray) Shinners 30 Moore, 1973 I. triclor Cav. 30 Moore, 1973 I. triloba L. 30 Federov, 1969; Moore, 1973 I. triloba L. 30 Federov, 1969; Moore, 1973 I. triloba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. triloba 30 Moore, 1973 I. triloba L. var. triloba f. triloba 30 Moore, 1973 I. triloba C. var. triloba f. triloba 30 Moore, 1973 I. triloba C. var. triloba f. triloba 30 Moore, 1973 I. triloba C. var. triloba f. triloba 30 Moore, 1973 I. tuba (Sch.) Don = I. grandiflora 30 Moore, 1973; Goldblat & Johnson, 190 I. tuberosa A. Rich 30 Federov, 1969; Goldbl	I. sloteri (H.D. House) van Ooststr.		58	Federov, 1969
Johnson, 2000	I. staphylina Roem. & Schult.		32	
Johnson, 2000	I. stolonifera (Cyrill.) Poir.		30	Federov, 1969; Moore, 1973; Goldblat &
I. ternata Jacq. 30 Federov, 1969 I. tilacea (Willd.) Choisy 30 30, 60 Federov, 1969; Moore, 1973 I. trichocarpa Ell. 30 Federov, 1969; Moore, 1973 I. tricolor Cav. 30 Moore, 1973 I. trifida (H. B. et K.) G. Don 45-90 Federov, 1969; Moore, 1973 I. triloba L. 30 Federov, 1969; Goldblat & Johnson, 199 2000 I. triloba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. triloba 30 Moore, 1973 I. triloba L. var. triloba f. triloba 30 Moore, 1973 I. triloba C. var. triloba f. triloba 30 Moore, 1973 I. triloba C. var. triloba f. triloba 30 Moore, 1973 I. triloba C. var. triloba f. triloba 30 Moore, 1973 I. triloba C. var. triloba f. triloba 30 Moore, 1973; Goldblat & Johnson, 2000 I. tuberosa A. Rich. 30 Federov, 1969; Goldblat & Johnson, 199 I. verbascoidea Choisy 30 Moore, 1973 I. verbascoidea Choisy 30 Federov, 19				
I. tilacea (Willd.) Choisy 30 30, 60 Federov, 1969; Moore, 1973 I. trichocarpa Ell. 30 Federov, 1969; Moore, 1973 I. trichocarpa Ell. var. torreyanna (Gray) Shinners 30 Moore, 1973 I. tricolor Cav. 30 Moore, 1973 I. trifida (H. B. et K.) G. Don 45-90 Federov, 1969; Moore, 1973 I. triloba L. 30 Federov, 1969; Goldblat & Johnson, 199; 2000 I. triloba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. triloba 30 Moore, 1973 I. tuberosa A. Rich. 30 Moore, 1973; Goldblat & Johnson, 2000 I. tuberosa A. Rich. 30 Federov, 1969 I. turpethum R. Br. 30 Federov, 1969; Goldblat & Johnson, 199 I. verbascoidea Choisy 30 Moore, 1973 I. versicolor Meissn. 28 30 Federov, 1969; Moore, 1974 I. vitifolia (Burman f.) Sweet. 30 Goldblat & Johnson, 1996	I. ternata Jacq.		30	
I. trichocarpa Ell. 30 Federov, 1969; Moore, 1973 I. trichocarpa Ell. var. torreyanna (Gray) Shinners 30 Moore, 1973 I. tricolor Cav. 30 Moore, 1973 I. trifida (H. B. et K.) G. Don 45-90 Federov, 1969; Moore, 1973 I. triloba L. 30 Federov, 1969; Goldblat & Johnson, 199; 2000 I. triloba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. triloba 30 Moore, 1973 I. tuba (Sch.) Don = I. grandiflora 30 Moore, 1973; Goldblat & Johnson, 2000 I. tuberosa A. Rich. 30 Federov, 1969; Goldblat & Johnson, 199 I. turpethum R. Br. 30 Federov, 1969; Goldblat & Johnson, 199 I. versicolor Meissn. 28 30 Federov, 1969 I. vitifolia (Burman f.) Sweet. 30 Goldblat & Johnson, 1996		30		*
1. trichocarpa Ell. var. torreyanna (Gray) Shinners 30 Moore, 1973 1. tricolor Cav. 30 Moore, 1973 1. trifida (H. B. et K.) G. Don 45-90 Federov, 1969; Moore, 1973 1. triloba L. 30 Federov, 1969; Goldblat & Johnson, 199 2000 1. triloba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Moore, 1973 1. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 1. triloba L. var. triloba f. triloba 30 Moore, 1973 1. tuba (Sch.) Don = I. grandiflora 30 Moore, 1973; Goldblat & Johnson, 2000 1. tuberosa A. Rich. 30 Federov, 1969 1. turpethum R. Br. 30 Federov, 1969; Goldblat & Johnson, 199 1. versicolor Meissn. 28 30 Federov, 1969 1. violacea L. 30 Federov, 1969; Moore, 1974 1. vitifolia (Burman f.) Sweet. 30 Goldblat & Johnson, 1996		20		
I. tricolor Ĉav. 30 Moore, 1973 I. trifida (H. B. et K.) G. Don 45-90 Federov, 1969; Moore, 1973 I. triloba L. 30 Federov, 1969; Goldblat & Johnson, 1902000 I. triloba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. triloba 30 Moore, 1973 I. tuba (Sch.) Don = I. grandiflora 30 Moore, 1973; Goldblat & Johnson, 2000 I. tuberosa A. Rich. 30 Federov, 1969 I. turpethum R. Br. 30 Federov, 1969; Goldblat & Johnson, 199 I. verbascoidea Choisy 30 Moore, 1973 I. versicolor Meissn. 28 30 Federov, 1969 I. violacea L. 30 Federov, 1969; Moore, 1974 I. vitifolia (Burman f.) Sweet. 30 Goldblat & Johnson, 1996	*			
I. trifida (H. B. et K.) G. Don 45-90 Federov, 1969; Moore, 1973 I. triloba L. 30 Federov, 1969; Goldblat & Johnson, 190 2000 I. triloba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. triloba 30 Moore, 1973 I. tuba (Sch.) Don = I. grandiflora 30 Moore, 1973; Goldblat & Johnson, 2000 I. tuberosa A. Rich. 30 Federov, 1969; Goldblat & Johnson, 1900 I. turpethum R. Br. 30 Federov, 1969; Goldblat & Johnson, 1900 I. verbascoidea Choisy 30 Moore, 1973 I. versicolor Meissn. 28 30 Federov, 1969 I. violacea L. 30 Federov, 1969; Moore, 1974 I. vitifolia (Burman f.) Sweet. 30 Goldblat & Johnson, 1996	1 2			
I. triloba L. 30 Federov, 1969; Goldblat & Johnson, 190 2000 I. triloba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. triloba f. triloba 30 Moore, 1973 I. tuba (Sch.) Don = I. grandiflora 30 Moore, 1973; Goldblat & Johnson, 2000 I. tuberosa A. Rich. 30 Federov, 1969; Goldblat & Johnson, 2000 I. turpethum R. Br. 30 Federov, 1969; Goldblat & Johnson, 1900 I. verbascoidea Choisy 30 Moore, 1973 I. versicolor Meissn. 28 30 Federov, 1969 I. violacea L. 30 Federov, 1969; Moore, 1974 I. vitifolia (Burman f.) Sweet. 30 Goldblat & Johnson, 1996				
2000 I. triloba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. triloba f. triloba 30 Moore, 1973 I. tuba (Sch.) Don = I. grandiflora 30 Moore, 1973; Goldblat & Johnson, 2000 I. tuberosa A. Rich. 30 Federov, 1969 I. turpethum R. Br. 30 Federov, 1969; Goldblat & Johnson, 1990 I. verbascoidea Choisy 30 Moore, 1973 I. versicolor Meissn. 28 30 Federov, 1969 I. violacea L. 30 Federov, 1969; Moore, 1974 I. vitifolia (Burman f.) Sweet. 30 Goldblat & Johnson, 1996	* '			
I. triloba L. var. triloba f. lacunosa (Jacq.) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. triloba 30 Moore, 1973 I. tuba (Sch.) Don = I. grandiflora 30 Moore, 1973; Goldblat & Johnson, 2000 I. tuberosa A. Rich. 30 Federov, 1969 I. turpethum R. Br. 30 Federov, 1969; Goldblat & Johnson, 199 I. verbascoidea Choisy 30 Moore, 1973 I. verbascoider Meissn. 28 30 Federov, 1969 I. violacea L. 30 Federov, 1969; Moore, 1974 I. vitifolia (Burman f.) Sweet. 30 Goldblat & Johnson, 1996	1. triloba L.		30	
I. triloba L. var. triloba f. ramoni (Choisy) Nishiyama 30 Moore, 1973 I. triloba L. var. triloba f. triloba 30 Moore, 1973 I. tuba (Sch.) Don = I. grandiflora 30 Moore, 1973; Goldblat & Johnson, 2000 I. tuberosa A. Rich. 30 Federov, 1969 I. turpethum R. Br. 30 Federov, 1969; Goldblat & Johnson, 190 I. verbascoidea Choisy 30 Moore, 1973 I. versicolor Meissn. 28 30 Federov, 1969 I. violacea L. 30 Federov, 1969; Moore, 1974 I. vitifolia (Burman f.) Sweet. 30 Goldblat & Johnson, 1996			20	
I. triloba L. var. triloba f. triloba 30 Moore, 1973 I. tuba (Sch.) Don = I. grandiflora 30 Moore, 1973; Goldblat & Johnson, 2000 I. tuberosa A. Rich. 30 Federov, 1969 I. turpethum R. Br. 30 Federov, 1969; Goldblat & Johnson, 190 I. verbascoidea Choisy 30 Moore, 1973 I. versicolor Meissn. 28 30 Federov, 1969 I. violacea L. 30 Federov, 1969; Moore, 1974 I. vitifolia (Burman f.) Sweet. 30 Goldblat & Johnson, 1996				
I. tuba (Sch.) Don = I. grandiflora 30 Moore, 1973; Goldblat & Johnson, 2000 I. tuberosa A. Rich. 30 Federov, 1969 I. turpethum R. Br. 30 Federov, 1969; Goldblat & Johnson, 190 I. verbascoidea Choisy 30 Moore, 1973 I. versicolor Meissn. 28 30 Federov, 1969 I. violacea L. 30 Federov, 1969; Moore, 1974 I. vitifolia (Burman f.) Sweet. 30 Goldblat & Johnson, 1996	\ 3/			
I. tuberosa A. Rich. 30 Federov, 1969 I. turpethum R. Br. 30 Federov, 1969; Goldblat & Johnson, 190 I. verbascoidea Choisy 30 Moore, 1973 I. versicolor Meissn. 28 30 Federov, 1969 I. violacea L. 30 Federov, 1969; Moore, 1974 I. vitifolia (Burman f.) Sweet. 30 Goldblat & Johnson, 1996				
1. turpethum R. Br. 30 Federov, 1969; Goldblat & Johnson, 196 1. verbascoidea Choisy 30 Moore, 1973 1. versicolor Meissn. 28 30 Federov, 1969 1. violacea L. 30 Federov, 1969; Moore, 1974 1. vitifolia (Burman f.) Sweet. 30 Goldblat & Johnson, 1996	()			Moore, 1973; Goldblat & Johnson, 2000
I. verbascoidea Choisy 30 Moore, 1973 I. versicolor Meissn. 28 30 Federov, 1969 I. violacea L. 30 Federov, 1969; Moore, 1974 I. vitifolia (Burman f.) Sweet. 30 Goldblat & Johnson, 1996				*
I. versicolor Meissn. 28 30 Federov, 1969 I. violacea L. 30 Federov, 1969; Moore, 1974 I. vitifolia (Burman f.) Sweet. 30 Goldblat & Johnson, 1996	I. turpethum R. Br.		30	Federov, 1969; Goldblat & Johnson, 1996
I. violacea L.30Federov, 1969; Moore, 1974I. vitifolia (Burman f.) Sweet.30Goldblat & Johnson, 1996	I. verbascoidea Choisy		30	Moore, 1973
I. violacea L.30Federov, 1969; Moore, 1974I. vitifolia (Burman f.) Sweet.30Goldblat & Johnson, 1996	I. versicolor Meissn.	28	30	Federov, 1969
I. vitifolia (Burman f.) Sweet. 30 Goldblat & Johnson, 1996				
I. wrightii A. Grav 30+0-1B. Goldblat & Johnson 2000	I. wrightii A. Gray		30+0-1B,	Goldblat & Johnson, 2000
30+3B				201100000000000000000000000000000000000
I. yardensis A. S. George & Tate 30 Goldblat & Johnson, 1996	L vardensis A. S. George & Tate			Goldblat & Johnson 1996
Iseia O'Donell			50	Gordolat & Johnson, 1770
I. luxurians (Moric.) O'Donell 60 Moore, 1973			60	Moore 1073

Continua...

Tabela 1. Continuação

Tabela 1. Continuação			
ESPÉCIE	n	2n	INDEX
Jacquemontia Belang.			
J. abutiloides Bentlh.		18	Federov, 1969
J. blancheti Moric.		20	Moore, 1973
J. capitata G. Don		18	Federov, 1969
J. havanensis (Jacquin) Urban		20	Moore, 1973
J. pentantha (Jacq.) Don	9	20	Moore, 1973
J. subsalina Britton		18	Moore, 1973
J. tamnifolia (L.) Griseb.		18	Federov, 1969; Moore, 1973; Goldblat &
			Johnson, 2000
J. velutina Chois.	9		Goldblat, 1985
J. violácea Choisy		18	Federov, 1969
Lettsomia Roxb.			
L. bela C.B. Clarke		28	Goldblat & Johnson, 1990
Merremia Dennst.			
M. aegyptia (L.) Urb.	15	28, 30	Moore, 1973, 1974
M. angustifólia Hallier f.		30	Federov, 1969
M. dissecta (Jacq.) Hall. f.	15		Moore, 1973, 1974
M. distillatoria Blanco		30	Federov, 1969
M. emarginata Hallier f.		28	Federov, 1969
M. gemella (Burm. f.) Hall. f.		22	Federov, 1969; Moore, 1973; Goldblat &
			Johnson, 2000
M. hederacea (Burm. f.) Hall. f.	15	30	Moore, 1973; Goldblat, 1988; Goldblat &
			Johnson, 1991, 2000
M. hirta (L.) Merr.		30	Goldblat & Johnson, 2000
M. macrocalyx (R. & P.) O'Don.	15		Goldblat, 1985
M. multisecta Hall. f.		30	Moore, 1973
M. pentaphylla Hallier f.		30	Federov, 1969
M. pinnata Hallier f.		30	Federov, 1969
M. quinquefolia (L.) Hall. f.	15	30	Moore, 1973
M. tridentate (L.) Hall. f. ssp. angustifolia (Jacq.) Van		30, 30+0-2B	Moore, 1973; Goldblat & Johnson, 2000
Ooststr.		,	, ,
M. tuberculata Ker-Gawl. Var. odontosepala (Bak.) Verdc.		30	Moore, 1973
M. tuberosa (L.) Rendle		30	Moore, 1973
M. turpethum (L.) S. Manso		30	Moore, 1973
M. umbellata (L.) Hall. f.		28, 30	Moore, 1973
Mina Cerv.		20,50	1110010, 1775
M. lobata		30	Federov, 1969
Neuropeltis Wall.		30	1 000101, 1909
N. acuminate Benth.		28	Federov, 1969
Operculina S. Manso		20	1 cdc10v, 1909
O. dissecta House		30	Federov, 1969
O. tuberose Meissn.		30	Federov, 1969
O. turpethum(L.) S. Manso		30	Federov, 1969; Goldblat & Johnson, 2000
Pharbitis Choisy		30	reactor, 1909, Goldolat & Johnson, 2000
· ·		20	Fadarov 1060: Galdblat & Johnson 2000
P. hederaceae Choisy		30	Federov, 1969; Goldblat & Johnson, 2000
P. hispida Choisy P. insularia Choisy		30	Federov, 1969
		30	Federov, 1969
P. insularia Choisy		30	Federov, 1969
P. nil Choisy		30	Federov, 1969; Goldblat, 1988; Goldblat &
D (I) W: 4		20	Johnson, 1990, 1991, 2000
P. purpurea (L.) Voigt		30	Goldblat & Johnson, 2000
Porana Burm. f.	12	26	E 1 1000 M 1074
P. paniculata Roxb.	13	26	Federov, 1969; Moore, 1974
Prevostea Choisy		20	F 1 1060
P. parviflora G. Mangenot		28	Federov, 1969
Quamoclit Miller			T. 1. 1060
Q. angulata Bojer		28, 30	Federov, 1969
Q. coccinea (L.) Moench		28	Federov, 1969
Q. lobata (Llav. Et Lev.) House		28	Federov, 1969
Q. mina G. Don		28	Federov, 1969
Q. pennata Voigt.	15	30	Federov, 1969; Goldblat, 1985; Goldblat &
			Johnson, 1990
Q. pinnata (Desr.) Bojer		30	Goldblat & Johnson, 1991
Q. sloteri		58	Federov, 1969
Q. sloteri		58, 60	Federov, 1969
Q. vulgaris Choisy		30	Federov, 1969
Rivea Choisy			
R. Hypocrateriformis Choisy	14		Goldblat & Johnson, 1990
Turbina Rafin. T. corymbosa (L.) Ray.		30	Moore, 1974

Normas gerais para publicação de artigos na Acta Botanica

- A Acta Botanica Brasilica (Acta bot. bras.) publica artigos originais em Português,
 Espanhol e Inglês.
- 2. Os artigos devem ser concisos, **em quatro vias, com até 25 laudas**, seqüencialmente numeradas, incluindo ilustrações e tabelas (usar fonte Times New Roman, tamanho 12, espaço entre linhas 1,5; imprimir em papel tamanho A4, margens ajustadas em 1,5 cm). A critério da Comissão Editorial, mediante entendimentos prévios, artigos mais extensos poderão ser aceitos, sendo o excedente custeado pelo(s) autor(es).
- 3. Palavras em latim no título ou no texto, como por exemplo: *in vivo, in vitro, in loco, et al.* devem estar em itálico.
- 4. O título deve ser escrito em caixa alta e baixa, centralizado, e deve ser citado da mesma maneira no Resumo e Abstract da mesma maneira que o título do trabalho. Se no título houver nome específico, este deve vir acompanhado dos nomes dos autores do táxon, assim como do grupo taxonômico do material tratado (ex.: Gesneriaceae, Hepaticae, etc.).
- 5. O(s) nome(s) do(s) autor(es) deve(m) ser escrito(s) em caixa alta e baixa, todos em seguida, com números sobrescritos que indicarão, em rodapé, a filiação Institucional e/ou fonte financiadora do trabalho (bolsas, auxílios etc.). Créditos de financiamentos devem vir em **Agradecimentos**, assim como vinculações do artigo a programas de pesquisa mais amplos, e não no rodapé. Autores devem fornecer os endereços completos, evitando abreviações, elegendo apenas um deles como Autor para correspondência. Se desejarem, todos os autores poderão fornecer e-mail.
- 6. A estrutura do trabalho deve, sempre que possível, obedecer à seguinte sequência:
- **RESUMO** e **ABSTRACT** (em caixa alta e negrito) texto corrido, sem referências bibliográficas, em um único parágrafo e com cerca de 200 palavras. Deve ser precedido pelo título do artigo em Português, entre parênteses. Ao final do resumo, citar até cinco palavras-chave à escolha do autor, em ordem de importância. A mesma regra se aplica ao Abstract em Inglês ou Resumen em Espanhol.
- Introdução (em caixa alta e baixa, negrito, deslocado para a esquerda): deve conter uma

visão clara e concisa de: a) conhecimentos atuais no campo específico do assunto tratado; b) problemas científicos que levou(aram) o(s) autor(es) a desenvolver o trabalho; c) objetivos.

- Material e métodos (em caixa alta e baixa, negrito, deslocado para a esquerda): deve conter descrições breves, suficientes à repetição do trabalho; técnicas já publicadas devem ser apenas citadas e não descritas. Indicar o nome da(s) espécie(s) completo, inclusive com o autor. Mapas podem ser incluídos se forem de extrema relevância e devem apresentar qualidade adequada para impressão. Todo e qualquer comentário de um procedimento utilizado para a análise de dados em **Resultados** deve, obrigatoriamente, estar descrito no item **Material e métodos**.
- Resultados e discussão (em caixa alta e baixa, negrito, deslocado para a esquerda): podem conter tabelas e figuras (gráficos, fotografias, desenhos, mapas e pranchas) estritamente necessárias à compreensão do texto. Dependendo da estrutura do trabalho, resultados e discussão poderão ser apresentados em um mesmo item ou em itens separados. As figuras devem ser todas numeradas seqüencialmente, com algarismos arábicos, colocados no lado inferior direito; as escalas, sempre que possível, devem se situar à esquerda da figura. As tabelas devem ser seqüencialmente numeradas, em arábico com numeração independente das figuras.

Tanto as figuras como as tabelas devem ser apresentadas em folhas separadas (uma para cada figura e/ou tabela) ao final do texto (originais e 3 cópias). Para garantir a boa qualidade de impressão, as figuras não devem ultrapassar duas vezes a área útil da revista que é de 17,5 23,5 cm. Tabelas - Nomes das espécies dos táxons devem ser mencionados acompanhados dos respectivos autores. Devem constar na legenda informações da área de estudo ou do grupo taxonômico. Itens da tabela, que estejam abreviados, devem ter suas explicações na legenda.

As ilustrações devem respeitar a área útil da revista, devendo ser inseridas em coluna simples ou dupla, sem prejuízo da qualidade gráfica. Devem ser apresentadas em tinta nanquim, sobre papel vegetal ou cartolina ou em versão eletrônica, gravadas em .TIF, com resolução de pelo menos 300 dpi (ideal em 600 dpi). Para pranchas ou fotografias - usar números arábicos, do lado direito das figuras ou fotos. Para gráficos - usar letras maiúsculas do lado direito.

As fotografías devem estar em papel brilhante e em branco e preto. Fotografías coloridas poderão ser aceitas a critério da Comissão Editorial, que deverá ser previamente

consultada, e se o(s) autor(es) arcar(em) com os custos de impressão.

As figuras e as tabelas devem ser referidas no texto em caixa alta e baixa, de forma abreviada e sem plural (Fig. e Tab.). Todas as figuras e tabelas apresentadas devem, obrigatoriamente, ter chamada no texto.

Legendas de pranchas necessitam conter nomes dos táxons com respectivos autores. Todos os nomes dos gêneros precisam estar por extenso nas figuras e tabelas. Gráficos - enviar os arquivos em Excel. Se não estiverem em Excel, enviar cópia em papel, com boa qualidade, para reprodução.

As siglas e abreviaturas, quando utilizadas pela primeira vez, devem ser precedidas do seu significado por extenso. Ex.: Universidade Federal de Pernambuco (UFPE); Microscopia Eletrônica de Varredura (MEV).

Usar unidades de medida de modo abreviado (Ex.: 11 cm; 2,4 µm), o número separado da unidade, com exceção de percentagem (Ex.: 90%).

Escrever por extenso os números de um a dez (não os maiores), a menos que seja medida. Ex.: quatro árvores; 6,0 mm; 1,0 4,0 mm;125 exsicatas.

Em trabalhos taxonômicos o material botânico examinado deve ser selecionado de maneira a citarem-se apenas aqueles representativos do táxon em questão e na seguinte ordem: **PAÍS. Estado:** Município, data, fenologia, coletor(es) número do(s) coletor(es) (sigla do Herbário).

Ex.: **BRASIL. São Paulo:** Santo André, 3/XI/1997, fl. fr., Milanez 435 (SP).

No caso de mais de três coletores, citar o primeiro seguido de *et al*. Ex.: Silva *et al*. (atentar para o que deve ser grafado em CAIXA ALTA, Caixa Alta e Baixa, caixa baixa, **negrito**, *itálico*).

Chaves de identificação devem ser, preferencialmente, indentadas. Nomes de autores de táxons não devem aparecer. Os táxons da chave, se tratados no texto, devem ser numerados seguindo a ordem alfabética. Ex.:

- 1. Plantas terrestres

- 1. Plantas aquáticas

O tratamento taxonômico no texto deve reservar o itálico e o negrito simultâneos apenas para os nomes de táxons válidos. Basiônimo e sinonímia aparecem apenas em itálico. Autores de nomes científicos devem ser citados de forma abreviada, de acordo com índice

taxonômico do grupo em pauta (Brummit & Powell 1992 para Fanerógamas). Ex.:

1.Sepulveda albicans L., 2: 25. 1753. Sp. pl. Fl. 4: 37, 23. f. 5. Pertencia albicans Sw., bras. t. 1870. Fig. 1-12.

Subdivisões dentro de Material e métodos ou de Resultados e/ou discussão devem ser escritas em caixa alta e baixa, seguida de um traço e o texto segue a mesma linha. Ex.: Área de estudo - localiza se ...

Resultados e discussão devem estar incluídos em conclusões.

- **Agradecimentos** (em caixa alta e baixa, negrito, deslocado para a esquerda): devem ser sucintos; nomes de pessoas e Instituições devem ser por extenso, explicitando o porquê dos agradecimentos.

- Referências bibliográficas

- Ao longo do texto: seguir esquema autor, data. Ex.:
- Silva (1997), Silva & Santos (1997), Silva et al. (1997) ou Silva (1993; 1995), Santos (1995; 1997) ou (Silva 1975; Santos 1996; Oliveira 1997).
- Ao final do artigo: em caixa alta e baixa, deslocado para a esquerda; seguir ordem alfabética e cronológica de autor(es); nomes dos periódicos e títulos de livros devem ser grafados por extenso e em negrito. Exemplos:

Santos, J. 1995. Estudos anatômicos em Juncaceae. Pp. 5-22. In: **Anais do XXVIII Congresso Nacional de Botânica**. Aracaju 1992. São Paulo, HUCITEC Ed. v.I.

Santos, J.; Silva, A. & Oliveira, B. 1995. Notas palinológicas. Amaranthaceae. **Hoehnea 33**(2): 38-45.

Silva, A. & Santos, J. 1997. Rubiaceae. Pp. 27-55. In: F.C. Hoehne (ed.). **Flora Brasilica**. São Paulo, Secretaria da Agricultura do Estado de São Paulo.

Para maiores detalhes consulte os últimos fascículos rescentes da Revista, ou os links da mesma na internet: www.botanica.org.br. ou ainda artigos on line por intermédio de www.scielo.br/abb.

Não serão aceitas Referências bibliográficas de monografias de conclusão de curso de graduação, de citações de simples resumos simples de Congressos, Simpósios, Workshops e assemelhados. Citações de Dissertações e Teses devem ser evitadas ao máximo; se necessário, citar no corpo do texto. Ex.: J. Santos, dados não publicados ou J. Santos, comunicação pessoal.

Botanical Journal of the Linnean Society

Published on behalf of the Linnean Society of London

Edited by: Stephen L Jury

Print ISSN: 0024-4074 Online ISSN: 1095-8339 Frequency: Monthly

Current Volume: 150 / 2006

ISI Journal Citation Reports® Ranking: 2004: 43/138 (Plant Sciences)

Impact Factor: 1.510

TopAuthor Guidelines

The Linnean Society publishes four periodicals: the *Biological, Botanical* and *Zoological Journals*, and *The Linnean*, the Society's newsletter and proceedings.

The *Botanical Journal* publishes papers of relevance to, and reviews of, the taxonomy of all plant groups and fungi, including anatomy, biosystematics, cytology, ecology, ethnobotany, electron microscopy, morphogenesis, palaeobotany, palynology and phytochemistry.

The Society supplies 50 offprints of each article in consideration of the assignment by the author(s) to the Society of the copyright of the paper. The journals make no page charges.

Manuscripts for consideration should be sent to:

Dr Stephen L. Jury Centre for Plant Diversity & Systematics School of Biological Sciences Plant Science Laboratories University of Reading Whiteknights Reading RG6 6AS UK

E-mail: <u>s.l.jury@reading.ac.uk</u>

Please include a return address on your envelope in case of non-delivery. Please note that the journal does not currently operate an online submission system. Manuscripts are considered on the understanding that their contents have not appeared, or will not appear, elsewhere in substantially the same or abbreviated form.

Copyright assignment

Authors will be required to assign copyright in their paper to the Linnean Society of London. Copyright assignment is a condition of publication and papers will not be passed to the publisher for production unless copyright has been assigned. Authors can click here to download a copy of the <u>copyright assignment form</u>. Please include it when submitting a manuscript. (Government employees in both the US and the UK need to

complete the Author Warranty sections, although copyright in such cases does not need to be assigned.)

OnlineOpen

OnlineOpen is a pay-to-publish service from Blackwell that offers authors whose papers are accepted for publication the opportunity to pay up-front for their manuscript to become open access (i.e. free for all to view and download) via the Blackwell Synergy website. Each OnlineOpen article will be subject to a one-off fee of £1250 (equivalent to \$2500) to be met by or on behalf of the Author in advance of publication. Upon online publication, the article (both full-text and PDF versions) will be available to all for viewing and download free of charge. The print version of the article will also be branded as OnlineOpen and will draw attention to the fact that the paper can be downloaded for free via the Blackwell Synergy service.

Any authors wishing to send their paper OnlineOpen must complete the combined payment and copyright licence form available <u>here</u> (Please note this form is for use with OnlineOpen material ONLY.)

Once complete this form should be sent to the Editorial Office along with the rest of the manuscript materials at the time of acceptance or as soon as possible after that (preferably within 24 hours to avoid any delays in processing). Prior to acceptance there is no requirement to inform an Editorial Office that you intend to publish your paper OnlineOpen if you do not wish to.

The copyright statement for OnlineOpen authors will read:

© [date] The Author(s)

Journal compilation © [date] The Linnean Society of London, *Botanical Journal of the Linnean Society*

Read more about Online Open here.

Author material archive policy

All original hardcopy artwork for the three Linnean Society Journals will be returned to authors after publication. Please note that, unless specifically requested, Blackwell Publishing will dispose of all electronic material and remaining hardcopy two months after publication. If you require the return of any of this material, you must inform the editorial office upon submission.

Authors are asked to pay close attention to the instructions below concerning preparation of the manuscript: manuscripts that do not conform to these instructions will be returned. Although the Society does not specify the length of manuscripts, it is suggested that authors preparing long texts (20 000 words or more, including references, etc.) for the *Botanical Journal* should contact the Editor before considering submission.

Manuscripts must be typed, on one side only and double-spaced, on A4 (208×298 mm) or equivalent paper. All pages should be numbered and margins must be at least 25 mm wide. Authors must submit three copies and are expected to retain another copy. Authors should

aim to communicate ideas and information clearly and concisely, in language suitable for the moderate specialist. Papers in languages other than English are not accepted unless invited. When a paper has joint authorship, one author must accept responsibility for all correspondence; the full postal address, telephone and fax numbers, and e-mail address of the author who is to check proofs should be provided.

Papers should conform to the following general layout:

Title page

This should include title, authors, institutions and a short running title. The title should be concise but informative, and where appropriate should include mention of family or higher taxon. A subtitle may be included, but papers in numbered series are not accepted. Names of new taxa should not be given in titles.

Abstract

This must be on a separate page. The abstract is of great importance as it may be reproduced elsewhere, and is all that many may see of your work. It should be about 100-200 words long and should summarize the paper in a form that is intelligible in conjunction with the title. It should not include references. The abstract should be followed by up to ten keywords additional to those in the title (alphabetically arranged and separated by hyphens) identifying the subject matter for retrieval systems.

Subject matter

The paper should be divided into sections under short headings. Except in systematic hierarchies, the hierarchy of headings should not exceed three. Authors submitting papers to the Botanical Journal should consult *Authors of Plant Names* edited by R.K. Brummitt and C.E. Powell (Royal Botanic Gardens, Kew, 1992; ISBN 947-643-44-3).. Names of genera and species should be printed in italic or underlined to indicate italic; do not underline suprageneric taxon names. Cite the author of species on first mention. Use SI units, and the appropriate symbols (mm, not millimetre; μm, not micron., s, not sec; Myr for million years). Use the negative index (m⁻¹, Γ¹, h⁻¹) except in cases such as "per plant"). Avoid elaborate tables of original or derived data, long lists of species, etc.; if such data are absolutely essential, consider including them as appendices or as online-only supplementary material. Avoid footnotes, and keep cross references by page to an absolute minimum.

References

In the text, give references in the following forms: "Stork (1988) said", "Stork (1988: 331)" where it is desired to refer to a specific page, and "(Rapport, 1983)" where giving reference simply as authority for a statement. Note that names of joint authors are connected by "&" in the text. When papers are by three authors, use all names on the first mention and thereafter abbreviate to the first name *et al*. For papers by four or more authors, use *et al*. throughout.

The list of references must include all publications cited in the text and only these. Prior to submission, make certain that all references in the text agree with those in the references section, and that spelling is consistent throughout. In the list of references, titles of periodicals must be given in full, not abbreviated. For books, give the title, place of publication, name of publisher (if after 1930), and indication of edition if not the first. In papers with half-tones, plate or figure citations are required only if they fall outside the

pagination of the reference cited. References should conform as exactly as possible to one of these four styles, according to the type of publication cited.

Burr FA, Evert RF. 1982. A cytochemical study of the wound-healing proteins in *Bryopsis hypnoides. Cytobios* **6:** 199-215.

Gould SJ. 1989. *Wonderful life: the Burgess Shale and the nature of history.* New York: W.W. Norton.

Dow MM, Cheverud JM, Rhoads J, Friedlaender J. 1987b. Statistical comparison of biological and cultural/history variation. In: Friedlaender J, Howells WW, Rhoads J, eds. *Solomon Islands project: health, human biology, and cultural change.* New York: Oxford University Press, 265-281.

Gay HJ. 1990. The ant association and structural rhizome modifications of the far eastern fern genus *Lecanopteris* (Polypodiaceae). Unpublished D. Phil. Thesis, Oxford University.

Other citations such as papers "in press" may appear on the list but not papers "submitted", "in review" or "in preparation". These may be cited in the text as "unpubl. data". A personal communication may be cited in the text but not in the reference list. Please give the initials and surnames for all authors of personal communications and unpublished data.

In the case of taxonomic reviews, authors are requested to include full references for taxonomic authorities.

Give foreign language references in ordinary English alphabetic form (but copy accents in French, German, Spanish, etc.), if necessary transliterating in accordance with a recognized scheme. For the Cyrillic alphabet use British Standard BS 2979 (1958). If only a published translation has been consulted, cite the translation, not the original. Add translations not supplied by the author of the reference in square brackets.

Tables

Keep these as simple as possible, with few horizontal and, preferably, no vertical rules. When assembling complex tables and data matrices, bear the dimensions of the printed page (225 x 168 mm) in mind; reducing typesize to accommodate a multiplicity of columns will affect legibility.

Illustrations

These normally include (1) half-tones reproduced from photographs, (2) black and white figures reproduced from drawings and (3) diagrams. Use one consecutive set of Arabic numbers for all illustrations (do not separate "Plates" and "Text-figures" - treat all as "Figures"). Figures should be numbered in the order in which they are cited in the text. Use upper case letters for subdivisions (e.g. Figure 1A-D) of figures; all other lettering should be lower case.

1. Half-tones reproduced from photographs

Photographic prints, conventionally produced, with labelling applied to a transparent overlay or to a photocopy, continue to provide the best quality originals for image reproduction (see <u>ARTWORK SUPPLIED ON DISK</u> below). The manuscript should be accompanied by one set of original photographs suitable for reproduction, mounted in groups and labelled where appropriate, and two photographic copies for review purposes; both originals and copies should be of sufficiently high quality that all the detail referred to in the text is visible.

Grouping and mounting: when grouping photographs, aim to make the dimensions of the group (including guttering of 2 mm between each picture) as close as possible to the page dimensions of 168×225 mm, thereby optimizing use of the available space. Remember that grouping photographs of varied contrast can result in poor reproduction. The group should be mounted on thin card. Take care to keep the surface of the prints clean and free of adhesive. Always provide overlays to protect the photographs from damage.

Lettering and numbering: letters and numbers should be applied in the form of dry-transfer ("Letraset") letters, numbers, arrows and scale bars, but not measurements (values), to transparent overlays in the required positions, rather than to the photographs themselves; this helps to avoid making pressure marks on the delicate surface of the prints, and facilitates relabelling, should this be required. Alternatively, pencilled instructions can be indicated on duplicates or photocopies marked "FOR LABELLING ONLY". Self-adhesive labels should be avoided, but if they are used, they should not be attached directly to either photographs or overlays, but to photocopies, to indicate where they are to be positioned. Labelling will be inserted electronically by the typesetter in due course.

Colour: the provision of colour photographs to accompany papers in the Linnean Society journals needs to be discussed with the appropriate Editor. The main criterion is that the use of colour is essential. Authors will be charged for unnecessary colour figures.

2. Black and white figures reproduced from drawings

These should be in black ink on white card or paper. Lines must be clean and heavy enough to stand reduction; drawings should be no more than twice page size. The maximum dimensions of published figures are 168×225 mm. Scale bars are the most satisfactory way of indicating magnification. Take account of proposed reduction when lettering drawings; if you cannot provide competent lettering, it may be pencilled in on a photocopy.

3. Diagrams

In most instances the author's electronic versions of diagrams are used and may be re-labelled to conform to journal style. They should be supplied both as hard copy and on disk, as vector format Encapsulated PostScript (EPS) files. Please see http://www.blackwellpublishing.com/authors/submit_illust.asp for help in saving your diagrams in an appropriate format. Please be aware that if diagrams are not in vector format they will not reproduce well in the online version of your paper due to the low maximum screen resolution compared to print.

Type legends for Figures in numerical order on a separate sheet. Where a "key" is required for abbreviations used in more than one Figure, this should be included as a section of the main text.

Authors wishing to use illustrations already published must obtain written permission from the copyright holder before submitting the manuscript. Authors may, in the first instance, submit good xerox or photographic copies of figures rather than the originals.

Authors may be charged for alterations at proof stage (other than printer's errors) if they are numerous.

Copyright

Authors receiving requests for permission to reproduce work published by the Linnean Society should contact Blackwell Publishing for advice.

MANUSCRIPTS ON DISK

When supplying the final accepted version of your paper please include an electronic copy of your manuscript on disk, prepared on PC-compatible or Apple Macintosh computers, along with two hard copy printouts.

Please follow these guidelines carefully

- Include all parts of the text of the paper in a single file. The ideal sequence is: (1) **Header** (running heads; correspondence; title; authors; addresses; abstract; additional keywords, etc.). (2) **Body of article**. (3) **Acknowledgements**. (4) **References**. (5) **Figure Legends**. (6) **Tables** (for each table, the legend should be placed before the body of the table). (7) **Appendices**.
- Include all figure legends, and tables with their legends if available.
- **Do not embed figures in the text file**: these must be supplied separately.
- The final version of the hard copy and the file on disk must be the same.
- Do not use the carriage return (enter) at the end of lines within a paragraph.
- Turn the hyphenation option off.
- Specify any special characters used to represent non-keyboard characters.
- Take care not to use l (ell) for l (one), O (capital o) for 0 (zero) or β (German esszett) for (beta).

ARTWORK SUPPLIED ON DISK

Detailed instructions on preparing illustrations in electronic form are available from http://www.blackwellpublishing.com/authors/submit illust.asp

Photographic plates

As mentioned above, photographic prints, conventionally produced, with labelling applied to a transparent overlay or to a photocopy, continue to provide the best quality originals for image reproduction.

Desktop technology now allows authors to prepare plates by scanning photographic originals and then labelling them using graphics programs such as Adobe Illustrator. These are acceptable provided:

- 1. Resolution of the photograph is a minimum of 300 dpi at the final required image size. Any labelling or associated line drawings should be in vector format. If this is not possible then the figure must have a minimum resolution of 800 dpi.
- 2. Colour images are supplied in CMYK rather than RGB mode.
- 3. The hard copy is printed on glossy paper, preferably using an inkjet rather than a laser printer: this will provide the printer with a superior guide to the resolution and range of contrast of the image.

4. The hard copy and disk are accompanied by the photographic originals. When in production, quality considerations may require that the originals be scanned by the printer, with the author's hard copy used as a labelling guide. Electronic files should be saved uncompressed as TIFF or EPS files, and supplied on CD or Zip disk. JPEG, PowerPoint and .doc files are not suitable.

Digital images

Increasingly, authors' original images are captured digitally rather than by conventional film photography. In these cases, please use settings on your equipment for the highest possible image quality (300 dpi minimum). As with images assembled from photographic originals, the disk should be accompanied by photographic quality hard copy, preferably output to glossy paper using an inkjet printer.

Black and white drawings

Originals continue to be preferred, but if supplied on disk should be scanned at a minimum resolution of 800 dpi and saved as TIFF files or embedded in EPS files. No other file formats are suitable for publication.

Diagrams

In most instances the author's electronic versions of diagrams are used and may be relabelled to conform to journal style. These should be supplied both as hard copy and on disk, as vector format Encapsulated PostScript (EPS) files.