

Universidade Federal da Paraíba Centro de Tecnologia PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL E AMBIENTAL - MESTRADO -

AVALIAÇÃO DE DIFERENTES MODELOS DE BIODIGESTORES PARA TRATAMENTO DE RESÍDUOS SÓLIDOS URBANOS GERADOS NO RESTAURANTE UNIVERSITÁRIO DA UFPB

por

Gabriela Pecorelli Figueiredo Bezerra

Dissertação de Mestrado apresentada à Universidade Federal da Paraíba para obtenção do grau de Mestre

João Pessoa - Paraíba Setembro - 2016

Universidade Federal da Paraíba

Centro de Tecnologia

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL E

AMBIENTAL

- MESTRADO -

AVALIAÇÃO DE DIFERENTES MODELOS DE BIODIGESTORES PARA TRATAMENTO DE RESÍDUOS SÓLIDOS URBANOS GERADOS NO RESTAURANTE UNIVERSITÁRIO DA UFPB

Dissertação submetida ao Programa de Pós-Graduação em Engenharia Civil e Ambiental da Universidade Federal da Paraíba, como parte dos requisitos para a obtenção do título de Mestre.

Gabriela Pecorelli Figueiredo Bezerra

Orientador: Prof. Dr. Joácio de Araújo Morais Junior

João Pessoa - Paraíba Setembro - 2016

B574a Bezerra, Gabriela Pecorelli Figueiredo.

Avaliação de diferentes modelos de biodigestores para tratamento de resíduos sólidos urbanos gerados no Restaurante Universitário da UFPB / Gabriela Pecorelli Figueiredo Bezerra.- João Pessoa, 2016.

61f.

Orientador: Joácio de Araújo Morais Junior Dissertação (Mestrado) - UFPB/CT

1. Engenharia civil e ambiental. 2. Resíduos sólidos orgânicos. 3. Biodigestão anaeróbia. 4. Biodigestor. 5. Biogás.

UFPB/BC CDU: 624:504(043)

"AVALIAÇÃO DE DIFERENTES MODELOS DE BIODIGESTORES PARA TRATAMENTO DE RESÍDUOS SÓLIDOS URBANOS GERADOS NO RESTAURANTE UNIVERSITÁRIO DA UFPB"

GABRIELA PECORELLI FIGUEIREDO BEZERRA Dissertação aprovada em 30 de setembro de 2016

Período Letivo: 2016.2

Prof. Dr. JOÁCIO DE ARAÚJO MORAIS JÚNIOR - UFPB

Profa. Dra. CLAUDIA COUTINHO NÓBREGA
Examinadora Interna

Prof^a. Dr^a. CLAUDIANA MARIA DA SILVA LEAL Examinadora Externa

Dedico:

Aos meus pais, Domícia e Claudio, meus exemplos e alicerces.

A Ivanhoé, amor e companheiro de todas as horas.

AGRADECIMENTOS

A Deus, inteligência suprema, causa primária de todas as coisas, por sua infinita bondade.

Aos meus pais, fontes permanentes e inesgotáveis de amor, carinho, apoio, ensino e incentivo, sem vocês esta vida não teria a mesma graça.

A Ivanhoé, por todo amor, carinho, estímulo, incentivo, compreensão, auxílio e apoio dedicados também ao longo da elaboração deste trabalho.

A minha família e amigos, alicerces de minha vida.

Ao Prof. Joácio, por acreditar em mim e pela orientação.

Aos professores do Programa de Pós-Graduação em Engenharia Civil e Ambiental (PPGECAM) pelos aprendizados, em especial à Professora Elisangela Rocha pelos ensinamentos, profissionalismo, dedicação e pelas caronas que facilitaram a minha vida.

Aos queridos Fátima Morosine e Edmilson Fonseca (*in memorian*), de quem recebi os primeiros e valiosos ensinamentos sobre resíduos sólidos.

Às Secretárias do PPGECAM, Miriam de Moura e Sara Paiva, por todo auxílio, apoio, conversas e pelos sorrisos sempre largos para nos receber.

A amiga Ana Flora Ferreira pelo Abstract.

A CAPES pelo financiamento deste trabalho.

A todos que direta ou indiretamente colaboraram ao longo de minha formação e deste trabalho, o meu muito obrigada.

RESUMO

Os resíduos sólidos urbanos são um dos principais problemas ambientais observados na atualidade. Ao longo do tempo os modelos de tratamentos e disposição de resíduos mais utilizados foram a incineração e o aterro sanitário. No caso específico do aterro, este gera, a partir da decomposição da fração orgânica dos resíduos sólidos urbanos, gases que podem ser utilizados na produção de energia. Essa geração de gás pode se dar também em pequena escala, com a utilização de biodigestores, podendo atender a pequenas comunidades, como é o caso do Campus I da Universidade Federal da Paraíba. Diante desse contexto, o objetivo deste trabalho foi avaliar e comparar o funcionamento de biodigestores para determinação da solução mais adequada para a implantação no referido Campus resíduos orgânicos provenientes do Restaurante Universitário. Atualmente, a disposição dos resíduos sólidos gerados no RU/UFPB é o Aterro Sanitário Metropolitano de João Pessoa, sendo diariamente gerada uma média de 513,77 kg de resíduos orgânicos. Para a análise do modelo de biodigestor mais adequado foram considerados alguns critérios, tais como facilidade e custo para a implantação, modo de operação, eficiência no tratamento, rendimento e tecnologia aplicada, sendo selecionados os seguintes: Biodigestor em Batelada (modelo simplificado), Biodigestor Indiano, Biodigestor Chinês, Biodigestor de Ferreira (2015), Biodigestor de Fernandes (2013) e Biodigestor de Reis (2012), os quais foram comparados em função do Teor de Umidade e eficiência de remoção de sólidos, Temperatura, Carga Orgânica Volumétrica, Potencial Hidrogeniônico (pH), Alcalinidade, Produção e Concentração de Metano. Verificou-se Biodigestores em Batelada (modelo simplificado), Indiano e Chinês não seriam adequados para atendimento do objetivo proposto. Ao analisar os diversos parâmetros verificou-se que vários podem ser usados para fins de comparação. A análise do teor de umidade e da eficiência da remoção de sólidos voláteis, bem como temperatura não se apresentou como parâmetro de decisão para seleção da melhor opção, uma vez que todos possuíam características semelhantes. A carga orgânica volumétrica para os biodigestores com abastecimento em batelada não se apresentou como um fator limitante. No entanto, para o abastecimento contínuo, caso do modelo de Ferreira (2015), interferiu diretamente no seu funcionamento. No que diz respeito ao pH, Ferreira (2015) teve ainda dificuldade em sua manutenção, Reis (2012) conseguiu estabilizá-lo e Fernandes (2013), apesar de obter altos valores, entendeu que estava dentro de faixas aceitáveis e favoráveis de pH à produção do biogás. A concentração de metano no modelo de Ferreira (2015) apresentou valores médios de 59%, enquanto que os modelos de Reis (2012) e Fernandes (2013) obtiveram concentrações médias de metano próximo a 70%, mostrando-se mais eficientes. Diante disso, o modelo de biodigestor de Reis (2012) se apresentou como o mais viável para reprodução no Campus I da UFPB com a finalidade de produção de biogás a partir da decomposição dos resíduos gerados no RU, sendo necessária a implantação de 13 biodigestores de forma a atender à geração semestral.

Palavras-chave: Resíduos sólidos orgânicos, biodigestão anaeróbia, biodigestor, biogás.

ABSTRACT

The urban solid waste is one of the main environmental problems noticed nowadays. Through time the models of treatment and destination of residues (waste) more commonly used were incineration and landfill. Landfill, specifically, generates, from the decomposition of the organic fraction, solid urban waste gases which can be used in the production of energy. This generation of gas can also be in smaller scale using biodigesters, attending the demands of small communities, such as Universidade Federal da Paraíba Campus I. Within this context, this work aims to evaluate and compare the functioning of biodigesters to determine the most adequate solution for implantation at UFPB Campus I using organic waste from the University restaurant. Nowadays the university restaurant's waste is sent to Aterro Sanitário Metropolitano de João Pessoa, a landfill, generating a daily average of 513,77kg of organic waste. For the analysis of a more adequate model, some criteria were considered, such as the facility and cost of implantation, operation mode, efficiency in treatment, income and applied technology, being selected the following: Biodigester in batch (simplified model), Indian Biodigester, Chinese Biodigester, Ferreira's Biodigestor (2015), Fernandes's Biodigestor (2013) and Reis's Biodigestor (2012), which were compared in terms of Moisture Content and the efficiency in removal of solids, Temperature, Organic Loading Rate, Potential of Hydrogen, alkalinity, production and concentration of methane. It was found that the biodigesters in batch (simplified model), Indian and Chinese, were not adequate for attending the proposed objective. After analyzing the diverse parameters, it was found that many can be used for comparison. The analysis of the moisture content and the efficiency of removal of volatile contents, such as temperature were not considered as parameters of decision for choosing the best option, since they all had similar characteristics. The organic loading rate for the biodigesters with batch supply did not present itself as a limiting factor, however, for the continuous supply, which is the case of the Ferreira (2015) model, it interfered directly in its functioning. In terms of pH, Ferreira (2015) had maintenance difficulties, Reis (2012) managed to stabilize it and Fernandes (2013), although obtained high values, understood to be within the acceptable and propitious pH levels to the production of biogas. The concentration of methane in the Ferreira (2015) model presented average values of 59%, while Reis (2012) and Fernandes (2013) obtained average methane concentration near 70%, presenting itself more efficient. Given that, the biodigester of Reis (2012) model presented itself as the more viable for reproduction at UFPB Campus I for the ends of production of biogas from the decomposition of waste generated at the university restaurant, having the necessity of implantation of 13 biodigesters as a way to a semiannual generation source.

Key-words: Organic solid waste, anaerobic biodigesters, biodigesters, biogas.

LISTA DE ILUSTRAÇÕES

Figura 1	Corte esquemático de um aterro sanitário		
Figura 2	Desenho esquemático da célula experimental (lisímetro)	20	
Figura 3	Classificação de lisímetros para análise de resíduos sólidos urbanos	21	
Figura 4	Representação esquemática em corte dos biodigestores indiano e chinês	23	
Figura 5	Representação tridimensional em corte do biodigestor modelo batelada	32	
Figura 6	Representação tridimensional em corte do biodigestor modelo indiano	33	
Figura 7	Representação tridimensional em corte do biodigestor modelo chinês	34	
Figura 8	Fluxograma do sistema integrado de metanização de resíduos orgânicos implantado no Campus Pampulha da UFMG	36	
Figura 9	Reator de metanização de resíduos orgânicos	37	
Figura 10	Sistema utilizado nos testes de biodegradabilidade e respectiva foto do ensaio	38	
Figura 11	Esquema em 3D ilustrativo do projeto do biodigestor	41	
Figura 12	Fotografia do biodigestor instalado no Laboratório de Engenharia Ambiental	41	
Figura 13	Fluxograma ilustrativo das fases do biodigestor	42	

LISTA DE TABELAS E QUADROS

Tabela 1	Estimativa da composição gravimétrica dos resíduos sólidos					
i abeia i	urbanos coletados no Brasil em 2008					
Quadro 1	Técnicas de manejo de resíduos sólidos urbanos					
Tabela 2	Composição básica do biogás de aterro sanitário 24					
Quadro 2	Quantificação da geração de resíduos sólidos orgânicos no	26				
Quadro 2	RU/UFPB – Campus I					
Quadro 3	luadro 3 Comparação dos modelos chinês e indiano de biodigestores 4					
Quadro 4	Comparação dos modelos de biodigestores Ferreira (2015),	46				
	Fernandes (2013) e Reis (2012)					

LISTA DE ABREVIATURAS E SIGLAS

AGV/AT - Relação Ácidos Graxos Voláteis por Alcalinidade Total

Al/AP - Relação entre a alcalinidade intermediária e a parcial

CH₄- Metano

CO₂ - Dióxido de carbono

COV - Carga Orgânica Volumétrica

DQO - Demanda Química de Oxigênio

ETAR - Estação de Tratamento de Águas Residuárias

ETVO - Estação de Tratamento e Valorização Orgânica

FORSU - Fração orgânica dos resíduos sólidos urbanos

GEE - Gases de Efeito Estufa

LNEG - Laboratório Nacional de Energia e Geologia

PEDENERG - Projeto Infraestrutura para Pesquisa e Desenvolvimento em

Processamento de Energia Renovável

pH - Potencial Hidrogeniônico

PHAs - Hidrocarbonetos policíclicos-aromáticos

PNRS - Política Nacional de Resíduos Sólidos

RL - Resíduos limpos

RS - Resíduos sujos

RSU - Resíduos sólidos urbanos

RU - Restaurante Universitário

RU/UFPB - Restaurante Universitário da Universidade Federal da Paraíba

ST - Sólidos Totais

SV - Sólidos Voláteis

UFMG - Universidade Federal de Minas Gerais

UFPB - Universidade Federal da Paraíba

UFPE - Universidade Federal de Pernambuco

SUMÁRIO

1	INTRODUÇÃO	12			
1.1	Objetivos	13			
1.1.1	OBJETIVO GERAL				
1.1.2	OBJETIVOS ESPECÍFICOS				
2	REFERENCIAL TEÓRICO	14			
2.1	Resíduos Sólidos Urbanos (RSU)	14			
2.2	Célula experimental –lisímetro	19			
2.3	Biodigestores	21			
2.4	Geração de biogás	23			
3	METODOLOGIA	26			
3.1	Caracterização da área de estudo	26			
3.2	Seleção dos modelos de biodigestores	27			
3.3	Parâmetros de controle no processo biodegradativo	28			
3.3.1	TEOR DE UMIDADE E EFICIÊNCIA DE REMOÇÃO DE SÓLIDOS	28			
3.3.2	TEMPERATURA	29			
3.3.3	CARGA ORGÂNICA VOLUMÉTRICA	30			
3.3.4	POTENCIAL HIDROGENIÔNICO E ALCALINIDADE	30			
3.3.5	PRODUÇÃO E CONCENTRAÇÃO DE METANO	30			
4	DISCUSSÃO DOS RESULTADOS E CONSIDERAÇÕES	32			
4.1	Modelos de biodigestores	32			
4.1.1	BIODIGESTOR MODELO BATELADA	32			
4.1.2	BIODIGESTOR MODELO INDIANO	33			
4.1.3	BIODIGESTOR MODELO CHINÊS				
4.1.4	BIODIGESTOR DE FERREIRA (2015)	35			
4.1.5	BIODIGESTOR DE FERNANDES (2013)	38			
4.1.6	BIODIGESTOR DE REIS (2012)	40			
4.2	Análise comparativa dos modelos de biodigestores	43			
4.2.1	BIODIGESTOR EM BATELADA, MODELO INDIANO E CHINÊS	43			
4.2.2	BIODIGESTOR DE FERREIRA (2015), BIODIGESTOR DE	45			
	FERNANDES (2013) E BIODIGESTOR DE REIS (2012)				
4.3	Análise dos parâmetros de controle no processo biodegradativo	48			

5	REFERÊNCIAS	58
	biodigestor adequado ao uso no Campus I da UFPB	
4.4	Considerações a respeito da determinação do modelo de	54
4.3.5	CONCENTRAÇÃO DE METANO	53
4.3.4	POTENCIAL HIDROGENIÔNICO E ALCALINIDADE	51
4.3.3	CARGA ORGÂNICA VOLUMÉTRICA (COV)	50
4.3.2	TEMPERATURA	49
	VOLÁTEIS	
4.3.1	TEOR DE UMIDADE E EFICIÊNCIA DE REMOÇÃO DE SÓLIDOS	48

1. INTRODUÇÃO

Os resíduos sólidos urbanos, material descartado proveniente da atividade humana, são um dos principais problemas ambientais observados na atualidade. Em muitos países a limitação territorial leva à necessidade do desenvolvimento de técnicas de tratamento que ocupem reduzidas extensões, além de um gerenciamento que considere o resíduo em suas diferentes especificações, desde a geração e acondicionamento até a disposição final.

Os modelos de tratamentos/disposição de resíduos amplamente utilizados são a incineração e o aterro sanitário, os quais apresentam diversas vantagens e desvantagens. No caso da incineração, a necessidade de grandes áreas é reduzida, os resíduos gerados são inertes e os gases são tratados, contudo o custo é elevado e necessita-se de uma fonte energética. O aterro sanitário é uma técnica com custo inferior à incineração que, no entanto, gera efluentes gasosos e líquidos e ocupa maiores extensões de terra. Com a Política Nacional de Resíduos Sólidos (PNRS), instituída pela Lei Nº 12.305/2010, os aterros não podem receber a fração orgânica dos resíduos sólidos urbanos (FORSU), os quais, com isso, precisam ser tratados e aproveitados ao máximo evitando danos ao meio ambiente.

O Campus I da Universidade Federal da Paraíba (UFPB) demonstra ser uma potencial fonte de pesquisa, tendo em vista que a comunidade acadêmica é próxima a 40 mil pessoas que geram diversas tipologias de resíduos, como, por exemplo, orgânicos e inorgânicos, sendo estimados em centenas de quilogramas diariamente, coletadas internamente pela própria equipe de manutenção da Universidade, o que permitiria atender à demanda de biodigestores.

Com o a implantação de biodigestores no Campus I da UFPB será possível tratar adequadamente os resíduos sólidos orgânicos gerados, principalmente, no Restaurante Universitário (RU), além de poder utilizar o poder calorífico dos gases produzidos a partir da digestão anaeróbia do material.

Esta pesquisa faz parte do Projeto Infraestrutura para Pesquisa e Desenvolvimento em Processamento de Energia Renovável (PEDENERG), de forma a propor novas técnicas para o aproveitamento do gás na produção de bioenergia.

A identificação do modelo a ser utilizado com a fração orgânica dos resíduos sólidos urbanos gerada no Restaurante Universitário do Campus I da UFPB é etapa fundamental, garantindo assim a construção e operação de reatores com eficiência

comprovadamente satisfatória.

Esta dissertação é composta por quatro (04) capítulos, o primeiro refere-se a esta introdução, o segundo o referencial teórico, o terceiro à metodologia, enquanto o quatro trata da discussão dos resultados, avaliação dos biodigestores e considerações. Também fazem parte desta dissertação as referências bibliográficas.

1.1 Objetivos

1.1.1 Objetivo Geral

Avaliar e propor o funcionamento de biodigestores para determinação da solução mais adequada para a implantação no Campus I da Universidade Federal da Paraíba utilizando resíduos provenientes do Restaurante Universitário.

1.1.2 Objetivos Específicos

- Identificar e caracterizar modelos de biodigestores utilizados no tratamento da fração orgânica dos resíduos sólidos urbanos;
- Identificar os fatores e parâmetros que interferem na eficiência da operação de biodigestores;
- Indicar o modelo mais adequado para o uso no Campus I da UFPB utilizando a fração orgânica dos resíduos sólidos urbanos gerados no Restaurante Universitário em função da eficiência do tratamento e produção do biogás.

2. REFERENCIAL TEÓRICO

2.1 Resíduos Sólidos Urbanos (RSU)

Os resíduos sólidos são definidos pela Política Nacional de Resíduos Sólidos (PNRS), instituída pela Lei Nº 12.305/2010, como sendo "material, substância, objeto ou bem descartado resultante de atividades humanas em sociedade" (BRASIL, 2010). Os resíduos sólidos urbanos (RSU), produzidos em menor escala quando comparados aos industriais, são aqueles oriundos de domicílios, comércios, escritórios, lojas, hotéis, supermercados, restaurantes e os serviços oriundos da limpeza pública urbana, tais como: resíduos de varrição de vias públicas, da limpeza de galerias, terrenos, córregos, praias, feiras e das podas (TENÓRIO E ESPINOSA, 2005).

Com a crescente geração de resíduos e a sua grande diversidade, tem sido grande desafio para a sociedade e municípios gerenciá-los. O aumento da produção desses materiais influencia diretamente seu tratamento e disposição final, sendo necessários estudos para o desenvolvimento de novas e mais eficientes tecnologias, com reduzida emissão de carbono, adequação às diferentes tipologias e maior aproveitamento energético dos produtos e subprodutos gerados no processo (FERREIRA, 2015).

Para o estudo dos RSU é necessário o conhecimento de sua composição. Observando a composição gravimétrica de uma amostra de resíduos sólidos, que consiste na determinação dos constituintes e seus percentuais, é possível avaliar preliminarmente a sua degradabilidade, seu poder de contaminação, possibilidades de reutilização, reciclagem, tratamento e valorização energética e orgânica (ALCÂNTARA, 2007).

A Tabela 1 mostra a estimativa da composição gravimétrica dos RSU coletados no Brasil no ano de 2008, sendo observado que a matéria orgânica corresponde à sua maior proporção (51,4%), seguida pelos materiais recicláveis (31,9%) e os demais (16,7). Com base nisso, percebe-se a necessidade de que esforços devam ser direcionados ao gerenciamento dessa tipologia.

Tabela 1: Estimativa da composição gravimétrica dos resíduos sólidos urbanos coletados no Brasil em 2008

Resíduos	Participação (%)	Quantidade (t/dia)	
Material reciclável (∑ = 31,9%)			
- Aço	2,3	4.213,70	
- Alumínio	0,6	1.079,90	
- Papel, plástico, tetrapak*	13,1	23.997,40	
- Plástico filme	8,9	16.399,60	
- Plástico rígido	4,6	8.448,30	
- Vidro	2,4	4.338,60	
Matéria orgânica	51,4	94.335,10	
Outros	16,7	30.618,90	
Total	100,0	183.481,50	

Fonte: Adaptado de Barros (2012)

É importante considerar que a composição gravimétrica dos resíduos pode sofrer influência e variações nos diferentes estados e municípios em função da densidade populacional e dos costumes, visto que isso influencia diretamente os aspectos qualitativos e quantitativos da produção.

Segundo Tenório e Espinosa (2005) o gerenciamento dos resíduos sólidos urbanos pode ser entendido como um conjunto de ações normativas, operacionais, financeiras e de planejamento que uma administração municipal desenvolve, baseada em critérios sanitários, ambientais e econômicos para coletar, tratar e dispor os resíduos de seu município, abrangendo o manejo e aspectos relacionados à fiscalização e à regulamentação. O Quadro 1 mostra um resumo dos processos de transformação utilizados para o manejo de resíduos sólidos urbanos, onde observa os processos e métodos de transformação e as principais conversões em produtos. Nesse ainda destacam-se as transformações físicas, térmicas e biológicas.

Quadro 1: Técnicas de manejo de resíduos sólidos urbanos

Processo de	Métodos de	Principal conversão em produtos		
transformação	transformação			
Físicos				
Separação de componentes	Manual ou mecânica	Componentes individuais encontrados nos resíduos domiciliares		
Redução de volume	Métodos de compactação Redução de volume do n			
Redução de volume	e embasamento	original		
Redução de	Métodos de cominuição	Redução de tamanho dos		
tamanho	ivietodos de comindição	componentes originais		
	Térmicos			
Combustão	Oxidação térmica	COx, SOx, NOx outros produtos de oxidação, cinzas e escórias		
Esterilização	Micro-ondas	Eliminação de microrganismos patogênicos		
Pirólise	Doctilogão doctrutivo	PHAs, óleos, alcatrão, gases		
Pilolise	Destilação destrutiva	combustíveis		
Biológicos				
Compostagem	Conversão biológica	Composto humificado		
aeróbia	aeróbia			
Digestão aeróbia	Conversão biológica aeróbia	CH ₄ , CO _X , Húmus		

Fonte: Adaptado de Barros (2012)

No Brasil, a questão dos resíduos sólidos tem sido amplamente discutida, sendo relevante observar que a sua geração sofre impactos diretos com o aumento populacional e a mudança nos hábitos de vida das pessoas. Diante disso, o descarte transformou-se em grande problema para a sociedade atual, visto que esta tem de estar preparada para lidar com imenso volume de material e, sendo o meio ambiente o receptor, deverá também comportar e assimilar o descarte.

Segundo ABRELPE (2014) a geração total de RSU no Brasil, em 2013, foi de 76.387.200 toneladas representando um aumento de 4,1% quando comparada ao

ano de 2012. Esse índice é superior à taxa de crescimento populacional no país no período, que foi de 3,7%, indicando que os hábitos de vida da população influenciam diretamente no montante produzido. É importante salientar que do volume gerado 69.064.935 toneladas são coletadas e deste apenas 58,3% recebe destinação final adequada, os demais seguem para lixões ou aterros ditos controlados, os quais não possuem sistemas necessários a proteção da saúde pública e do meio ambiente. Necessário se faz considerar que, de acordo com a Política Nacional de Resíduos Sólidos (PNRS), a destinação final ambientalmente adequada de resíduos inclui a reutilização, a reciclagem, a compostagem, a recuperação e o aproveitamento energético, enquanto a disposição final é distribuição ordenada de rejeitos em aterros sanitários.

A falta de conscientização da população e de capacidade técnica especializada explica a predominância das destinações finais inadequadas, sendo um grande desafio ampliar a abrangência e aumentar o uso de aterros sanitários, subsidiados por normas técnicas e operacionais específicas e fundamentados em critérios de engenharia.

Os aterros sanitários de resíduos sólidos urbanos são definidos pela ABNT (1992) como sendo a técnica de disposição de resíduos sólidos urbanos no solo, sem causar danos à saúde pública e à sua segurança, minimizando os impactos ambientais, método este que utiliza princípios de engenharia para confinar os resíduos sólidos à menor área possível e reduzi-los ao menor volume permissível, cobrindo-os com uma camada de terra na conclusão de cada jornada de trabalho, ou a intervalos menores, se necessário.

Essa técnica é amplamente aplicada em diversas partes do mundo, visto que apresenta diversas vantagens, entre as quais se destacam: o baixo custo quando comparada a outras técnicas, principalmente a incineração, utilização de equipamentos de baixo custo e simples operação e evitam a proliferação de insetos e animais transmissores de doenças. Apesar disso, suas desvantagens também são identificadas como sendo: perda da matéria-prima e energia contida nos resíduos, transporte do material a longas distâncias, riscos de contaminação do lençol freático, produção de chorume e percolados, necessidade de monitoramento após o encerramento das atividades (TENÓRIO E ESPINOSA, 2005).

Na Figura 1 é possível observar as diferentes estruturas necessárias para a manutenção de um bom padrão de funcionamento e controle do aterro sanitário:

barreira de árvores, poço de monitoramento, vala de drenagem superficial, controle do escoamento superficial, camadas intermediárias de cobertura, cobertura de solo vegetal, capa selante, tubulação para ventilação de gases, revestimento impermeável, camada de cobertura final e sistema de drenagem de chorume (encaminhando para tratamento).

Arte: D. Vilela Barreira Ventilação de gases Barreira (queima ou eventual de árvores de árvores tratamento) Cobertura Capa de solo selante Controle de vegetal escoamento Camada de superficial cobertura final Vala de Vala de drenagem drenagem Poço de superficial superficial monitoramento Camadas Sistema de intermediárias drenagem Lençol de cobertura de chorume freático (encaminhando Revestimento para tratamento) impermeável

Figura 1: Corte esquemático de um aterro sanitário.

Fonte: Barros (2012).

Nos aterros os processos de tratamento podem se dar por digestão anaeróbia, aeróbia ou semi-anaeróbia (D'ALMEIDA e VILHENA, 2000 apud ALCÂNTARA, 2007). No Brasil, os aterros sanitários são projetados, em maioria, para tratar os resíduos por digestão anaeróbia, sendo um sistema complexo e ao mesmo tempo dinâmico que envolve reações metabólicas.

Em aterros sanitários os principais subprodutos gerados são o chorume, as águas percoladas e os gases, oriundos dos resíduos, de sua decomposição e das águas infiltradas no interior do corpo físico do aterro. Cada um desses subprodutos possui sistemas de drenos específicos, podendo ser superficiais ou subsuperficiais (TENÓRIO E ESPINOSA, 2005).

2.2 Célula experimental - lisímetro

Visando caracterizar o processo de biodegradação dos resíduos sólidos, a obtenção de dados confiáveis para fins práticos deveria se dar através de investigações *in situ* nos aterros sanitários, porém nem sempre isso é possível, visto que demanda um elevado custo, o enfrentamento de adversidades como o grande número de variáveis envolvidas no processo e que a dinâmica de operação de um aterro dificulta e até inviabiliza a obtenção sistemática de dados sob condições conhecidas ou controladas (ALCÂNTARA, 2007).

Para conhecer melhor o funcionamento de aterros sanitários de RSU, células experimentais (aterros simulados) representam uma técnica bastante interessante e viável, visto que podem ser empregadas para estudar o comportamento dos resíduos quanto aos aspectos físicos, químicos e microbiológicos e permitem obter parâmetros para projetos, dimensionamento, construção e monitoramento de aterros. Pode-se ainda monitorar mais facilmente fases de degradação dos resíduos e até compreender melhor rotas metabólicas de degradação de produtos orgânicos, uma vez que fica mais fácil conhecer e controlar as condições do meio (ALCÂNTARA, 2007 e MONTEIRO *et al.*, 2006).

Segundo Silva et al. (2004), o lisímetro é um biorreator representativo de uma célula experimental de resíduos em escala reduzida, sendo dotado de sistema de drenagem de líquidos e gases, além de tubos de coleta de amostras sólidas, medidores de recalque superficial (placas e disco magnético) e profundo (disco magnético), temperatura, concentração e fluxo de gases, proporcionando a obtenção de parâmetros sob condições controladas. A Figura 2 apresenta um desenho esquemático de lisímetro com visualização dos instrumentos de análise e controle para a observação do processo de degradação.

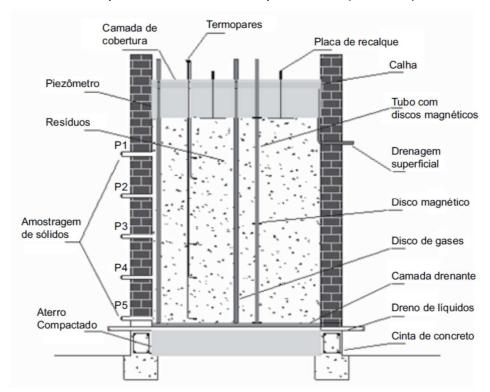


Figura 2: Desenho esquemático da célula experimental (lisímetro)

Fonte: Monteiro et al. (2006)

Alcântara (2007) sugere que os lisímetros sejam categorizados em dois grupos: experimentos de campo e experimentos de laboratório (Figura 3). O primeiro é assim denominado devido à sua operação in situ, estando submetido às variações das condições atmosféricas, podendo ser do tipo aterro simulado ou aterro em escala reduzida, utilizando resíduos com a mesma composição dos que são enviados aos aterros, sem tratamento prévio. Os aterros em escala reduzida servem como protótipo de um projeto para análise e aperfeiçoamento de técnicas, onde são construídas células e dispostos resíduos nos mesmos moldes dos aterros. Os simulados fogem da concepção básica de um aterro sanitário, pois os resíduos são confinados em células de concreto, alvenaria, metal ou outros materiais que podem influenciar no ambiente interno do equipamento. Servem também para experimentar novos métodos e processos ou estudar e aperfeiçoar técnicas de tratamento de resíduos já utilizadas. O segundo grupo, dos lisímetros operados em laboratório, diferentemente dos de campo, é mantido sob condições artificiais, podendo-se controlar facilmente variáveis como pH e umidade, apresenta menor tamanho e pode ser construído em plástico, acrílico, vidro ou metal.

Experimentos de campo

Experimentos de campo

Aterro em escala reduzida

pequena < 7 m³ média 7 a 20 m³ grande > 20 m³

Experimentos de laboratório

pequena < 0,3 m³ média 0 3 a 0,8 m³ grande > 0,8 m³

grande > 0,8 m³

Figura 3: Classificação de lisímetros para análise de resíduos sólidos urbanos

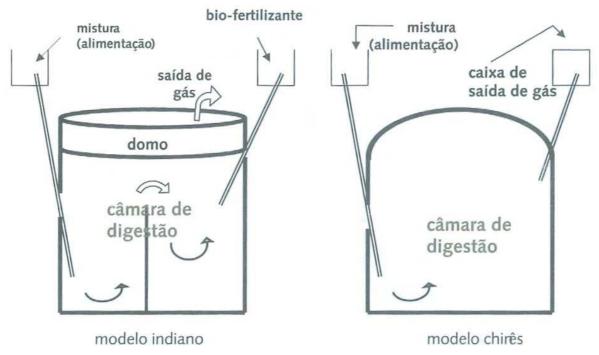
Fonte: Alcântara. (2007)

Segundo Borglin*et al.* (2004) apud Monteiro *et al.* (2006) os lisímetros otimizam as condições para decomposição microbiológica e aceleram a estabilização da massa de resíduos permitindo a disposição adicional de RSU ou reuso mais rápido do aterro. A gerência adequada dos parâmetros e as condições controladas podem levar a estabilização muito rápida dos resíduos e a ritmos de alta produção de metano.

Para Alcântara (2007) as células experimentais são importantes para simular situações inviáveis em escala real, além de poderem ser utilizadas visando à otimização dos projetos de aterros de resíduos sólidos urbanos na simulação e análise de diferentes sistemas de cobertura e impermeabilização de base, sistemas de drenagem de líquidos e gases e de monitoramento geotécnico e ambiental.

2.3 Biodigestores

Com a PNRS, que instituiu o descarte apenas de rejeitos em aterros sanitários, houve uma necessidade de ampliar a reutilização e reciclagem dos diversos tipos de matérias e materiais, aperfeiçoando métodos e tecnologias para que isso se tornasse abrangente em todo o país.


Não mais podendo ser disposto em aterros sanitários, o resíduo orgânico passou a ser mais estudado para ampliar sua capacidade de reutilização e de gerar subprodutos úteis.

Um dos instrumentos para disponíveis para aproveitamento e tratamento do resíduo orgânico é o biodigestor, que, segundo EMBRAPA (1981), pode ser definido como uma câmara de fermentação onde a biomassa passa pela digestão por bactérias anaeróbicas, produzindo gases. Trata-se de um recipiente fechado, construído de alvenaria, concreto ou outros materiais, onde é colocado o material a ser digerido.

O uso de biodigestores não é atual, ao longo da história eles foram utilizados amplamente para a decomposição de restos de vegetais, dejetos animais e esgoto, principalmente visando o uso dos gases produzidos para a geração de energia. Com a grande disponibilidade e o baixo custo do petróleo houve uma estagnação na tecnologia da biodigestão e a geração de biogás, situação modificada com as recentes crises energéticas e a ampliação da percepção acerca das questões ambientais e a necessidade de correta destinação dos resíduos (GASPAR, 2003).

Os biodigestores, de acordo com a temporalidade de sua alimentação, podem ser descontínuos (em batelada) ou contínuos (periódicos). São ditos descontínuos quando recebem o material uma única vez, sendo ele mantido fechado e retido pelo período correspondente ao seu processo de biodegradação e ditos contínuos quando a alimentação é feita em intervalos regulares, comumente diário, e cada carga refere-se a um volume semelhante de material fermentado. Em seu interior a biomassa se movimenta por diferença de carga hidráulica entre a entrada do substrato e a saída do biofertilizante no momento do carregamento. O tempo de retenção é entre 30 e 50 dias, variando em função da temperatura externa do biodigestor, sendo esta a razão de serem subterrâneos. Os modelos mais comuns no Brasil são o chinês e o indiano (Figura 4). Em ambos os casos, contínuos ou descontínuos, o período de retenção pode ser reduzido pela adição de agitação, aquecimento ou inóculos durante a biodegradação (BENINCASSA *et al.*,1991 *apud* QUEIROZ, 2003).

Figura 4: Representação esquemática em corte dos biodigestores indiano e chinês.

Fonte: Barros (2012).

Segundo Ferreira (2015) os reatores operados com fluxo contínuo resultam em processos mais estáveis e com maior taxa de conversão de matéria orgânica em biogás, enquanto que os reatores por batelada, apesar de suportarem maiores cargas orgânicas em relação ao fluxo contínuo, resultam em condições ambientais menos estáveis, reduzindo os rendimentos de produção de metano.

Ainda no que diz respeito à alimentação do biodigestor, esta pode ser em batelada semicontínua, na qual, segundo Ferreira (2015), não há o esgotamento total do reator, como na batelada propriamente dita, sendo a vazão efluente diretamente proporcional à vazão afluente aplicada. Observa ainda o autor que em tal tipo de alimentação há maior estabilidade do processo quando comparada à batelada e menor custo operacional e energético quando comparada ao fluxo contínuo.

2.4 Geração de biogás

A geração de biogás a partir da decomposição dos resíduos sólidos urbanos é um processo que, além de fornecer tratamento a esses, oferece vantagens sociais, econômicas e ambientais, visto que evitam o envio de grandes volumes destinados

aos aterros sanitários, o que não mais é permitido, reduzem a emissão de gases de efeito estufa (GEE) e geram energia elétrica e térmica (BRASIL, 2015).

A partir da digestão anaeróbia dos resíduos orgânicos há a geração de alguns gases, principalmente do metano, conforme pode ser observado na Tabela 2, que analisa a composição do biogás gerado em aterro sanitário.

Tabela 2: Composição básica do biogás de aterro sanitário.

Composição	Porcentagem (base seca)		
Metano	45 – 60		
Dióxido de carbono	40 – 60		
Nitrogênio	2 – 5		
Oxigênio	0,1 – 1,0		
Enxofre, Mercaptanas	0 – 1,0		
Amônia	0,1-1,0		
Hidrogênio	0 - 0.2		
Monóxido de carbono	0 - 0.2		
Gases em menor concentração	0,01 – 0,6		

Fonte: Tchobanoglouset al. (1993) apud Da Silva (2013)

Segundo Da Silva (2013) a composição do biogás pode variar de um local para outro, inclusive de uma célula para outra quando considerado um mesmo aterro sanitário. Alguns fatores podem influenciar a geração e essa composição: composição dos resíduos, umidade, tamanho das partículas, pré-tratamento e armazenamento, pH, mudança na forma predominante da atividade microbiológica (anaeróbia e/ou aeróbia), idade dos resíduos, propriedades físico-químicas dos componentes dos resíduos, temperatura do aterro, características hidráulicas do local, além da presença de nutrientes, bactérias, compactação dos resíduos, dimensões do aterro e sua operação (Agência Ambiental da Inglaterra, 2004 e FILHO, 2005 apud DA SILVA, 2013).

A ocorrência da emissão descontrolada do biogás em aterros sanitários pode acarretar problemas de poluição atmosférica local e global, além disso os efeitos da liberação dos gases localmente variam do simples odor até possíveis doenças cancerígenas na comunidade circunvizinha ao aterro. No que diz respeito à poluição atmosférica global o principal efeito da liberação do biogás é o aquecimento do

globo terrestre (DA SILVA, 2013).

A quantidade total de gases produzida ao longo do tempo, de acordo com as fases de decomposição dos resíduos e os inúmeros fatores intervenientes no processo de degradação varia de 0 a 240 m³/t de resíduos, sendo o metano gerado 88 a 138m³/t (DA SILVA, 2013).

Diante da crescente geração de resíduos e necessidade de energia elétrica, a conversão biológica dos RSU com fins energéticos vem assumindo importância a cada dia, uma vez que esses resíduos passaram a ser considerados uma potencial fonte de energia alternativa. Esta contribui para diminuir a dependência por combustíveis fósseis e não renováveis e auxilia na matriz energética nacional (DA SILVA, 2013).

A energia elétrica gerada a partir do biogás pode ser utilizada/consumida no local da geração, residências e comércios ou, quando excedente, comercializada. O aproveitamento energético do biogás pode se dar também através de sua queima direta em caldeiras, para gerar energia térmica, turbinas ou motores, tendo como objetivo transformar o metano (CH₄) em dióxido de carbono (CO₂) e vapor d'água, assim evitando a potencialização do efeito estufa. Dependendo da finalidade à qual se destina, o biogás pode passar por um processo de purificação.

Com a redução do lançamento dos gases na atmosfera atende-se ao que preconiza o Protocolo de Quioto, acordo internacional firmado em 1997 que tem como objetivo estabilizar a emissão de GEE na atmosfera e assim estabilizar o aquecimento global e seus possíveis impactos.

3 METODOLOGIA

3.1 Caracterização da área de estudo

O estudo foi realizado tomando-se como base o Campus I da Universidade Federal da Paraíba (UFPB), mais especificamente no Restaurante Universitário (RU), o qual atende alunos e funcionários da instituição para refeições diárias no almoço e jantar.

De segunda-feira a sexta-feira, no RU/UFPB, são servidas refeições no almoço e jantar para alunos e funcionários. Provenientes da manipulação e preparo dos alimentos e pós-consumo dessas refeições tem-se resíduos orgânicos compostos essencialmente e cascas e pedaços de frutas, legumes, verduras além de peles e sobras dos pratos.

No Quadro 2 é possível observar a geração de resíduos orgânicos resultantes do preparo, os resíduos limpos (RL),e pós consumo, os resíduos sujos (RS) das refeições no RU/UFPB no período de 17 a 21 de março de 2014, totalizando 2.568,85 Kg.

Quadro 2: Quantificação da geração de resíduos sólidos orgânicos no RU/UFPB - Campus I

Dia	Almoço		Jantar			
	RL (%)	RS (%)	Peso (Kg)	RL (%)	RS (%)	Peso (Kg)
17/03	29,77	70,23	218,3	43,42	56,58	139,8
18/03	31,44	68,56	186,7	14,70	85,30	123,15
19/03	41,87	58,13	194,4	39,22	60,73	304,05
20/03	71,75	28,25	387,8	30,92	69,08	416,45
21/03	6,84	93,16	244,1	15,91	84,09	354,1
TOTAL		1231,3	TOTAL		1337,55	
MÉDIA		246,26	MÉDIA		267,51	

Fonte: ANDRADE (2015).

A determinação do biodigestor considerará os resíduos sólidos provenientes do preparo e das refeições e suas sobras no Restaurante Universitário da Universidade Federal da Paraíba (RU/UFPB), sendo compostos essencialmente por resíduos orgânicos, tais como cascas e frutas, legumes, verduras.

Atualmente, por não haver uma política de reaproveitamento operando efetivamente, a destinação dos resíduos gerados no RU/UFPB é o Aterro Sanitário Metropolitano de João Pessoa, havendo a perda energética do material e auxiliando na redução da vida útil do referido aterro. Além disso, desde 2010, com a instituição da PNRS, a destinação adequada dos resíduos sólidos urbanos é o tratamento adequado com o aproveitamento máximo do material e não o aterro sanitário, visto que neste somente deverão ser dispostos ordenadamente os rejeitos, materiais com esgotadas possibilidades de tratamento e recuperação por processos tecnológicos disponíveis e economicamente viáveis.

3.2 Seleção dos modelos de biodigestores

Para a análise do modelo de biodigestor mais adequado ao tratamento da fração orgânica dos resíduos sólidos urbanos (FORSU) gerados no RU/UFPB Campus I foram considerados alguns critérios nos diferentes modelos, tais como facilidade e custo para a implantação, modo de operação, eficiência na tratabilidade do material, rendimento e tecnologia aplicada, sendo selecionados os seguintes reatores:

- a) Biodigestor em batelada (modelo simplificado): cilindro que é totalmente carregado, sendo em seguida realizado o isolamento para a realização da digestão anaeróbia. Ao final do processo, o biodigestor é aberto e retiram-se os resíduos.
- b) Biodigestor indiano: cilindro em alvenaria encravado no solo, com duas câmaras e cobertura móvel, dispositivos de entrada e saída e uma campânula como gasômetro flutuante. Em operação, são alimentados diariamente com a FORSU e água. Deve apresentar baixo percentual de sólidos totais. A fermentação originária da decomposição gera o biogás, o qual é retirado por uma tubulação para ser encaminhado ao uso.
- c) Biodigestor chinês: cilindro em alvenaria, embutido no solo quase totalmente enterrado, com teto abobado dispensando o uso do gasômetro e com dispositivos de entrada e saída, além de vedação por selo hídrico. Pode o

- processo ser inibido com o aparecimento de escuma, porém a agitação resolve essa dificuldade. Deve apresentar baixo percentual de sólidos totais.
- d) Biodigestor de Ferreira (2015): constituída de um reator de metanização de mistura completa em aço, com monitoramento de vários parâmetros; uma unidade de separação sólido-líquido; e uma unidade de acondicionamento, tratamento e aproveitamento energético de biogás.
- e) Biodigestor de Fernandes (2013): sistema em regime termofílico, em uma única fase, com experimentos realizados em triplicado, usando quatro reatores constituídos por frascos de vidro. Na inoculação foram utilizados lodos de uma Estação de Tratamento de Águas Residuárias e de digestor termofílico de uma Estação de Tratamento e Valorização Orgânica.
- f) Biodigestor de Reis (2012): anaeróbio, construído em fibra de vidro, com três saídas utilizadas como pontos de coleta de lodo para descarga e análise em níveis diferentes, um extravasor de efluente, um alimentador vertical e uma saída de gás para coletar o biogás gerado. Na inoculação foi utilizado esterco bovino e esgoto sintético preparado em laboratório.

3.3 Parâmetros de controle no processo biodegradativo

Para analisar o funcionamento dos biodigestores e determinação do modelo mais adequado para a implantação no Campus I da UFPB, bem como a geração e composição de biogás a partir da decomposição da fração orgânica dos resíduos sólidos, foi necessária a observação de diversos parâmetros e propriedades que influenciam diretamente na estabilidade e eficiência do processo: o teor de umidade e eficiência de remoção de sólidos, temperatura, carga orgânica volumétrica, potencial hidrogeniônico (pH), alcalinidade, concentração volumétrica de CH₄ e eficiência de conversão da matéria orgânica (SV) em CH₄.

3.3.1 Teor de Umidade e eficiência de remoção de sólidos

O teor de umidade no substrato influencia os parâmetros associados ao seu comportamento mecânico e ao desenvolvimento e transporte de microrganismos participantes do processo de degradação da matéria orgânica por serem estes dependentes do meio aquoso para atingir seu pleno crescimento, o que afeta

diretamente fases da digestão anaeróbia e seu processo como um todo (ALCÂNTARA, 2007 e MONTEIRO, 2003). Além disso, segundo Monteiro (2003), a água é um importante meio de transporte de enzimas e de outros metabólitos importantes no processo de decomposição.

Em função do teor de umidade, os processos de metanização podem ser divididos em via seca, quando sólidos totais (ST)>20%, semiseca, quando ST entre 10-20%, e úmida, quando ST <5%. Segundo Ferreira (2015), tal classificação influencia, principalmente, as taxas de transferência de metabólitos entre as diferentes fases da digestão anaeróbia: acidogênica e metanogênica, além de interferir nos rendimentos da produção de metano.

De acordo com Ferreira (2015), nos países europeus, a tecnologia via seca tem predominado nos últimos anos, porém os reatores necessitam de mecanismos robustos de mistura interna, dada a elevada densidade do substrato, influenciando diretamente em uma maior demanda energética e custos com operação/manutenção do sistema em comparação com a rota úmida. Essas tecnologias têm sido utilizadas no tratamento de resíduos orgânicos com baixo teor de umidade, a exemplo dos resíduos de poda e de culturas energéticas.

3.3.2 Temperatura

Segundo Monteiro (2003) a temperatura tem importante significado no processo de decomposição de resíduos, pois atua na cinética das reações bioquímicas responsáveis pela conversão de resíduos em gases, líquidos e composto bioestabilizado. Para Chernicharo (2007), a temperatura é, dos fatores físicos que afetam o crescimento microbiano, um dos mais importantes na seleção das espécies, visto que os microrganismos, por não possuírem meio para controlar sua temperatura interna, tem a temperatura no interior da célula determinada pela temperatura ambiente externa. Sendo assim, conforme Witkamp (1969) *apud* Monteiro (2003), a temperatura afeta a taxa de metabolismo dos organismos decompositores, além de ocorrer o aumento da temperatura no interior dos reatores à medida que as reações ocorrem.

De acordo com Ferreira (2015) os efeitos extracelulares também são considerados importantes quando se trata da influência exercida pela temperatura, devendo ser observados. Em função da variação da temperatura, tem-se como

exemplo, o grau de dissociação de diversos compostos como a amônia.

Segundo Batstone *al.* (2002) *apud* Chernicharo (2007), três faixas de temperaturas podem ser associadas ao crescimento microbiano na maioria dos processos biológicos:

- > Faixa psicrófila: entre 4 e aproximadamente 15°C;
- Faixa mesófila: entre 20 e aproximadamente 40°C;
- Faixa termófila: entre 45 e 70°C, e acima;

Dois níveis ótimos de temperatura, de acordo com Chernicharo (2007), têm sido associados à digestão anaeróbia, o primeiro na faixa mesófila (30 a 35°C) e o segundo na faixa termófila (50 a 55°C).

3.3.3 Carga Orgânica Volumétrica

Ferreira (2015) afirma que, aplicada ao sistema de tratamento, a carga orgânica volumétrica (COV) é um parâmetro fundamental a ser analisado em biorreatores anaeróbios, visto que a eficiência do sistema está diretamente ligada à máxima carga aplicada, concomitantemente à máxima produção de biogás e menor concentração de sólidos voláteis (SV) no efluente final. Apesar disso, a aplicação de cargas orgânicas muito elevadas no reator pode acarretar em acúmulo de ácidos orgânicos no sistema.

3.3.4 Potencial hidrogeniônico e alcalinidade

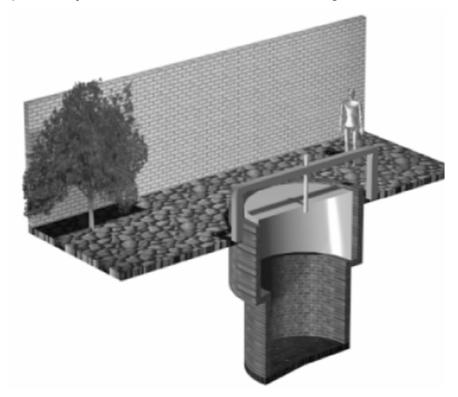
De acordo com Ferreira (2015), o potencial hidrogeniônico (pH) é um parâmetro fundamental para o monitoramento e a estabilidade dos sistemas anaeróbios. Para Chernicharo (2007) o pH, a alcalinidade e os ácidos voláteis estão relacionados entre si, sendo igualmente importantes para o controle e a operação adequada dos processos anaeróbios.Em função do pH os microrganismos são classificados em acidófilos, neutrófilos ou basólicos, fazendo uma relação com os seus valores, sendo as espécies adaptáveis aos diferentes valores.

3.3.5 Produção e concentração de metano

Para avaliar o desempenho de um reator e para estimar a geração

energética, o monitoramento da produção de biogás é de fundamental importância. Esta pode variar em virtude do regime operacional imposto ao sistema e em função dos eventuais imprevistos e sobrecargas durante o processo. Tanto a acidificação quanto eventuais pontos de vazamento no reator podem contribuir para a perda difusa do biogás, o que prejudica sua aferição precisa. A concentração do metano também é uma ferramenta para a identificação antecipada dos processos irreversíveis de instabilidade ambiental. (FERREIRA, 2015).

4 DISCUSSÃO DOS RESULTADOS E CONSIDERAÇÕES


4.1 Modelos de biodigestores

Os diferentes modelos de biodigestores em estudo serão apresentados de acordo com suas características e aplicações para posterior comparação.

4.1.1 Biodigestor modelo batelada

O biodigestor modelo batelada (modelo simplificado) consiste em um cilindro de alvenaria encravado no solo, um sistema simples para operar, não requerendo mão de obra especializada (Figura 5).

Figura 5: Representação tridimensional em corte do biodigestor modelo batelada

Fonte: Deganuttiet al. 2002

Para seu abastecimento, o biodigestor é totalmente carregado uma única vez e não de forma contínua, sendo em seguida realizado o isolamento para a realização da digestão anaeróbia, com os gases produzidos armazenados no seu interior ou em um gasômetro acoplado. Após período apropriado ou encerrada a

digestão e a produção de gás, o biodigestor é aberto e retiram-se todos os resíduos, podendo então ser inserida nova quantidade de material, iniciando um próximo ciclo (EMBRAPA, 1981 e DEGANUTTI, 2002).

A instalação desse tipo de biodigestor pode ser unitária ou em séries de tanques, dependendo das demandas de biogás, da disponibilidade e da qualidade da matéria prima utilizada (BENINCASSA *et al.*,1991 *apud* QUEIROZ, 2003).

No biodigestor em batelada (modelo simplificado) não há o monitoramento do processo de biodigestão, bem como dos parâmetros que visam seu controle.

4.1.2 Biodigestor modelo indiano

O biodigestor indiano, segundo Barros (2012), consiste em um cilindro de alvenaria encravado no solo, possuindo duas câmaras e cobertura móvel, com dispositivos de entrada e saída. Esse modelo de biodigestor é caracterizado por possuir uma campânula como gasômetro flutuante que controla e mantém a pressão do gás e permite regular sua emissão, conforme pode ser observado na Figura 6 (GASPAR, 2003).

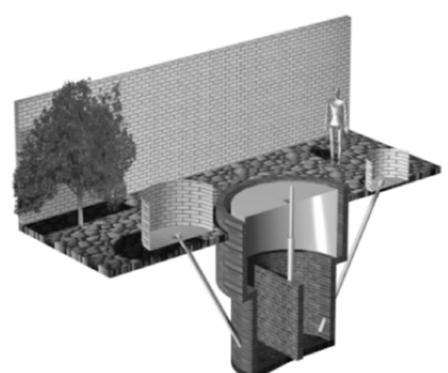


Figura 6: Representação tridimensional em corte do biodigestor modelo indiano.

Fonte: Deganuttiet al. 2002

A alimentação do biodigestor para a sua operação deve ser de resíduos sólidos orgânicos acrescidos de água e apresentar baixo percentual de sólidos totais (não superior a 8%) de modo a facilitar a circulação do material e evitar entupimentos na tubulação de entrada e saída (BARROS, 2012 e DEGANUTTI et al., 2002).

Assim como no biodigestor em batelada (modelo simplificado), no indiano não há o monitoramento do processo de biodigestão, bem como dos parâmetros que visam seu controle.

4.1.3 Biodigestor modelo chinês

O biodigestor chinês é um reservatório cilíndrico em alvenaria, embutido no solo quase que totalmente enterrado, com teto abobado dispensando o uso do gasômetro e com dispositivos de entrada e saída (Figura 7). Seu funcionamento se dá comumente com alta pressão, a qual varia em função da produção e consumo do biogás, resultando em deslocamentos do efluente da câmara de fermentação para a caixa de saída (DEGANUTTI *et al.*, 2002, GASPAR, 2003 e BARROS, 2012).

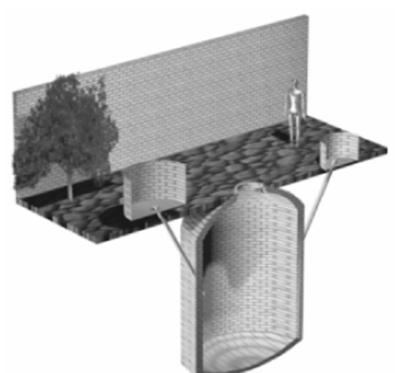


Figura 7: Representação tridimensional em corte do biodigestor modelo chinês.

Fonte: Deganutti et al. 2002

Assim como no modelo indiano, o chinês deve apresentar baixo percentual de sólidos totais (não superior a 8%) de modo a facilitar a circulação do material e evitar entupimentos na tubulação de entrada e saída.

No biodigestor modelo chinês, segundo Deganutti *et al.* (2002), uma parcela do gás formado na caixa de saída é liberada para a atmosfera, reduzindo parcialmente a pressão interna do gás, sendo o motivo pelo qual as construções de biodigestor tipo chinês não serem utilizadas para instalações de grande porte.

Assim como no biodigestor em batelada (modelo simplificado) e no indiano, não há o monitoramento do processo de biodigestão, bem como dos parâmetros que visam seu controle.

4.1.4 Biodigestor de Ferreira (2015)

No Campus Pampulha da Universidade Federal de Minas Gerais (UFMG) foi implantado um sistema integrado (Figura 8) visando o tratamento dos resíduos orgânicos gerados em seu principal Restaurante Universitário, o RU-II, e o aproveitamento dos seus subprodutos: o lodo e o biogás. O sistema é composto por uma plataforma de metanização de resíduos (pMethar), uma plataforma de aproveitamento energético de biogás, unidades de tratamento e aproveitamento dos subprodutos sólido e líquido do tratamento (FERREIRA, 2015).

Constituída por uma sala de recepção, triagem e trituração dos resíduos, um reator de metanização de mistura completa com monitoramento de vários parâmetros, uma unidade de separação sólido-líquido e uma unidade de acondicionamento, tratamento e aproveitamento energético de biogás, a plataforma de metanização tem como objetivo o aproveitamento energético do biogás, de modo a realizar o gerenciamento correto dos resíduos sólidos. Além disso, procura manter, com o monitoramento de parâmetros como relação entre alcalinidades (Al/AP), eficiência de conversão de sólidos voláteis, rendimento de produção CH4, teor de umidade, pH e temperatura de operação, estabilidade no processo de digestão anaeróbia e o rendimento máximo de produção de metano (CH4) (FERREIRA, 2015).

Restaurante Universitário Reservatório Pressurizado Compresso Unidade de Dessulfurização Queima Cogeração de Eletricidade e Calor Energia Térmica Unidade de Separação Sólido-Líquido Energia Elétrica Galpão de Triagem Secador Térmico Tanque de Tanque de Extração Alimentação Água de Reúso Fertirrigação

Energia Elétrica

Figura 8: Fluxograma do sistema integrado de metanização de resíduos orgânicos implantado no Campus Pampulha da UFMG.

Fonte: Ferreira, 2015

No início de sua operação, o reator (Figura 9) é inoculado e, após duas semanas, é realizada a aplicação da primeira carga. Esta, composta pela fração orgânica de resíduos sólidos urbanos, após triagem, é triturada e então é realizada a diluição do substrato, homogeneização e inserção no reator. Durante todo o processo de digestão há o controle operacional do sistema de modo a avaliar o desempenho do reator e manter sua estabilidade, sendo monitorados os seguintes parâmetros: relação entre alcalinidades (AI/AP), carga orgânica volumétrica (COV), eficiência de conversão de sólidos voláteis, rendimento de produção CH₄, teor de umidade, pH e temperatura de operação(FERREIRA, 2015).

Figura 9: Reator de metanização de resíduos orgânicos

Fonte: Ferreira, 2015

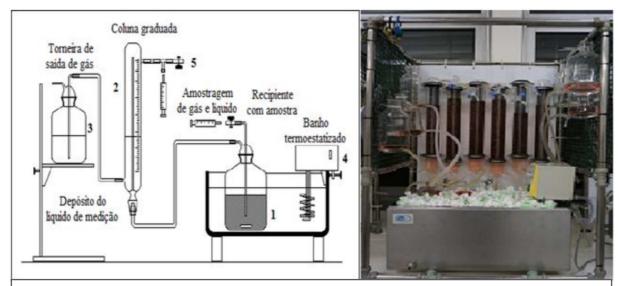
Segundo Ferreira (2015), o reator de metanização é capaz de tratar a fração orgânica dos resíduos sólidos urbanos, sendo a energia derivada do biogás capaz de gerar energia elétrica e/ou produzir gás para utilização em cozinhas. O efluente processo pode ser transformado em biossólidos e em água para uso e reuso, com diferentes possibilidades de aproveitamento (a partir de uma melhor caracterização desses subprodutos):

- Bissólidos: utilização energética, incrementando o potencial energético do sistema e/ou para uso agrícola;
- ➤ Efluente líquido: utilização agrícola ou como água de reuso no próprio sistema de metanização para a diluição do substrato orgânico (devendo para isto ser avaliado seu efeito sobre o sistema).

O monitoramento, devido à logística de coleta e transporte dos resíduos e da rotina operacional da plataforma, foi dividido em três fases operacionais distintas:

> Fase I: dias 0 a 51;

> Fase II: dias 99 a 220;


> Fase III: dias 315 a 395.

4.1.5 Biodigestor de Fernandes (2013)

O sistema utilizado em Portugal, proveniente da parceria entre a Amarsul, empresa responsável pelo tratamento e valorização dos RSU produzidos na Península de Setúbal, e o Laboratório Nacional de Energia e Geologia (LNEG), experimentou a digestão anaeróbia em regime termofílico de modo a avaliar a biodegradabilidade e o potencial de produção de biogás dos resíduos orgânicos da Amarsul, além de comparar o efeito do inóculo na degradação e a duração do arranque (FERNANDES, 2013).

Para a realização dos ensaios foi utilizado um sistema experimental já existente no LNEG (Figura 10), o qual permite avaliar a digestão anaeróbia em regime mesofílico ou termofílico, composto por reatores constituídos por frascos de vidro com capacidade volumétrica de um litro, os quais foram depurados com nitrogênio após a carga inicial, visando à extração do oxigênio dissolvido, e em seguida fechados e postos em banho termostatizado a 50±0,5°C (FERNANDES, 2013).

Figura 10: Sistema utilizado nos testes de biodegradabilidade e respectiva foto do ensaio

- (1) Reator em vidro
- (2) Coluna graduada
- (3) Depósito do líquido de medição
- (4) Banho termostatizado
- (5) Ponto de saída do gás para amostragem

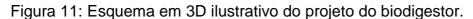
Fonte: Adaptado de Fernandes (2013)

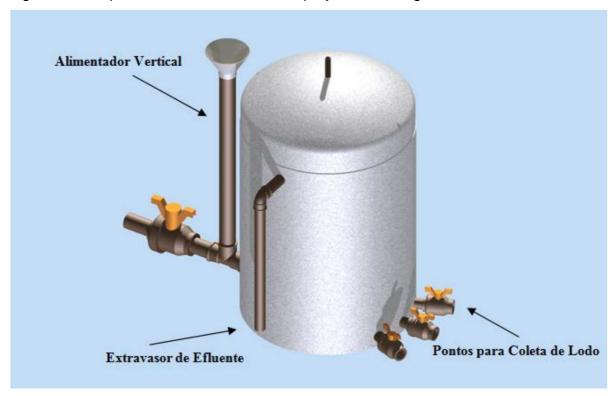
À medida que o biogás é produzido, para minimizar a dissolução do biogás, a pressão originada faz com que o líquido no interior da coluna graduada, uma mistura de 200g de NaCl e com 10g de HCl por litro de água, seja deslocado, possibilitando a medição do biogás gerado, o qual ocupa na coluna o local da solução salina que se encaminha à um recipiente específico. A mensuração do biogás produzido foi realizada em condições isobáricas, colocando no mesmo nível a coluna de água no frasco de medição e no reservatório de acumulação (FERNANDES, 2013).

O regime de alimentação do sistema foi em modo descontínuo, sendo o material inserido no início do processo e retirado do reator por completo após o período de digestão.

Os inóculos recebidos para o uso nesse sistema foram o lixiviado do aterro da Amarsul, lodo da Estação de Tratamento de Águas Residuárias (ETAR) de Chelas, em Lisboa, e lodo do digestor termofílico da Estação de Tratamento e Valorização Orgânica (ETVO), também em Lisboa. Apesar de ser a opção potencialmente mais eficaz e econômica, o lixiviado foi descartado enquanto inóculo por não produzir metano após a mistura com a matéria orgânica, apresentando-se pouco rico em microorganismos metanogênicos, portanto não sendo adequado para o ensaio, situação verificada após análise e estudo preliminar. Para o estudo a Amarsul forneceu os RSU, sendo estes submetidos a uma separação manual para a retirada de matéria inorgânica, seguida de um quarteamento e trituração em um moinho manual de cozinha comumente utilizado para a preparação de carnes moídas até dimensões de aproximadamente 2-3mm (FERNANDES, 2013).

Fernandes (2013) realizou experimentos em uma única fase, em triplicado, usando quatro reatores com capacidade volumétrica de um litro por bancada, resultando em doze reatores em paralelo. Para evitar a acidificação desproporcional e precoce do sistema os dois reatores destinados ao ensaio em branco foram preparados com 750ml do inóculo da ETAR de Chelas e 750ml do inóculo da ETVO, diluído a 50%, enquanto os outros dois reatores com misturas foram preparados com 721,15ml do inóculo de Chelas, juntamente com 28,85g de RSU e 721,15ml do inóculo da ETVO diluído a 50%, juntamente com 28,85g de RSU. Com esse processo é possível identificar desvios devido à influência das condições operacionais (regulação de temperatura e agitação), além de evitar a inviabilidade do processo pela ausência de microorganismos metanogênicos acetoclásticos estáveis (FERNANDES, 2013).


Nesse sistema os reatores foram agitados manualmente uma vez todos os dias, assim como a leitura da produção do biogás foi realizada diariamente e, sempre que o reservatório tinha sua capacidade atingida, fez-se o esvaziamento e contagem do biogás acumulado, bem como sua composição, por aspiração no analisador portátil de gases. Apenas no final do ensaio foi realizada a monitorização dos parâmetros físicos e químicos no líquido em digestão de modo a evitar a possível entrada de ar (FERNANDES, 2013).


4.1.6 Biodigestor de Reis (2012)

O biodigestor, construído em fibra de vidro, foi utilizado em pesquisa experimental no Laboratório de Engenharia Ambiental da Universidade Federal de Pernambuco (UFPE), na cidade de Caruaru, estado de Pernambuco, servindo como instrumento de estudo para avaliar a tratabilidade da FORSU proveniente da cozinha do RU do referido campus (REIS, 2012).

Segundo Reis (2012) o biodigestor anaeróbio foi construído com a capacidade volumétrica de 500l destinada à zona de reação, com três saídas utilizadas como pontos de coleta de lodo para descarga e análise em níveis diferentes (0cm, 25cm e 50cm), um extravasor de efluente, um alimentador vertical e uma saída de gás para coletar o biogás gerado. Para a montagem do equipamento com seus acessórios o custo estimado foi de aproximadamente R\$ 5.000,00 (cinco mil reais).

Na Figura 11 observa-se o esquema do biodigestor utilizado em sua fase de planejamento, enquanto a Figura 12 mostra o reator em operação instalado no Laboratório de Engenharia Ambiental da UFPE na cidade de Caruaru.

Fonte: Reis (2012)

Figura 12: Fotografia do biodigestor instalado no Laboratório de Engenharia Ambiental.

Fonte: Reis (2012)

Reis (2012), na inoculação do biodigestor, utilizou 30 kg de esterco bovino seco à temperatura ambiente e 150 l de esgoto sintético preparado em laboratório, composto por extrato de carne, sacarose, amido, celulose, óleo de soja, solução de NaCl, solução de MgCl₂.6H₂O e solução de CaCl₂.2H₂O.

Os resíduos utilizados no reator passaram por um pré-tratamento, onde foram triturados e diluídos de modo a facilitar a hidrólise microbiana, além de passarem por caracterização física e química. Após essa etapa, o processo experimental foi subdividido em quatro (04) fases (Figura 12), sendo a Fase I referente à inoculação e começo da alimentação do biodigestor, quando foi identificada a acidificação do sistema; a Fase II relativa à suplementação do afluente com bicarbonato de sódio visando manter o pH do sistema em faixa favorável ao processo de digestão anaeróbia; a Fase III referente ao fim da adição do bicarbonato de sódio, uma vez que o pH do sistema manteve-se em zona adequada indicativa do estado de equilíbrio dinâmico aparente do reator, sendo após isso apenas alimentado com os resíduos triturados e diluídos; a Fase IV relativa à recirculação do efluente gerado no processo para estimular o aumento da velocidade de digestão anaeróbia e evitar a disposição no ambiente, visto que a alta carga orgânica e o excesso de nutrientes presentes são fatores impeditivo (REIS, 2012).

Figura 12: Fluxograma ilustrativo das fases do biodigestor.

Fase I - Início do Experimento - Partida e alimentação do sistema - 110 dias de operação - COV: 0,5 kgDQO.m³/dia - FALHA

Fase II - Suplementação do sistema com alcalinidade - 150 dias de operação - COV: 0,5 kgDQO.m³/dia - SUPLEMENTAÇÃO

Fase III - Fim da suplementação - 170 dias de operação - COV: 0,5 kgDQO.m³/dia - EQUILÍBRIO

Fase IV - Recirculação do efluente - 190 dias de operação - COV: 0,6 a 0,7 kgDQOm³/dia - RECIRCULAÇÃO

Fonte: Reis (2012)

4.2 Análise comparativa dos modelos de biodigestores

Os diversos modelos de biodigestores apresentam vantagens e desvantagens, a análise pautada em alguns fatores permite que se determine aquele que melhor atende às necessidades para digestão do resíduo produzido diariamente no RU/UFPB. Inicialmente serão analisados os três modelos clássicos: o batelada, o indiano e o chinês e, posteriormente, três modelos contemporâneos propostos por Ferreira (2015), Fernandes (2013) e Reis (2012).

4.2.1 Biodigestor em batelada, modelo indiano e chinês

Os biodigestores modelos em batelada, indiano e chinês são usados há séculos em grandes regiões como a Ásia, em zonas rurais e de baixa renda garantindo o destino adequado aos resíduos gerados, especificamente sua fração orgânica, além da geração de energia com custo compatível com a situação econômica de seus usuários. Esses modelos são de fácil operação e replicação devido à simplificada tecnologia necessária e possuem poucas diferenças entre si quando considerados suas técnicas e desempenhos (BARROS, 2012). No Quadro 3 podem ser identificadas as características dos biodigestores indiano e chinês, tais como materiais a serem utilizados em suas construções, alimentação, possibilidade de autoinstalação, isolamento térmico, perda de gás, matérias-primas utilizadas, produtividade, produção de biofertilizante, redução de sólidos, necessidade de manutenção, custo para sua construção e as possíveis melhorias para o aprimoramento do sistema.

Quadro 3: Comparação dos modelos chinês e indiano de biodigestores

Modelo Chinês	Modelo Indiano		
Materiais			
Tijolo, pedra, concreto, areia, cimento,	Tijolo, pedra, concreto, areia, cimento,		
ferro	ferro		
Sistema			
Abastecimento periódico, esvaziamento	Abastecimento e esvaziamento		
não periódico	periódicos		

Possibilidade de autoinstalação			
Pode ser montado inteiramente pelo	Pode ser montado pelo usuário, mas a		
usuário, desde que tenha bastante	câmara de gás deve ser feita em oficina		
habilidade como pedreiro.	metalúrgica		
Isolamento térmico			
Feito dentro da terra, tem bom			
isolamento natural e a temperatura é	Tem perdas de calor pela câmara de gás		
mais ou menos constante. Pode-se	metálica, difícil de isolar, menos indicado		
melhorar o isolamento fazendo o	para climas frios.		
biodigestor sob currais ou estábulos.			
Perdas de gás			
A parte superior deve ser protegida com			
materiais impermeáveis e não porosos;	Sem problemas.		
difícil obter construção estanque.			
Matérias-pri	mas usadas		
Esterco e outros restos orgânicos	Esterco, excrementos e materiais		
(incluindo materiais fibroso),	fibrosos acrescentados como aditivo,		
excrementos humanos.	além de resíduos urbanos orgânicos.		
Produt	ividade		
Tempo de digestão 40-60 dias; produção			
de 150 a 350l por m³ do volume do	Tempo de digestão 40-60 dias, produção		
digestor/dia. Se for perfeitamente	400 a 600 l/m³/dia.		
estanque pode produzir até 600 l/m³/dia			
Produção de biofertilizante			
Não	Sim		
Redução de sólidos			
37%	38%		
Manutenção			
Deve ser limpo uma ou duas vezes por	A câmara de gás deve ser pintada uma		
ano.	vez por ano.		
Custo			
Razoável se for possível a ajuda mútua.	Mais caro (depende do custo da		
	campânula).		

Melhorias possíveis		
Abóbada impermeável, adoção de Campânula inoxidável, melhoria no		
agitadores, montagem de aquecimento	isolamento térmico da mesma.	

Fonte: Adaptado de Barrera (1993) apud Gaspar (2003), Barros (2012).

Por ser bastante semelhante, o biodigestor modelo batelada se equivale ao chinês e indiano quando comparadas os custos, características e desempenho.

Os biodigestores modelo batelada, indiano e chinês são os ditos rurais, visto sua maior aplicabilidade em zonas não urbanas, sem oportunidade de uso de outras tecnologias, por serem construídos com materiais de fácil acesso, não exigirem mão de obra especializada e não haver monitoramento de parâmetros e do processo de biodegradação do material disposto.

Para analisar o funcionamento dos biodigestores é possível realizar seu monitoramento observando diversos parâmetros que influenciam diretamente na sua estabilidade e eficiência, o que auxilia o acompanhamento do processo, porém isso não é possível nesses modelos. Importante ressaltar que tal monitoramento eleva o custo envolvido no processo.

4.2.2 Biodigestor de Ferreira (2015), Biodigestor de Fernandes (2013) e Biodigestor de Reis (2012)

Com o passar do tempo, os biodigestores foram modernizados, sua estrutura, técnicas, tecnologia e o modo de operação se diferenciaram dos utilizados anteriormente e há séculos, bem como o foi introduzido o monitoramento do processo para avaliar seu andamento.

Os modelos Ferreira (2015), Fernandes (2013) e Reis (2012) foram aplicados em locais distintos, sendo o primeiro e terceiro no Brasil e o segundo em Portugal, além de apresentarem materiais, metodologia e resultados diferentes, conforme pode ser visto no Quadro 4.

Quadro 4: Comparação dos modelos de biodigestores Ferreira (2015), Fernandes (2013) e Reis (2012)

Ferreira (2015)	Fernandes (2013)	Reis (2012)		
Materiais				
Aço	Vidro	Fibra de vidro		
Sistema				
Abastecimento contínuo e	Abastecimento em	Abastecimento em		
esvaziamento periódico	batelada	batelada		
Matérias-primas usadas				
Fração orgânica dos resíduos sólidos urbanos	Fração orgânica dos resíduos sólidos urbanos e lodo da ETAR de Chelas e/ou do digestor termofílico da ETVO	Esterco bovino seco, esgoto sintético e fração orgânica dos resíduos sólidos urbanos		
Produtividade				
23 m ³ CH ₄ a partir do tratamento de cerca de 500 kg/dia	99,1 m³/ton de RSU- Chelas e 104,4m³/ton de RSU-ETVO	Entre 0,2 m³ e 0,9m³ por semana para uma capacidade útil de 425l, em um total de 190 dias.		
Produção de biofertilizante				
Sim	Sim	Não		
Redução de sólidos				
83%	51% com o uso de lodo do digestor termofílico da ETVO e 89% com lodo da ETAR de Chelas	80%		
Custo				
Alto custo	Não informado	Aproximadamente R\$ 5.000,00		

Fonte: Adaptado de Ferreira (2015), Fernandes (2013) e Reis (2012).

Ao analisar o Quadro 4, verifica-se que cada modelo tem características distintas, apesar da mesma finalidade de biodegradação da matéria orgânica com

produção gás metano. Em termos de materiais construtivos, eles são variados, podendo ser de metal (FERREIRA, 2015), passando por Fibra de Vidro (REIS, 2012) e vidro, no caso de Fernandes (2013), no entanto este último foi desenvolvido em escala de bancada, o que faria com que, para sua aplicação em larga escala, fosse escolhido um material construtivo diferente, podendo ser PVC ou ainda fibra de vidro.

Em relação ao regime de abastecimento cada modelo apresenta um sistema diferente, Ferreira (2015) opta por um regime de abastecimento contínuo e esvaziamento periódico, Fernandes (2013) trabalha com um regime de batelada, enquanto de Reis (2012) opta por abastecimento também descontínuo. Nenhum dos regimes pode ser considerado mais eficiente ou menos eficiente, estando à determinação da melhor opção a logística do local onde será implantado o reator e a geração dos resíduos.

No tocante à matéria prima utilizada, todos os modelos partiram da FORSU, sendo que Reis (2012), buscando uma maior eficiência, adicionou esterco bovino seco e esgoto sintético, enquanto que Fernandes (2013) optou por modelar dois reatores, um adicionando como inóculo o lodo da ETAR-Chelas e outro o lodo da ETVO, no intuito de identificar o melhor desempenho. Quando da reprodução do modelo de reator proposto, tanto por Reis (2012) quanto por Fernandes (2013), a mistura de inóculos, mesmo com características semelhantes às usadas pelos autores, mas de origens distintas, pode alterar os resultados de produção de biogás, sendo então necessário um maior trabalho de monitoramento para correção de possíveis alterações de parâmetros.

Ao analisar a produção de gás de cada modelo de reator não é possível indicar diretamente qual o mais eficiente, principalmente em relação ao modelo de Reis (2012), uma vez que a produção do biogás foi medida em função das fases, obtendo uma média de 0,55m³ de CH₄ por semana, podendo-se mensurar que ao final dos 190 dias (27,14 semanas) de tratamento obteve-se a produção de 14,92 m³ de CH₄em um reator com capacidade de 425 l. Sabe-se que para esse processo houve diluição da fração orgânica em uma proporção não informada, sendo assim, não foi possível mensurar a eficiência em termos de quilogramas de FORSU. No modelo proposto por Ferreira (2015) a produção é de 46 m³ de CH₄/ton, correspondendo a menos de 50% da produção obtida por Fernandes (2013), com

resultados de 99,1 m³ de CH₄/ton para RSU-Chelas e 104,4 m³ CH₄/ton para RSU-ETVO.

A produção de biofertilizante foi outro elemento de comparação, no entanto o reator proposto por Reis (2012) não objetivou a produção desse subproduto, diferentemente dos demais.

A redução dos sólidos merece uma especial atenção, tendo em vista que os modelos apresentaram comportamentos assemelhados com remoção variando entre 80 % e 89%, a exceção foi o reator RSU-ETVO que apresentou uma eficiência de 51%, bem abaixo dos demais modelos.

O custo para a implantação de cada tipo de reator não foi objeto de análise por Ferreira (2015), que se limitou a informar que para construção o custo seria elevado, enquanto que Fernandes (2013), como trabalhou em escala de bancada, não mensurou os custos de implantação. Reis (2012) mensurou para o ano de implantação um custo de R\$ 5.000,00 que corrigidos a valores atuais corresponderia a aproximadamente R\$ 7.000,00.

4.3 Análise dos parâmetros de controle no processo biodegradativo

Os parâmetros analisados em cada biodigestor visam avaliar o processo de digestão anaeróbia e sua estabilidade, identificando as melhores características para um processo satisfatório. Por falta de monitoramento, não é possível fazer essa avaliação para os biodigestores modelo batelada, indiano e chinês.

4.3.1 Teor de Umidade e eficiência de remoção de sólidos voláteis

Na Plataforma de metanização de resíduos orgânicos *p*Methar (Biodigestor de Ferreira) foi mantida ao longo de seu período de operação o teor de sólidos na ordem de 5%, à exceção de sua fase III, mantido em 8% o valor de sólidos devido ao volume do tanque de alimentação que restringiu a diluição. Ao longo de sua operacionalização, foram aplicadas cargas de SV variando entre 10 e 55 kgSV de resíduo alimentar diariamente, resultando em COV entre 0,5 e 2,9 kgSV.m⁻³.d⁻¹. Com isso, o reator obteve elevada eficiência de remoção de SV. Para a concentração de 37 a 55 gSV.L⁻¹ (3,7 a 5,5%) preservada no tanque de alimentação, obteve-se efluente com concentração abaixo de 15 gSV.L⁻¹, resultando numa eficiência média

de remoção de SV de 83%, independentemente da variação de COV ao longo do período (Ferreira, 2015).

Fernandes (2013), em seu experimento, operou com baixo teor de sólidos tanto nos reatores com efluente de Chelas quanto naqueles com efluente da ETVO, sendo de 2,48% para o primeiro e 3,12% para o segundo. A eficiência de remoção de sólidos voláteis do reator que operou com mistura de Chelas foi de 89,6%, enquanto o com mistura da ETVO foi de 55,5%, isso devido ao fato do lodo da ETVO apresentar maior quantidade de ST e SV que o lodo de Chelas, sendo também mais viscoso antes do processo.

No biodigestor, Reis (2012) operou com baixo teor de sólidos, sendo da ordem de 4,8%. Assim como no de Ferreira (2015), Reis (2012) apresentou, ao longo de suas fases, valores variáveis de SV:

> Fase I: 14.498 mg/L;

Fase II: 21.067 mg/L;

> Fase III: 20.632 mg/L;

> Fase IV: 20.181 mg/L.

Durante o período do experimento, de acordo com Reis (2012), o teor de sólidos totais voláteis do afluente na Fase I variou entre 11.448 e 17.476 mg.L⁻¹, enquanto no efluente a flutuação foi de 4.167 a 6.787 mg.L⁻¹, resultando, portanto, em uma eficiência média de remoção de 60%. Nas fases subsequentes, a variação do teor de sólidos totais voláteis do afluente foi de 12.456 a 31.490 mg.L⁻¹, enquanto no efluente a flutuação foi de 3.210 a 10.321 mg.L⁻¹, resultando em uma eficiência média de remoção de 82%. Tais indicadores demonstram elevada eficiência de retenção de sólidos totais voláteis no interior do biodigestor e, por conseguinte, elevada taxa de geração de biogás e CH₄.

4.3.2 Temperatura

A faixa de temperatura de operação do biodigestor de Ferreira é a mesofílica, sendo o aquecimento do sistema efetuado pela recirculação de água quente, aquecida por um sistema solar composto por coletores à vácuo, em uma serpentina instalada no interior do reator. O monitoramento da temperatura foi iniciado na fase II, devido à ausência anterior de sensores térmicos internos, quando houve maior variação quando comparada à fase III. Em virtude da baixa eficiência inicial do

sistema de aquecimento, por sua configuração não otimizada, a amplitude térmica da fase II, que variou entre 21,4 e 32,7°C, tendo como média 27°C, na fase III foi de 33,9 a 36,5°C, tendo como média 35,2°C, sendo percebido maior controle da temperatura interna do reator (Ferreira, 2015).

Segundo Ferreira (2015), no seu biodigestor, apesar do aumento da temperatura na fase III ser favorável à biota mesofílica, os dados do monitoramento operacional analisados não comprovam um aumento do desempenho do reator, visto que piores rendimentos de metano se deram nessa fase. É propício ressaltar que houve maior correlação da redução do rendimento de CH₄ com as cargas orgânicas aplicadas e com o pH do substrato do que com a temperatura.

O sistema de Fernandes (2013), que pode ser utilizado em regime mesofílico ou termofílico, de acordo com a temperatura fixada nos termostatos, teve seu experimento realizado em faixa termofílica. Para o reator com inóculo da ETAR de Chelas foi verificado que com o aumento da temperatura anteriormente mesofílica na ETAR, para então termofílica no reator, as bactérias passaram a decompor mais rapidamente o material e com isso houve maior produção de biogás. No que diz respeito ao reator com inóculo da ETVO, não foram feitas observações referentes correlacionando a temperatura ao processo de biodigestão.

Em seu biodigestor, Reis (2012) trabalhou com a faixa de temperatura mesofílica, tendo, ao longo do período experimental, muitas variações dentro desse mesmo intervalo. Na Fase I, a temperatura mantém-se próxima aos 25 °C, enquanto na Fase II aos 35 °C na maior parte do tempo, na Fase III há uma maior flutuação, indo desde 25 °C a 35 °C, mantendo-se em maioria entre 30 °C e 35 °C, na Fase IV vai desde 30 °C até 36 °C.

Reis (2012) relaciona diretamente a remoção de Demanda Química de Oxigênio (DQO) à temperatura. Em períodos onde a temperatura diminuía a redução de remoção da matéria orgânica em termos de DQO também era reduzida, associando a menor taxa de decomposição anaeróbia.

4.3.3 Carga Orgânica Volumétrica (COV)

Ferreira (2015) afirma que a COV é um parâmetro fundamental a ser estudado em biorreatores anaeróbios, sendo a eficiência do sistema vinculada à máxima carga aplicada, simultaneamente à máxima geração de biogás e menor

concentração de sólidos voláteis no efluente final. Diante disso, no biodigestor de Ferreira (2015) procurou-se manter, durante o tempo de operação, baixas cargas orgânicas aplicadas, aproximadamente 1,0 kgSV.m-3.d-1, principalmente na partida do reator, para assegurar a adaptação da biota anaeróbia ao substrato utilizado. A aplicação das cargas ao longo do tempo de funcionamento do reator sofreu variação devido à geração e coleta dos resíduos no Restaurante Universitário do Campus. Em média as COV variaram entre 1,0 e 2,0 KgSV.m-3.d-1, com valor médio igual a 1,6.

No reator de Ferreira (2015) a COV média foi mantida nas fases de operação, porém as cargas mínimas e máximas variaram, principalmente na Fase III, o que impactou o reator devido à variação da carga aplicada e a alteração físico-química do substrato. Após essa observação, foram aplicadas cargas orgânicas mais elevadas para avaliar a capacidade de tratamento do reator na partida do processo. Fernandes (2013) utilizou em seus reatores, tanto no RSU-Chelas, quanto no RSU-ETVO, uma carga orgânica volumétrica de 5KgSV.m⁻³.d⁻¹. Ambos os autores entenderam a COV como parâmetro de entrada dos reatores. Já Reis (2012) não monitorou a COV, em cada fase o autor manteve um determinado valor. Nas fases I, II e III a COV foi de 0,5 Kg DQO.m⁻³.d⁻¹, enquanto que na fase IV utilizou 0,6 a 0,7 Kg DQO.m⁻³.d⁻¹.

4.3.4 Potencial hidrogeniônico e alcalinidade

Chernicharo (2007) relata que no monitoramento de um reator o pH é indicativo da produção de metano, uma vez que valores abaixo de 6,0 e acima de 8,3 interferem e inibem os microorganismos formadores do metano. Acrescenta ainda que o pH ótimo está ligado ao tipo de substrato, bem como o tipo de microrganismo responsável pelo processo de digestão. A manutenção de valores de pH abaixo de 6,5 e acima de 8,0, bem como a mudança abrupta em reatores anaeróbios têm como consequência uma relevante diminuição da produção de metano.

Analisando o reator de Ferreira (2015), verificou-se que o mesmo conseguiu manter o pH dentro do limite recomendado para a metanogênese, atingindo valores entre 6,7 e 7,9, apesar do substrato apresentar valores de pH variando entre 3,1 e 6,5. Na fase III, devido ao armazenamento da FORSU por um período de até 7

(sete) dias, houve diminuição considerável do pH, com valores entre 3,1 e 4,8. Neste caso, o tanque de alimentação onde estava estocado o resíduo passou a ter um comportamento de reator de pré-acidificação não controlado, o qual, quando construído com esse objetivo, opera em faixas de pH variando entre 5,5 e 6,5.

Fernandes (2013) relata que nos reatores compostos por RSU-Chelas o pH identificado foi de 7,04, enquanto os reatores RSU-ETVO foi de 8,26, estando na faixa ideal para produção de metano. Diferentemente do observado por Ferreira (2015) e Reis (2012), seu afluente apresentava valores bastante elevados, sendo 8,5 para RSU-Chelas e 10,78 para RSU-ETVO, o que não interferiu em seu resultado final.

O pH no reator Reis (2012) foi mensurado diariamente, sendo identificado que após o 60º dia houve uma redução severa, atingindo valores entre 4,2 e 5,0, o que indica um processo de acidificação no reator. Esse período compreendido entre a partida do sistema e a falha do biodigestor foi denominado Fase I. Com o uso de bicarbonato de sódio (NaHCO₃) foi realizada a suplementação do substrato afluente, voltando a digestão anaeróbia às suas condições regulares, com pH apresentando valores superiores a 7,0, o que concede condições necessárias à geração de metano. Essa foi a chamada Fase II, compreendida entre o 100º e 250º dia. Nas fases seguintes, a III e IV, o pH ficou estabilizado em torno de 5.

Analisando os fatores intervenientes no pH, Chernicharo (2007) propõe a análise da alcalinidade que desempenha papel de neutralização dos ácidos formados no processo, bem como o tamponamento do pH, evitando assim que ele fuja da faixa ideal para a produção de metano.

No modelo de reator de Ferreira (2015) o monitoramento da alcalinidade se deu pela relação Alcalinidade Intermediária/Alcalinidade Parcial (Al/AP), ou seja, a relação entre a existência de ânions de ácidos orgânicos e ânions de ácidos fracos, onde os primeiro não devem corresponder a proporções maiores que 30% dos últimos, onde caso tal situação seja observada, gerará uma instabilidade e consequente alteração no pH do substrato, podendo interferir diretamente no pH ideal para a produção de metano. Ferreira (2015) observou ainda em seu experimento que a estocagem de substrato por períodos de até 7 dias, interfeririam em sua alcalinidade, uma vez que na fase I e fase II, foram observadas relação Al/AP de 0,06 e 0,12, respectivamente, enquanto que na fase III a mesma relação obteve valores de 0,30, alcançando assim valor que atribui instabilidade a digestão

anaeróbica.

Fernandes (2013) em seu experimento não realiza um monitoramento direto da alcalinidade, no entanto faz uma análise da concentração de Ácido Graxos Voláteis e a influência na acidificação, onde foi verificado que no reator RSU-ETVO, após a introdução da lama, ocorreu uma acidificação acelerada, não tendo sido relatado alteração na acidez do reator RSU-Chelas.

A análise da alcalinidade também foi preocupação no monitoramento do reator proposto por Reis (2012), no entanto para isso se utilizou a relação Ácidos Graxos Voláteis por Alcalinidade Total (AGV/AT), que tem o mesmo objetivo da relação AI/AP, mas com parâmetros distintos. No caso da relação AGV/AT os valores não deveriam ser superiores a 0,5, contudo o autor observou que seu experimento variou entre 0,2 e 2,3 ao longo do período. Na fase I o valor foi superior a 2, somente alcançando o valor ideal na Fase III.

4.3.5 Concentração de metano

O biogás produzido nos reatores é composto por diversas tipologias de gases, entre os quais se destacam ao CO₂, o CH₄ e o H₂S, sendo o CH₄ o que tem finalidade de queima em caldeiras e outros maquinários, reduzindo assim sua emissão na atmosfera. Logo, deseja-se que a concentração de sua produção sobreponha aos demais, permitindo assim volumes que garantam a viabilidade econômica da operacionalização do reator.

Ferreira (2015), em suas análises no biodigestor, obteve concentrações médias de CH₄ variando entre 55% e 64%, com percentual médio de 59%, no entanto na Fase III foram observadas concentrações de metano inferior a 40 %, correlacionada à pequena atividade metanogênica. As concentrações do H₂S em todas as fases variaram entre 10 e 20%, enquanto a do CO₂, nas Fases I e II, ficou entre 35 e 50% e na Fase III houve instabilidade da concentração, variando entre 22 e 62%.

No reator de Fernandes (2013) obteve em sua fase inicial teores de dióxido de carbono mais elevados que os de metano. Essa condição se deu na fase de adaptação e inicial da digestão, estando ligada às fases hidrolítica e acidogênica. Com o passar do tempo, a produção do CH₄ aumentou, chegando a valores entre 65 e 70%.

Semelhante a Fernandes (2013),Reis (2012) na Fase I a concentração de CH₄ foi inferior à concentração de CO₂, devido ao problema da acidificação ocorrida, sendo observadas concentrações de 30 % de metano e 70% de dióxido de carbono. Nas demais fases a produção do CH₄, se sobrepôs à de CO₂, chegando na Fase IV a aproximadamente 70%.

4.4 Considerações a respeito da determinação do modelo de biodigestor adequado ao uso no Campus I da UFPB

Ao analisar os diversos parâmetros, tantos os relacionados às características operacionais quanto aos processos de biodegradação, verificou-se que vários desses elementos podem ser usados para fins de comparação entre modelos de biodigestores.

A análise do teor de umidade e da eficiência da remoção de sólidos voláteis não se apresenta como parâmetro de decisão para seleção da melhor opção. Em termos de umidade, ambos apresentavam características semelhantes. No tocante à eficiência da remoção de sólidos voláteis, os três modelos de biodigestores se mostraram extremamente eficientes, uma vez que alcançaram valores médios superiores a 80%, exceção ao Biodigestor RSU-ETVO proposto por Fernandes (2013), que, por conter uma maior concentração de sólidos totais, não obteve eficiência tão expressiva.

O parâmetro temperatura é fator limitante ao processo de biodegradação da matéria orgânica. Em dois modelos optou-se por trabalhar na faixa mesofílica, em outro se definiu o padrão termofílico. Ao observar os resultados verificou-se que, mesmo com diferenças operacionais, os modelos conseguiram manter as faixas ótimas de temperatura sugeridas por Chernicharo (2007) na mesófila de 30 a 35 °C e na termófilade50 a 55 °C, no entanto a forma da manutenção da temperatura foi um dos fatores que influenciou a seleção do biodigestor. O modelo proposto por Ferreira (2015) trabalha com um sistema de aquecimento solar, enquanto que o modelo de Fernandes (2013) utiliza o banho termo estatizado e Reis (2012) não utilizou nenhuma técnica mecânica de manutenção da temperatura. Logo, para as condições locais, a utilização de um sistema solar se apresenta como uma solução, bem como o modelo proposto por Reis (2012) uma vez que se aproveita da baixa variabilidade térmica do litoral região nordeste para trabalhar sem necessidade de

aquecimento mecânico, sendo assim o de menor custo e ambientalmente mais adequado.

A carga orgânica volumétrica para os reatores com abastecimento em batelada não se apresentou como um fator limitante, no entanto, para o abastecimento contínuo, caso do modelo de Ferreira (2015), passou a ser mais uma variável considerada, o que em uma aplicação prática pode-se apresentar como ônus a sua operacionalidade, interferindo diretamente na eficiência do processo.

No que diz respeito ao pH, Ferreira (2015) teve dificuldade em sua manutenção, principalmente na fase IV, Reis (2012) conseguiu estabilizá-lo, chegando à sua última fase em níveis satisfatórios e favoráveis à produção do biogás, Fernandes (2013), apesar de obter altos valores de pH, entendeu que estava dentro de faixas aceitáveis e favoráveis à produção do biogás. Consorciado à questão do pH, a análise da Alcalinidade demonstrou que na Fase IV Ferreira (2015) alcançou uma relação AI/AP que interferiu diretamente na produção de biogás, enquanto que esse parâmetro nos modelos de Reis (2012) e Fernandes (2013) foi estabilizado na última fase digestão da matéria orgânica.

A concentração de metano no modelo de Ferreira (2015) apresentou valores médios de 59%, no entanto na Fase IV, devido às questões relacionadas ao pH e alcalinidade, a concentração apresentou uma amplitude de 40%. Os modelos de Reis (2012) e Fernandes (2013) obtiveram concentrações médias de metano próximas a 70%, mostrando-se mais eficientes nesse aspecto que o modelo proposto por Ferreira (2015).

Todas essas características influenciaram diretamente a produção de biogás e a operacionalização do sistema, logo, também na seleção do modelo mais adequado à realidade da UFPB.

Inicialmente acreditou-se que um modelo de biodigestor contínuo poderia se apresentar como a melhor solução, uma vez que o RU da UFPB gera aproximadamente 2500 kg de resíduo por semana e nesse modelo de reator haveria a possibilidade de entrada e saídas semanais. No entanto, foi possível observar a dificuldade da manutenção de parâmetros essenciais como pH, alcalinidade e concentração de metano, logo a implantação do reator proposto por Ferreira (2015) demandaria a necessidade de altos custos para implantação, além da manutenção de mão de obra especializada e o monitoramento de um maior número de parâmetros para garantir, assim, a eficiência do sistema.

Desse modo, o modelo em batelada se mostrou mais estável e mais simples de operar tanto no modelo de Reis (2012) como no de Fernandes (2013). O biodigestor de Fernandes (2013) apresenta como desvantagem em relação ao modelo de Reis (2012) a necessidade de manutenção mecânica da temperatura por meio de um banho termoestatizado, o que pode vir a encarecer o processo, no entanto, o mesmo pode ser substituído por um aquecimento solar. Ambos apresentam ainda como desvantagem a necessidade de se introduzir outros insumos no processo de digestão, como o esgoto sintético, o esterco, o lodo de ETE ou ainda outros resíduos sólidos orgânicos.

Diante disso, o modelo de biodigestor de Reis (2012) se apresenta como o mais viável para reprodução no Campus I da UFPB com a finalidade de produção de biogás a partir da decomposição da fração orgânica dos resíduos gerados no Restaurante Universitário, mesmo considerando a necessidade de um inóculo composto por esterco bovino e esgoto sintético, os quais poderiam, a partir de estudos realizados com essa finalidade, ser substituídos por esgoto doméstico oriundo da UFPB.

Em função do volume de resíduos gerados seria necessária a implantação de pelo menos 27 biodigestores para que cada um pudesse receber a produção semanal de aproximadamente 2500 kg de resíduos provenientes do Restaurante Universitário do Campus, visto que Reis (2012) trabalhou com tempo de detenção de 190 dias.

Com o monitoramento e adaptação do processo à situação local, há ainda a possibilidade de redução do tempo de detenção do material no biodigestor, uma vez que 190 dias é um tempo maior que o período acadêmico, podendo acarretar em problemas na manutenção e continuidade do processo.

Considerando ainda a expansão e desenvolvimento da Universidade, uma estrutura para o funcionamento de 27 biodigestores requer grande espaço, o que poderia inviabilizar sua instalação. Visando reduzir esse número, sugere-se que cada biodigestor receba uma carga equivalente a 10 dias úteis (2 semanas) de produção de resíduos, caindo então para 13 a quantidade de biodigestores utilizados, o que influenciaria também na redução de custos pela diminuição dos materiais aplicados para implantação e monitoramento do processo.

Ainda no quesito espaço físico, há a possibilidade da criação de uma parceria com instituição pública ou privada para receber os resíduos e realizar o tratamento,

evitando então o que ocorre atualmente: o envio dos resíduos para o Aterro Sanitário Metropolitano e o desrespeito ao que preconiza a Política Nacional de Resíduos Sólidos.

5 REFERÊNCIAS

ABNT - ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 8419**: apresentação de projetos de aterros sanitários de resíduos sólidos urbanos. Rio de Janeiro, 1992.

ABRELPE - ASSOCIAÇÃO BRASILEIRA DAS EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS. **Panorama dos resíduos sólidos no Brasil – 2013**. São Paulo, 2014. 112p.

ALCÂNTARA, P. B. Avaliação da influência da composição de resíduos sólidos urbanos no comportamento de aterros simulados. 2007. 364f. Tese (Doutorado em Engenharia Civil) – Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco. Recife.

ALCÂNTARA, P. B. et al. **Construção e monitoramento de uma célula de RSU em escala reduzida**. In: Congresso Brasileiro de Engenharia Sanitária e Ambiental, 23, 2005, Campo Grande.

ANDRADE, R. W. N. de. Estudo do processo de tratamento de resíduos sólidos orgânicos do Restaurante Universitário da UFPB - Campus I. 2015. 96f.

Dissertação (Mestrado em Engenharia Civil e Ambiental) - Centro de Tecnologia, Universidade Federal da Paraíba. João Pessoa.

BARROS, R. T. V. **Elementos de Gestão de Resíduos Sólidos**. Belo Horizonte: Ed. Tessitura, 2012, 424p.

BRASIL. Lei Nº 12.305, de 2 de agosto de 2010. Institui a Política Nacional de

Resíduos Sólidos; altera a Lei Nº 9.605, de 12 de fevereiro de 1998; e dá outras providências. **DOU**: 3 de agosto de 2010.

BRASIL. Secretaria Nacional de Saneamento Ambiental. Probiogás. **Tecnologias** de digestão anaeróbia com relevância pra o Brasil: substratos, digestores e uso de biogás. Brasília: Ministério das Cidades, 2015, 83p.

CHERNICHARO, C. A. L. **Reatores Anaeróbios**. Belo Horizonte. Departamento de Engenharia Sanitária e Ambiental: UFMG, 2007, 380 p.

CUNHA, E. R. Avaliação do processo de bioestabilização de resíduos sólidos urbanos em lisímetro de campo. 2009. 97f. Dissertação (Mestrado em Engenharia Civil) - Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco. Recife.

DEGANUTTI, R. et al. **Biodigestores rurais: modelo indiano, chinês e batelada**. In: Encontro de Energia no Meio Rural, 4, 2002, Campinas.

EMBRAPA – EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. **Biogás – Independência energética do Pantanal Mato-grossense**. Circular Técnica: Corumbá, N. 9, outubro, 1981, 53p.

FERNANDES, C. H. R. **Biodegradabilidade termofílica dos resíduos sólidos urbanos e potencialidade em biogás**. 2013.56f. Dissertação (Mestrado Integrado em Engenharia da Energia e do Ambiente) – Departamento de Engenharia Geográfica, Geofísica e Energia, Universidade de Lisboa. Portugal.

FERREIRA, B. O. Avaliação de um sistema de metanização de resíduos alimentares com vistas ao aproveitamento energético do biogás. 2015. 117f. Dissertação (Mestrado em Saneamento, Meio Ambiente e Recursos Hídricos) – Escola de Engenharia, Universidade Federal de Minas Gerais. Belo Horizonte.

GASPAR, R. M. B. L. Utilização de biodigestores em pequenas e médias propriedades rurais com ênfase na agregação de valor: um estudo de caso na região de Toledo-PR. 2003. 106f. Dissertação (Pós-Graduação em Engenharia de Produção) - Universidade Federal de Santa Catarina.

MEIRA, R. C. Estudo biodegradativo dos resíduos sólidos urbanos da cidade de Campina Grande - PB em escala experimental. 2009. 213f. Dissertação (Mestrado em Engenharia Civil) - Centro de Tecnologia e Recursos Naturais, Universidade Federal de Campina Grande. Campina Grande.

MONTEIRO, V. E. D. Análisesfísicas, químicas e biológicas no estudo do comportamento do Aterro da Muribeca. 2003. 232f. Tese (Doutorado em Engenharia Civil) – Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco. Recife.

MONTEIRO, V. E. D. et al. Estudo do comportamento de RSU em uma célula experimental e suas correlações com aspectos microbiológicos, físicos e químicos. Engenharia Sanitária e Ambiental: Cidade, V. 11, N. 3, jul-set, 2006, p.223-230.

QUEIROZ, S. de C. Modelagem da produção acumulada de biogás em biodigestores tipo batelada segundo a porcentagem de inóculo adicionada utilizando os modelos de regressão não linear de Gompertz e expoencial. 2003. 112f. Tese (Doutorado em Agronomia) - Faculdade de Ciências Agronômicas,

Universidade Estadual Paulista "Julio de Mesquita Filho".

REIS, A.S. **Tratamento de resíduos sólidos orgânicos em biodigestor anaeróbio**. 2009. 79f. Dissertação (Mestrado em Engenharia Civil e Ambiental) – Centro Acadêmico do Agreste, Núcleo de Tecnologia, Universidade Federal de Pernambuco, Caruaru.

SILVA, F. M. S. et al. **Monitoramento microbiológico do lixo em lisímetro no Aterro Sanitário da Muribeca**. In: Congresso Brasileiro de Engenharia Sanitária e Ambiental, 23, 2005, Campo Grande.

SILVA. A. K. M. Estudo do comportamento dos resíduos sólidos urbanos (RSU) em lisímetros preenchidos com resíduos de diferentes características. 2013. 203f. Tese (Doutorado em Engenharia Civil) – Centro de Tecnologia, Universidade Federal do Ceará. Fortaleza.

SOTTI, G. de. Biogás de digestão anaeróbia dos resíduos orgânicos de restaurante universitário com efluente sanitário. 2014. 59f. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Ambiental) - Departamento de Engenharia Ambiental, Universidade Tecnológica Federal do Paraná. Londrina.

TENÓRIO, J. A. S., ESPINOSA, D. C. R. Controle Ambiental de Resíduos. In: PHILIPPI JR., A., ROMÉRO, M. A., BRUNA, G. C. (Ed.). **Curso de Gestão Ambiental**. Barueri: Ed. Manole, 2004, p.155-211.