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RESUMO 

Na década de 30 do século passado, foram oferecidas várias versões formais para a noção 

intuitiva de função algorítmica. Dentre elas, a versão das funções recursivas e a versão das 

funções Turing-computáveis. Posteriormente, tais versões foram estendidas a fim de abranger 

também as funções parciais algorítmicas, dando origem, deste modo, à versão das funções 

parciais recursivas e à versão das funções parcialmente Turing-computáveis. Nesse contexto, 

esta pesquisa, situada dentro do domínio da Teoria da Computabilidade e construída à luz dos 

pressupostos teóricos de Davis (1982), Mendelson (2009), Dias e Weber (2010), Rogers 

(1987), Soare (1987), Cooper (2004), entre outros, destina-se a reconstruir a prova de que as 

referidas versões formais dadas para a noção intuitiva de função parcial algorítmica, apesar de 

conceitualmente distintas, são extensionalmente equivalentes no sentido de que elas 

determinam o mesmo conjunto de funções numéricas. Como parte desta reconstrução, 

provaremos, de modo inédito, mediante o uso de quíntuplas, que toda função parcial recursiva 

é parcialmente Turing-computável. Na literatura especializada, esse teorema é provado por 

meio de um conjunto de quádruplas. Porém, definindo um conjunto de menor cardinalidade 

constituído por quíntuplas, é possível prová-lo em um intervalo menor de tempo, o que 

representa um ganho do ponto de vista computacional. Além de apresentar essa prova 

alternativa, posto pela Tese de Church-Turing que o conjunto das funções parciais recursivas 

contém todas as funções parciais algorítmicas, investigaremos se ele próprio e os seus 

infinitos subconjuntos são ou não algorítmicos. Nesta investigação, demonstraremos, em 

termos aritméticos, com o auxílio do Teorema de Rice, que embora o conjunto das funções 

parciais recursivas seja algorítmico, todos os seus subconjuntos diferentes do conjunto vazio 

não o são, dentre os quais estão o conjunto das funções recursivas e o conjunto das funções 

recursivas primitivas. 

Palavras-chave: função parcial recursiva, função parcialmente Turing-computável, teorema 

de Rice, problema de decisão. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

In the thirties of the last century, several formal versions for the intuitive notion of 

algorithmic function were offered. Among them, the version of the recursive functions and the 

version of the Turing-computable functions. Posteriorly, such versions were extended in order 

to also include the partial algorithmic functions, giving rise, in this way, to the version of the 

partial recursive functions and to the version of the partially Turing-computable functions. In 

this context, this research, located into Computability Theory domain and built in the light of 

theoretical assumptions of Davis (1982), Mendelson (2009), Dias & Weber (2010), Rogers 

(1987), Soare (1987), Cooper (2004), among others, is intended to rebuild the proof that the 

given formal versions referred to the intuitive notion of partial algorithmic function, despite 

being conceptually distinct, they are extensionally equivalents in the sense that they determine 

the same set of theoretical-numerical functions. As a part of this rebuilding, we shall prove, in 

na unprecedented way, using quintuples, that every partial recursive function is partially 

Turing-computable. In the literature, this theorem is proved by means of a set of quadruples. 

However, defining a lower cardinality set constructed by quintuples, it is possible to prove it 

in a smaller time interval, which representes a gain from the computational point of view. 

Besides presenting this alternative proof, posed by the Church-Turing thesis that the set of 

partial recursive functions includes all the partial algorithmic functions, we shall investigate if 

this set itself and its infinite subsets are or are not algorithmic. In this survey, we shall 

demonstrate, in arithmetical terms, with the aid of Rice‟s theorem, that although the set of 

partial recursive functions is algorithmic, all its subsets which are different from the empty set 

are not, among which are the set of recursive functions and the set of primitive recursive 

functions. 

Keywords: partial recursive functions, partially Turing-computable functions, Rice‟s 

theorem, decision problem.  
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INTRODUÇÃO 

Nesta dissertação, pretendemos explicitar a equivalência entre duas versões formais 

oferecidas para a noção intuitiva de função parcial algorítmica: a versão das funções parciais 

recursivas sistematizada por Kleene a partir dos trabalhos de Herbrand e Gödel e a versão das 

funções parcialmente Turing-computáveis concebida por Alan Turing. Em outras palavras, 

pretendemos reconstruir a prova segundo a qual o conjunto das funções parciais recursivas e o 

conjunto das funções parcialmente Turing-computáveis, apesar de conceitualmente distintos, 

possuem os mesmos elementos. Em seguida, buscaremos demonstrar, em termos aritméticos, 

com o auxílio do Teorema de Rice, que embora estes conjuntos sejam decidíveis, eles contêm 

infinitos subconjuntos indecidíveis, dentre os quais, destacam-se o conjunto das funções 

recursivas e o conjunto das funções recursivas primitivas. 

Em Teoria da Computabilidade, ramo da Lógica no qual estará concentrada nossa 

pesquisa, noções como algoritmo, função algorítmica e decidibilidade mantêm entre si uma 

estreita relação. Intuitivamente, entende-se por algoritmo um procedimento mecânico para 

computar uma função. Na prática, nós o identificamos como um conjunto finito de regras 

inequívocas (em linguagem natural ou simbólica) que devem ser aplicadas, sem nenhum 

recurso à criatividade, a um dado input finito, fornecendo, após a execução de um número 

finito de operações elementares, um possível output também finito. Uma função, por sua vez, 

é algorítmica se, e somente se, existe um algoritmo para computá-la. E um conjunto é 

decidível (ou algorítmico) se, e somente se, existe um algoritmo que nos permita identificar, 

dado um objeto qualquer, se ele pertence ou não a este conjunto. Caso contrário, o conjunto é 

indecidível. A noção de decidibilidade é, analogamente, aplicável a teorias formais. Neste 

caso, dizemos que uma teoria formal é decidível se, e somente se, o conjunto de seus teoremas 

for decidível. 

Nos primeiros anos do século XX, o surgimento de alguns paradoxos na recente 

Teoria dos Conjuntos de Cantor abalou profundamente os fundamentos da Matemática. 

Diante deste fato, o analista alemão David Hilbert (apud SOBRINHO, 1987, p. 4) proferiu as 

seguintes palavras: 

O atual estado de coisas, em que estamos nos defrontando com paradoxos, é, 

de fato, absolutamente intolerável. Imagine se as definições e métodos 

dedutivos que todos aprendemos, ensinamos e utilizamos em Matemática 

nos conduzirem a absurdos! Se o próprio pensamento matemático já for 

defeituoso, onde é que iremos encontrar a verdade e a certeza? 
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Entre as muitas tentativas de solucionar o problema, Hilbert propôs o programa 

formalista de fundamentação da Matemática. Este programa era assim chamado por defender 

a reconstrução do edifício matemático a partir de métodos axiomáticos formais, cujo rigor 

característico, segundo Hilbert, impediria a ocorrência de contradições. Em última análise, a 

Matemática, na visão dos formalistas, seria redutível a sistemas axiomáticos constituídos 

exclusivamente por símbolos isentos de interpretação, manipulados através de regras precisas 

e mecanismos finitários. Em termos mais elementares, eles encaravam a Matemática como 

um mero jogo formal. Os passos permitidos pelas regras de inferência em uma demonstração 

seriam, por exemplo, os lances possíveis de um jogo de tabuleiro, os axiomas 

corresponderiam à configuração inicial do tabuleiro e as fórmulas, às peças do jogo. Além 

disso, o ato de „jogar‟ seria análogo ao de „executar operações matemáticas‟ e as declarações 

sobre o jogo equivaleriam a declarações sobre a Matemática. 

Na tentativa de estabelecer bases sólidas para o pensamento matemático de modo a 

evitar resultados contraditórios, além de propor o uso de métodos axiomáticos formais, 

Hilbert convida a comunidade acadêmica a oferecer uma solução positiva para os três 

problemas referentes aos fundamentos da Matemática. O primeiro deles, o problema da 

consistência. Hilbert pretendia demonstrar que as diversas teorias matemáticas eram 

consistentes, ou seja, não admitiriam contradições. O segundo, o problema da completude, 

para o qual uma solução positiva implicaria afirmar que, dado um enunciado de uma teoria 

matemática qualquer, ele ou a sua negação seriam demonstráveis nesta teoria. Por fim, o 

terceiro problema, conhecido como Entscheidunsproblem, que investiga se o Cálculo de 

Predicados de Primeira Ordem é decidível. Hilbert caracterizou o Entscheidunsproblem como 

o problema fundamental da Lógica Matemática, pois ele acreditava que a solução deste 

problema permitiria, pelo menos em princípio, decidir, sem nenhum recurso à criatividade, se, 

dada uma teoria matemática qualquer, uma fórmula pertencente a esta teoria seria ou não um 

de seus teoremas. Essa crença de Hilbert foi confirmada em 1929, quando Gödel demonstrou 

a completude do Cálculo de Predicados de Primeira Ordem, apresentando-o como “uma 

linguagem e uma lógica completa servindo de embasamento para a formalização das teorias 

matemáticas” (SOBRINHO, 1987, p. 7). 

Uma solução positiva para os três problemas hilbertianos estabeleceria a Matemática 

como um grandioso cálculo axiomático formal - consistente, completo e decidível. A 

Matemática seria, incontestavelmente, segura (livre de contradições) e responderia a todos os 

problemas a ela referentes de modo efetivo. No entanto, as pretensões do programa formalista 
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fracassaram por duas vezes. Em 1931, Kurt Gödel publicou os famosos teoremas da 

incompletude. De acordo com o primeiro teorema, toda axiomática consistente da aritmética 

de Peano é incompleta. Por contraposição, toda axiomática completa da aritmética de Peano é 

inconsistente. Sendo assim, ao contrário do que Hilbert acreditava, a Matemática, não poderia 

ser completa e consistente ao mesmo tempo. Já o segundo teorema de Gödel garantiu que a 

consistência de uma axiomática da aritmética de Peano não é demonstrável somente com os 

recursos dessa axiomática. Seria então necessário, lançar mão de uma axiomática mais forte 

na qual esta demonstração fosse possível. No entanto, a prova da consistência desta última 

axiomática demandaria uma outra axiomática ainda mais forte e assim sucessivamente. Este 

resultado, portanto, destruiu a esperança de Hilbert de encontrar uma prova finitária da 

consistência da aritmética e, consequentemente, da consistência da Matemática. Em 1936, o 

programa hilbertiano, mais uma vez, fracassou: Alonzo Church prova, formalmente, a 

indecidibilidade do Cálculo de Predicados de Primeira Ordem, obtendo, desta maneira, uma 

resposta negativa para o Entscheidunsproblem. Na mesma época, provou-se também, de 

modo semelhante, a indecidibilidade de diversas teorias matemáticas, entre elas a Aritmética 

de Peano.  

Essas provas formais de indecidibilidade só foram possíveis a partir da década de 30 

do século passado, com o advento da Teoria da Computabilidade, quando lógicos e 

matemáticos propuseram várias caracterizações precisas para as noções intuitivas de 

algoritmo e, consequentemente, de função algorítmica, visando à obtenção de uma resposta 

em termos matemáticos para o Entscheidunsproblem. Neste contexto, podemos afirmar que o 

surgimento da Teoria da Computabilidade foi motivado, em última análise, pela hipótese de 

Hilbert segundo a qual as diversas teorias matemáticas eram decidíveis. Ainda na década de 

30, provou-se que todas as versões formais oferecidas para as referidas noções intuitivas eram 

equivalentes, gerando, desde então, a crença segundo a qual se tinha captado, de uma vez por 

todas, de forma precisa, o que se entendia intuitivamente por algoritmo e função algorítmica.  

Sobre este acontecimento, Hao Wang (apud SOBRINHO, 1987, p. 1) escreve: 

Uma das grandes conquistas da Lógica desde os anos 30 foi o sucesso 

experimentado ao ter sido dada uma definição absoluta (i.e., independente do 

particular formalismo adotado) da interessante noção epistemológica de 

processo mecânico (ou procedimento efetivo, computabilidade, algoritmo, 

método finitista). Com efeito, pode-se afirmar que tenha sido o único 

conceito epistemológico básico relacionado com a Matemática que tenhamos 

sido capazes de iluminar até agora.  
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A fim de lograrmos êxito na realização dos objetivos mencionados no início desta 

introdução, dividiremos o nosso trabalho em três capítulos, contando sempre com o suporte 

teórico de vários autores importantes da Lógica e da Teoria da Computabilidade, entres eles: 

Davis, Mendelson, Dias e Weber, Rogers, Soare e Cooper.  

No primeiro capítulo, estabeleceremos indutivamente o conjunto das funções parciais 

recursivas. De modo análogo, definiremos, em ordem decrescente de generalidade, outros 

dois conjuntos: o das funções recursivas e o das funções recursivas primitivas. Explicitaremos 

as diferenças e semelhanças entre eles, analisando detalhadamente as suas respectivas 

definições. Para cada conjunto estabelecido, apresentaremos um modelo de algoritmo capaz 

de computar suas funções. Por fim, investigaremos, em termos intuitivos, se os conjuntos de 

algoritmos apresentados são ou não decidíveis.  

No segundo capítulo, apresentaremos a teoria das máquinas e dos programas de 

Turing, destacando o conjunto das funções parcialmente Turing-computáveis. Definiremos os 

programas de Turing de modo ligeiramente diverso do habitual – normalmente, eles são 

definidos como conjuntos de quádruplas e nós os definiremos como conjuntos de quíntuplas. 

A partir desta maneira de defini-los, provaremos, de modo inédito, que toda função parcial 

recursiva é parcialmente Turing-computável. Em seguida, utilizando a aritmetização das 

máquinas de Turing, provaremos que a recíproca também é verdadeira. Estabelecida a 

equivalência entre os dois formalismos propostos para a noção intuitiva de função 

algorítmica, concluiremos o capítulo, expondo a famosa Tese de Church-Turing, segundo a 

qual todo procedimento computacional é realizável por uma máquina de Turing ou, em outras 

palavras, toda função algorítmica é Turing-computável. 

Posto pela Tese de Church-Turing que o conjunto das funções parciais recursivas 

contém todas as funções algorítmicas, cabe-nos perguntar se este conjunto é propriamente 

algorítmico. E o que dizer de seus subconjuntos: são ou não algorítmicos? Investigaremos 

estas questões no terceiro capítulo. Nele, veremos, inicialmente, como construir uma lista 

efetiva dos programas de Turing e das funções parciais recursivas. Vamos utilizá-la na prova 

de dois resultados importantes da Teoria da Computabilidade: o Teorema s-m-n de Kleene e a 

indecidibilidade do Problema da Parada. Com base nestes resultados, demonstraremos o 

Teorema de Rice a partir do qual provaremos, por um lado, a decidibilidade do conjunto das 

funções parciais recursivas e, por outro, a indecidibilidade de qualquer um de seus 

subconjuntos próprios, que não seja vazio.   
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Para iniciarmos o estudo ao qual nos propomos, alguns esclarecimentos serão 

convenientes: (1) em concordância com a Teoria da Computabilidade, restringiremos o nosso 

estudo ao conjunto   de números naturais, tratando, deste modo, apenas de funções 

numéricas n-árias, ou seja, funções cujos argumentos são n-uplas ordenadas de    e os 

valores são elementos de  ; (2) classificaremos uma função numérica n-ária como total se ela 

estiver definida para todas as n-uplas de    e, como parcial, se ela estiver definida para 

todas, algumas ou nenhuma n-upla de   ; (3) diremos, em termos intuitivos, que uma função 

numérica n-ária total é algorítmica se, e somente se, for possível calcular o seu valor para 

cada n-upla de    através de um algoritmo, isto é, em um número finito de passos e de 

maneira inteiramente mecânica; diremos que uma função numérica n-ária parcial é 

algorítmica se, e somente se, existe um algoritmo para computá-la sempre que ela estiver 

definida para uma determinada n-upla de   ; (4) por fim, acompanhando os autores citados 

no início desta introdução, utilizaremos, nas páginas seguintes, o termo “função algorítmica” 

para nos referirmos somente às funções numéricas totais algorítmicas. 
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1 RECURSIVIDADE 

A fim de alcançarmos o primeiro objetivo ao qual nos propomos, qual seja, estabelecer 

a igualdade entre o conjunto das funções parciais recursivas e o conjunto das funções 

parcialmente Turing-computáveis, precisamos, antes de mais nada, definir cada um desses 

conjuntos separadamente. Neste capítulo, apresentaremos o conjunto das funções parciais 

recursivas. Dentre os seus inúmeros subconjuntos, destacaremos o conjunto das funções 

recursivas e o conjunto das funções recursivas primitivas. Ambos, como veremos, contêm, 

exclusivamente, funções numéricas totais. 

1.1 Funções parciais recursivas 

Em geral, o conjunto das funções parciais recursivas é estabelecido por meio de uma 

definição indutiva. Para defini-lo, começaremos fixando os primeiros elementos deste 

conjunto conhecidos como funções iniciais e, em seguida, listaremos algumas regras, 

conhecidas como operações básicas, que nos permitem obter novas funções parciais 

recursivas a partir de outras previamente dadas. Na sequência, utilizaremos o símbolo    para 

denotar o número que segue imediatamente x na ordem dos números naturais e a expressão 

„ (       )  ‟  para indicar que a função   está definida para a n-upla         ; para 

indicar o caso contrário, escreveremos „ (       )  ‟. 

Definição 1.1 As funções iniciais são: 

(1) Função sucessor: S( ) =   , para qualquer  .  

(2) Funções-constante:   
 (       ) = k, para quaisquer         e k. 

(3) Funções-projeção:   
 (       ) =   , 1 ≤ i ≤ n, para qualquer        . 

Definição 1.2 As operações básicas são:  

(1) Composição (para n, m ≥ 1) 

Se f é uma função m-ária e   , ...,    são funções n-árias, então a função n-ária h é obtida, 

por composição, a partir de f   , ...,    se, e somente se: 

h(       ) = f(  (       ), ...,   (       )) 

(2) Recursão primitiva (para n ≥ 0) 

Se   é uma função n-ária e f uma função n+2-ária, então a função n+1-ária h é obtida, por 

recursão primitiva, a partir de   e f se, e somente se: 

h(         ) =  (       ) 



13 
 

h(         S(y)) = f(         y, h(         y)) 

Em particular, se n = 0, por recursão primitiva, é obtida a função unária h tal que: 

h(0) = k 

h(S(y)) = f(y, h(y)), 

onde k é um número natural qualquer. 

(3) Minimização ilimitada (para n ≥ 1) 

Se   é uma função n+1-ária, então a função n-ária h é obtida, por minimização ilimitada, a 

partir de   se, e somente se:  

h(       )     ( (         y) = 0) = 

{
 
 

 
 
              (          )     

                ( (         )    

                    (         )    ) 
                                             
                                         

 

É oportuno esclarecer, em outras palavras, que a função  (         )  obtida por 

minimização ilimitada, terá como valor o menor número natural     tal que  (          ) = 

0, sob a condição de não existir um      para o qual  (         )  . Porém, se tal 

    não existir,  (         ) permanecerá indefinida. 

Apresentadas as funções iniciais e as operações básicas, podemos, agora, estabelecer, 

de modo apropriado, o conjunto das funções parciais recursivas.  

Definição 1.3 Uma função numérica f é parcial recursiva se, e somente se, uma das seguintes 

condições é satisfeita: 

(1) f é uma função inicial. 

(2) f é obtida a partir de funções parciais recursivas pela aplicação de uma das operações 

básicas.  

(3) Somente são funções parciais recursivas as funções numéricas determinadas de acordo 

com (1) ou (2).  

Definição 1.4 Uma sequência parcial recursiva para uma função numérica f é uma sequência 

finita de funções (       ) se, e somente se,   = f e, para cada 1 ≤ i ≤ n, uma das seguintes 

condições é satisfeita:  

(1)    é uma função inicial;   
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(2)    é obtida de funções anteriores da sequência por aplicação de uma das operações 

básicas. 

Teorema 1.5 Uma função numérica f é parcial recursiva se, e somente se, existe uma 

sequência parcial recursiva para f. 

Prova: 

Imediata, pelas definições 1.3 e 1.4. 

O conjunto das funções parciais recursivas, tal como foi definido, contém como seus 

elementos funções totais e funções estritamente parciais. Uma simples restrição sobre o 

campo de aplicação da operação de minimização ilimitada nos oferecerá um recorte deste 

conjunto. Sabendo disso, estabeleceremos, utilizando a noção de função regular, o conjunto 

das funções recursivas que, como veremos, contêm, exclusivamente, funções parciais 

recursivas totais.  

Definição 1.6 Uma função numérica  (         ),    , é regular se, e somente se,   é 

total e          ( (         )   ). 

Definição 1.7 Uma função numérica f é recursiva se, e somente se, uma das seguintes 

condições é satisfeita: 

(1) f é uma função inicial. 

(2) f é obtida a partir de funções recursivas por aplicação das operações de composição ou 

recursão primitiva ou minimização ilimitada, sendo esta última aplicada exclusivamente a 

funções regulares. 

(3) Somente são funções recursivas as funções numéricas determinadas de acordo com (1) ou 

(2).  

Definição 1.8 Uma sequência recursiva para uma função numérica f é uma sequência finita 

de funções (       ) se, e somente se,   = f e, para cada 1 ≤ i ≤ n, uma das seguintes 

condições é satisfeita:  

(1)    é uma função inicial;   

(2)    é obtida de funções anteriores da sequência por aplicação das operações de composição 

ou recursão primitiva ou minimização ilimitada, sendo esta última aplicada exclusivamente a 

funções regulares. 
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Teorema 1.9 Uma função numérica f é recursiva se, e somente se, existe uma sequência 

recursiva para f. 

Prova: 

Imediata, considerando as definições 1.7 e 1.8. 

Deve-se notar que o conjunto das funções recursivas é definido exatamente igual ao 

conjunto das funções parciais recursivas, salvaguardada a seguinte diferença: a operação de 

minimização ilimitada, na definição das funções recursivas, é aplicada somente às funções 

regulares, enquanto que na definição das funções parciais recursivas, tal operação pode ser 

aplicada indistintamente. Esta restrição faz com que o conjunto das funções recursivas 

contenha única e exclusivamente como seus elementos todas as funções parciais recursivas 

totais, pois, pela definição de função regular, sempre existirá um número natural      tal que 

  ( (         y) = 0) =    .  

Sendo o conjunto das funções parciais recursivas uma versão formal oferecida para o 

conceito intuitivo de função parcial algorítmica e sabendo que o conjunto das funções 

recursivas contêm exclusivamente todas as funções parciais recursivas totais, o conjunto das 

funções recursivas constitui, portanto, a versão formal oferecida para o conceito intuitivo de 

função algorítmica.  

Ainda sobre o conjunto das funções recursivas, destacamos, como uma de suas partes, 

o conjunto das funções recursivas primitivas que, sendo estabelecido somente a partir das 

funções iniciais e das operações de recursão primitiva e composição, contém, como 

apresentaremos mais adiante, diversas funções numéricas conhecidas como claramente 

algorítmicas.    

Definição 1.10 Uma função numérica f é recursiva primitiva se, e somente se, uma das 

seguintes condições é satisfeita: 

(1) f é uma função inicial. 

(2) f é obtida a partir de funções recursivas por aplicação das operações de composição ou 

recursão primitiva. 

(3) Somente são funções recursivas as funções numéricas determinadas de acordo com (1) ou 

(2). 
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Definição 1.11 Uma sequência recursiva primitiva para uma função numérica f é uma 

sequência finita de funções (       ) se, e somente se,   = f e, para cada 1 ≤ i ≤ n, uma das 

seguintes condições é satisfeita:  

(1)    é uma função inicial;   

(2)    é obtida de funções anteriores da sequência por aplicação das operações de composição 

ou recursão primitiva. 

Teorema 1.12 Uma função numérica f é recursiva primitiva se, e somente se, existe uma 

sequência recursiva primitiva para f. 

Prova: 

Imediata, tendo em vista as definições 1.10 e 1.11. 

Uma sequência recursiva primitiva para f, cujas funções estão acompanhadas por uma 

especificação de como foram obtidas, constitui uma derivação recursiva primitiva para f. Ora, 

dada uma sequência recursiva primitiva é sempre possível especificar cada uma de suas 

funções. Sendo assim, parafraseando o teorema anterior, uma função f é recursiva primitiva 

se, e somente se, existe uma derivação recursiva primitiva para ela. De modo análogo, 

falaremos também em derivações recursivas e derivações parciais recursivas.  

Listaremos, a seguir, uma série de funções recursivas primitivas que serão essenciais 

para a obtenção de vários resultados apresentados mais adiante.  

Teorema 1.13 As seguintes funções são recursivas primitivas:  

(1) adição: ad(x, y) = x + y 

ad(x, 0) = x 

ad(x, S(y)) = S(ad(x, y)) 

(2) multiplicação: ml(x, y) = x   y 

ml(x, 0) = 0 

ml(x, S(y)) = ad(x, ml(x, y)) 

(3) exponenciação: ep(x, y) = x
y
 

ep(x, 0) = 1 

ep(x, S(y)) = ml(x, ep(x, y)) 
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(4) fatorial: ft(x) = x! 

ft(0) = 1 

ft(S(y)) = ml(S(y), ft(y)) 

(5) predecessor: pd(x) {
                  
          

 

pd(0) = 0 

pd(S(y)) = y 

(6) subtração própria: sp(x, y)  {
              
                    

 

sp(x, 0) = x 

sp(x, S(y)) = pd(sp(x, y)) 

(7) mínimo de um par ordenado: mn(x, y)  {
            
            

 

mn(x, y) = sp(x, sp(x, y)) 

(8) máximo de um par ordenado: mx(x, y)  {
            
            

 

mx(x, y) = ad(y, sp(x, y)) 

(9) mínimo de uma sequência finita: min(       ) =     :    é o menor número da sequência 

min(       ) = mn(... mn(mn(     )   )     )   

(10) máximo de uma sequência finita: max(       ) =     :    é o maior número da 

sequência 

max(       ) = mx(... mx(mx(     )   )     )  

(11) diferença absoluta: db(x, y)  {
              
              

 

db(x, y) = sp(mx(x, y), mn(x, y)) 

(12) sinal: sg(x)  {
            
            

 

sg(0) = 0 

sg(S(y)) = 1 
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(13) contrassinal:   (x)  {
            
            

 

  (0) = 1 

  (S(y)) = 0 

(14) resto da divisão de y por x: rt(x, y)  {
        

 

  
      (    

 

  
)           

                                                                              
 

rt(x, 0) = 0 

rt(x, S(y)) = ml(S(rt(x, y)), sg(db(x, S(rt(x, y)))))  

(15) quociente da divisão de y por x: qt(x, y)  {
                                                             

     
 

  
      (    

 

  
)       

 

qt(x, 0) = 0 

qt(x, S(y)) = ad(qt(x, y),   (db(x,S(rt(x, y))))) 

Prova: 

Considerando o exposto, percebe-se que a prova deste teorema deverá consistir na 

apresentação de pelo menos uma derivação recursiva primitiva para cada uma das funções 

acima listadas. Tais derivações devem ser construídas de tal modo que os valores da última 

função para um argumento qualquer seja igual aos valores da função que se deseja provar ser 

recursiva primitiva para o mesmo argumento. Como ilustração, vejamos, a seguir, duas 

derivações recursivas primitivas
1
:  

(3) Exponenciação 

1.   
 (x) = 1 Função inicial (FI) 

2.   
 (x) = 0 FI 

3.   
 (x, y, z) = x FI 

4.   
 (x, y, z) = z FI 

5.   (x, y, z) = ad(  
 (x, y, z),   

 (x, y, z)) Função recursiva primitiva (FRP) 

6. ml(x, 0) =   
 (x) 

    ml(x, S(y)) =   (x, y, ml(x, y)) 

 

2, 5/Recursão primitiva (RP) 

7.   (x, y, z) = ml(  
 (x, y, z),   

 (x, y, z)) 6, 3, 4/Composição (C) 

8.   (x, 0) =   
 (x) 

      (x, S(y)) =   (x, y,   (x, y)) 

 

1, 7/RP 

                                                           
1
 Todas as derivações recursivas primitivas que constituem a prova deste teorema podem ser encontradas na obra 

de DIAS e WEBER. Teoria da Recursão, 1. ed. São Paulo: Editora UNESP, 2010. p. 31-35. 
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Ora,   (x, y) = ep(x, y). Portanto, ep é recursiva primitiva.  

(11) Diferença absoluta 

1.   
 (x) = x FI 

2.   (x, y, z) = pd(  
 (x, y, z)) FRP 

3. sp(x, 0) =   
 (x) 

    sp(x, S(y)) =   (x, y, sp(x, y)) 

 

1, 8/RP 

4. mn(x, y) = sp(  
 (x, y), sp(x, y))  FRP 

5. mx(x, y) = ad(  
 (x, y), sp(x, y)) FRP 

6.    (x, y) = sp(mx(x, y), mn(x, y)) 2, 4, 3/C 

Ora,    (x, y) = db(x, y). Portanto, db é recursiva primitiva.  

Note-se que uma derivação recursiva primitiva para uma função n-ária f constitui, em 

termos intuitivos, um algoritmo que computa tal função para qualquer n-upla ordenada. Com 

efeito, para calcular o valor de f para (       ), basta instanciar as variáveis presentes na 

última linha da derivação, substituindo-as, uniformemente, por         e, em seguida, 

calcular o valor das funções à direita da igualdade, que foram definidas em linhas anteriores, 

sempre partindo das funções mais internas para as mais externas.  

Convenção notacional 

 Com o objetivo de facilitar a leitura de algumas funções que serão apresentadas 

mais adiante, escreveremos, em alguns momentos, x   y, |x – y| e x   y para 

expressar, respectivamente, sp(x, y), db(x, y) e rt(x, y). 

1.1.1 Somas e produtos limitados 

Nesta subseção, apresentaremos duas operações funcionais - a soma e o produto 

limitados. Logo em seguida, provaremos que a aplicação de tais operações a funções 

recursivas primitivas conduz também a funções recursivas primitivas. 

Definição 1.14 A soma e o produto limitados são definidos da seguinte maneira:  

(1) Soma (para n ≥ 0): 

∑  (         )     {
                                                                                             
 (         )       (           )                    

  

(2) Produto (para n ≥ 0): 

∏  (         )     {
                                                                                           
 (         )       (           )                   
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Teorema 1.15 Se f(         y) é recursiva primitiva, então as seguintes funções são 

recursivas primitivas: 

(1) ∑  (         )      

(2) ∏  (         )      

Prova
2
: 

Considere a seguinte função recursiva primitiva: 

   (         ) =   (       )    

   (         S(z)) =   (         z,    (         z)), 

onde   (       ) =   
 (  

 (       )) e   (         y, w) = ad(f(  
   (         y, w), ..., 

    
   (         y, w)),     

   (       , y, w)).  

Expresso de outra forma,    (         S(z)) =   (         z,   (         z-1, ..., 

  (       , z-z,    (         z-z)))). Ora,    (         z-z) = 0 e, tal como foi definida, a 

função    somará    (          z-z) a f(         z-z) e, assim, obteremos    (         1) 

que, por sua vez, será somado a f(         1), resultando em    (         2). Este processo 

se repetirá até que    some    (         z) a f(         z). O valor desta última soma será 

   (         S(z)). Esquematicamente, nós temos:   

   (         z-z) = 0 

   (         z-z) + f(         z-z) =    (         1) 

   (         1) + f(         1) =    (         2) 

                                                                        

   (        , z) + f(         z) =    (         S(z)) 

Definida nestes termos,    (         )  ∑  (         )   . Portanto, 

∑  (         )    é recursiva primitiva. 

1.1.2 Relações numéricas 

Além das funções numéricas, podemos também definir relações numéricas como 

recursivas primitivas. Uma relação numérica n-ária (n ≥ 0) é qualquer subconjunto de   . 

                                                           
2
Por questões práticas, provaremos apenas que ∑  (         )    é recursiva primitiva. Analogamente, prova-

se o mesmo acerca da função ∏  (         )   . 
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Sendo assim, {(     )      } é uma relação ternária, enquanto que {(1, 3, 5, 7)} e 

{(       )        } são relações quaternárias.  

Definição 1.16 Seja R uma relação n-ária, a função característica de R é a seguinte: 

  (       )  {
     (       )   

     (       )   
 

Em particular, se R é uma relação unária, R     e sua função característica é a seguinte: 

  ( )  {
        
        

 

Definição 1.17 Uma relação n-ária R é recursiva primitiva se, e somente se,   (       ) é 

recursiva primitiva. 

Teorema 1.18 As seguintes relações são recursivas primitivas: x é igual a y, x é menor que y, 

x divide y, x é metade de y, x é ímpar, x é primo. 

Prova: 

(1) x é igual a y se, e somente se, |x – y| = 0.  

Então,   (   ) =   (|x – y|)  

(2) x é menor que y se, e somente se, x   y = 0 e |x – y|   0.  

Então,   (   ) =   (x   y)   sg(|x – y|) 

(3) x divide y se, e somente se, x   y = 0.  

Então,   (   ) =   (x   y) 

(4) x é metade de y se, e somente se,  x   y = 0 e |qt(x,  y) – 2| = 0. 

Então,    (   ) =   (x   y)     (|qt(x,  y) –   
 (x, y)|) 

(5) x é ímpar se, e somente se, 2   x   0.  

Então,    ( ) = sg(  
 (x)    

 (x)) 

(6) x é primo se, e somente se, |d(x) – 2| = 0, sendo d(x) o número de divisores de x 

determinado pela função parcial recursiva ∑   (     )     .  

Então,    ( ) =   (|d(x) –   
 (x)|) 

Com o auxílio das operações de complemento, união e interseção, dos conectivos 

proposicionais, dos quantificadores limitados e da operação de minimização limitada, 

podemos obter novas relações recursivas primitivas a partir de outras já disponíveis. Por 

questões práticas, definiremos, em momento oportuno, apenas os quantificadores limitados e 

a operação de minimização limitada. 
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Teorema 1.19 Se R(       ) e S(       ) são relações recursivas primitivas, então as 

seguintes relações são recursivas primitivas: 

(1)  (       ) 

(2) R(       )   S(       ) 

(3) R(       )   S(       ) 

Prova: 

Considerando a definição das operações de complemento, união e interseção, 

apresentamos, a seguir, as funções características de  , R   S e R   S. 

(1)  

  (       )  {
     (       )   

     (       )   
 

 
 {

     (       )   

     (       )   
 

 

 
 {

       (       )   

       (       )   
 

 

(2)  

 
        (       )  {

     (       )        

     (       )        
 

 

 
 {

     (       )          (       )    

     (       )           (       )    
 

 

 
 {

       (       )            (       )    

       (       )              (       )   
 

 

 (3)  

 
        (       )  {

     (       )        

     (       )        
 

 

 
 {

     (       )           (       )    

     (       )          (       )    
 

 

 
 {

       (       )             (       )    

       (       )            (       )   
 

 

 Em outros termos, as funções acima apresentadas podem ser definidas do seguinte 

modo:  

  (       )    (  (       ))    
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      (       )    (  (  (       )   (       )))   

      (       )     (  (       )    (       )) 

 Portanto, conforme a definição 1.17, as relações n-árias,    R   S e R   S são 

recursivas primitivas.   

Teorema 1.20 Se R(       ) e S(       ) são relações recursivas primitivas, então as 

seguintes relações são recursivas primitivas: 

(1) ~R(       ) 

(2) R(       )   S(       ) 

(3) R(       )   S(       ) 

(4) R(       ) → S(       ) 

(5) R(       ) ↔ S(       ) 

Prova: 

 Imediata pela definição dos conectivos proposicionais. 

Definição 1.21 Os quantificadores limitados são obtidos, por definição, a partir dos 

quantificadores existencial e universal, conforme vemos abaixo: 

(1) Quantificador existencial (para n ≥ 0): 

      (  , ...,   , y)     (0 ≤ y   z  (  , ...,   , y)   ) 

(2) Quantificador universal (para n ≥ 0): 

     (  , ...,   , y)     (0 ≤ y   z  (  , ...,   , y)   ) 

Teorema 1.22 Se R(         ) é uma relação recursiva primitiva, então as relações abaixo 

são recursivas primitivas: 

(1)     (  , ...,   , y)  

(2)     (  , ...,   , y) 

Prova
3
: 

Considere  (         ) =      (  , ...,   , y).  

                                                           
3
 Exibiremos unicamente a prova de que      (  , ...,   , y) é recursiva primitiva. De modo semelhante, 

demonstra-se o mesmo acerca da relação      (  , ...,   , y), cuja função caraterística é ∏   (         )   .  
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Segundo a definição 1.21,      (  , ...,   , y) =  (  , ...,   , 0)   ...    (  , ...,   , z-1).  

Consequentemente,  (         ) =  (  , ...,   , 0)   ...    (  , ...,   , z-1).  

Neste caso, 

 
  (         )   {

     (         )                  

     (         )                   
 

 

 
  {

       (         )                  

       (         )                    
 

 

 De outro modo,   (         ) = sg(∑   (         ))   . Portanto, tendo em vista 

a nossa consideração inicial,      (  , ...,   , y) é recursiva primitiva. 

Definição 1.23 A operação de minimização limitada aplicada a uma relação n+1-ária R é 

estabelecida do seguinte modo: 

     (  , ...,   , y) = {
            (           )            (           )

                                                                         (           )
 

Intuitivamente, a minimização limitada é uma operação de pesquisa.  Tendo em vista 

os limites impostos a sua aplicação, a pesquisa que ela faz, mais cedo ou mais tarde, chega ao 

fim, tendo sempre como valor o menor y tal que (           )    , caso ele, de fato, exista, 

ou 0, caso contrário.  

Teorema 1.24 Se  (           ) é uma relação recursiva primitiva, então a função 

     (  , ...,   , y) é recursiva primitiva. 

Prova: 

Se não existe um     tal que  (           ), sg(∑   (         )   ) = 0. Caso 

contrário, sg(∑   (         )   ) = 1, e o menor     será o valor determinado pela 

função ∑ ∏   (  (         ))         que a cada   (         ) = 0 soma 1 até 

alcançar a primeira  n+1-upla (         ) tal que   (         ) = 1. Sendo assim, a 

função      (  , ...,   , y) é claramente recursiva primitiva, pois é obtida por composição, 

como vemos abaixo: 

     (  , ...,   , y) = ml(sg(∑   (         ))   , ∑ ∏   (  (         ))        ) 
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Como ilustração, vamos calcular       ( , y). Sabemos, de antemão, que um tal y 

existe. Portanto, até o momento,        ( , y) = ml(1, ∑ ∏   (   (   ))        ). Nosso 

próximo passo será identificá-lo calculando o somatório limitado do seguinte modo: 

∑ ∏   (   (   ))         = ∏   (   (   ))      + 

 ∏   (   (   ))      +  

 ∏   (   (   ))       

De outro modo:  

∑ ∏   (   (   ))         =   (   (   )) +  

   (   (   ))     (   (   )) +  

   (   (   ))     (   (   ))   

  (   (   ))   

Portanto, como queríamos,       ( , y) = ml(1, 2) = 2. Com efeito, sabemos que 2 é 

o menor e único número do qual 1 é metade.  

Exibiremos, a seguir, algumas funções recursivas primitivas determinadas a partir das 

operações de minimização, soma e produto limitados. 

(1) Para    , a função p(x) determina o  –ésimo número primo em ordem crescente. Ela 

será definida levando-se em consideração o teorema de Euclides sobre a infinitude dos primos 

segundo o qual se p é primo, então existe um primo y tal que           Isto posto, 

considerando A = {(x, y):  ( )      ( )+, definimos a função p(x) como segue:                                                          

p(0) = 2 

p(S(x)) =     ( )    (   ) 

(2) Seja   
     

       
   a decomposição de x em fatores primos. A função binária ( )  

determina o expoente do i-ésimo fator primo dessa decomposição, isto é, ( )  =   . Por 

convenção, ( )  = 0, para todo i. Note que na decomposição de x, o expoente de    é o 

(menor) número     tal que   
 

divide x e   
   

 não divide x. Sendo assim, considerando a 

relação B = {(x, i, y):   
 
    (  

   
  )+  definimos a função ( )  da seguinte maneira:  

 ( )  =       (     ) 
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(3) Para    , a função lh(x) determina o número de expoentes diferentes de zero na 

decomposição de x em fatores primos ou, em outros termos, o número de primos distintos que 

dividem x. Por convenção, lh(0) = 0. Considerando o exposto, é fácil notar que o valor de 

lh(x) será obtido a partir da relação C = {(x, y):   ( )             }, como vemos abaixo:   

  ( )  ∑   (   )       

 

(4) Seja   =              
   e seja   =              

  , a função     determina o valor 

da sequência obtida pela justaposição de   e   como vemos a seguir: 

    =              
       

       
            

   

Ou seja: 

      ∏    ( )  
( ) 

    ( )   

(5) Para      a função  ( )    , estabelece o  –ésimo quadrado perfeito em ordem 

crescente ao passo que função [√  ] determina o maior número natural   √   Considerando 

E = *(   )  ( )   +,  definimos ,√  -  da seguinte maneira: 

[√  ]    (       (   )) 

(6) A função    (         ) determina o maior divisor comum de            Considerando 

F = *(           ) (           )   (      )+,  definimos    (         )  abaixo: 

   (         )        (          )   (           ) 

Concluindo esta subseção, queremos esclarecer que escolhemos destacar o conjunto 

das funções recursivas primitivas, pois acreditou-se, durante algum tempo, que ele seria a 

versão formal para o conjunto das funções algorítmicas, tendo em vista que, como falamos, 

anteriormente, muitas funções reconhecidamente algorítmicas foram provadas ser recursivas 

primitivas. No entanto, o matemático alemão Wilhelm Ackermann apresentou um 

contraexemplo. Ele construiu uma função algorítmica que não era recursiva primitiva. A 

partir daí, surgiu, então, a necessidade de se ampliar o conjunto das funções recursivas 

primitivas, a fim de se obter um conjunto mais abrangente de funções que constituísse uma 

versão formal para a noção intuitiva de função algorítmica. Como resultado desta ampliação, 

definiu-se o conjunto das funções recursivas. Para compreender também as funções 
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estritamente parciais algorítmicas, o conjunto das funções recursivas foi mais uma vez 

ampliado, o que resultou no conjunto das funções parciais recursivas. 

1.1.3 Derivações parciais recursivas 

Na subseção anterior, apresentamos resultados envolvendo unicamente funções 

recursivas primitivas que, como vimos, são alcançadas a partir das funções iniciais e das 

operações de recursão primitiva e composição. Falta-nos ainda apresentar, na prática, o uso da 

operação de minimização ilimitada, a partir da qual obtemos funções (parciais) recursivas. 

Com tal intuito, exibiremos o próximo teorema, cuja prova exigirá a construção de derivações 

(parciais) recursivas para cada uma das funções listadas. 

Teorema 1.25 As seguintes funções são parciais recursivas:  

(1) zero-zero:   (x)  {
                               
                           

 

  (x) =   (  (   y) = 0) 

(2) função vazia:  (       ) =  , para qualquer         

 (       ) =   ((S(  
   (         ))) = 0) 

Prova: 

(1) Zero-zero 

1.   
 (x, y) = y FI 

2.   (x, y, z) = S(  
 (x, y, z)) FRP 

3. ad(x, 0) =   
 (x) 

    ad(x, S(y)) =   (x, y, ad(x, y)) 

FRP 

4. sp(x, 0) =   
 (x) 

    sp(x, S(y)) = g8(x, y, sp(x, y)) 

FRP 

5. mx(x, y) = ad(  
 (x, y), sp(x, y)) 3, 1, 4/C 

6.    (x) =   (  (   y) = 0) 5/Minimização ilimitada (MI) 

Ora,    (x) = zz(x). Portanto, zz é parcial recursiva.  

(2) Função vazia 

1.S(x) = x‟ FI 

2.  
   (         ) =       FI 
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3.    (         ) = S(  
   (         )) 1,2/C 

4.    (       ) =   (   (         ) = 0) 3/MI 

Ora,    (       ) =  (       ). Portanto,   é parcial recursiva. 

Similarmente ao que vimos na subseção precedente, uma derivação (parcial) recursiva 

para uma função f é um algoritmo que computa tal função. Sabendo disso, vale ressaltar que 

embora as derivações recursivas primitivas e as derivações (parciais) recursivas sejam 

exemplos de algoritmos, apenas o conjunto das derivações recursivas primitivas e o conjunto 

das derivações parciais recursivas são decidíveis, pois dada uma sequência qualquer de 

funções, é possível reconhecer mecanicamente se cada função da sequência é uma função 

inicial ou se foi obtida de funções anteriores, a partir das operações de composição, recursão 

primitiva ou minimização ilimitada. No entanto, o mesmo não pode ser afirmado sobre o 

conjunto das derivações recursivas. Com efeito, a restrição imposta à aplicação da 

minimização ilimitada às funções regulares nos impede de identificarmos mecanicamente se 

uma dada sequência de funções é ou não uma derivação recursiva, já que para decidir se uma 

função f(         ) é regular é necessário calcular, para cada (       ), os valores 

f(         ), f(         ), f(         ) etc., admitindo a real possibilidade deste cálculo 

nunca terminar, pois pode ser que para esta n-upla não haja um y tal que f(         ) = 0. 

Portanto, em resumo, dada uma sequência qualquer de funções nunca saberemos, em geral, se 

ela é de fato uma derivação recursiva, por não sabermos, previamente, se uma de suas funções 

a qual foi aplicada a minimização ilimitada é regular. 

Além das funções (parciais) recursivas, podemos também estabelecer relações 

(parciais) recursivas. Estas são definidas de modo análogo às relações recursivas primitivas. 

Por fim, posto que toda função recursiva primitiva é recursiva e toda função recursiva é 

parcial recursiva, convém explicitar, de antemão, que os teoremas vistos nas subseções 1.1.1 e 

1.1.2 se aplicam, sem maiores dificuldades, às funções e às relações (parciais) recursivas.  
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2 TURING-COMPUTABILIDADE 

Definido o conjunto das funções parciais recursivas, definiremos, neste capítulo, o 

conjunto das funções parcialmente Turing-computáveis, a fim de estabelecermos a igualdade 

entre eles, que é, como já dissemos, um dos nossos objetivos. Para isso, apresentaremos, 

previamente, as máquinas e os programas de Turing. Estes serão identificados como 

conjuntos de quíntuplas, o que nos possibilitará reconstruirmos, de modo inédito, a prova 

segundo a qual toda função parcial recursiva é parcialmente Turing-computável. A recíproca 

também será provada. Ao final, apresentaremos alguns argumentos a favor da Tese de 

Church-Turing que identifica as funções parciais algorítmicas às funções parcialmente 

Turing-computáveis. 

2.1 Máquinas e programas de Turing 

Com o objetivo de formular uma definição precisa de computabilidade efetiva, Turing 

definiu certos objetos teóricos que ficaram conhecidos como máquinas de Turing, a partir dos 

quais define-se de maneira exata o conjunto das funções parcialmente Turing-computáveis. 

Intuitivamente, entende-se por uma máquina de Turing M um mecanismo imaginário 

constituído por um dispositivo chamado reading head e por uma fita infinita à esquerda e à 

direita, secionada em quadrados, tal que: 

(1) em cada quadrado está escrito apenas um símbolo da fita    do conjunto S = {  ,   ,   , 

...}. 

(2) o dispositivo sempre está em um estado interno    do conjunto Q = {  ,   ,   , ...}, 

sempre observa um quadrado da fita por vez e executa um dos seguintes movimentos: move-

se para o quadrado imediatamente à direita daquele que está sendo observado (movimento que 

simbolizaremos por „R‟, de right) ou move-se para o quadrado imediatamente à esquerda 

daquele que está sendo observado (movimento que simbolizaremos por „L‟, de left). 

(3) as ações do dispositivo são determinadas por um conjunto finito não-vazio P   Q X S X S 

X {R, L} X Q que chamaremos de programa de Turing. Se (  ,   ,   , x,   )   P, então o 

dispositivo, no estado interno    e observando o quadrado no qual está escrito   , substitui    

por   , move-se para o quadrado imediatamente à direita, quando x = R (ou à esquerda, 

quando x = L) e assume o estado interno   . 

Definição 2.1 A linguagem L de uma máquina de Turing é o conjunto de símbolos S   Q   

{R, L}. 
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Definição 2.2 Uma expressão de L é uma sequência finita de símbolos de L. 

Definição 2.3 Duas quíntuplas do conjunto Q X S X S X {R, L} X Q são inconsistentes se, e 

somente se, são iguais quanto aos dois primeiros símbolos e diferentes quanto a, pelo menos, 

um dos símbolos restantes. De outro modo, são consistentes.  

Definição 2.4 Um programa de Turing P é um conjunto finito não-vazio de quíntuplas 

consistentes de Q X S X S X {R, L} X Q.  

A restrição presente na definição acima é chamada de “requisito de consistência”. Ela 

evita comandos contraditórios, diante dos quais a máquina interromperia a sua computação. 

Observando tal requisito, as quíntuplas (  ,   ,   , L,   ) e (  ,   ,   , L,   ), por exemplo,   

não são admitidas em um programa de Turing.  

Normalmente, a maioria dos manuais define um programa de Turing como um 

conjunto finito de quádruplas consistentes. Nós, no entanto, optamos por defini-lo como um 

conjunto finito de quíntuplas consistentes. Desta forma, obteremos, em geral, programas de 

menor cardinalidade, tendo em vista que, muitas vezes, o comando dado por duas quádruplas 

pode ser determinado por uma única quíntupla. As quádruplas (  ,   ,   ,   ) e (  ,   , R,   ), 

por exemplo, podem ser substituídas, sem maiores dificuldades, pela  quíntupla (  ,   ,   , R, 

  ). Este modo alternativo de definir um programa de Turing nos permitirá provarmos, mais 

adiante, o enunciado segundo o qual toda função parcial recursiva é parcialmente Turing-

computável de modo ligeiramente diverso do habitual, pois conseguiremos prová-lo 

utilizando programas menores, oportunizando, consequentemente, computações com um 

menor número de passos. 

Definição 2.5 Uma configuração instantânea de M é uma expressão de L do tipo a  b, tal 

que a e b são, respectivamente, uma sequência finita (possivelmente vazia) e uma sequência 

finita (não vazia), de símbolos da fita.   

Sendo assim, as expressões        e          constituem, por exemplo configurações 

instantâneas de M; no entanto, o mesmo não pode ser dito das expressões         e       .  

Observação 

 Dada uma configuração instantânea c de M, assumimos os seguintes enunciados: (1) 

nos quadrados da fita não referidos em c está escrito   ; (2) o símbolo da fita 
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observado pelo dispositivo é aquele que segue imediatamente o símbolo de estado 

interno.  

Definição 2.6 Dados um programa de Turing P e as configurações instantâneas c e c‟ de M, c 

acarreta c‟ via P (em símbolos: c 
 
  c‟) se, e somente se, uma das seguintes condições é 

satisfeita, sendo    e    sequências finitas (possivelmente vazias) de símbolos da fita: 

(1) (  ,   ,   , R,   )   P, c =            e c‟ =             

(2) (  ,   ,   , R,   )   P, c =        e c‟ =           

(3) (  ,   ,   , L,   )   P, c =            e c‟ =            

(4) (  ,   ,   , L,   )   P, c =        e c‟ =          

Em outras palavras, a primeira condição é a seguinte: sendo (  ,   ,   , R,   ) uma 

quíntupla de P e sendo c =           , isto é, estando o dispositivo no estado interno    e 

observando o quadrado no qual está escrito   , ele substitui    por   , movimenta-se ao 

quadrado imediatamente à direita e assume o estado interno   , resultando em c‟. As demais 

condições são análogas a esta que acabamos de explicitar.  

Definição 2.7 Uma configuração instantânea c é terminal com respeito a um programa de 

Turing P (em símbolos:   
 ) se, e somente se, c =          e P não contém quíntuplas da forma 

(  ,   ,   , x,   ). 

Convenção notacional 

 Assim como fizemos com as derivações parciais recursivas, utilizaremos os programas 

de Turing para realizarmos computações numéricas. Para tanto, são necessárias 

algumas convenções:  

(1) No lugar de   , escreveremos B para indicar um quadrado vazio durante a 

computação; no lugar de   , escreveremos | e, no lugar dos demais    (desde que 

haja a necessidade de usá-los), escreveremos alguns marcadores, que serão 

apresentados mais adiante. 

(2) Para representar um número natural x que ocorre no input, escreveremos | em x + 

1 quadrados consecutivos. O output y será representado por y |‟s escritos em 

quadrados não necessariamente consecutivos da configuração instantânea terminal. 
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Representaremos x + 1 |‟s por   ou     . Em geral, para representar uma n-upla 

(         ), escreveremos   B...B  . 

 Eliminaremos os pares de parênteses e as vírgulas presentes nas quíntuplas.  

Escreveremos       x  , em vez de (  ,   ,   , x,   ).  

Definição 2.8 Uma computação segundo um programa de Turing P com input (         ) é 

uma sequência finita de configurações instantâneas de M, (  ,   , ...,   ), tal que a 

configuração instantânea inicial    =     B...B  ,    =   
  e    

 
      , para cada 1 ≤ i < k.    

Como ilustração, considere o programa de Turing P = {       ,        } e a 

seguinte sequência de configurações instantâneas que constitui uma computação segundo o 

programa P com o input (2,0): 

  :         

            

  :         

Definição 2.9 Dados um programa de Turing P e as configurações instantâneas c e c‟ de M, c‟ 

é resultante de c com respeito a P (em símbolos: c‟ =     (c)) se e somente se existe uma 

computação (  ,   , ...,   ) segundo P com input (         ), tal que    = c e    = c‟. 

Definição 2.10 Seja P um programa de Turing, a ele está associado, para cada n ≥ 1, uma 

única função n-ária   
 (         ) tal que dado uma n-upla (         ) duas situações 

alternativas podem acontecer: 

(1) há uma computação (  ,   , ...,   ) segundo P com input (         ); neste caso, 

  
 (         ) = [  ], onde [  ] é o número de |‟s que ocorrem na descrição instantânea 

terminal   . 

(2) não há uma computação (  ,   , ...,   ) segundo P com input (         ); neste caso, 

  
 (         ) e, consequentemente,     (    B...B  ) estão indefinidos. 

Definição 2.11 Uma função numérica n-ária h(         ) é parcialmente Turing-computável 

se, e somente se, existe um programa de Turing P tal que h(         ) =   
 (         ). Em 

particular, se h(         ) é uma função total, dizemos que h(         ) é Turing-

computável.  
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Em outras palavras, uma função é (parcialmente) Turing-computável se e somente se 

existe um programa de Turing para computá-la.  

2.2 Equivalência entre as funções parciais recursivas e as funções parcialmente Turing-

computáveis 

Reservaremos esta seção para reconstruirmos a prova segundo a qual o conjunto das 

funções parciais recursivas e o conjunto das funções parcialmente Turing-computáveis, 

embora sejam conceitualmente distintos, possuem as mesmas funções numéricas como seus 

elementos. 

2.2.1 Toda função parcial recursiva é parcialmente Turing-computável   

Obviamente, para provarmos que as funções parciais recursivas são parcialmente 

Turing-computáveis devemos provar os seguintes enunciados: 

(1) as funções iniciais são parcialmente Turing-computáveis; 

(2) o conjunto das funções parcialmente Turing-computáveis é fechado com respeito às 

operações de composição, recursão primitiva e minimização ilimitada (ou, em outras palavras, 

tais operações levam de funções parcialmente Turing-computáveis a funções parcialmente 

Turing-computáveis). 

A seguir, expomos a prova do primeiro enunciado, apresentando os programas para 

computar as funções iniciais.  

(1.1) Uma máquina de Turing computa a função sucessor S( ) de acordo com o programa    

= {       }. Ou seja,    

 ( ) = S( ). Sabendo disso, vejamos a computação de    

 ( ): 

  :        

           

Portanto,    

 ( )  ,     
(      )] = ,      - = 4. 

(1.2) Uma máquina de Turing computa as diversas funções-constante   
 (       ) de acordo 

com o programa    
  abaixo:  

        

        

        

apaga todos os |‟s 
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para cada i, tal que 0   i   k 

escreve um | e vai para o quadrado imediatamente à direita 

 

Assim sendo,   
  
 

 (         ) =   
 (       ). Isto posto, vejamos, como exemplo, a 

computação de   
  
 

 (   ) : 

  :         

            

  :         

  :         

  :         

  :          

  :           

  :            

  :             

   :              

Portanto,   
  
 

 (   )  ,    
  
 (       )] = ,            - = 3. 

(1.3) Uma máquina de Turing computa as diversas funções-projeção   
 (       ) de acordo 

com o programa    
  abaixo: 

            

              

              

 

para cada k, tal que 0   k   n-1 e k   i-1  

apaga um bloco de |‟s 

              

            

              

 

apaga o primeiro | do i-ésimo bloco  

Consequentemente,   
  
 

 (         ) =   
 (       ). Sabendo disso, vejamos a 

computação de   
  
 

 (     ) : 

  :             
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  :             

  :             

  :             

  :             

  :             

  :             

  :             

   :              

   :               

Portanto,   
  
 

 (     )  ,    
  
 (           )] = ,             - = 1. 

Com os programas que acabamos de expor, fica provado que as funções iniciais são 

parcialmente Turing-computáveis. Nossa próxima atividade será provar, a partir de uma série 

de lemas apresentados mais adiante, que as operações básicas, quando aplicadas a funções 

parcialmente Turing-computáveis, geram novas funções parcialmente Turing-computáveis. 

Convenção notacional 

 Dado um programa de Turing P qualquer,  ( ) designará o maior número i tal que    

é um estado interno de P;  ( ), por sua vez, designará o programa de Turing obtido a 

partir da substituição de todas as ocorrências de    em P por     .    

Definição 2.12 Um programa de Turing P é n-regular (   ) se, e somente se, as seguintes 

condições são satisfeitas: 

(1) sempre que     (    B...B  ) estiver definido,     (    B...B  ) =   ( )  B...B  , 

para convenientes          sendo s   ; 

(2) nenhuma quíntupla de P possui   ( )  como os dois primeiros símbolos.  

Dentre os vários lemas que provaremos a partir de agora, o primeiro deles permitirá a 

máquina realizar uma computação e, ao final, reescrever o output de tal modo que ele esteja 

pronto para iniciar uma nova computação.  

Lema 2.13 Para cada programa de Turing P, existe um programa de Turing n-regular    tal 

que      (    B...B  ) =   (  )  
 (         )  
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Prova: 

O programa de Turing   , obtido a partir de P, será construído de tal modo que a 

computação (principal) determinada por  ( ) se desenvolverá entre dois marcadores:   (   ) 

e   (   ). Caso ela exija mais espaço, os marcadores serão afastados e, com isso, novos 

espaços serão disponibilizados. Concluída a computação, os |‟s presentes na configuração 

instantânea terminal serão reunidos em um único bloco, os marcadores   e   serão, 

respectivamente, apagados e um | será adicionado ao único bloco existente, no quadrado, até 

então, ocupado por  . A esta altura, a máquina terá alcançado o estado interno   (  ), 

observará o | mais à esquerda do bloco, estando, deste modo, pronta para iniciar uma nova 

computação.  

Seja    o seguinte programa de Turing: 

        

        

imprime   à esquerda 

        

        

        

        

move-se à direita até encontrar um duplo vazio 

        

        

        

        

imprime   à direita; move-se à esquerda até encontrar  ; em seguida, move-

se um quadrado à direita  

Então,      
(    B...B  ) =      B...B   . Impressos os marcadores nas 

extremidades da n-upla, a máquina encontra-se pronta para iniciar a computação principal.  

Seja    o programa de Turing que contém todas as quíntuplas de  ( ) e, além disso, 

contém, para cada    de  ( ), as quíntuplas apresentadas abaixo, nas quais    ( ( )).  

           

           

alcançando  , apaga  ; move-se um quadrado à esquerda, no qual imprime  ; 

vai um quadrado à direita para dar continuidade à computação principal. 

           

           

 

alcançando  , apaga  ; move-se um quadrado à direita, no qual imprime  ; 

vai um quadrado à esquerda para dar continuidade à computação principal. 
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Durante a computação de acordo com  ( ), os marcadores podem ser alcançados. Se 

isto ocorrer, as quíntuplas acima apresentadas disponibilizarão novos espaços vazios à 

esquerda e à direita a fim de que a computação em desenvolvimento seja concluída, o que 

ocorrerá se, e somente se, o     (    B...B  ) estiver definido. Sendo este o caso, o 

     
(     B...B   ) =     ( ( ))  , onde a e b são, respectivamente, uma sequência 

finita (possivelmente vazia) e uma sequência finita (não vazia), de símbolos da fita  e 

[    ( ( ))  ] = ,    (    B...B  )]. Caso contrário, o      
(     B...B   ) também 

estará indefinido.   

Com    , finalizamos a computação principal. O próximo passo na construção de    

será apresentar um programa que reúna, em um único bloco, à direita de  , todos os  |‟s até 

então obtidos e, em seguida, substituía   por |. Antes, porém, a fim de evitar quíntuplas 

inconsistentes, definiremos o programa    do qual a única quíntupla utilizada ordenará que a 

máquina assuma um estado interno inédito no programa e mova-se um quadrado à esquerda.   

Considerando u = 5k + 1, definimos    como o programa de Turing que contém, para 

cada    de    , todas as quíntuplas da forma   ( ( ))       , exceto aquelas cujos dois 

primeiros símbolos também iniciam alguma quíntupla de    . Sendo assim,   

     
(    ( ( ))  ) = {

                                                                                          
                                                                         
                                                          

 

Seja    o seguinte programa de Turing no qual s é qualquer símbolo da fita presente 

em P diferente de | e de B.  

        

        

        

          

 

move-se à esquerda até alcançar   e vai um quadrado à direita 

 

            

            

            

            

 

alcançando s, apaga s e vai um quadrado à direita; alcançando |,  apaga | e 

move-se um quadrado à esquerda; alcançando  , apaga  , preparando-se 

para finalizar a computação 
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move-se à esquerda até alcançar   ou | e move-se um quadrado à direita 

            

 

alcançando  , substitui B por | e move-se um quadrado à direita 

            

            

            

            

 

move-se à esquerda: alcançando  , substitui   por |, move-se um quadrado à 

direita e, em seguida, um quadrado à esquerda 

De acordo com      independentemente do símbolo da fita que está sendo observado, a 

máquina vai à esquerda até alcançar  ; quando isto acontece, ela procura | à direita; ao 

encontrá-lo, ela apaga-o e dirige-se novamente à esquerda para imprimi-lo à direita de  ; mais 

uma vez, a máquina vai à direita em busca de um outro |,  quando o encontra, ela o apaga e 

dirige-se à esquerda para imprimi-lo à direita do primeiro |; este processo se repete até que 

todos os |‟s presentes no      
(    ( ( ))  ) estejam reunidos em um único bloco 

imediatamente à direita de  ; quando a máquina encontra  , ela apaga-o, dirige-se à esquerda 

até alcançar  , o substitui por |,  vai para o quadrado da direita e retorna ao quadrado da 

esquerda, assumindo o estado interno     . Ao final de todas estas ações, a máquina 

encontra-se pronta para iniciar uma nova computação. 

De posse dos quatro programas que acabamos de expor, considere, finalmente,    = 

               . Sendo assim, para qualquer que seja o programa de Turing P, podemos 

construir um programa    tal que se houver, de acordo com P, uma computação para a n-upla 

(         ), haverá, de acordo com   , uma computação para a mesma n-upla, sendo 

     (    B...B  ) =     ,    (           )-  =   (  )   
 (         ) . Portanto,    

é n-regular. 

Lema 2.14 Para cada programa de Turing n-regular P e para cada    , existe um programa 

de Turing (t+n)-regular    tal que: 

(1) se     (    B...B  ) =   ( )  B...B  , então      (    B...B     B...B  ) = 

  (  )  B...B  B  B...B  . 
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(2) se     (    B...B  ) estiver indefinido, então      (    B...B     B...B  ) 

também estará indefinido. 

Prova: 

O programa   , obtido a partir de P, oferecerá uma estratégia que, dado o input 

  B...B     B...B  , permite a máquina omitir a t-upla   B...B  ,  para desenvolver a 

computação principal (segundo  (   )) somente sobre a n-upla   B...B  , reescrevendo ao 

término de tal computação a t-upla inicialmente omitida. A estratégia consiste em substituir 

todos os |‟s presentes em    B...B   por  ,  exceto o mais à esquerda que será substituído por 

  e, em seguida, imprimir   no lugar do B que separa    e   . De modo análogo ao lema 2.13, 

se houver a necessidade de mais espaços para que a computação principal seja desenvolvida, 

há quíntuplas em    que disponibilizam novos espaços afastando os blocos de  ‟s para a 

esquerda. Ao fim de tal computação, os marcadores   e  ‟s são substituídos, fazendo com que 

  B...B   reapareça tal como na configuração instantânea inicial.  

Seja    o seguinte programa de Turing no qual   e   são símbolos da fita não 

pertencentes ao programa P: 

        

 

substitui o | mais à esquerda por   

        

          

 

para cada i, tal que 0   i    

substitui os |‟s presentes em   ...     por   

        

          

 

substitui os |‟s presentes em    por  ; move-se um quadrado à direita; em 

seguida, substitui o B (localizado entre    e   ) por   e vai um quadrado à 

direita  

Então,      
(    B...B     B...B  ) =                    B...B  ,  tal que 

os índices sobrescritos determinam o número de ocorrências de  . Omitida a t-upla   B...B  , 

a máquina está preparada para iniciar a computação principal.  

Seja    o programa de Turing que contém todas as quíntuplas de  (   ) e, além disso, 

contém, para cada    de  (   ), as quíntuplas apresentadas abaixo, nas quais    ( (   )) e 

s é qualquer símbolo da fita presente em P, exceto |  e B. 
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interrompe a computação principal; substitui o   mais à direita por |; 

move-se à esquerda até alcançar  ; apaga   e  dirige-se um quadrado à 

esquerda que estará vazio 

 

              imprime   no quadrado vazio e move-se um quadrado à direita 

 

              

              

 

move-se à direita para observar o símbolo escrito no quadrado seguinte 

              

              

              

 

observando  , volta um quadrado no qual copiará  ; observando B, volta 

um quadrado no qual copiará B; observando |, apaga | e move-se um 

quadrado à direita  

              

              

 

copia   

              

              

 

copia B 

           

           

           

 

dirige-se um quadrado à esquerda (que estará vazio) para retomar a 

computação principal 

Sob os comandos de    , a máquina de Turing realiza a computação principal, 

deslocando todos os  ‟s um quadrado à esquerda todas as vezes que um   mais à direita é 

alcançado. Sendo assim, sempre que     (    B...B  ) estiver definido, 

     
(                   B...B  ) =                  B...B  .  

Definimos     como o programa de Turing composto pelas seguintes quíntuplas, sendo 

   (   )  
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dirige-se um quadrado à esquerda e apaga o   mais à direita 

            

            

            

 

desloca-se para a esquerda, substituindo   por |; ao encontrar  , imprime 

no seu lugar | 

 

            

            

 

dirige-se para o quadrado imediatamente à esquerda 

De acordo com    , a t-upla   B...B   reaparece ao término da computação principal 

por meio da substituição de   e de todos os  ‟s (com exceção do último) por |. No quadrado 

ocupado pelo último  , primeiro símbolo a ser substituído sob os comandos de    , é escrito B 

para separar         

Por fim, seja    =            . Então, para qualquer que seja o programa de Turing 

n-regular P e para qualquer t   0, podemos construir um programa     tal que se houver, de 

acordo com P, uma computação para a n-upla (  ,...,  ), haverá, de acordo com   , uma 

computação para a (t+n)-upla (  ,...,     ,...,  ), sendo      (    B...B     B...B  ) = 

      B...B     B...B   =   (  )  B...B     B...B  . Portanto,    é (t+n)-regular.  

Lema 2.15 Para cada     e     , existe um programa de Turing (t+n)-regular    tal que 

     
(    B...B     B...B  ) =   (  )  B...B     B...B     B...B  . 

Prova: 

Podemos concluir a partir do enunciado acima que o programa    apenas copia a n-

upla   B...B   à esquerda da t-upla   B...B  . Em linhas gerais, a máquina comandada por 

   e alimentada pelo input   B...B     B...B   escreve dois marcadores nas extremidades 

de    B...B   obtendo como resultado de tal escrita a seguinte expressão:  

    B...B     B...B  . Na sequência, ela dirige-se à direita, observa o último símbolo da 

n-upla   B...B   e retorna à esquerda para copiá-lo no quadrado onde está escrito  . 

Novamente, ela dirige-se à direita, observa, desta vez, o penúltimo símbolo da n-upla 

  B...B   e retorna à esquerda para copiá-lo à esquerda do primeiro símbolo anteriormente 
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copiado; este processo se repete até que todos os símbolos de   B...B   sejam copiados à 

esquerda de   B...B  . Neste cenário,    consiste das seguintes quíntuplas: 

        

        

        

 

escreve o marcador   dois quadrados à esquerda e move-se um quadrado à 

direita 

 

        

          

            

            
 

para cada i, tal que 2   i      

move-se sobre t bloco(s) de |‟s, escreve   entre    e    e, em seguida, 

dirige-se um quadrado à direita 

            

            

            

            

            

 

procura um duplo vazio à direita; ao encontrá-lo, move-se um quadrado à 

esquerda 

            

             

             

 

observando |, substitui | por  , preparando-se para copiar | à esquerda; 

observando B, substitui B por  , preparando-se para copiar B à esquerda; 

observando  , substitui   por B, preparando-se para terminar a 

computação 

            

            

            

             

            

            

 

dirige-se à esquerda: alcançando   substitui   por   e vai um quadrado à 

direita;  alcançando   copia, em seu lugar, |; alcançando   copia, em seu 

lugar, B; nos dois últimos casos, vai um quadrado à esquerda 

 

             

 

imprime   no quadrado mais à esquerda, marcando o lugar no qual será 

copiado | 
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move-se à esquerda até alcançar  , copia, em seu lugar, | e vai um 

quadrado à esquerda 

              

 

imprime   no quadrado mais à esquerda, marcando o lugar no qual será 

copiado B  

              

              

              

             

             

 

dirige-se à direita: alcançando    substitui   por |; alcançando   

substitui   por B; em ambos os casos move-se um quadrado à esquerda 

 

              

              

              

              

 

desloca-se para a esquerda, substitui   por |; vai um quadrado à direita  e, 

em seguida, retorna para o quadrado da esquerda, terminando, assim, a 

computação 

Portanto, seguindo rigorosamente as instruções de   , obtemos para qualquer input 

  B...B     B...B   (sendo     e    ) uma computação em cuja descrição instantânea 

terminal a n-upla   B...B   ocorre também à esquerda de   B...B  , sendo imediatamente 

precedida por pelo símbolo de estado interno   (  ). 

Lema 2.16 Para cada     e    , existe um programa de Turing (t+n)-regular    tal que 

     
(    B...B     B...B  ) =   (  )  B...B     B...B  . 

Prova: 

O programa   , tal qual   , faz a máquina copiar a n-upla   B...B   à esquerda de 

  B...B  , mas diferentemente de   ,    não conserva do lado direito a n-upla original 

  B...B  . De fato, a cada símbolo de   B...B   copiado à esquerda de   B...B  , a 

máquina comandada por    retorna à direita e, antes de observar qual será o próximo símbolo 

que copiará, apaga o símbolo da n-upla original anteriormente copiado. 
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Diante do exposto, definimos    como o programa de Turing que contém todas as 

quíntuplas de   , exceto a quíntupla              no lugar da qual assumiremos 

            . Esta substituição é fundamental. Com efeito, durante a cópia sob os 

comandos de   , cada | presente na n-upla original é substituído por   que, por sua vez, será 

substituído por |. O programa   , ao contrário, determina a  substituição de   por B, 

impedindo, desta forma, que a n-upla original seja reescrita.  

Lema 2.17 Para cada programa de Turing n-regular P, existe um programa de Turing n-

regular    tal que: 

(1) se     (    B...B  ) =   ( )  B...B  , então      (    B...B  ) = 

  (  )  B...B  B  B...B  . 

(2) se     (    B...B  ) estiver indefinido, então      (    B...B  ) também estará 

indefinido. 

Prova: 

Ora, como o programa de Turing P é n-regular, então, de acordo com o lema 2.14, há 

um programa de Turing (n+n)-regular   , tal que      (    B...B     B...B  ) = 

  (  )  B...B  B  B...B  . Sabendo disso, considere      (  )     
 (  (  ))

   . 

Portanto, como queríamos provar, se     (    B...B  ) estiver definido, nós temos: 

     
(    B...B  ) =      B...B     B...B   

     (  )(     B...B     B...B  ) =   (  (  ))  B...B  B  B...B  . 

   
  
 (  (  ))(  (  (  ))                   )    (  )  B...B  B  B...B   . 

Lema 2.18 Sejam   , ...,    programas de Turing (para k   1). Então, há um programa de 

Turing n-regular    tal que      (    B...B  ) =  

  (  )   

 (       )B...B   

 (       ). 

Prova (por indução em k): 

Para k = 1,    é o programa    obtido de acordo com lema 2.13.  

Considerando    o programa    para um k qualquer, mostraremos, a seguir, que 

também existe um programa    para k + 1. 
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Sejam   , ...,      programas de Turing e seja    =    

 (       ), para 1   i   k + 

1. Por hipótese da indução, há um programa de Turing n-regular   , tal que 

     
(    B...B  ) =   (  )   

 (       )B...B   

 (       ) =   (  )  B...B  . 

Sendo assim, pelo lema 2.17, há um programa de Turing n-regular    tal que 

     
(    B...B  ) =   (  )  B...B  B  B...B  . Além disso, dado o programa     , 

existe, de acordo com o lema 2.13, um programa de Turing n-regular   , tal que 

     
(    B...B  ) =   (  )     e, uma vez, dispondo  do programa   , existe, de acordo 

com o lema 2.14, um programa de Turing (k+n)-regular   , tal que 

     
(    B...B  B  B...B  ) =   (  )  B...B  B    . Portanto, em linhas gerais, para k 

+ 1,    =      
( (  )). Com estes resultados, o lema 2.18 está provado.   

Lema 2.19 Se   , ...,    são funções n-árias parcialmente Turing-computáveis e f é uma 

função m-ária parcialmente Turing-computável, então a função h(       ) = 

f(  (       ), ...,   (       )) também é parcialmente Turing-computável. 

Prova: 

De acordo com o lema anterior, há um programa de Turing n-regular    tal que 

     (    B...B  ) =   (  )  (       )B...B  (       ). Se    é um programa de Turing 

para computar a função f, então   =      
( (  )) será o programa de Turing que computará a 

função h obtida a partir de g e f por composição. Portanto, a função h também é parcialmente 

Turing-computável.  

Neste cenário, se f e cada    (para 1   i   m) estiverem definidos, nós teremos:   

     (    B...B  ) =    (  )   (       )B...B  (       ) 

   
  
( (  ))(  (  )  (       )B...B  (       )) = c, sendo [c] = f(  (       ), ..., 

  (       )) = h(       ) 

Caso contrário, o     (    B...B  ) permanecerá indefinido. 

Lema 2.20 Se g é uma função n-ária parcialmente Turing-computável, f é uma função n+2-

ária parcialmente Turing-computável e h é obtida a partir de g e f por recursão primitiva, 

então h é parcialmente Turing-computável. 
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Prova: 

Para computar a função h(         ), construiremos um programa de Turing Z tal 

que dado o argumento   B...B    , a máquina comandada por Z verifica, inicialmente,  se y 

= 0 ou se y   0. Ocorrendo o primeiro caso, a máquina apaga o último |, vai ao | mais à 

esquerda, aplica o programa n-regular para g obtido pelo lema 2.13 (com os índices dos 

símbolos de estado interno devidamente aumentados) sobre   B...B   e finaliza a 

computação, apagando o primeiro | de  (       ). Caso contrário, ou seja, sendo y = z + 1, a 

máquina escreverá   depois do último |, obtendo, deste modo,   B...B       ; em seguida, 

copiará esta n+1-upla à direita de  , sem imprimir o último | de     – 

  B...B         B...B     – logo depois, a máquina escreverá   no quadrado 

imediatamente à direita de    e copiará   B...B    , não imprimindo o último | de   e 

escrevendo   ao final. Este procedimento se repete até que todos os traços de     sejam 

eliminados, fato que ocorre quando alcançamos a seguinte expressão: 

  B...B         B...B         B...B       B...B   

Em seguida, a máquina aplicará o programa n-regular para g à   B...B  , acarretando 

a expressão abaixo, na qual    = g(       ): 

  B...B         B...B         B...B        

Depois, a máquina apagará o último   e aplicará o programa n+2-regular para f 

(também obtido pelo lema 2.13) à   B...B       . Este procedimento se repete até   ser 

alcançado. Quando isso acontece, a máquina aplicará o programa n+2-regular para f à 

  B...B     e eliminará um |. Na sequência, ela vai à até o primeiro |, apagará todos os |‟s à 

esquerda de  , inclusive   e termina a computação.   

Seja    o seguinte programa de Turing: 

        

        

        

        

 

move-se à direita até alcançar um duplo vazio 



47 
 

        

        

 

move-se dois quadrados à esquerda para verificar se y = 0 ou se y   0 

Sendo assim, com respeito a   , nós temos duas situações alternativas: (1) Se y = 0, 

então      
(    B...B    ) =   B...B      ; (2) Se y =    , então 

     
(    B...B      ) =   B...B    

    | 

 Se (1) ocorre, considere K como um programa n-regular para computar g e    como o 

programa que consiste de todas as quíntuplas de  ( ) e das quíntuplas abaixo, sendo U 

=  ( ( )): 

        

        

 

vai um quadrado à direita e apaga o último traço 

        

        

        

        

        

        

        

 

move-se à esquerda até alcançar um duplo vazio e vai dois quadrados à direita 

para iniciar a computação de   B...B   segundo  ( )  

          

 

apaga o primeiro | de  (       ) e termina 

Então,      
(  B...B      ) =   (  ) 

 (       ) =   (  ) 
 (         ) e, assim, finaliza-

se a computação. 

Se (2) ocorre, considere o programa de Turing    abaixo, sendo F =  (  ): 

          

            

            

 

move-se à direita até alcançar um duplo vazio 

            

            

imprime   no segundo quadrado vazio; em seguida, imprime   no 

primeiro quadrado vazio 
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dirige-se à esquerda até alcançar um  ,   ou um duplo vazio para iniciar 

o procedimento de cópia da última n+1-upla à direita 

            

             

             

             

 

observando |: substitui | por  , preparando-se para copiar | à direita; 

observando B: substitui B por  , preparando-se para copiar B à direita; 

observando   ou  : prepara-se para terminar a cópia 

            

            

            

            

             

             

             

 

move-se à direita; observando  : substitui   por   e vai um quadrado à 

esquerda; observando  : copia, em seu lugar, |; observando  : copia, em 

seu lugar, B; nos dois últimos casos, vai um quadrado à direita 

              

 

imprime   no quadrado mais à direita, marcando o lugar no qual será 

copiado | 

              

              

              

              

              

 

move-se à direita; observando  : copia, em seu lugar, | 

              imprime   no quadrado mais à direita, marcando o lugar no qual será 

copiado B 
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desloca-se à esquerda; observando  : substitui   por |; observando  : 

substitui   por B 

              

              

              

 

vai à direita; observando  : substitui   por B, finalizando, assim, a cópia 

da n+1-upla anterior sem imprimir o seu último |  

              

              

              

              

             

 

dirige-se um quadrado à esquerda; observando B, finaliza-se o 

procedimento total de cópia, tendo sido eliminados todos os |‟s de    ; 

observando |, vai um quadrado à direita e prepara-se para copiar a última 

n+1-upla 

              

              

              

 

vai à esquerda; alcançando  , vai um quadrado à direita para iniciar a 

computação da n-upla   B...B   segundo o programa n-regular para g 

Então, com respeito ao programa   , nós temos que      
(  B...B    

    |) = 

  B...B         B...B     ...   B...B            B...B  . 

Agora, sendo N =  ( (    )), assuma    como o programa de Turing que contém 

todas as quíntuplas de  (    ) e, além disso, contém, para cada    de  (    ), as quíntuplas 

apresentadas abaixo: 

          

          

 

interrompe a computação; alcançando  : substitui   por  ; alcançando  : 

substitui   por  . 
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vai à esquerda até alcançar um duplo vazio 

              

              

              

              

              

              

 

move-se uma quadrado à direita: alcançando   ou  , apaga-os.  

              

              

              

              

              

              

 

observando |, B,   ou  , prepara para copiar no quadrado anterior |, B,   

ou  , respectivamente; observando   ou   prepara para copiar no 

quadrado anterior   ou  , respectivamente 

              

              

              

              

 

copia | 

              

 

copia B 

              

              

 

copia   

              copia   
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vai um quadrado à direita e retoma a computação 

Sob os comandos de   , a máquina de Turing aplica o programa n-regular 

 (    ) para g a   B...B  . Se durante esta computação,   é alcançado, ele e todos os 

símbolos da fita que o antecedem são movidos um quadrado à esquerda, criando assim um 

novo espaço para que a computação segundo  (    ) seja concluída. Sendo assim, temos que 

     
(  B...B         B...B     ...   B...B            B...B  ) = 

  B...B         

  B...B     ...   B...B           

Considerando L =  (  ), assuma    como o seguinte programa de Turing: 

        

          

 

vai um quadrado à esquerda e apaga    

            

            

            

            

dirige-se à esquerda; alcançando   ou  , move-se um quadrado à direita  

 

A máquina de Turing, seguindo as ordens do programa    , apaga o   mais à direita e 

procura o próximo   (ou  ) à esquerda. Ao alcançá-lo, vai um quadrado à direita para iniciar a 

computação segundo o programa n+2-regular para a função f. Neste contexto, temos que 

     
(  B...B         B...B     ...   B...B         ) = 

  B...B         B...B    

  ...       B...B        . 

Agora, sendo R um programa n+2-regular para f e S =  ( (   )), considere    como o 

programa de Turing que contém        ,            todas as quíntuplas de  (   ), e, além 

disso, contém, para cada    de  (   ) as quíntuplas adicionais de    sendo as ocorrências de 

N substituídas por S.  
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De acordo com   , a máquina de Turing aplica o programa  (   ) sobre a n+2-upla 

anteriormente obtida. Se durante esta computação,   ou   são alcançados, eles e todos os 

símbolos da fita que os antecedem são movidos um quadrado à esquerda, criando assim um 

novo espaço para que a computação segundo  (   )  seja concluída. Quando isso acontece, a 

máquina vai um quadrado à esquerda; encontrando    elimina-o e procura o próximo   (ou  ) 

à esquerda. Ao alcançá-lo, a máquina vai para o quadrado imediatamente à direita e aplica o 

programa  (   ) à n+2-upla que acabou de ser obtida com a última eliminação de  ; 

encontrando  , prepara-se para concluir a computação. Sendo assim, temos que: 

     
 (    B...B                B...B        ...         B...B        ) =    B...B        

     (           ).  

Seja M =  (  ). O programa    é composto pelas seguintes quíntuplas: 

          

 

observando  : vai um quadrado à direita, preparando-se para terminar 

            

 

apaga um | do bloco   (           ) 

            

            

            

            

            

 

move-se à esquerda até alcançar um duplo vazio 

            

            

            

 

apaga a n+1-upla   B...B      ; apaga   e termina 

Então,      
(  B...B           (           )) =   (  )  

 (           ). 

Finalmente, seja Z =                        Então, se houver uma 

computação para a n+1-upla (         ) de acordo com Z, teremos: 

(1) Sendo y = 0,     (    B...B    ) =   (  ) 
 (         ) 

(2) Sendo y   0,     (    B...B    ) =   (  )  
 (         ) 
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Evidentemente, se h(         ) estiver indefinida para y, estará indefinida também 

para todo w   y. Neste termos, Z constitui um programa de Turing para computar 

h(         ). Portanto, como existe um tal programa, a função h obtida por recursão 

primitiva a partir da funções parcialmente Turing-computáveis   e f é também parcialmente 

Turing-computável.  

Lema 2.21 Se g é uma função n+1-ária parcialmente Turing-computável, então a função 

h(       )     ( (         y) = 0) é parcialmente Turing-computável. 

Prova: 

Construiremos para a função h um programa de Turing de acordo com o qual a 

máquina computará para cada y   0 a função  (         y) até alcançar o primeiro y tal que 

 (         y) = 0. Se um tal y não existir, a máquina entrará em loop. 

Seja    o seguinte programa de Turing:  

        

        

        

        

 

imprime um | à direita do último B que encerra a n-upla 

        

        

        

        

        

 

move-se à esquerda até que um duplo vazio seja alcançado; em seguida, move-

se dois quadrados à direita 

Então,      
(    B...B  ) =     B...B    .  

Seja Y o programa para computar a função  (         y) e, Y‟ o programa n+1-

regular obtido a partir de Y pelo lema 2.13. Então,      (    B...B    ) = 

  (  ) (         ). Considere, agora, Y‟ como sendo o programa de Turing P do lema 2.17. 

Então, por este mesmo lema, há um programa n+1-regular    tal que      (    B...B    ) 

=   (  ) (         )B  B...B    . Neste contexto, sendo N =  (  ( )), temos 

que      ( )(    B...B    ) =    (         )B  B...B    . 
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Seja    o programa de Turing contendo as seguintes quíntuplas: 

          

            

            

            

 

apaga o primeiro | de  (         )  e vai um quadrado à direita: (1) 

observando | (caso em que  (         y)   0), move-se um quadrado à 

esquerda e retorna um quadrado à direita; (2) observando B (caso em que 

 (         y) = 0), substitui B pelo próprio B, vai à direita e prepara para 

terminar  

Então, com respeito a   , obtemos duas configurações instantâneas terminais 

alternativas: (1) se  (         y) = k   0,      
(   (         )B  B...B    ) = 

     
 B  B...B    ;  (2) se  (         y) = 0,       

(   (         )B  B...B    ) = 

      B...B    .  

Assuma    como o seguinte programa: 

            

            

 

apaga  (         y) |‟s e move-se um quadrado à direita 

            

            

            

            

            

 

desloca-se à direita até alcançar um duplo vazio, acrescenta um | a   e vai 

um quadrado à esquerda 

            

            

            

          

 

move-se à esquerda até alcançar um duplo vazio e, em seguida, vai um 

quadrado à direita, preparando–se, deste modo, para iniciar a computação 

de   B...B      segundo   ( ) 

Então, nestes termos,      
(     

 B  B...B    ) =   B  B...B        

Seja   o programa de Turing que computa a função     
   (         y). Neste caso, 

como sabemos,     (    B...B    ) = c, tal que [c] = y. Considere, agora, o programa 

 (   ). De modo análogo,     (   )(      B...B    ) = c, tal que [c] = y. Sendo assim, 

sob os comandos de  (   ), alcançamos, finalmente, o resultado que procurávamos, a saber, 

  ( (         y) = 0), ou seja, o valor da função h(       )  
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Portanto, em síntese, H =      ( )          (   ) constitui o programa de 

Turing para computar h(       ). Como existe um tal programa, a função h(       ) 

obtida por minimização ilimitada a partir da função parcialmente Turing-computável 

 (         y) é também parcialmente Turing-computável. 

Teorema 2.22 Toda função parcial recursiva é parcialmente Turing-computável. 

Prova: 

Como vimos, as funções iniciais são parcialmente Turing-computáveis e, de acordo 

com os lemas 2.19, 2.20 e 2.21, o conjunto das funções parcialmente Turing-computáveis é 

fechado em relação às operações básicas. Logo, o conjunto das funções parciais recursivas 

está contido no conjunto das funções parcialmente Turing-computáveis.   

Corolário 2.23 Toda função recursiva é Turing-computável. 

Prova: 

 Obtida por particularização do teorema anterior. 

2.2.2 Toda função parcialmente Turing-computável é parcial recursiva 

 Conforme dissemos anteriormente, em outras palavras, o nosso principal objetivo, 

neste capítulo, é provar o seguinte teorema: uma função numérica f é parcial recursiva se, e 

somente se, f é parcialmente Turing-computável. Parte deste objetivo acabou de ser alcançada 

com a prova do teorema 2.22. Falta-nos ainda provar que se f é parcialmente Turing-

computável, f é parcial recursiva. Para isso, aritmetizaremos, a la Gödel, a teoria das 

máquinas e programas de Turing.  

A aritmetização godeliana foi, inicialmente, utilizada para traduzir os enunciados 

metamatemáticos da Aritmética Elementar de Primeira Ordem de Peano para a linguagem da 

própria aritmética composta por números naturais. De modo semelhante, podemos aritmetizar 

qualquer linguagem formal, atribuindo números aos seus componentes básicos de modo que: 

(1) Objetos distintos tenham números distintos. 

(2) Dado um objeto qualquer, possamos efetivamente encontrar o seu número. 

(3) Dado um número qualquer, possamos efetivamente decidir se ele está atribuído a algum 

objeto e, se estiver, a qual objeto. 
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Para aritmetizar a teoria das máquinas e programas de Turing, começaremos 

codificando os símbolos, expressões e sequências finitas de expressões de L.   

Definição 2.24 Seja A = {k : k é um símbolo de L}.O código de k é o número natural g(k) 

determinado pela função injetiva g: A →   tal que: 

(1) se k = R, g(k) = 3; se k = L, g(k) = 5; 

(2) se k =   , g(k) = 7 + 4i, para i ≥ 0; 

(3) se k =  , g(k) = 9 + 4i, para i ≥ 0.  

Os códigos obtidos de acordo com a definição acima são facilmente gerados 

obedecendo a sequência estabelecida na tabela abaixo. 

R L                           

3 5 7 9 11 13 15 17 19 21   

 

Definição 2.25 Seja B = {r : r é uma expressão de L}. O código de r, para r =        , é o 

número natural g‟(r) determinado pela função injetiva g‟: B →   tal que g‟(r) = ∏   
 (    )

   . 

Por convenção, se r é uma expressão vazia, g‟(r) = 1.  

Nestes termos, se r =         , g‟(r) =  
 (  )    ( )    (  )    (  )     ( ) = 

                 . 

Definição 2.26 Seja C = {t : t é uma sequência finita de expressões de L}. O código de t, para 

t =        , é o número natural g‟‟(t) determinado pela função injetiva g‟‟: C →   tal que 

g‟‟(t) = ∏   
  (    )

   . 

Dada a seguinte sequência de expressões: 

   =       

   =          

   =    

Se t =           , então g‟‟(t) =  
  (  )     (  )     (  ) =               

                      
        

. 

Considerando as codificações acima sugeridas, algumas observações serão 

convenientes:  
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 Como g, g‟ e g‟‟ são funções injetivas totais, além de cada símbolo, cada expressão e 

cada sequência de expressões de L ter um único código, símbolos diferentes, 

expressões diferentes e sequências diferentes de expressões de L terão códigos 

diferentes. 

 Dado um número natural n   0, podemos, sem grandes dificuldades, identificar se n é 

código de um símbolo, expressão ou de uma sequência de expressões de L da seguinte 

maneira: 

(1) se n é ímpar e maior que 1, então n é código de um único símbolo de L;  

(2) se n = 1 ou se n é par e a sua decomposição consiste no segmento inicial do 

conjunto dos números primos com expoentes ímpares maiores que 1, então n é código 

de uma única expressão de L;  

(3) se n é par e a sua decomposição consiste no segmento inicial do conjunto dos 

números primos com expoentes que satisfazem (2), então n é o código de uma única 

sequência de expressões de L.  

 Se n satisfaz alguma condição acima exposta, podemos ainda identificar exatamente o 

símbolo, a expressão ou a sequência de expressões que n codifica; para isso, basta 

recuperar, considerando a definição 2.24, os símbolos ou a expressão vazia 

codificados pelos expoentes ímpares. 

Definição 2.27 Seja P um programa de Turing, o número natural n é um código de P se, e 

somente se, n é o código de uma sequência das quíntuplas de P.  

Como consequência da definição anterior, se P contém x quíntuplas, P possuirá x! 

códigos, correspondentes às x! permutações de suas quíntuplas.  

Para concluirmos a aritmetização a qual nos propomos, apresentaremos uma lista de 

relações que transpõem para a linguagem aritmética as definições referentes à Teoria das 

máquinas e dos programas de Turing apresentadas na primeira seção deste capítulo. Estas 

relações são as seguintes: 

(1)    *        ( )  ,( )    ( )     -+ 

  ( ) se, e somente se, a decomposição de x ocorre no segmento inicial dos números primos. 

(2) Term  *(   )    ( )       ( ),  ( ) -+ 
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Term(   ) se, e somente se, x é um dos expoentes da decomposição de z. 

(3) SI = {x :     ,      -}  

SI(x) se, e somente se, x é código de um símbolo de estado interno. 

(4) AI  *      ,      -+ 

AI(x) se, e somente se, x é código de um símbolo da fita. 

(5) Quint = {x :   ( )    ( )      SI(( ) )   AI(( ) )   AI(( ) )   (( )     ( )  

 )    SI(( ) )} 

Quint(x) se, e somente se, x é código de uma quíntupla. 

(6) Inc = {(x, y) : Quint(x)   Quint(y)   ( )  = ( )    ( )  = ( )    x   y} 

Inc(x, y) se, e somente se, x e y são códigos de quíntuplas inconsistentes. 

(7) PT = {z :   ( )        ( ) [Quint(( ) )         ( ) [Inc(( ) , ( ) )]]} 

PT(z) se, e somente se, z é código de um programa de Turing. 

(8) A função NR(x) determina o código da expressão   da seguinte maneira: 

NR(0) =       

NR(x + 1) =      NR(x) 

(9) A função      (  , ...,   ) determina o código de uma configuração instantânea inicial 

    B...B   da seguinte maneira: 

     (  , ...,   ) =     NR(  )       ...      NR(  ) 

(10) CI = {x :   ( )        ( )  ,SI(( ) )        ( ),     AI(( ) )]]} 

CI(x) se, e somente se, x é código de uma configuração instantânea.  

(11)        = {(x, y, z) : CI(x)   CI(y)   PT(z)                                         [x 

=                  y =                  SI(i)   SI(l)   AI(k)   AI(t)   AI(p)   

Term(                 )]} 

       (x, y, z) se, e somente se, sendo    e    expressões possivelmente vazias, x é o código 

de           , y é o código de           , e o programa de Turing, que z tem como um de 

seus códigos, contém a quíntupla (  ,   ,   , R,   ) 



59 
 

(12)        = {(x, y, z) : CI(x)   CI(y)   PT(z)                                   [x = 

           y =              SI(i)   SI(l)   AI(k)    AI(t)   

Term(                 )]} 

       (x, y, z) se, e somente se, sendo    uma expressão possivelmente vazia, x é o código 

de        , y é o código de          e o programa de Turing, que z tem como um de seus 

códigos, contém a quíntupla (  ,   ,   , R,   )  

 (13)        = {(x, y, z) : CI(x)   CI(y)   PT(z)                                         [x 

=                  y =                  SI(i)   SI(l)   AI(k)   AI(t)   AI(p)   

Term(                 )]} 

(14)        = {(x, y, z) : CI(x)   CI(y)   PT(z)                                   [x = 

           y =               SI(i)   SI(l)   AI(k)   AI(t)   

Term(                 )]}  

As relações        (x, y, z),      , correspondem à contraparte aritmética da definição 

2.6. 

(15)        = {(x, y, z) :        (x, y, z)         (x, y, z)         (x, y, z)         (x, y, 

z)} 

       (x, y, z) se, e somente se, x acarreta y via z. 

(16) Fin = {(x, z) : CI(x)   PT(z)                         [x =               SI(i)   

AI(k)        ( ),(( ) )    i   (( ) )  )   ]]} 

Fin(x, z) se, e somente se, x é o código de uma configuração instantânea terminal com 

respeito a um programa de Turing que tem z como um de seus códigos. 

(17) Comp = {(y, z) : PT(z)        [  ( )        ( )   [      (( ) , ( )   , z)   

Fin(( )  ( )    )-   y =   . ∏     
( ) 

    ( ) ]} 

Comp(y, z) se, e somente se, y é o código de uma computação com respeito ao programa de 

Turing de código z. Deste modo, y não é simplesmente o código de uma mera computação, 

mas de uma computação associado a um dos códigos do programa que a permite. Observe que 

como um programa de Turing com n quíntuplas possui n! códigos, então uma computação de 

acordo com este programa terá n! códigos, o que nos autorizará mencionarmos, mais adiante, 

o menor código de uma computação com respeito a um programa de Turing. 
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(18)    *(           )   Comp(y, z)   ( )  =      (  , ...,   )} 

  (           )  se, e somente se, y é o código de uma computação com input (       ) 

realizada de acordo com um programa de Turing de código z. 

Todas as relações acima definidas são claramente recursivas primitivas. Abaixo, 

apresentaremos três funções também recursivas primitivas, dentre as quais a última delas 

determina o valor de uma computação de acordo com um programa de Turing. 

(a) A função C(n, x) estabelece se ( )  é ou não o código de |. 

C(n, x)  {
         ( )    

         ( )    
 

(b) Se x é código de uma expressão, então a função Out(x) determina o números de |‟s de x. 

Out(x) = ∑  (   )    ( )  

(c) Se x é o código de uma computação de acordo com z, isto é, x =            
   sendo 

  , ...,    códigos das configurações instantâneas   , ...,   , respectivamente, então U(x) 

estabelece o número de |‟s presentes na configuração instantânea terminal. 

U(x) = Out(( )  ( )  ) 

Aritmetizada a teoria das máquinas e programas de Turing, dispomos agora dos 

instrumentos necessários para obtermos como corolário do Teorema da Forma Normal de 

Kleene, que será provado mais adiante, o resultado que buscávamos: toda função 

parcialmente Turing-computável é parcial recursiva. A prova deste teorema requisitará o lema 

seguinte.  

Lema 2.28 Se P é um programa de Turing e z, um de seus possíveis códigos, temos que: 

(1) dom(  
 (  , ...,   )) = dom(  (  (    , ...,     ))) 

(2)   
 (  , ...,   ) = U(  (  (    , ...,     ))) 

 

Prova: 

(1) Pela definição 2.10,   
 (  , ...,   )   se e somente se existe uma computação de acordo 

com P para a n-upla (  , ...,   ); em termos aritméticos, isso ocorre se, e somente se, existe 



61 
 

um número y, tal que   (    , ...,     ). Sendo assim, neste caso,   (  (    , ...,     )) 

também está definido. 

(2) Como vimos, ainda pela definição 2.10, se   
 (  , ...,   )  , então    

 (  , ...,   ) = 

,    (    B...B  )]. Por outro lado, se existe um y tal que   (    , ...,     ) e w = 

  (  (    , ...,     )), então ( )  ( )   é o código da configuração instantânea terminal    

de y e U(w) = [  - = ,    (    B...B  )]. Portanto, existindo uma computação de acordo 

com P para a n-upla (  , ...,   ),   
 (  , ...,   ) = U(  (  (    , ...,     ))).  

Teorema 2.29 (Teorema da Forma Normal de Kleene) Uma função numérica h(  , ...,   ) é 

parcialmente Turing-computável se, e somente se, existe um z tal que h(  , ...,   ) = 

U(  (  (    , ...,     ))). 

Prova: 

1º lado: A função h(         ) é parcialmente Turing-computável. Então, segundo a definição 

2.10, existe um programa de Turing P tal que h(         ) =   
 (         ). Pelo lema 2.28, 

  
 (  , ...,   ) = U(  (  (    , ...,     ))). Portanto, h(         ) = U(  (  (    , ...,     ))), 

para algum código z de P.  

2º lado: Existe um z tal que h(  , ...,   ) = U(  (  (    , ...,     ))). Pelo lema 2.28,   
 (  , 

...,   ) = U(  (  (    , ...,     ))). Portanto, h(         ) =   
 (         ), para algum 

programa de Turing P. Em outras palavras, segundo a definição 2.10, h(  , ...,   ) é 

parcialmente Turing-computável. 

Corolário 2.30 Se h(  , ...,   ) é parcialmente Turing-computável, então h(  , ...,   ) é 

parcial recursiva. 

Prova: 

De acordo com o teorema anterior, se h(  , ...,   ) é parcialmente Turing-computável, 

então h(         ) = U(  (  (    , ...,     ))), para algum z.  Como U(  (  (    , ..., 

    ))) é, claramente, parcial recursiva, então, por consequência, h(  , ...,   ) também o é.  

Corolário 2.31 Se h(  , ...,   ) é Turing-computável, então h(  , ...,   ) é recursiva. 

Prova: 

Obtida por particularização do corolário anterior. 

2.3 Tese de Church-Turing 

No ano de 1936, Alan Turing publica o artigo On the Computable numbers with an 

application to the Entscheidunsproblem, no qual apresenta as suas máquinas abstratas como 
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representação formal para a noção intuitiva de procedimento efetivo, idealizadas segundo ele, 

de acordo com o ato de computar do “computador humano”. Para Turing, os inúmeros 

procedimentos computacionais realizados pelo homem, orientados por instruções previamente 

estabelecidas, podiam também ser executados por suas máquinas. Esta constatação o levou a 

enunciar a sua famosa tese - a Tese de Turing - apresentada, normalmente, sob duas versões. 

Tese de Turing (versão estrita) 

Toda função algorítmica é Turing-computável. 

Tese de Turing (versão estendida) 

Toda função parcial algorítmica é parcialmente Turing-computável. 

Identificação equivalente a esta foi obtida, de maneira independente, por Alonzo 

Church, utilizando as funções lambda-definíveis, versão formal que ele propôs para o 

conceito de função algorítmica. Na literatura especializada, usa-se comumente o termo “Tese 

de Church-Turing”, fazendo jus a ambos os autores que a enunciaram. 

Sobre esta tese, Kalmár afirma: 

[Ela] não é um teorema matemático que possa ser provado ou refutado num 

sentido matemático exato, pois estabelece a identidade de duas noções, em 

que somente uma é definida matematicamente, enquanto a outra é usada 

pelos matemáticos sem uma definição exata. (KALMÁR, 1957, p. 72-73) 

Embora não haja, para esta tese, uma demonstração, ela é largamente admitida, pois 

existem fortes argumentos “empíricos” que lhe dão plausibilidade, dentre os quais 

destacamos:  

(1) Apesar das inúmeras tentativas, nunca se conseguiu apresentar uma função algorítmica ou 

parcial algorítmica que não fosse, respectivamente, Turing-computável ou parcialmente 

Turing-computável. 

(2) Até hoje, todas as tentativas de caracterizar formalmente as noções vagas e imprecisas de 

função algorítmica e função parcial algorítmica forneceram exatamente as mesmas classes de 

funções, a saber, a classe das funções Turing-computáveis e a classe das funções parcialmente 

Turing-computáveis. 

Os argumentos contrários à Tese de Church-Turing, por sua vez, nunca foram fortes o 

suficiente para refutá-la. Ela é aceita pela maioria dos matemáticos e cientistas da computação 

e os poucos que demonstram algum grau de descrença quanto ao seu enunciado são tachados 
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como excêntricos. No capítulo seguinte, vamos utilizá-la como método informal de prova 

para a obtenção de alguns resultados. Em Teoria da Computabilidade, esta prática é 

recorrente, como pode ser atestado a seguir nas palavras do matemático Cohen (apud 

CARNIELLI, EPSTEIN, 2009, p.300): 

Ou seja, desde que tenhamos dado um argumento intuitivo de que a função é 

[parcialmente] computável [...] afirmamos então que a Tese de Church nos 

diz que a função é recursiva parcial. Isto simplifica cálculos tediosos; os 

leitores devem se convencer, no entanto, que todas as vezes que a Tese de 

Church é usada, uma prova formal pode ser elaborada por alguém que seja 

suficientemente industrioso. 

Por fim, atentos ao enunciado da Tese de Church-Turing, podemos, em última análise, 

considerá-la como uma tentativa de se determinar precisamente o alcance e os limites da 

computação teórica. Com ela, acredita-se que se tenha definitivamente, captado, de forma 

precisa, as noções intuitivas de algoritmo e de função algorítmica.  
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3 PROBLEMA DA DECISÃO PARA OS SUBCONJUNTOS DAS FUNÇÕES 

PARCIAIS RECURSIVAS 

Nos capítulos anteriores, vimos que as funções (parciais) recursivas ou (parcialmente) 

Turing-computáveis são (parciais) algorítmicas. Mas será que os conjuntos dessas funções 

também são algorítmicos? E os seus subconjuntos próprios: o que dizer sobre eles? Para 

responder estas perguntas, mostraremos, neste capítulo, como enumerar efetivamente os 

programas de Turing e as funções parciais recursivas. Com o auxílio desta enumeração, 

vamos provar o Teorema s-m-n de Kleene, utilizado na demonstração de diversos teoremas da 

Teoria da Computabilidade. Contextualizaremos o problema da decisão para uma relação 

numérica qualquer, introduzindo, deste modo, conceitos importantes como solubilidade e 

insolubilidade recursiva a fim de apresentarmos, em termos formais, alguns problemas 

insolúveis, dentre eles, o famoso Problema da Parada. Por fim, apresentaremos o Teorema de 

Rice, com o qual alcançaremos o nosso último objetivo, a saber: provar, por um lado, a 

decidibilidade do conjunto das funções parciais recursivas e, por outro, a indecidibilidade dos 

conjuntos das funções recursivas e das funções recursivas primitivas. 

3.1 Lista efetiva de programas e funções 

Considerando a codificação dos programas de Turing apresentada no capítulo anterior, 

sabemos que cada programa possui ao menos um código e cada um deles, por sua vez, 

codifica um único programa. Isto posto, estabeleceremos, a seguir, um modo, dentre muitos, 

de se construir uma lista             de todos os programas de Turing  na qual    denotará o 

x-ésimo programa listado. 

Definição 3.1 Seja    o programa de Turing que tem x como um de seus códigos. O x-ésimo 

programa da lista             é determinado de acordo com a seguinte função: 

   = {
                                                ( )

*               +           ( )
 

Em outras palavras, a construção da lista obedece ao seguinte raciocínio: dado um 

número natural x qualquer, se x é código de um programa de Turing, então   , o x-ésimo 

programa da lista, será   ; se x não é código de um programa de Turing,    será o programa 

*               + que computa a função vazia, indefinida para quaisquer argumentos. 

A respeito desta lista, convém explicitar alguns aspectos a ela associados:  
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(1) sua construção é efetiva: dado um número natural x, podemos determinar mecanicamente 

se x é ou não código de um programa de Turing; em caso afirmativo, podemos, via 

decomposição de x, recuperar precisamente o programa que x codifica e, em ambos os casos, 

somos capazes de identificar, também mecanicamente, o programa   . 

(2) ela comporta a possibilidade de repetições de programas: de acordo com a codificação 

apresentada, um programa com n quíntuplas, possui n! códigos; sendo assim, ele ocorrerá n! 

vezes na lista; além disso, o programa *               + ocorrerá na lista todas as vezes em 

que x não for código de programa. 

(3) ela torna possível a elaboração de uma listagem efetiva de todas as funções parcialmente 

Turing-computáveis: segundo a definição 2.10, um programa computa uma única função n-

ária para cada n ≥ 1, então a partir da lista de programas, podemos elaborar, também para 

cada n ≥ 1, uma lista de funções n-árias parcialmente Turing-computáveis (como vemos 

abaixo) na qual   
  denota a função k-ária (k ≥ 1) computada segundo o programa   . 

1.   
 ,   

 ,   
 ,   

 , ... 

2.   
 ,   

 ,   
 ,   

 , ... 

                                                     3.   
 ,   

 ,   
 ,   

 , ... 

  

n.   
 ,   

 ,   
 ,   

 , ... 

  

Atentos às convenções estabelecidas, cada função   
  acima listada ou é a função 

vazia (quando o índice subscrito não é código de um programa de Turing) ou é uma função 

parcialmente Turing-computável diferente da função vazia (quando ocorre o caso contrário). 

Os índices de uma função serão os índices do programa que a computa. No entanto, 

seria um engano pensar que a função   
  computada pelo programa   , que possui um número 

finito de índices, possuiria unicamente os mesmos e a mesma quantidade de índices de   . 

Com efeito, basta acrescentar ao conjunto    quíntuplas inutilizáveis nas computações 

realizadas de acordo com tal conjunto para obtermos novos programas diferentes de    que 

computarão, da mesma forma, a função   
 .  Deste modo, uma mesma função pode ser 

computada por mais de um programa e, portanto, os seus índices não se limitarão somente aos 
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índices de um único programa que a computa. Dentro desta perspectiva, apresentamos o 

teorema seguinte.  

Lema 3.2 (Padding Lemma) Cada função parcial recursiva    possui    índices distintos e, 

além disso, para cada x, é possível determinar efetivamente um conjunto infinito de índices 

para    . 

Prova: 

Sendo    um programa qualquer, considere: 

 (x, 0) =    

 (x, y+1) =  (x, y)   *  ( (   ))       ( (   ))  + 

Cada programa  (x, y), para y   1, é obtido pelo acréscimo de uma quíntupla 

inutilizável nas computações de acordo com    ao programa anterior  (x, y-1). Deste modo, 

obtemos um conjunto infinito enumerável de programas -  (x, 0),  (x, 1),  (x, 2), ... - que 

embora distintos computam a função   . Portanto,    possui    índices distintos, cada um 

dos quais pode ser efetivamente determinado pela seguinte função: 

f (x, 0) = {
  

 ( )                                                                      ( )

                                                           ( ) 
 

f (x, y +1) = f (x, y)      ( (   ))                        ( (   ))   , 

sendo  (f (x, y)) =     (   )(     ( (   )) ((( (   )) )  = z   (( (   )) )  = z   

     ( (   ))((( (   )) )    z   (( (   )) )    z)). Em outras palavras,  (f (x, y)) é o 

código do maior estado interno de f (x, y). 

Tal como foi definida, nota-se claramente que a função f é recursiva, ou seja, f está 

definida para todos os argumentos e cada um dos seus valores é obtido algoritmicamente. 

Sendo assim, para cada x, podemos achar um conjunto infinito enumerável de índices para 

  .  

3.2 Teorema s-m-n de Kleene 

Nesta seção, teremos como principal propósito demonstrar um importante teorema da 

Teoria da Computabilidade, o chamado Teorema s-m-n de Kleene. Nossa demonstração será 

construída mediante dois lemas, que provaremos a seguir.  
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Lema 3.3 (a) Para cada número natural n, existe um programa de Turing    com estados 

internos        ...,       tal que      [    t] =          , sendo t qualquer expressão da fita; 

(b) A função a(n), que determina um dos códigos de   , é recursiva primitiva.  

Prova: 

(a) Devemos observar que a máquina comandada pelo programa   , achando-se no estado 

interno    e observando o traço mais à esquerda do input, vai para o quadrado imediatamente 

anterior (que permanecerá vazio), à esquerda dele imprime n+1 traços e assume o estado 

interno     . 

Neste cenário, o programa    é estabelecido recursivamente de acordo com as seguintes 

cláusulas: 

   = {       ,        ,        ,        } 

     =     {           ,            ,            } 

(b) Uma sequência recursiva primitiva para a função a(n) pode ser obtida a partir das 

seguintes cláusulas: 

a(0) =                                                                                                         

a(n+1) = a(0)   ∏  ,   
     (   )                        (   )

          
     (   )                       (   )

 

     
     (   )                      (   )

- 

Lema 3.4: A função S(e, n), que determina um dos códigos de   
( )

, é recursiva primitiva.  

Prova: 

A título de recordação,   
( )

 é o programa de Turing obtido a partir da substituição de 

todas as ocorrências de    em    por      . Um de seus códigos é determinado pela função 

S(e, n) que, como podemos ver abaixo, é claramente recursiva primitiva.  

S(e, n) = (   (e)   ∏    
 (( ) )        (( ) )     (( ) )     (( ) )      (( ) )    

    ( ) ) + (   (   (e))   

                               
                              

) 

Provados os lemas anteriores, podemos, agora, demonstrar o Teorema s-m-n de 

Kleene. 
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Teorema 3.5 (Teorema s-m-n de Kleene) Para cada m, n   1, existe uma função recursiva 

primitiva   
  de m+1 variáveis, tal que, para todo e,        , 

  
   (       ,        ) =    

 (          )
 (       ), 

sendo         parâmetros. 

Prova: 

Dito de outro modo, o teorema s-m-n de Kleene garante que, sendo    um programa de 

Turing qualquer e         parâmetros, existe um programa de Turing Z cujo índice é 

  
 (          ) tal que:     

     [    B...B  B 
 
B...B 

 
] =     [    

B...B 
 

] 

O primeiro passo da prova consiste em elaborar um programa Z com os seguintes 

comandos: observando o input  
 
B...B 

 
, escreva o argumento   B...B   à esquerda de 

 
 
B...B 

 
, obtendo como resultado a expressão   B...B  B 

 
B...B 

 
; por fim, aplique a 

esta expressão o programa   . O passo seguinte consiste em mostrar que a função 

  
 (          ),  pela qual se obtém um dos índices do programa Z, é recursiva primitiva. 

Sejam    
, ...,    

 programas de Turing obtidos de acordo com o lema 3.3.    
instrui 

a máquina a escrever    à esquerda de  
 
B...B 

 
, de modo que: 

      
[    

B...B 
 

] =          
 
B...B 

 
 

A partir de      
, determine      

(    ). O símbolo de estado interno de   
     

(    )

= 

 (      )      =           . A máquina regida pelo programa      

(    ) escreve      à 

esquerda de     
 
B...B 

 
, de tal maneira que: 

   
     

(    )[         
 
B...B 

 
] =                  

  
 
B...B 

 
 

De modo análogo, a partir de      
, determine      

(         )
. O símbolo de estado 

interno de   
     

(         )

=  (      )           =                . Sob os comandos de 

     

(         )
, a máquina imprime      à esquerda de        

  
 
B...B 

 
, de modo que: 

   
     

(         )[                 
  

 
B...B 

 
] = 

                        
  

 
  

 
B...B 
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Para cada    
, sendo m   i   1, executamos o procedimento descrito acima. O 

programa que escreverá, finalmente,    na extremidade esquerda será    

(             )
. 

Sendo assim, teremos que: 

   
   

(             )[                    
 
  

 
B...B 

 
] = 

                   
 
  

 
B...B 

 
 

Considere   =    
       

(    )        

(         )
  ...     

(             )
  

  
(           )

. Definido desta forma, Z é o programa de Turing que instrui a máquina a 

realizar a computação desejada.  

De acordo com os lemas 3.3 e 3.4, os programas constituintes de Z, na ordem em que 

foram apresentados possuem, respectivamente, a(  ), S(a(    ),     ), S(a(    ), 

         ), ..., S(a(  ),              ) e S(e,            ) como um 

de seus códigos. Sabendo disso, um dos códigos do programa Z é o valor da função 

  
 (          ), definida como segue: 

  
 (          ) = a(  )   S(a(    ),     )   S(a(    ),          )   ...   S(a(  ), 

             )   S(e,            ) 

O caráter recursivo primitivo da operação de concatenação e das funções obtidas pelos 

lemas 3.3 e 3.4 garante, evidentemente, que a função   
 (          ) é recursiva primitiva. 

O Teorema s-m-n de Kleene é um dos mais utilizados em Teoria da Computabilidade. 

Em geral, suas aplicações, como veremos mais adiante, seguem, normalmente, o mesmo 

modelo: apresentamos, em primeiro lugar, uma função parcial algorítmica   (m+n)-ária e, 

concluímos, via Tese de Church, que   é parcial recursiva, isto é,   =   
   ; por fim, 

utilizando o Teorema s-m-n, concluímos que existe uma função recursiva primitiva   
  tal que 

  
   (       ,        ) =    

 (          )
 (       ). Embora a função   

  possua m+1 

variáveis, este número pode ser reduzido a m variáveis: basta definirmos, por composição, 

uma função m-ária f tal que  (       ) =   
 (  

 (  
 (       ))   

 (     

  )     
 (       )). Procedendo desta maneira, suprimimos o índice e, deduzindo, 

analogamente, pelo Teorema s-m-n, que existe uma função recursiva primitiva f tal que 

  
   (       ,        ) =    (       )

 (       ).  

3.3 Problema da Parada 

Considerando a noção intuitiva de algoritmo, introduzimos o problema da decisão para  
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uma relação numérica n-ária R: Dada uma n-upla ordenada (       ) qualquer, há um 

algoritmo que nos permita sempre decidir se (       )   R ou (       )   R
4
? Ou 

simplesmente: há um algoritmo para computar a função característica de R? Se houver, 

afirmamos que o problema da decisão para R é algoritmicamente solúvel e que, portanto, R é 

decidível. Caso contrário, dizemos que o problema da decisão é algoritmicamente insolúvel 

ou que R é indecidível. De modo menos intuitivo, podemos estabelecer, via Tese de Church, a 

seguinte definição: 

Definição 3.6 O problema da decisão para uma relação n-ária R é recursivamente solúvel se, e 

somente se, R é recursiva. Do contrário, o problema é recursivamente insolúvel. 

Entre os diversos casos existentes de insolubilidade recursiva, um dos mais famosos é 

o Problema da Parada. Antes de apresentá-lo, vamos relembrar as duas situações alternativas 

que podem ocorrer quando alimentamos uma máquina de Turing com um determinado input: 

(1) ou a máquina, de acordo com um programa previamente dado, executa a computação do 

input e para após algum intervalo de tempo, fornecendo um output ou (2) ela entra em loop, 

isto é, continuará operando “eternamente” sem nunca atingir um termo. Neste caso, um output 

jamais será alcançado. Portanto, das duas, uma: ou a máquina para ou não para. 

Neste cenário, surge o Problema da parada, expresso, informalmente, pela seguinte 

pergunta: existe um algoritmo que nos permita sempre decidir, dada uma máquina de Turing 

alimentada com um input, sobre o qual ela opera, se ela para ou não? Em uma versão menos 

informal: existe um algoritmo para decidir se, dados   e y, o programa    aplicado ao input   

gera um output? Finalmente, em termos estritamente formais: o problema da decisão para o 

conjunto K = {(   ):  ( )  } é recursivamente solúvel? Na literatura especializada, o 

mesmo problema é, normalmente, apresentado em sua versão autorreferente: existe um 

algoritmo para decidir se, dado  , o programa    aplicado ao input   gera um output? O 

problema da decisão para o conjunto K = { :  ( )  } é recursivamente solúvel?  

O próximo teorema, como veremos, estabelecerá a insolubilidade recursiva do 

Problema da parada. Este é um dos resultados negativos mais importantes da Teoria da 

Computabilidade, a partir do qual podemos, facilmente, estabelecer a insolubilidade recursiva 

de inúmeros problemas de decisão. 

Teorema 3.7 O Problema da parada é recursivamente insolúvel.  

                                                           
4
 Um algoritmo com esta característica é também conhecido como procedimento de decisão. 
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Prova (por redução ao absurdo): 

Considere a seguinte lista de todas as funções parciais recursivas unárias e de seus 

possíveis valores: 

  (0)   (1)   (2) ... 

  (0)   (1)   (2) ... 

  (0)   (1)   (2) ... 

       

 

Suponhamos, por absurdo, que K é recursivo ou, equivalentemente, que a função 

característica de K é recursiva:  

  (   ) = {
            ( )  

           ( )  
 

Agora, a partir de   (   ), definimos a seguinte função: 

 ( ) = {
            (   )    

           (   )    
 

Evidentemente,   é parcial algorítmica. Então, pela Tese de Church,   é parcial 

recursiva e, portanto,  ( ) é uma das funções da lista acima, isto é,  ( ) =   ( ), para 

algum i   0. Sendo assim,  ( ) =   ( ). Neste caso, derivamos as seguintes consequências:  

Por um lado,  

  ( )      (   )      ( )       ( )       ( )   

Por outro lado,  

  ( )      (   )      ( )       ( )   

Logo, alcançamos o seguinte absurdo: 

  ( )        ( )   

Portanto, a nossa suposição inicial de que K é recursivo é falsa. Consequentemente, o 

Problema da parada é recursivamente insolúvel.  

Corolário 3.8 O Problema da parada, em sua versão autorreferente, é recursivamente 

insolúvel. 
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Prova: 

 Análoga a prova do teorema anterior. 

3.4 Teorema de Rice 

O Teorema de Rice tem uma grande força dedutiva. A partir dele, como veremos, 

podemos inferir que qualquer conjunto de índices de um subconjunto próprio das funções 

parciais recursivas que não seja vazio é indecidível. O motivo pelo qual o Teorema de Rice 

trata diretamente dos índices de funções em vez das funções propriamente ditas ficará claro 

mais adiante.  

Definição 3.9 Seja C um conjunto qualquer de funções parciais recursivas. O conjunto    = 

{      + denomina-se o conjunto dos índices de C.  

Como consequência imediata da definição acima, note-se que se      e      , 

então     . Portanto, se    , então    contém todos os índices de  . 

Teorema 3.10 (Teorema de Rice) Seja FpR o conjunto de todas as funções parciais recursivas 

unárias e seja C   FpR. O problema da decisão para    é recursivamente solúvel se, e somente 

se, C =   ou C = FpR.  

Antes de provarmos o teorema acima, convém destacar que ele, em seu enunciado, 

explicita apenas as funções parciais recursivas unárias. Isto, no entanto, não limita o seu 

alcance, pois podemos reduzir todas as funções parciais recursivas  -árias, com   ≥ 2, à 

funções parciais recursivas de uma variável, através da função J de Cantor
5
 que nos possibilita 

codificar  -uplas ordenadas. Deste modo, os resultados do Teorema de Rice se estendem, 

implicitamente, a funções parciais recursivas de qualquer aridade.  

Prova: 

Inicialmente, provaremos a segunda direção da bicondicional. Suponhamos que C =   

ou C = FpR. Por um lado, se C =  , então    =  . Como sabemos, a função característica do 

conjunto vazio,   
 ( ), é recursiva. Por outro lado, se C = FpR, então    =  . Sabemos 

também que a função característica do conjunto dos números naturais,   
 ( ), é recursiva. 

Portanto, em ambos os casos, o problema da decisão para    é recursivamente solúvel. 

                                                           
5
 Uma exposição detalhada dessa função pode ser encontrada em DIAS, M. F.; LIMA, L. W. C. Teoria da 

recursão. São Paulo: Editora UNESP, 2010, p.134. 
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Agora, por redução ao absurdo, provaremos a primeira direção da bicondicional. 

Suponhamos que o problema da decisão para    é recursivamente solúvel, ou seja, 

suponhamos que existe uma função recursiva   tal que: 

 ( ) = {
               
              

 

Sendo    a função vazia, suponhamos, por absurdo, que C     e C   FpR. Então, ou 

    C ou     C. Analisemos, separadamente, ambos os casos, a fim de derivarmos em cada 

um deles uma contradição.  

 1º caso: Admitamos que     C. Como C   FpR, existe    FpR – C, tal que 

    . Sabendo disso, considere a seguinte função:  

  (   ) = {
 ( )           ( )  

                   ( )   
 

 Tal como foi definida,    é, claramente, parcial algorítmica. Então, dada a Tese de 

Church,    é parcial recursiva. Logo, existe um índice e, tal que      . Pelo Teorema s-m-

n de Kleene,   (   ) =   ( )( ), sendo h uma função recursiva primitiva. Mas se este é o 

caso, as seguintes consequências são válidas: 

Por um lado, 

  ( )    

              (   )   ( )                (   )   ( )                ( )( )  

 ( )    ( )      ( )   FpR – C    ( )    

Por outro lado,  

  ( )                  (   )                  (   )                  ( )( )    

  ( )       ( )   C 

Ora, em resumo: 

  ( )       ( )       ( )      ( )   C 

A partir dessa conjunção, podemos inferir, pela definição dos conectivos 

proposicionais, as equivalências abaixo: 

  ( )       ( )     
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  ( )      ( )   C 

Agora, considere a seguinte função recursiva obtida por composição: 

 ( ( )) = {
            ( )    

           ( )    
 

Ou, de acordo com as equivalências anteriores:  

 ( ( )) = {
           ( )   

           ( )   
 

Sendo assim, note-se que  ( )    ( ( ( )) seria uma função característica 

recursiva para K. Isto, porém, é um absurdo, pois, como já vimos, o corolário 3.8 garante que 

o conjunto K não é recursivo. 

2º caso: Suponhamos que     C. Como C    , existe    C, tal que     . 

Sabendo disso, considere a seguinte função:  

  (   ) = {
 ( )           ( )  

                   ( )   
 

 Tal como foi definida,    é, nitidamente, parcial algorítmica. Então, considerando a 

Tese de Church,    é parcial recursiva. Logo, há um índice   , tal que       . Dado o 

Teorema s-m-n de Kleene,    (   ) =    ( )( ), para uma função recursiva primitiva   . 

Mas se este é o caso, as seguintes consequências são válidas: 

Por um lado, 

  ( )    

              (   )   ( )              

   (   )   ( )                 ( )( )   ( )     ( )        ( )    

Por outro lado,  

  ( )                  (   )                   (   )                   ( )( )  

     ( )        ( )   C 

Ora, em resumo: 

  ( )        ( )       ( )       ( )   C 
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A partir desta conjunção, podemos inferir, pela definição dos conectivos 

proposicionais, as equivalências abaixo: 

  ( )        ( )     

  ( )       ( )   C 

Agora, considere a seguinte função recursiva obtida por composição: 

 (  ( )) = {
             ( )    

            ( )    
 

Ou, de acordo com as equivalências anteriores:  

 (  ( )) = {
           ( )   

           ( )   
 

Sendo assim, note-se que  (  ( )) seria uma função característica recursiva para K. 

Isto, porém, é um absurdo, pois, como já vimos, o corolário 3.8 assegura que o conjunto K 

não é recursivo. 

Por fim, em ambos os casos, obtivemos uma contradição, o que garante que a nossa 

hipótese segundo a qual C     e C   FpR, admitindo C como um conjunto recursivo, é falsa. 

Portanto, como queríamos provar, o problema da decisão para    é recursivamente solúvel se, 

e somente se, C =   ou C = FpR. 

Como consequência imediata do Teorema de Rice, podemos obter inúmeros resultados 

de insolubilidade recursiva, tendo em vista que todo conjunto de índices de qualquer 

subconjunto próprio de FpR que não seja vazio não é recursivo.  

Corolário 3.11 Sejam FRP e FR, respectivamente, o conjunto das funções recursivas 

primitivas e o conjunto das funções recursivas. O problema da decisão para os conjuntos      

= {        + e     = {       + é recursivamente insolúvel.  

Prova:  

Os conjuntos FRP e FR são subconjuntos próprios de FpR diferentes do  . Então, o 

problema da decisão para      e     é recursivamente insolúvel.  

Apesar das consequências do Teorema de Rice, poderíamos deparar-nos com a 

argumentação apresentada nos parágrafos seguintes, segundo a qual o conjunto dos índices 

das funções recursivas primitivas é recursivo. 
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Assim como codificamos os programas de Turing, podemos também determinar uma 

codificação com características semelhantes para as derivações parciais recursivas, de modo 

que cada uma delas tenha um código. Neste contexto, dado um número qualquer, decidimos 

mecanicamente se ele é ou não código de uma derivação parcial recursiva. Em caso 

afirmativo, podemos decodificá-lo e recuperar a derivação que ele codifica. Por sua vez, dada 

uma derivação parcial recursiva, determinamos mecanicamente se ela é ou não uma derivação 

recursiva primitiva. Sendo assim, podemos definir tanto o conjunto de todos os números que 

são códigos de derivações recursivas primitivas quanto o conjunto de todos os números que 

são códigos de derivações parciais recursivas que não são recursivas primitivas.  

De modo análogo ao que foi apresentado no início deste capítulo, poderíamos, por 

exemplo, indexar cada função parcial recursiva com o código de sua respectiva derivação. 

Neste caso, o código de uma derivação recursiva primitiva seria o índice da função recursiva 

primitiva que ela deriva. Sabendo disso e considerando que conjunto dos códigos das 

derivações recursivas primitivas é recursivo, alguém poderia, erroneamente, alegar que o 

conjunto dos índices das funções recursivas primitivas também é recursivo. Assim, dado um 

número qualquer, sendo ele código de uma derivação parcial recursiva, poderíamos decidir 

mecanicamente se ele seria ou não índice de uma função recursiva primitiva. E, portanto, 

contrariando o Teorema de Rice, o problema da decisão para o conjunto dos índices das 

funções recursivas primitivas seria recursivamente solúvel. 

Esse resultado, à primeira vista, poderia ser bastante convincente se não fosse um 

pequeno detalhe: o conjunto dos códigos de todas as derivações recursivas primitivas não nos 

oferece todos os índices possíveis de uma função recursiva primitiva, pois podemos ter uma 

derivação parcial recursiva não recursiva primitiva cuja última função seja recursiva primitiva 

e, portanto, essa função terá como um de seus índices um número que não é código de uma 

derivação recursiva primitiva. Sendo assim, o conjunto dos índices das funções recursivas 

primitivas é mais abrangente que o conjunto dos códigos das derivações recursivas primitivas. 

A rigor, o conjunto que nos oferece todos os índices de funções recursivas primitivas é aquele 

que contém os códigos de todas as derivações parciais recursivas que derivam uma função 

recursiva primitiva, sejam elas recursivas primitivas ou não. E esse conjunto, como o 

Teorema de Rice demonstra, é claramente indecidível. Tal resultado é, intuitivamente, 

explícito: com efeito, dada uma derivação parcial recursiva (ou um programa de Turing) não é 

possível decidir, em geral, se a função que ela deriva (ou que ele computa) é recursiva 

primitiva.  
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Uma síntese dessas considerações é apresentada no esquema abaixo: 

     = {i : i é código de uma derivação parcial recursiva}  

     = {i : i é código de uma derivação recursiva primitiva}  

    = {     é parcial recursiva} 

     = {     é recursiva primitiva} 

 

     =      =   

            

     é recursivo e       é recursivo. 

     é recursivo, mas      não é recursivo (corolário 3.11). 

A falsa ideia de que o problema da decisão para o conjunto dos índices das funções 

recursivas primitivas é recursivamente solúvel provém do fato de, considerando a indexação 

apresentada, admitir-se equivocadamente como iguais dois conjuntos que, na verdade, são 

diversos, a saber: o conjunto dos códigos das derivações recursivas primitivas e o conjunto 

dos índices das funções recursivas primitivas. O primeiro, como vimos, é decidível, ao passo 

que o segundo, por sua vez, é indecidível e mais abrangente que o primeiro. 

Estabelecemos a aritmetização da teoria das máquinas e dos programas de Turing e 

obtivemos, como consequência imediata do Teorema de Rice, a indecidibilidade dos 

conjuntos de índices das funções recursivas e das funções recursivas primitivas. Com efeito, o 

Teorema de Rice trata diretamente dos índices de funções em vez das funções por eles 

indexadas. Não é estranha esta abordagem. De fato, parece haver uma certa impropriedade em 

se investigar se um conjunto de funções propriamente dito é ou não decidível, pois devemos 

lembrar que tal investigação será protagonizada por uma máquina, cujas computações devem 

partir de inputs finitos. Uma função, ao contrário, pode ser um conjunto infinito de n-uplas, 

possibilidade que inviabilizaria a investigação. Neste contexto, para que a máquina seja 

minimamente capaz de nos responder se uma função pertence ou não a um determinado 

conjunto devemos então substituir o input: no lugar da função apresentamos, sob um 

determinado formalismo, uma de suas descrições. Deste modo, a máquina investigará, a rigor, 

se a descrição dada pertence ao conjunto das descrições que especificam uma função do 

conjunto em questão. Posto que os índices, tais como definimos, constituem um exemplo 

particular dessas descrições, podemos estabelecer as seguintes equivalências: dada uma 

função numérica   qualquer,   *    é parcial recursiva} se, e somente se,   (     
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        } ou   *    é recursiva primitiva} se, e somente se,   (             }ou, 

ainda,   *    é recursiva} se, e somente se,   (            ). Ora, como pelo 

Teorema de Rice,      é decidível e pelo corolário 3.11,      e     são indecidíveis, 

concluímos, indiretamente, que o conjunto das funções parciais recursivas é decidível, 

enquanto que  o conjunto das funções recursivas e o conjunto das funções recursivas 

primitivas são indecidíveis, alcançando, com este resultado, o último objetivo ao qual nos 

propomos. Portanto, embora haja um algoritmo para computar as funções recursivas 

(primitivas), não há um algoritmo para decidir se uma função é ou não recursiva (primitiva). 
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CONCLUSÃO 

O Entscheindungsproblem trouxe à tona a necessidade de se precisar as noções 

intuitivas de algoritmo e função algorítmica, abrindo espaço para a instauração da Teoria da 

Computabilidade. Acredita-se que estas noções tenham sido, rigorosamente, caracterizadas 

sob diversos formalismos, dentre os quais apresentamos as funções parciais recursivas e as 

funções parcialmente Turing-computáveis, acompanhadas de seus respectivos algoritmos: as 

derivações parciais recursivas e as máquinas de Turing. Lógicos e matemáticos demonstraram 

que todos os formalismos oferecidos para as referidas noções intuitivas eram equivalentes. 

Essa equivalência ficou conhecida como Resultado fundamental da Teoria da 

Computabilidade e constitui, até hoje, um dos argumentos fortes a favor da Tese de Church-

Turing que, apesar de não ser matematicamente provada, é largamente aceita. 

A partir da definição de função recursiva, noção fundamental da Tese de Church-

Turing, inferimos, por um lado, de forma imediata, a existência de funções numéricas 

algorítmicas. Por outro lado, a partir de uma simples comparação entre a cardinalidade do 

conjunto das funções recursivas (  ) e a cardinalidade do conjunto das funções numéricas 

totais (   ), é possível provar que existem funções numéricas para as quais não há um 

procedimento mecânico que determine o seu respectivo valor a partir de seus argumentos. Ou 

seja, não existem algoritmos para computá-las. Por isso, elas são chamadas funções não-

algorítmicas. Em outras palavras, podemos dizer que para tais funções não há capacidade 

computacional suficiente para solucioná-las. Sendo assim, descobrir os limites entre funções 

algorítmicas e não-algorítmicas é equivalente a descobrir o alcance e os limites do 

computador em geral. Nesse contexto, a Tese de Church-Turing representa um enorme ganho 

computacional, pois, de antemão, saberemos identificar as atividades que um computador 

poderá ou não desenvolver. Esta tese, no entanto, pode vir a ser, algum dia, refutada, 

possivelmente a partir de um contraexemplo. Mesmo que isto venha a ocorrer, a teoria das 

funções parciais recursivas e a teoria das funções parcialmente Turing-computáveis não 

perderão a sua importância, pois elas trazem consigo motivações suficientemente fortes para 

se consolidarem (o que, de fato, já aconteceu) como um campo vasto de estudo.   

Como parte do Resultado Fundamental, demonstramos a equivalência entre as funções 

parciais recursivas e as funções parcialmente Turing-computáveis. Ao desenvolvermos a 

primeira parte desta demonstração, o que fizemos, nas entrelinhas, foi, na verdade, apresentar 

programas de Turing para computar as funções parciais recursivas. Estes programas, como 
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definimos, são constituídos por quíntuplas em vez de quádruplas.  Do ponto de vista 

computacional, as computações realizadas de acordo com eles são, em geral, mais eficientes 

quando comparadas com aquelas realizadas de acordo com programas cujos elementos são 

quádruplas, pois alcança-se o output com um menor número de passos e, evidentemente, em 

um intervalo menor de tempo. Esse resultado nos introduz em um tópico muito discutido, 

atualmente, em Ciência da Computação, a análise da eficiência de algoritmos, que não só 

considera o tempo de execução de um algoritmo como também a sua capacidade de 

armazenar, efetuar e recuperar os passos de uma computação. 

Vimos que a Teoria da Computabilidade busca, entre outras coisas, oferecer uma 

resposta matematicamente precisa para o problema da decisão de inúmeros conjuntos, 

classificando-os como decidíveis ou indecidíveis. De modo particular, concluímos, utilizando 

o Teorema de Rice, que embora o conjunto de índices das funções parciais recursivas seja 

decidível, os conjuntos de índices das funções recursivas e das funções recursivas primitivas 

não o são. Estabelecidas algumas equivalências, estendemos estes resultados sobre os 

conjuntos de índices para os conjuntos de funções por eles indexadas e concluímos que a 

recursividade de      garante a decidibilidade de FpR, enquanto que a não-recursividade de 

     e     garante, respectivamente, a indecidibilidade de FRP e FR. 

Diante deste resultado, surge-nos uma outra questão ainda mais geral: dado um 

conjunto de funções parciais recursivas C e o seu respectivo conjunto de índices    que 

propriedades de    “espelham” propriedades de C? Ou ainda: todas as propriedades que (não) 

predicam-se de    também (não) predicam-se de C? Uma resposta para estas questões seria 

imediata se houvesse entre os conjuntos    e C uma função biunívoca. Mas, como vimos, não 

estamos diante de uma codificação ortodoxa, porque cada elemento de C possui infinitos 

índices a ele associados. Isto posto, fica claro, de antemão, que, pelo menos, quanto à 

cardinalidade, ambos os conjuntos não coincidem. Mas, o que dizer quanto a outras 

propriedades? Poderíamos aprofundar essa questão a partir do estudo das hierarquias 

(aritmética e analítica) de conjuntos de funções numéricas, apresentadas em capítulos mais 

avançados da Teoria da Computabilidade, investigando quais as propriedades de    na 

hierarquia aritmética dos conjuntos numéricos "espelham" propriedades de C na hierarquia 

aritmética dos conjuntos de funções numéricas. Esta discussão, porém, demandaria o 

desenvolvimento de um outro trabalho a ser analisado por nós em uma próxima oportunidade.  
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