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RESUMO

Na década de 30 do século passado, foram oferecidas varias versdes formais para a nocao
intuitiva de funcéo algoritmica. Dentre elas, a versdo das fungbes recursivas e a versdo das
funcBes Turing-computaveis. Posteriormente, tais versdes foram estendidas a fim de abranger
também as fungdes parciais algoritmicas, dando origem, deste modo, & versdo das funcdes
parciais recursivas e a versdo das funcdes parcialmente Turing-computaveis. Nesse contexto,
esta pesquisa, situada dentro do dominio da Teoria da Computabilidade e construida a luz dos
pressupostos tedricos de Davis (1982), Mendelson (2009), Dias e Weber (2010), Rogers
(1987), Soare (1987), Cooper (2004), entre outros, destina-se a reconstruir a prova de que as
referidas versdes formais dadas para a nocdo intuitiva de funcao parcial algoritmica, apesar de
conceitualmente distintas, sdo extensionalmente equivalentes no sentido de que elas
determinam o mesmo conjunto de funcdes numéricas. Como parte desta reconstrucéo,
provaremos, de modo inédito, mediante o uso de quintuplas, que toda funcéo parcial recursiva
é parcialmente Turing-computavel. Na literatura especializada, esse teorema é provado por
meio de um conjunto de quédruplas. Porém, definindo um conjunto de menor cardinalidade
constituido por quintuplas, é possivel prova-lo em um intervalo menor de tempo, o que
representa um ganho do ponto de vista computacional. Além de apresentar essa prova
alternativa, posto pela Tese de Church-Turing que o conjunto das fungdes parciais recursivas
contém todas as fungbes parciais algoritmicas, investigaremos se ele proprio e 0s seus
infinitos subconjuntos sdo ou ndo algoritmicos. Nesta investigacdo, demonstraremos, em
termos aritméticos, com o auxilio do Teorema de Rice, que embora o conjunto das funcGes
parciais recursivas seja algoritmico, todos os seus subconjuntos diferentes do conjunto vazio
ndo o sdo, dentre os quais estdo o conjunto das fungdes recursivas e o conjunto das fungdes
recursivas primitivas.

Palavras-chave: funcdo parcial recursiva, funcdo parcialmente Turing-computével, teorema
de Rice, problema de deciséo.



ABSTRACT

In the thirties of the last century, several formal versions for the intuitive notion of
algorithmic function were offered. Among them, the version of the recursive functions and the
version of the Turing-computable functions. Posteriorly, such versions were extended in order
to also include the partial algorithmic functions, giving rise, in this way, to the version of the
partial recursive functions and to the version of the partially Turing-computable functions. In
this context, this research, located into Computability Theory domain and built in the light of
theoretical assumptions of Davis (1982), Mendelson (2009), Dias & Weber (2010), Rogers
(1987), Soare (1987), Cooper (2004), among others, is intended to rebuild the proof that the
given formal versions referred to the intuitive notion of partial algorithmic function, despite
being conceptually distinct, they are extensionally equivalents in the sense that they determine
the same set of theoretical-numerical functions. As a part of this rebuilding, we shall prove, in
na unprecedented way, using quintuples, that every partial recursive function is partially
Turing-computable. In the literature, this theorem is proved by means of a set of quadruples.
However, defining a lower cardinality set constructed by quintuples, it is possible to prove it
in a smaller time interval, which representes a gain from the computational point of view.
Besides presenting this alternative proof, posed by the Church-Turing thesis that the set of
partial recursive functions includes all the partial algorithmic functions, we shall investigate if
this set itself and its infinite subsets are or are not algorithmic. In this survey, we shall
demonstrate, in arithmetical terms, with the aid of Rice’s theorem, that although the set of
partial recursive functions is algorithmic, all its subsets which are different from the empty set
are not, among which are the set of recursive functions and the set of primitive recursive
functions.

Keywords: partial recursive functions, partially Turing-computable functions, Rice’s
theorem, decision problem.
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INTRODUCAO

Nesta dissertacdo, pretendemos explicitar a equivaléncia entre duas verses formais
oferecidas para a noc¢do intuitiva de funcdo parcial algoritmica: a versao das funcGes parciais
recursivas sistematizada por Kleene a partir dos trabalhos de Herbrand e Godel e a versdo das
fungdes parcialmente Turing-computaveis concebida por Alan Turing. Em outras palavras,
pretendemos reconstruir a prova segundo a qual o conjunto das funcdes parciais recursivas e 0
conjunto das fungdes parcialmente Turing-computaveis, apesar de conceitualmente distintos,
possuem 0s mesmos elementos. Em seguida, buscaremos demonstrar, em termos aritméticos,
com o auxilio do Teorema de Rice, que embora estes conjuntos sejam decidiveis, eles contém
infinitos subconjuntos indecidiveis, dentre os quais, destacam-se o conjunto das funcgdes

recursivas e o conjunto das funcdes recursivas primitivas.

Em Teoria da Computabilidade, ramo da Ldgica no qual estard concentrada nossa
pesquisa, no¢bes como algoritmo, funcdo algoritmica e decidibilidade mantém entre si uma
estreita relacdo. Intuitivamente, entende-se por algoritmo um procedimento mecanico para
computar uma funcdo. Na pratica, n6s o identificamos como um conjunto finito de regras
inequivocas (em linguagem natural ou simbodlica) que devem ser aplicadas, sem nenhum
recurso a criatividade, a um dado input finito, fornecendo, apds a execucdo de um namero
finito de operacdes elementares, um possivel output também finito. Uma funcéo, por sua vez,
é algoritmica se, e somente se, existe um algoritmo para computa-la. E um conjunto é
decidivel (ou algoritmico) se, e somente se, existe um algoritmo que nos permita identificar,
dado um objeto qualquer, se ele pertence ou ndo a este conjunto. Caso contrario, 0 conjunto é
indecidivel. A nocdo de decidibilidade é, analogamente, aplicavel a teorias formais. Neste
caso, dizemos que uma teoria formal é decidivel se, e somente se, 0 conjunto de seus teoremas

for decidivel.

Nos primeiros anos do século XX, o surgimento de alguns paradoxos na recente
Teoria dos Conjuntos de Cantor abalou profundamente os fundamentos da Matematica.
Diante deste fato, o analista alem&o David Hilbert (apud SOBRINHO, 1987, p. 4) proferiu as
seguintes palavras:

O atual estado de coisas, em que estamos nos defrontando com paradoxos, &,
de fato, absolutamente intolerdvel. Imagine se as definicbes e métodos
dedutivos que todos aprendemos, ensinamos e utilizamos em Matematica

nos conduzirem a absurdos! Se o préprio pensamento matematico ja for
defeituoso, onde é que iremos encontrar a verdade e a certeza?



Entre as muitas tentativas de solucionar o problema, Hilbert propds o programa
formalista de fundamentacdo da Matematica. Este programa era assim chamado por defender
a reconstrucdo do edificio matematico a partir de métodos axiomaticos formais, cujo rigor
caracteristico, segundo Hilbert, impediria a ocorréncia de contradi¢cdes. Em ultima anélise, a
Matemética, na visdo dos formalistas, seria redutivel a sistemas axiomaticos constituidos
exclusivamente por simbolos isentos de interpretacdo, manipulados através de regras precisas
e mecanismos finitarios. Em termos mais elementares, eles encaravam a Matematica como
um mero jogo formal. Os passos permitidos pelas regras de inferéncia em uma demonstracao
seriam, por exemplo, os lances possiveis de um jogo de tabuleiro, os axiomas
corresponderiam a configuracéo inicial do tabuleiro e as formulas, as pecas do jogo. Além
disso, o0 ato de ‘jogar’ seria andlogo ao de ‘executar operagdes matematicas’ ¢ as declaracdes

sobre o0 jogo equivaleriam a declaracdes sobre a Matematica.

Na tentativa de estabelecer bases solidas para o pensamento matemético de modo a
evitar resultados contraditorios, além de propor o uso de métodos axiomaticos formais,
Hilbert convida a comunidade académica a oferecer uma solucdo positiva para os trés
problemas referentes aos fundamentos da Matematica. O primeiro deles, o problema da
consisténcia. Hilbert pretendia demonstrar que as diversas teorias mateméticas eram
consistentes, ou seja, ndo admitiriam contradi¢cBes. O segundo, 0 problema da completude,
para o qual uma solucdo positiva implicaria afirmar que, dado um enunciado de uma teoria
matematica qualquer, ele ou a sua negacdo seriam demonstraveis nesta teoria. Por fim, o
terceiro problema, conhecido como Entscheidunsproblem, que investiga se o Célculo de
Predicados de Primeira Ordem é decidivel. Hilbert caracterizou o Entscheidunsproblem como
0 problema fundamental da Ldgica Matematica, pois ele acreditava que a solucdo deste
problema permitiria, pelo menos em principio, decidir, sem nenhum recurso a criatividade, se,
dada uma teoria matematica qualquer, uma formula pertencente a esta teoria seria ou ndo um
de seus teoremas. Essa crenca de Hilbert foi confirmada em 1929, quando Godel demonstrou
a completude do Célculo de Predicados de Primeira Ordem, apresentando-o como “uma
linguagem e uma ldgica completa servindo de embasamento para a formalizagéo das teorias
matematicas” (SOBRINHO, 1987, p. 7).

Uma solucédo positiva para os trés problemas hilbertianos estabeleceria a Matemaética
como um grandioso calculo axiomatico formal - consistente, completo e decidivel. A
Matematica seria, incontestavelmente, segura (livre de contradi¢fes) e responderia a todos 0s

problemas a ela referentes de modo efetivo. No entanto, as pretensdes do programa formalista



fracassaram por duas vezes. Em 1931, Kurt Goddel publicou os famosos teoremas da
incompletude. De acordo com o primeiro teorema, toda axiomatica consistente da aritmética
de Peano é incompleta. Por contraposicéo, toda axiomatica completa da aritmética de Peano é
inconsistente. Sendo assim, ao contrario do que Hilbert acreditava, a Matematica, ndo poderia
ser completa e consistente a0 mesmo tempo. J& o segundo teorema de Gddel garantiu que a
consisténcia de uma axiomatica da aritmética de Peano ndo é demonstravel somente com 0s
recursos dessa axiomatica. Seria entdo necessario, lancar mao de uma axiomatica mais forte
na qual esta demonstracdo fosse possivel. No entanto, a prova da consisténcia desta Ultima
axiomética demandaria uma outra axiomatica ainda mais forte e assim sucessivamente. Este
resultado, portanto, destruiu a esperanca de Hilbert de encontrar uma prova finitaria da
consisténcia da aritmética e, consequentemente, da consisténcia da Matematica. Em 1936, o
programa hilbertiano, mais uma vez, fracassou: Alonzo Church prova, formalmente, a
indecidibilidade do Calculo de Predicados de Primeira Ordem, obtendo, desta maneira, uma
resposta negativa para o Entscheidunsproblem. Na mesma época, provou-se também, de
modo semelhante, a indecidibilidade de diversas teorias matematicas, entre elas a Aritmética

de Peano.

Essas provas formais de indecidibilidade s6 foram possiveis a partir da década de 30

do século passado, com o advento da Teoria da Computabilidade, quando logicos e

matematicos propuseram Vvarias caracterizagdes precisas para as nocdes intuitivas de

algoritmo e, consequentemente, de funcdo algoritmica, visando a obtencdo de uma resposta

em termos matematicos para o Entscheidunsproblem. Neste contexto, podemos afirmar que o

surgimento da Teoria da Computabilidade foi motivado, em dltima analise, pela hipétese de

Hilbert segundo a qual as diversas teorias matematicas eram decidiveis. Ainda na década de

30, provou-se que todas as versdes formais oferecidas para as referidas nocGes intuitivas eram

equivalentes, gerando, desde entéo, a crenga segundo a qual se tinha captado, de uma vez por

todas, de forma precisa, o0 que se entendia intuitivamente por algoritmo e funcédo algoritmica.
Sobre este acontecimento, Hao Wang (apud SOBRINHO, 1987, p. 1) escreve:

Uma das grandes conquistas da Logica desde os anos 30 foi 0 sucesso

experimentado ao ter sido dada uma definicdo absoluta (i.e., independente do

particular formalismo adotado) da interessante nogdo epistemoldgica de

processo mecénico (ou procedimento efetivo, computabilidade, algoritmo,

método finitista). Com efeito, pode-se afirmar que tenha sido o Unico

conceito epistemoldgico basico relacionado com a Matematica que tenhamos
sido capazes de iluminar até agora.
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A fim de lograrmos éxito na realizacdo dos objetivos mencionados no inicio desta
introducdo, dividiremos o nosso trabalho em trés capitulos, contando sempre com o suporte
tedrico de varios autores importantes da Ldgica e da Teoria da Computabilidade, entres eles:

Davis, Mendelson, Dias e Weber, Rogers, Soare e Cooper.

No primeiro capitulo, estabeleceremos indutivamente o conjunto das funcdes parciais
recursivas. De modo analogo, definiremos, em ordem decrescente de generalidade, outros
dois conjuntos: o das funcGes recursivas e o das funcdes recursivas primitivas. Explicitaremos
as diferencas e semelhancas entre eles, analisando detalhadamente as suas respectivas
defini¢bes. Para cada conjunto estabelecido, apresentaremos um modelo de algoritmo capaz
de computar suas funcgdes. Por fim, investigaremos, em termos intuitivos, se 0s conjuntos de

algoritmos apresentados sao ou ndo decidiveis.

No segundo capitulo, apresentaremos a teoria das maquinas e dos programas de
Turing, destacando o conjunto das funcbes parcialmente Turing-computaveis. Definiremos 0s
programas de Turing de modo ligeiramente diverso do habitual — normalmente, eles séo
definidos como conjuntos de quadruplas e nds os definiremos como conjuntos de quintuplas.
A partir desta maneira de defini-los, provaremos, de modo inédito, que toda funcdo parcial
recursiva € parcialmente Turing-computavel. Em seguida, utilizando a aritmetizacdo das
maquinas de Turing, provaremos que a reciproca também é verdadeira. Estabelecida a
equivaléncia entre os dois formalismos propostos para a nocdo intuitiva de funcao
algoritmica, concluiremos o capitulo, expondo a famosa Tese de Church-Turing, segundo a
qual todo procedimento computacional é realizavel por uma maquina de Turing ou, em outras

palavras, toda funcdo algoritmica é Turing-computavel.

Posto pela Tese de Church-Turing que o conjunto das fungdes parciais recursivas
contém todas as fungbes algoritmicas, cabe-nos perguntar se este conjunto € propriamente
algoritmico. E o que dizer de seus subconjuntos: sdo ou ndo algoritmicos? Investigaremos
estas questdes no terceiro capitulo. Nele, veremos, inicialmente, como construir uma lista
efetiva dos programas de Turing e das fungdes parciais recursivas. Vamos utiliza-la na prova
de dois resultados importantes da Teoria da Computabilidade: o Teorema s-m-n de Kleene e a
indecidibilidade do Problema da Parada. Com base nestes resultados, demonstraremos 0
Teorema de Rice a partir do qual provaremos, por um lado, a decidibilidade do conjunto das
fungbes parciais recursivas e, por outro, a indecidibilidade de qualquer um de seus

subconjuntos préprios, que ndo seja vazio.
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Para iniciarmos o estudo ao qual nos propomos, alguns esclarecimentos seréo
convenientes: (1) em concordancia com a Teoria da Computabilidade, restringiremos 0 nosso
estudo ao conjunto N de numeros naturais, tratando, deste modo, apenas de funcGes
numericas n-arias, ou seja, fungdes cujos argumentos sdo n-uplas ordenadas de N™ e o0s
valores sdo elementos de N; (2) classificaremos uma funcdo numérica n-aria como total se ela
estiver definida para todas as n-uplas de N™ e, como parcial, se ela estiver definida para
todas, algumas ou nenhuma n-upla de N; (3) diremos, em termos intuitivos, que uma funcéo
numerica n-aria total é algoritmica se, e somente se, for possivel calcular o seu valor para
cada n-upla de N™ através de um algoritmo, isto ¢, em um ndmero finito de passos e de
maneira inteiramente mecanica; diremos que uma funcdo numeérica n-aria parcial é
algoritmica se, e somente se, existe um algoritmo para computa-la sempre que ela estiver
definida para uma determinada n-upla de N™; (4) por fim, acompanhando os autores citados
no inicio desta introducao, utilizaremos, nas paginas seguintes, o termo “fun¢do algoritmica”

para nos referirmos somente as fungbes numeéricas totais algoritmicas.
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1 RECURSIVIDADE

A fim de alcancarmos o primeiro objetivo ao qual nos propomos, qual seja, estabelecer
a igualdade entre o conjunto das funcbes parciais recursivas e o conjunto das funcdes
parcialmente Turing-computaveis, precisamos, antes de mais nada, definir cada um desses
conjuntos separadamente. Neste capitulo, apresentaremos o conjunto das fungdes parciais
recursivas. Dentre 0s seus inumeros subconjuntos, destacaremos o conjunto das funcgdes
recursivas e o conjunto das fungdes recursivas primitivas. Ambos, como veremos, contém,

exclusivamente, fungdes numéricas totais.

1.1 Funcdes parciais recursivas

Em geral, o conjunto das fungdes parciais recursivas € estabelecido por meio de uma
definicdo indutiva. Para defini-lo, comecaremos fixando os primeiros elementos deste
conjunto conhecidos como fungdes iniciais e, em seguida, listaremos algumas regras,
conhecidas como operagfes bésicas, que nos permitem obter novas fungdes parciais
recursivas a partir de outras previamente dadas. Na sequéncia, utilizaremos o simbolo x' para
denotar o nimero que segue imediatamente x na ordem dos nimeros naturais e a expressao
‘f(xq,...,xy) I’ para indicar que a fungdo f estd definida para a n-upla xy, ..., x, ; para

indicar o caso contrario, escreveremos ‘f (xq, ..., x,) T°.

Definigdo 1.1 As fungdes iniciais s&o:
(1) Funcdo sucessor: S(x) = x', para qualquer x.
(2) Fungdes-constante: Cj (x4, ..., x,) =k, para quaisquer x, ..., x, € k.

(3) Funcgdes-projecéo: U (xy, ..., x,) = x;, 1 <i<n, para qualquer x, ..., x,,.

Definicéo 1.2 As operacdes basicas sao:
(1) Composicdo (paran, m > 1)
Se f é uma funcdo m-éria e g4, ..., g Sa0 funcbes n-arias, entdo a funcdo n-aria h é obtida,

por composicao, a partir de f, g4, ..., gm S€, € SOMente se:

h(xq, .o, %) = (g1 (X1, oo X))y ooy G (X1s oy X))

(2) Recurséo primitiva (para n > 0)
Se g é uma funcgdo n-aria e f uma funcdo n+2-aria, entdo a fungdo n+1-aria h é obtida, por

recursao primitiva, a partir de g e f se, e somente se:

h(xy, ..., %, 0) = g(xq, ..., X))
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h(xy, ..., X5, SY)) = (1, ..., %, Y, N(xq, .., X0, Y))
Em particular, se n = 0, por recursdo primitiva, é obtida a funcdo unéria h tal que:

h(0) = k
h(S(y)) = f(y, h(y)),

onde k € um ndmero natural qualquer.

(3) Minimizagé&o ilimitada (paran > 1)
Se g é uma fungdo n+1-aria, entdo a funcdo n-aria h é obtida, por minimizacéo ilimitada, a

partir de g se, e somente se:

(Zo, seg(xy, .., xnzp) = 0A

| Vg, (900, oy X, W) LA

h(xq, oo xn) = py (g1, oo, X, ¥) =0) = { g(xq, e, xp,w) # 0),
para algum z,

T, se ndo existe tal z,

E oportuno esclarecer, em outras palavras, que a funcio h(x,...,x,),obtida por
minimizacao ilimitada, terd como valor o menor nimero natural z, tal que g(x, ..., X, Zg) =
0, sob a condicdo de ndo existir umw < z, para o qual g(xy,..,x,,w) T. Porém, se tal

Z, Nndo existir, h(xy, ..., x,) permanecera indefinida.

Apresentadas as funcdes iniciais e as operacles basicas, podemos, agora, estabelecer,

de modo apropriado, o conjunto das fungdes parciais recursivas.

Definicdo 1.3 Uma funcdo numérica f é parcial recursiva se, e somente se, uma das seguintes
condicdes é satisfeita:

(1) f € uma funcdo inicial.

(2) f é obtida a partir de funcbes parciais recursivas pela aplicacdo de uma das operagdes
bésicas.

(3) Somente sdo funcBes parciais recursivas as funcbes numéricas determinadas de acordo
com (1) ou (2).

Defini¢do 1.4 Uma sequéncia parcial recursiva para uma fungdo numérica f € uma sequéncia
finita de funcdes (a;, ..., ay) Se, e somente se, a,,= f e, para cada 1 <i < n, uma das seguintes
condicdes é satisfeita:

(1) «; € uma funcdo inicial;
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(2) a; é obtida de funcdes anteriores da sequéncia por aplicacdo de uma das operagdes

basicas.

Teorema 1.5 Uma funcdo numérica f é parcial recursiva se, e somente se, existe uma

sequéncia parcial recursiva para f.

Prova:

Imediata, pelas definicdes 1.3 e 1.4.

O conjunto das funcGes parciais recursivas, tal como foi definido, contém como seus
elementos funcgdes totais e fungdes estritamente parciais. Uma simples restricdo sobre o
campo de aplicacdo da operagdo de minimizacéo ilimitada nos oferecera um recorte deste
conjunto. Sabendo disso, estabeleceremos, utilizando a nog¢do de fungéo regular, o conjunto
das funcdes recursivas que, como veremos, contém, exclusivamente, funces parciais

recursivas totais.

Defini¢do 1.6 Uma fungdo numérica g(x4, ..., x,, ¥), n = 1, é regular se, e somente se, g €

total e Vx; ... Vx, 3y (g (x4, ..., Xp, y) = 0).

Definicdo 1.7 Uma funcdo numérica f é recursiva se, e somente se, uma das seguintes
condicdes é satisfeita:

(1) f € uma funcdo inicial.

(2) f é obtida a partir de funcBes recursivas por aplicacdo das operacdes de composicdo ou
recursdo primitiva ou minimizacdo ilimitada, sendo esta ultima aplicada exclusivamente a
fungdes regulares.

(3) Somente sao funcdes recursivas as fungBes numéricas determinadas de acordo com (1) ou

).

Definicdo 1.8 Uma sequéncia recursiva para uma funcdo numérica f € uma sequéncia finita
de funcbes (ay, ..., a,) Se, e somente se, a,= f e, para cada 1 < i < n, uma das seguintes
condicdes é satisfeita:

(1) a; € uma funcéo inicial;

(2) a; é obtida de funcbes anteriores da sequéncia por aplicacdo das operacdes de composicéo
ou recursao primitiva ou minimizacdo ilimitada, sendo esta Gltima aplicada exclusivamente a

funces regulares.
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Teorema 1.9 Uma fungdo numérica f € recursiva se, e somente se, existe uma sequéncia

recursiva para f.
Prova:

Imediata, considerando as definices 1.7 e 1.8.

Deve-se notar que o conjunto das fungdes recursivas é definido exatamente igual ao
conjunto das funcdes parciais recursivas, salvaguardada a seguinte diferenca: a operacdo de
minimizacao ilimitada, na definicdo das fungdes recursivas, é aplicada somente as funcoes
regulares, enquanto que na definicdo das funcbes parciais recursivas, tal operacdo pode ser
aplicada indistintamente. Esta restricdo faz com que o conjunto das funcGes recursivas
contenha Unica e exclusivamente como seus elementos todas as funcbes parciais recursivas

totais, pois, pela definicdo de funcdo regular, sempre existird um namero natural z, tal que

iy (X1, X, Y) = 0) = 2.

Sendo o conjunto das fungbes parciais recursivas uma versao formal oferecida para o
conceito intuitivo de funcdo parcial algoritmica e sabendo que o conjunto das funcdes
recursivas contém exclusivamente todas as fungdes parciais recursivas totais, o conjunto das
funcbes recursivas constitui, portanto, a versao formal oferecida para o conceito intuitivo de

funcdo algoritmica.

Ainda sobre o conjunto das funcbes recursivas, destacamos, como uma de suas partes,
0 conjunto das fungdes recursivas primitivas que, sendo estabelecido somente a partir das
funcdes iniciais e das operacBes de recursdo primitiva e composi¢do, contém, como
apresentaremos mais adiante, diversas funcfes numeéricas conhecidas como claramente

algoritmicas.

Definicdo 1.10 Uma fungdo numérica f € recursiva primitiva se, e somente se, uma das
seguintes condicoes € satisfeita:

(1) f é uma funcdo inicial.

(2) f é obtida a partir de funcbes recursivas por aplicacdo das operacdes de composi¢ao ou
recursdo primitiva.

(3) Somente sdo fungdes recursivas as fungGes numéricas determinadas de acordo com (1) ou

).
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Definicdo 1.11 Uma sequéncia recursiva primitiva para uma funcdo numérica f é uma
sequéncia finita de fungdes (a4, ..., a,) Se, e somente se, a,,=f e, para cada 1 <i<n, uma das
seguintes condigdes é satisfeita:

(1) «; € uma funcao inicial;

(2) a; é obtida de funcGes anteriores da sequéncia por aplicacdo das operacdes de composicdo

Ou recursao primitiva.

Teorema 1.12 Uma fungdo numérica f é recursiva primitiva se, e somente se, existe uma

sequéncia recursiva primitiva para f.
Prova:
Imediata, tendo em vista as definigdes 1.10 e 1.11.

Uma sequéncia recursiva primitiva para f, cujas funcbes estdo acompanhadas por uma
especificacdo de como foram obtidas, constitui uma derivagéo recursiva primitiva para f. Ora,
dada uma sequéncia recursiva primitiva € sempre possivel especificar cada uma de suas
funcBes. Sendo assim, parafraseando o teorema anterior, uma funcéo f é recursiva primitiva
se, e somente se, existe uma derivacdo recursiva primitiva para ela. De modo anélogo,

falaremos também em derivagdes recursivas e derivagfes parciais recursivas.

Listaremos, a seguir, uma série de funcBes recursivas primitivas que serdo essenciais

para a obtencdo de varios resultados apresentados mais adiante.

Teorema 1.13 As seguintes funcdes sdo recursivas primitivas:
(1) adigédo: ad(x,y) =x+y

ad(x, 0) = x
ad(x, S(y)) = S(ad(x, y))

(2) multiplicagdo: ml(x,y) =x-y

mi(x,0) =0
mi(x, S(y)) = ad(x, mi(x, y))

(3) exponenciagéo: ep(x, y) = X’

ep(x,0)=1
ep(x, S(y)) = mi(x, ep(x, y))
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(4) fatorial: ft(X) =xl

ft(0) = 1
ft(S(y)) = mi(S(y), ft(y))

0, sex =20

(5) predecessor: pd(x)= {x 1 sex =0

pd(0) =0
pd(S(y)) =y

i o X—y, sexz=
(6) subtracéo propria: sp(x, y) = {0, Y sex < z

sp(x, 0) = x
sp(x, S(y)) = pd(sp(x, ))

x, sex<y

(7) minimo de um par ordenado: mn(x, y) = {y, sex >y

mn(x, y) = sp(x, sp(x, ¥))

- . (v, sex<y
(8) méaximo de um par ordenado: mx(x, y) = {x sex >y

mx(x, y) = ad(y, sp(x, y))
(9) minimo de uma sequéncia finita: min(xy, ..., x,) = x; : x; € 0 menor nimero da sequéncia
min(xy, ..., X,) = mn(... mn(Mn(xq, x3), X3), ..., X)

(10) méaximo de uma sequéncia finita: max(xy,..,x,) = x; : x; € 0 maior nimero da
sequéncia
max(xy, ..., X)) = MX(... mx(Mx(xq, X2), X3), <, Xp)

X—y, sex=y

(11) diferenca absoluta: db(x, y) = {y —x, sex<y

db(x, y) = sp(mx(x, y), mn(x, y))

_ 1, sex#0
(12) sinal: sg(x) = {0 sex =0

sg(0)=0
sg(S(y)) =1
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. .—n (0, sex#0
(13) contrassinal: sg(x) = {1’ cex =0
s9(0)=1
59(S(y)) =0
—_ . H Z 72| ~ X
(14) resto da divisdo de y por x: rt(x, y) = {y mexinsg Ip(n<p< x)’ sex =y
Y sex >y
rt(x,0) =0
rt(x, S(y)) = mi(S(rt(x, y)), sg(db(x, S(rt(x, y)))))
] L 0, sey=0
(15) quociente da divisdo de y por x: gt(x, y) = {n: n S% ~Fp(n < p < %)’ sey £ 0
gt(x,0) =0
qt(x, S(y)) = ad(qt(x, y), sg(db(x,S(rt(x, ¥)))))
Prova:

Considerando o exposto, percebe-se que a prova deste teorema devera consistir na
apresentacdo de pelo menos uma derivagdo recursiva primitiva para cada uma das funcdes
acima listadas. Tais derivacGes devem ser construidas de tal modo que os valores da ultima
funcéo para um argumento qualquer seja igual aos valores da fungdo que se deseja provar ser
recursiva primitiva para 0 mesmo argumento. Como ilustracdo, vejamos, a seguir, duas

derivacdes recursivas primitivas®:

(3) Exponenciagéo

1.Ci(x) =1 Funcéo inicial (FI)

2.Clx) =0 FI

3. U3(x, y,2) =X FI

4.U3(x,y,2)=12 FI

5. g,(%, Yy, 2) =ad(U3(x, y, z), U3(x,y,z))  Funcdo recursiva primitiva (FRP)
6. ml(x, 0) = C3(x)

ml(x, S(y)) = g2(x, y, ml(x, y)) 2, 5/Recurséo primitiva (RP)

~

. ga(%, Y, 2) =ml(U3(x,y, 2), U3(x,y,2)) 6,3, 4/Composicdo (C)

8. gs(x, 0) = Ci(x)

gS(X’ S(y)) = g4(X, Y, gS(X! y)) 1. 7/RP

! Todas as derivacdes recursivas primitivas que constituem a prova deste teorema podem ser encontradas na obra
de DIAS e WEBER. Teoria da Recursao, 1. ed. Sdo Paulo: Editora UNESP, 2010. p. 31-35.
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Ora, gs(x, y) = ep(x, y). Portanto, ep é recursiva primitiva.

(11) Diferenca absoluta

1. Ui (x) =x FI
2. gs(x, Y, 2) = pd(U3(x, Y, 2)) FRP
3. sp(x, 0) = Ui(x)
sp(x, S(¥)) = gs(X, ¥, sp(x, ¥)) 1,8/RP
4. mn(x, y) = sp(Uf(x, ¥), sp(X, )) FRP
5. mx(x, y) = ad(U3(x, y), sp(X, Y)) FRP
6. g10(X, y) = sp(mx(x, y), mn(x, y)) 2,4,3IC

Ora, g10(X, y) = db(x, y). Portanto, db é recursiva primitiva.

Note-se que uma derivacdo recursiva primitiva para uma funcdo n-aria f constitui, em
termos intuitivos, um algoritmo que computa tal funcdo para qualquer n-upla ordenada. Com
efeito, para calcular o valor de f para (m,, ..., m,), basta instanciar as variaveis presentes na
ultima linha da derivacdo, substituindo-as, uniformemente, por m,...,m, e, em seguida,
calcular o valor das func@es a direita da igualdade, que foram definidas em linhas anteriores,

sempre partindo das funcdes mais internas para as mais externas.

Convencao notacional
e Com o objetivo de facilitar a leitura de algumas funcgdes que serdo apresentadas
mais adiante, escreveremos, em alguns momentos, X =y, |[X —y| e X oy para
expressar, respectivamente, sp(x, y), db(x, y) e rt(x, y).

1.1.1 Somas e produtos limitados

Nesta subsecdo, apresentaremos duas operacdes funcionais - a soma e o produto
limitados. Logo em seguida, provaremos que a aplicacdo de tais operagOes a fungdes

recursivas primitivas conduz também a funcGes recursivas primitivas.
Definicdo 1.14 A soma e o produto limitados sdo definidos da seguinte maneira:
(1) Soma (para n > 0):

5 ( )_{0, sez=20
yez [ (X1, 0, X0, Y) = fOxg, e, X, O+ oo+ (xq, vy X,z — 1), sez>0

(2) Produto (para n > 0):

1, sez=20
My<: f Qa1 s X0, y) _{f(xl, v Xy, 0) 0 (X, e, X,z — 1), sez>0
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Teorema 1.15 Se f(xy,..,x,, Yy) € recursiva primitiva, entdo as seguintes fungdes sdo

recursivas primitivas:
(1) Ly<z f (1, s X, ¥)
() My<z f (g v X0, )
Prova’:
Considere a seguinte fungéo recursiva primitiva:
931 (X1, ooy X5, 0) = h3 (1, o, X7)

931(X1 wwes X, S(2)) = h5 (X1, o) Xn, 2, G31 (X1, o0, X, 2)),

onde hs(xyq, ..., ) = CS(UR(xq, ..., X)) € hs(xq, oo, X, Vo W) = @d(F(UTH2(xy, .., X, Y, W), .,

Unii(er, e, X, ¥, W), URZ (g, e, X, ¥, W)).

Expresso de outra forma, gsq(xq, ..., xn, S(2)) = hs(xyq, ..., X, Z, hs(xq, ..., Xp, Z-1, ...,
hs(x1, -\ Xn, 22, g31(x1, v, X, 2-2)))). Ora, gs41(xy, ..., xn, Z-2) = 0 g, tal como foi definida, a
funcdo hg somard gsq(xq, ..., X, Z-2) a f(xq, ..., X, Z-2) €, assim, obteremos g3, (xy, ..., xn, 1)
que, por sua vez, serd somado a f(x, ..., x,,, 1), resultando em gs; (x4, ..., x,,, 2). ESte processo
se repetird até que hg some gsq(xq, ..., X, 2) a f(x4, ..., X5, ). O valor desta Ultima soma sera

931(x1, -, x5, S(2)). Esquematicamente, nos temos:
931(x1, -, %, 2-2) =0
931(X1, ooor X, °2) + (X1, vy Xy Z-2) = g31(X4, ooy X, 1)

931X, ey X0, 1) + (g, oo, X0, 1) = g31(X1, vy X, 2)

931 (X1 wees Xy 2) + (X1, o0, X, 7) = g31 (X1, o0, X, S(2))

Definida  nestes  termos,  gs1(xy, .., Xp, 2) = Xy<z f (X1, ..., Xy, ¥).  Portanto,

X1, o) X, V) € i imitiva.
y<z [ (X Y € recursiva primitiva
1.1.2 Relagdes numéricas

Além das fungGes numéricas, podemos também definir relagdes numéricas como

recursivas primitivas. Uma relacdo numeérica n-aria (n > 0) ¢ qualquer subconjunto de N™.

’Por questdes praticas, provaremos apenas que Yy<zf(x1, ..., Xy, y) € recursiva primitiva. Analogamente, prova-
se 0 mesmo acerca da funcao [[, <, f (xq, ..., Xp, ¥).
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Sendo assim, {(x,y,z):x +y = z} € uma relagdo ternaria, enquanto que {(1, 3, 5, 7)} e

{(x,y,w,2):x +y = w — z} sdo rela¢bes quaternarias.
Defini¢cdo 1.16 Seja R uma relacdo n-aria, a funcéo caracteristica de R é a seguinte:

_{Lse(xy, .., xy) ER
XR(xl’ ",,xn) - {0, se (xl’ '"'xn) $ R

Em particular, se R é uma relacdo unaria, R < N e sua funcdo caracteristica € a seguinte:

1,sex € R
xr(x) = {0, sex € R
Definicdo 1.17 Uma relacdo n-aria R é recursiva primitiva se, e somente se, yz(xq, ..., x,,) €

recursiva primitiva.

Teorema 1.18 As seguintes relacdes sdo recursivas primitivas: x é igual a 'y, x € menor que y,

x divide y, X € metade de y, x € impar, x € primo.

Prova:

(1) x é igual a y se, e somente se, [x —y| = 0.

Entéo, x=(x,y) =sg(Ix-Yyl)

(2) x é menor que y se, e somente se, x =y =0¢e |x—y| # 0.
Entéo, x<(x,y) =sg(x =) - sg(Ix - yl)

(3) x divide y se, e somente se, x oy = 0.

Entdo, x|(x,y) =sg(xey)

(4) x é metade de y se, e somente se, xey =0e |gt(x, ¥) - 2| =0.
ENtéo, xm:(x,y) =5g(x°y) - sg(lat(x, y) - C5(x, y)))

(5) x é impar se, e somente se, 2 o X = 0.

ENtdo, Yim (x) = sg(Cz(x) ° U1(x))

(6) x é primo se, e somente se, |d(X) — 2| = 0, sendo d(x) o numero de divisores de X

determinado pela fungéo parcial recursiva Y., <11 5g(y ° x).
Entdo, xpr (x) =5g(|d(X) - C3(x)])

Com o auxilio das operagdes de complemento, unido e intersecdo, dos conectivos
proposicionais, dos quantificadores limitados e da operacdo de minimizacdo limitada,
podemos obter novas relagdes recursivas primitivas a partir de outras ja disponiveis. Por
questdes praticas, definiremos, em momento oportuno, apenas os quantificadores limitados e

a operacdo de minimizacao limitada.
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Teorema 1.19 Se R(xy, ..., x;) € S(xq,...,x,) sdo relacBes recursivas primitivas, entdo as

seguintes relacfes sdo recursivas primitivas:

(1) R(xy, ..., %)
(2) R(xy, .oy X)) U S(xq, .r)y Xp)
(3) R(xq, oy xp) NS(xy, ..., Xp)

Prova:

Considerando a definicdo das operacbes de complemento, unido e intersecao,

apresentamos, a seguir, as funcdes caracteristicas de R, RUSeR N S.

1)
4 ) = {1, se (Xq, ..., X,) € R
RATD o 0,se (X1, 0, Xp) & R
_ {1, se (xq,..,x,) € R
~10,se (xy,...,x,) ER
_ {1, se Yg(x1, ., ) =0
~10,se yr(xq, . x,) =1
()
_(1,se(xq,..,x,) ER U S
Xrus (X1, e Xn) = {O,se (X1, 0, X)) ER U S
_ {1,se (x4, .., Xn) € Rouse (xq1,...,x,) €S
~10,se (xqg, ..., %) €R € se(xqy,..,X,) &S
_ {1,se xr(x1, .., xy) = Louse ys(xq,...,x,) =1
~10,se yg(xq, ..., x,) =0 e se ys(xq,...,x,) =0
®)
_(1,se(xq,..,x,) ER NS
Xros (X1, Xn) = {O,se (X, 0, X)) €R NS
_ {1,se (x4, ., Xp) ER e se (xq,...,x,) €S
~10,se (xq,...,x,) € Rouse (xq,..,x,) &S
_ {1,se Xr(x1, o, xp) =1 € se ys(xq, ..., %) =1
~10,se ygr(xq, ..., x,,) = 0 ouse xs(xq, ..., x,) =0
Em outros termos, as fungdes acima apresentadas podem ser definidas do seguinte
modo:

Xﬁ(xll "-fxn) = @(XR(xlf ""xn))
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XR US(le ""xn) = Sg(ad(XR(xli ---;xn):XS(xlr 'xn)))
XR nS(le 'xn) = ml(XR (Xl, 'x‘n)i XS(xll rxn))

Portanto, conforme a definicdo 1.17, as relacBes n-arias, R, RU S e Rn S sdo

recursivas primitivas.

Teorema 1.20 Se R(x4, ..., x;) € S(xy,...,x,) sdo relacBes recursivas primitivas, entdo as

seguintes relacfes sdo recursivas primitivas:

(1) ~R(xq, «ov) x)

(2) R(xq, ooy X)) AS(xq, ey X)
(3) R(xq, oy Xp) V S(xq, vr, X))
(4) R(xq, «r, x) — S(xq, oy X3)
(5) R(xq, ..., x) <> S(xq, .., X))

Prova:
Imediata pela defini¢do dos conectivos proposicionais.

Definicdo 1.21 Os quantificadores limitados sdo obtidos, por definicdo, a partir dos

quantificadores existencial e universal, conforme vemos abaixo:
(1) Quantificador existencial (para n > 0):

Vy<zR(Xq, ooy X, Y) £ 3, (0<y<ZA(Xq, ..., X, Y) ER)
(2) Quantificador universal (para n > 0):

Ny<zR(x1, oo X, ¥) E V(0<y <2 = (X1, .y X, ¥) ER)

Teorema 1.22 Se R(x4, ..., X, ¥) € uma relacdo recursiva primitiva, entdo as relacbes abaixo

S&0 recursivas primitivas:
(l)vy<zR(x11 e X, y)

(DAy<zR(x1, s X3, Y)

Prova®:

Considere M(xy, ..., Xp, 2) = Vyez R(x1, ..., Xn, Y).

¥ Exibiremos unicamente a prova de que Vy<zR(x1, ..., Xn, y) € recursiva primitiva. De modo semelhante,
demonstra-se 0 mesmo acerca da relagdo A, <, R (xy, ..., X, ¥), cuja funcdo carateristica é [], <, xz (x1, ..., X, ¥).
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Segundo a definigdo 1.21, V., R(xq, ..., X, ¥Y) = R(X1, o0y X, 0) V... V R(Xq, ., Xy, Z-1).
Consequentemente, M (x4, ..., Xp, Z) = R(Xq, ..., Xp, 0) V ... V R(Xq, ..., Xy, Z-1).
Neste caso,

1,se (x4, ...,Xp,y) € R paraalgumy < z

XM(xl, ..-;XTL; Z) = {0, se (xl; ".,xn' y) e R' para tOdO y <7z

_ {1,se Xr(X1, ., Xp,y) = 1,paraalgumy < z
~10,se yr(xq, ..., x,,y) = 0,para todo y <z
De outro modo, yp (xy, ..., Xn, 2) = SO(Xy<z Xr (X1, ..., X, ¥)). Portanto, tendo em vista

a nossa consideracdo inicial, Vy<,R(xy, ..., X, Y) € recursiva primitiva.

Definicdo 1.23 A operacdo de minimizacdo limitada aplicada a uma relacdo n+1-aria R é
estabelecida do seguinte modo:

omenory < z: (xy,...,x,,¥) €R, se Vy,R(xy,...,%p,¥)
ﬂy<zR(x1, ...,Xn,y): 0 se "‘V R(X X
) y<z 1r0 nIY)

Intuitivamente, a minimizacdo limitada é uma operacao de pesquisa. Tendo em vista
os limites impostos a sua aplicacao, a pesquisa que ela faz, mais cedo ou mais tarde, chega ao
fim, tendo sempre como valor o menor y tal que (x,,...,x,,¥) € R, caso ele, de fato, exista,

ou 0, caso contrario.

Teorema 1.24 Se R(xy,...,xp,y) € uma relacdo recursiva primitiva, entdo a funcdo

Uy<zR(x1, ..., Xn, ) € recursiva primitiva.
Prova:

Se ndo existe um y < z tal que R(xy,..., X, ¥), S9(Xy<z Xr(X1, .., X, y)) = 0. Caso
contrario, sg(Xy<z xr(x1, ..., Xn,¥)) = 1, € 0 menor y < z sera o valor determinado pela
funcdo Xy, [Tu<cy+15g9(Xr(x1, ..., xp,u)) que a cada ygp(xy,..,xpu) = 0 soma 1 até
alcancar a primeira n+1-upla (xy,...,x,, u) tal que yg(x4,...,x,,u) = 1. Sendo assim, a
fungdo u,<,R(xq, ..., xn, Y) € claramente recursiva primitiva, pois € obtida por composicao,

Ccomo vemos abaixo:

Hy<zR(X1, ooy X0y Y) = MISQ(Xy <z XR (K1) oy X0 YD)y Zy<z [ucy+1 SG UR (X1, e 5 X, 1))
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Como ilustragdo, vamos calcular p,,.3mt(1, y). Sabemos, de antemao, que um tal y
existe. Portanto, até 0 momento, py,zmt(1,y) =ml(1, X3 [Tucy+159 me(1,1))). Nosso

préximo passo serd identifica-lo calculando o somatério limitado do seguinte modo:
Zy<3 Hu<y+1 SGUme(Lw) = lu<o+159 Ome (L, 0)) +
[Tuc1+159 Ctme (L)) +

[Tu<2+159 Otme (1L, 1))

De outro modo:
Zy<3 Hu<y+1 @(th(l: u)) = @(th(l'o)) +
59 Ume(1,0)) - sgUme(1,1)) +

59 (tme(1,0)) ' 59 Ume(L1)) -
59 (tme(1,2))

Portanto, como queriamos, u,.3mt(1, y) = mi(1, 2) = 2. Com efeito, sabemos que 2 é

0 menor e unico nimero do qual 1 é metade.

Exibiremos, a seguir, algumas funcGes recursivas primitivas determinadas a partir das

operacgdes de minimizacdo, soma e produto limitados.

(1) Para x > 0, a funcdo p(x) determina 0 x—€simo nimero primo em ordem crescente. Ela
sera definida levando-se em consideracao o teorema de Euclides sobre a infinitude dos primos
segundo o qual se p é primo, entdo existe um primo y tal quep <y < p! + 1. Isto posto,

considerando A = {(x, y): p(x) < y A Pr(y)}, definimos a funcdo p(x) como segue:

p(0)=2
p(S(X)) = .uy<p(x)!+2A(xr y)

(2) Seja pg° - pyt - .- py" a decomposicdo de x em fatores primos. A fungdo binaria (x);
determina o expoente do i-ésimo fator primo dessa decomposicdo, isto é, (x); = a;. Por

convencao, (0); = 0, para todo i. Note que na decomposicdo de X, 0 expoente de p; € 0

y+1
i

(menor) ntimero y < x tal que p; divide x e ;™" ndo divide x. Sendo assim, considerando a

relagcdo B = {(x, i, y): piy|x A ~(piy+1|x)}, definimos a funcdo (x); da seguinte maneira:

(x)i = .uy<x B(x' i' y)
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(3) Para x # 0, a fungdo Ih(x) determina o nimero de expoentes diferentes de zero na
decomposicdo de x em fatores primos ou, em outros termos, 0 nimero de primos distintos que
dividem x. Por convencdo, Ih(0) = 0. Considerando o exposto, é facil notar que o valor de

Ih(x) sera obtido a partir da relacdo C = {(x, y): Pr(y¥) A y|x A x # 0}, como vemos abaixo:

lh(x) = Zy<x+1 XC(x’ y)

(4) Sejax = 2% -3% . . . p% esejay=2b0.3b1. . . pPm afuncdo x * y determina o valor

da sequéncia obtida pela justaposicdo de x e y como vemos a seguir:

=200 .30 .  .p% b0 b1 bm
xxy =290 3% P Dpgn Priz - Priiem

Ou seja:
x*y =x-[liciney) Pz(r{()i)+i

(5) Para x > 0,a funcdo g(x) = x?2, estabelece 0 x—ésimo quadrado perfeito em ordem
crescente ao passo que funcéo [\/E] determina o maior nimero natural y < +/x. Considerando

E={(x,y):q(y) > x}, definimos [v/x ] da seguinte maneira:

[\/E ] = pd(.uy<x+1E(x' y))

(6) A funcdo MDC (x4, ..., x,) determina 0 maior divisor comum de x4, ..., x,,. Considerando

F={(n -0 x0Y): Xy A e Aylxy) A~y + 1]x;)}, definimos MDC (x4, ...,x,) abaixo:
MDC(xy,...,%p) = Hy<min(xy,.. xn)+1F(x1' e Xn,Y)

Concluindo esta subsecdo, queremos esclarecer que escolhemos destacar o conjunto
das funcbes recursivas primitivas, pois acreditou-se, durante algum tempo, que ele seria a
versdo formal para o conjunto das funcGes algoritmicas, tendo em vista que, como falamos,
anteriormente, muitas fungdes reconhecidamente algoritmicas foram provadas ser recursivas
primitivas. No entanto, o matematico alemdo Wilhelm Ackermann apresentou um
contraexemplo. Ele construiu uma fungdo algoritmica que ndo era recursiva primitiva. A
partir dai, surgiu, entdo, a necessidade de se ampliar o conjunto das funcdes recursivas
primitivas, a fim de se obter um conjunto mais abrangente de funcbes que constituisse uma
versdo formal para a nogéo intuitiva de fungdo algoritmica. Como resultado desta ampliacéo,

definiu-se o conjunto das funcbes recursivas. Para compreender também as funcOes
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estritamente parciais algoritmicas, o conjunto das funcGes recursivas foi mais uma vez

ampliado, o que resultou no conjunto das funcdes parciais recursivas.
1.1.3 Derivac0es parciais recursivas

Na subsecdo anterior, apresentamos resultados envolvendo unicamente fungdes
recursivas primitivas que, como vimos, sdo alcancadas a partir das funcdes iniciais e das
operacOes de recursdo primitiva e composi¢do. Falta-nos ainda apresentar, na pratica, o uso da
operacdo de minimizacdo ilimitada, a partir da qual obtemos funcdes (parciais) recursivas.
Com tal intuito, exibiremos o proximo teorema, cuja prova exigird a construcao de derivagdes

(parciais) recursivas para cada uma das funcdes listadas.

Teorema 1.25 As seguintes funcdes sdo parciais recursivas:

0, sex =0
T, caso contrario

(1) zero-zero: zz(x) = {
22(X) = py (mx(x, y) = 0)

(2) funcéo vazia: @(x, ..., x,) = T, para qualquer xy, ..., x,
B(x1, ., Xn) = Uy (S(UTFH(xy, .0, X5, 7)) = 0)

Prova:

(1) Zero-zero

LUZ(xy) =y Fi
2. go(x, ¥, 2) = S(U5(x, ¥, 2)) FRP
3. ad(x, 0) = Ui(x) FRP
ad(x, S(y)) = go(x, y, ad(x, y))
4. sp(x, 0) = U1(x) FRP
Sp(X, S(y)) = 98()(1 Y, Sp(X, y))
5. mx(x, y) = ad(U2(x, y), sp(X, )) 3,1,4/C
6. g911(X) = u, (mx(x,y) = 0) 5/Minimizacao ilimitada (MI)

Ora, g11(X) = zz(x). Portanto, zz é parcial recursiva.
(2) Funcdo vazia

1.5(x) =x’ FI

2.UM N (xy, o X0, V) = X3 FI
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3. g12(x1, oo, X, ¥) = S(UT (%, o0, X, 7)) 1,2/C
4. g13(x1, ey Xn) = Hy(g12(x1» X, y) =0)  3IMI

Ora, g13(xq, ..., x5) = O(x4, ..., x,). Portanto, @ € parcial recursiva.

Similarmente ao que vimos na subsec¢éo precedente, uma derivacdo (parcial) recursiva
para uma funcéo f é um algoritmo que computa tal funcdo. Sabendo disso, vale ressaltar que
embora as derivacGes recursivas primitivas e as derivacbes (parciais) recursivas sejam
exemplos de algoritmos, apenas o conjunto das derivagOes recursivas primitivas e o conjunto
das derivagcbes parciais recursivas sdo decidiveis, pois dada uma sequéncia qualquer de
funcBes, é possivel reconhecer mecanicamente se cada funcdo da sequéncia é uma funcéo
inicial ou se foi obtida de funcGes anteriores, a partir das operacdes de composi¢do, recursdo
primitiva ou minimizacdo ilimitada. No entanto, 0 mesmo ndo pode ser afirmado sobre o
conjunto das derivacdes recursivas. Com efeito, a restricio imposta a aplicacdo da
minimizacado ilimitada as fungdes regulares nos impede de identificarmos mecanicamente se
uma dada sequéncia de funcdes é ou ndo uma derivacao recursiva, ja que para decidir se uma
funcdo f(xq,...,x,,y) € regular é necessario calcular, para cada (xy,...,x,), 0s valores
f(xy, oo, %0, 0), f(xq, ..., xp, 1), f(xyq, ..., x5, 2) etc., admitindo a real possibilidade deste calculo
nunca terminar, pois pode ser que para esta n-upla ndo haja um y tal que f(x4, ..., x,,,y) = 0.
Portanto, em resumo, dada uma sequéncia qualquer de funcdes nunca saberemos, em geral, se
ela é de fato uma derivacao recursiva, por ndo sabermos, previamente, se uma de suas funcdes

a qual foi aplicada a minimizagcdo ilimitada é regular.

Alem das funcBes (parciais) recursivas, podemos também estabelecer relacOes
(parciais) recursivas. Estas sdo definidas de modo analogo as relacGes recursivas primitivas.
Por fim, posto que toda funcdo recursiva primitiva € recursiva e toda funcdo recursiva é
parcial recursiva, convém explicitar, de antemao, que 0s teoremas vistos nas subsecoes 1.1.1 e

1.1.2 se aplicam, sem maiores dificuldades, as funcdes e as relagdes (parciais) recursivas.
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2 TURING-COMPUTABILIDADE

Definido o conjunto das funcdes parciais recursivas, definiremos, neste capitulo, o
conjunto das funcdes parcialmente Turing-computaveis, a fim de estabelecermos a igualdade
entre eles, que é, como ja dissemos, um dos nossos objetivos. Para isso, apresentaremos,
previamente, as maquinas e os programas de Turing. Estes serdo identificados como
conjuntos de quintuplas, o que nos possibilitara reconstruirmos, de modo inédito, a prova
segundo a qual toda funcao parcial recursiva é parcialmente Turing-computavel. A reciproca
também serd provada. Ao final, apresentaremos alguns argumentos a favor da Tese de
Church-Turing que identifica as fungBes parciais algoritmicas as funcbes parcialmente

Turing-computaveis.
2.1 Maquinas e programas de Turing

Com o objetivo de formular uma definicdo precisa de computabilidade efetiva, Turing
definiu certos objetos tedricos que ficaram conhecidos como maquinas de Turing, a partir dos
quais define-se de maneira exata o conjunto das funcbes parcialmente Turing-computaveis.
Intuitivamente, entende-se por uma maquina de Turing M um mecanismo imaginario
constituido por um dispositivo chamado reading head e por uma fita infinita a esquerda e a

direita, secionada em quadrados, tal que:

(1) em cada quadrado esta escrito apenas um simbolo da fita s; do conjunto S = {s,, s, S5,

Y

(2) o dispositivo sempre esta em um estado interno qg; do conjunto Q = {qo, 91, 92, ---},
sempre observa um quadrado da fita por vez e executa um dos seguintes movimentos: move-
se para o quadrado imediatamente a direita daquele que esta sendo observado (movimento que
simbolizaremos por ‘R’, de right) ou move-se para o quadrado imediatamente a esquerda

daquele que esta sendo observado (movimento que simbolizaremos por ‘L’, de left).

(3) as acdes do dispositivo sdo determinadas por um conjunto finito ndo-vazioP c Q x S x S
x {R, L} x Q que chamaremos de programa de Turing. Se (q;, Sk, St; X, q;) € P, entdo o

dispositivo, no estado interno q; e observando o quadrado no qual esta escrito sy, substitui sy
por s;, move-se para 0 quadrado imediatamente a direita, quando X = R (ou a esquerda,

guando x = L) e assume o estado interno q;.

Definigdo 2.1 A linguagem L de uma maquina de Turing é o conjunto de simbolos S U Q U

{R, L}.
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Definicéo 2.2 Uma expressdo de L é uma sequéncia finita de simbolos de L.

Definigdo 2.3 Duas quintuplas do conjunto Q x S x S x {R, L} x Q sdo inconsistentes se, e

somente se, sdo iguais quanto aos dois primeiros simbolos e diferentes quanto a, pelo menos,

um dos simbolos restantes. De outro modo, sdo consistentes.

Definicdo 2.4 Um programa de Turing P é um conjunto finito ndo-vazio de quintuplas
consistentes de Q x S x S x {R, L} x Q.

A restricao presente na defini¢do acima ¢ chamada de “requisito de consisténcia”. Ela
evita comandos contraditérios, diante dos quais a maquina interromperia a sua computagéao.
Observando tal requisito, as quintuplas (qy, s1, s1, L, q1) € (9o, S1, S1, L, q3), por exemplo,

ndo sao admitidas em um programa de Turing.

Normalmente, a maioria dos manuais define um programa de Turing como um
conjunto finito de quadruplas consistentes. NGs, no entanto, optamos por defini-lo como um
conjunto finito de quintuplas consistentes. Desta forma, obteremos, em geral, programas de
menor cardinalidade, tendo em vista que, muitas vezes, 0 comando dado por duas quadruplas
pode ser determinado por uma Unica quintupla. As quadruplas (q;, sk, St. q1) € (9i,» St. R, q1),
por exemplo, podem ser substituidas, sem maiores dificuldades, pela quintupla (q;, sk, st R,
qy). Este modo alternativo de definir um programa de Turing nos permitird provarmos, mais
adiante, o enunciado segundo o qual toda funcdo parcial recursiva é parcialmente Turing-
computavel de modo ligeiramente diverso do habitual, pois conseguiremos prova-lo
utilizando programas menores, oportunizando, consequentemente, computacdes com um

menor nimero de passos.

Defini¢do 2.5 Uma configuragdo instantdnea de M é uma expressao de L do tipo aq;b, tal
que a e b sdo, respectivamente, uma sequéncia finita (possivelmente vazia) e uma sequéncia

finita (ndo vazia), de simbolos da fita.

Sendo assim, as expressdes qS;S; € SpS1gsS3 constituem, por exemplo configuragcbes

instantaneas de M; no entanto, 0 mesmo ndo pode ser dito das expressdes Rs;qsS3 € SpS1(s.

Observacao
e Dada uma configuracdo instantdnea ¢ de M, assumimos 0s seguintes enunciados: (1)

nos quadrados da fita ndo referidos em c esta escrito s,; (2) o simbolo da fita
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observado pelo dispositivo é aquele que segue imediatamente o simbolo de estado

interno.

Definigdo 2.6 Dados um programa de Turing P e as configuragdes instantaneas ¢ e ¢’ de M, ¢

acarreta ¢’ via P (em simbolos: ¢ . c’) se, e somente se, uma das seguintes condigdes €

satisfeita, sendo t; e t, sequéncias finitas (possivelmente vazias) de simbolos da fita:
(1) (gi, Sks St R, q1) € P, € =t1qisiSpty € ¢ = tys¢qySpts

(2) (i, Sk, St R, q1) € P, €= t1qisk € € = t15¢q1S0

(3) (ais sk sty L, q1) € P, € =tyspqisktz e ¢ = t1qiSpsits

(4) (qil Sk St L, ql) € P! Cc= qisktZ ec’ = qlSOSttZ

Em outras palavras, a primeira condicdo € a seguinte: sendo (q;, Sk, St, R, ;) uma
quintupla de P e sendo ¢ = t;q;skspt,, isto €, estando o dispositivo no estado interno g; e
observando o quadrado no qual estd escrito sy, ele substitui s, por s;, movimenta-se ao
quadrado imediatamente a direita e assume o estado interno q;, resultando em c’. As demais

condicdes sdo analogas a esta que acabamos de explicitar.

Definicdo 2.7 Uma configuragdo instantanea c € terminal com respeito a um programa de

Turing P (em simbolos: cf) se, e somente se, ¢ = t;q;skt, € P ndo contém quintuplas da forma

(qil Sk Str X, ql)
Convencao notacional

e Assim como fizemos com as derivacBes parciais recursivas, utilizaremos os programas
de Turing para realizarmos computacGes numéricas. Para tanto, sdo necessarias
algumas convengoes:

(1) No lugar de s,, escreveremos B para indicar um quadrado vazio durante a
computacdo; no lugar de s,, escreveremos | e, no lugar dos demais s; (desde que
haja a necessidade de usa-los), escreveremos alguns marcadores, que Serdo
apresentados mais adiante.

(2) Para representar um nimero natural X que ocorre no input, escreveremos | em X +
1 quadrados consecutivos. O output y sera representado por y |’s escritos em

guadrados ndo necessariamente consecutivos da configuragéo instantanea terminal.
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Representaremos x + 1 |’s por X ou [¥*1. Em geral, para representar uma n-upla
(my,...,my), escreveremos m; B...Bm,,.
e Eliminaremos os pares de parénteses e as virgulas presentes nas quintuplas.

Escreveremos q;sisiXq, em vez de (qj, Sk, St, X, q1)-

Defini¢do 2.8 Uma computacgdo segundo um programa de Turing P com input (my,...,m,) €
uma sequéncia finita de configuracGes instantaneas de M, (c¢q, ¢y, ..., Cx), tal que a

configuracgdo instantanea inicial c; = q,m;B...Bm,, ¢, = cf e ¢; 2 Ci+1, Para cada 1 <i<k.

Como ilustragdo, considere o programa de Turing P = {q,|BRqy, q1]|Lq:} € a
seguinte sequéncia de configuracdes instantaneas que constitui uma computacdo segundo o

programa P com o input (2,0):

C1:qollIB]
c2: Bq,||B|
c3: q41B|[B]|

Definigdo 2.9 Dados um programa de Turing P e as configuragdes instantdneas c e ¢’ de M, ¢’
é resultante de ¢ com respeito a P (em simbolos: ¢’ = Resp(C)) se e somente se existe uma

computacéo (cq, Cy, ..., Cx) Segundo P com input (m4,...,m,), talque c; =cecy=c’.

Defini¢do 2.10 Seja P um programa de Turing, a ele esta associado, para cada n > 1, uma
Unica funcdo n-aria Wp(x4,...,x,) tal que dado uma n-upla (my,...,m,) duas situacdes

alternativas podem acontecer:

1) ha uma computagdo (c;, €y, ..., C) Segundo P com input (my,...,m,); neste caso,
putag 1 C2 k) S€J Y 1 n
Wp(my,...,my) = [ck], onde [ck] é o niimero de |’s que ocorrem na descrigdo instantnea

terminal c.

(2) ndo ha uma computacdo (c;, cy, ..., Cx) Segundo P com input (m4,..., my,); neste caso,

Wp(my,...,my,) e, consequentemente, Resp(qom;B...Bmy,) estdo indefinidos.

Definicdo 2.11 Uma funcdo numeérica n-aria h(xy, ..., x,) é parcialmente Turing-computavel
se, e somente se, existe um programa de Turing P tal que h(xy,...,x,) = Yp(Xy,...,Xy). EM
particular, se h(xq,...,x,) € uma funcdo total, dizemos que h(xq,...,x,) € Turing-

computavel.
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Em outras palavras, uma funcdo € (parcialmente) Turing-computavel se e somente se

existe um programa de Turing para computa-la.

2.2 Equivaléncia entre as funcdes parciais recursivas e as fungdes parcialmente Turing-

computaveis

Reservaremos esta secdo para reconstruirmos a prova segundo a qual o conjunto das
funcdes parciais recursivas e o conjunto das funcBes parcialmente Turing-computaveis,
embora sejam conceitualmente distintos, possuem as mesmas fungdes numéricas como seus

elementos.
2.2.1 Toda funcéo parcial recursiva é parcialmente Turing-computéavel

Obviamente, para provarmos que as funcGes parciais recursivas sdo parcialmente

Turing-computaveis devemos provar 0s seguintes enunciados:
(1) as funcgoes iniciais sdo parcialmente Turing-computaveis;

(2) o conjunto das fungdes parcialmente Turing-computaveis é fechado com respeito as
operacdes de composigéo, recursdo primitiva e minimizagéo ilimitada (ou, em outras palavras,
tais operacdes levam de fungdes parcialmente Turing-computaveis a funcdes parcialmente

Turing-computaveis).

A seguir, expomos a prova do primeiro enunciado, apresentando 0s programas para

computar as fungdes iniciais.

(1.1) Uma maquina de Turing computa a funcéo sucessor S(x) de acordo com o programa P
={qo||Rq1}. Ou seja, ‘Pllps (x) = S(x). Sabendo disso, vejamos a computacao de ‘P%,S(S):

c1: qollll

C2:qal]

Portanto, Wp,(3) = [Resps(dollI)] = [1q1111] = 4.

(1.2) Uma méaquina de Turing computa as diversas fungdes-constante Cy (x4, ..., X,) de acordo

com o programa Pcn abaixo:

qo|BRq apaga todos os |’s
qoBBRq;

d1|BRqy
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q;B|Rq;+; paracadai,talque0<i<Kk
escreve um | e vai para o quadrado imediatamente a direita

Assim sendo, ‘PECH (X1,--+,Xn) = Cp(Xq, ..., Xp). ISto posto, vejamos, como exemplo, a
k
computaco de ‘P%CZ (2,0) :
3

¢1:qol||Bl

cz: Bqo|[B|

c3: BBqy|B]

c,: BBBq(B|

cs: BBBBq4|

cs: BBBBBqyB

c,: BBBBBBq;B
cg: BBBBBB|q,B
cy: BBBBBB||q3B
c10: BBBBBB|||q4B

Portanto, ‘Pﬁcg(Z,O) = [Rese, (dol|BI)] = [BBBBBB[|q,B] =3.

(1.3) Uma méaquina de Turing computa as diversas fun¢des-proje¢do U (x4, ..., X,) de acordo

com o programa Pyn abaixo:

q2x|BRA2k+1 paracadak,talque0 <k <n-lek=#i-1

q2k+1|BRq2k+1 apaga um blOCO de | S

d2k+1BBRA k42

q2i—2|BRq,j_;  apaga o primeiro | do i-ésimo bloco
d2i-1BBRqy;
d2i-1/|1RQ2i-1

Consequentemente, lI’{%Un(xl,...,xn) = U’(Xq, ...,X,). Sabendo disso, vejamos a
computacio de ‘P§U3 (1,1,2) :
1

¢1: qol|BIBI]|
c2: Bq, |B||B]]]
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cs: Blq.B||B]|]

c4: B[Bq|[B]]]

cs: B|[BBq3|B|||

Ce: B|BBBqg;Bl|||

¢,: B|BBBBq,|||

cg: B|BBBBBq;||

Cy: BIBBBBBBq;|
C10: BIBBBBBBB(q;sB
c11: B|IBBBBBBBBq4B

Portanto, W3 , (1,1,2) = [Resp_,(qolIBI|BIII)] = [BIBBBBBBBBq,B] = L.
1 1

Com os programas que acabamos de expor, fica provado que as funcdes iniciais sao
parcialmente Turing-computaveis. Nossa proxima atividade sera provar, a partir de uma série
de lemas apresentados mais adiante, que as operacfes basicas, quando aplicadas a funcdes

parcialmente Turing-computéveis, geram novas fungdes parcialmente Turing-computaveis.
Convencao notacional

e Dado um programa de Turing P qualquer, 6(P) designara o maior nimero i tal que g;
é um estado interno de P; P por sua vez, designara o programa de Turing obtido a

partir da substituicdo de todas as ocorréncias de q; em P por qi;x-

Defini¢do 2.12 Um programa de Turing P é n-regular (n > 1) se, e somente se, as seguintes
condigdes sdo satisfeitas:

(1) sempre que Resp(qom;B...Bm,) estiver definido, Resp(qom;B...Bm,) = qg(pyr;B...Brs,

para convenientes ry, ..., rs, Sendo s > 1;
(2) nenhuma quintupla de P possui qg(py| como os dois primeiros simbolos.

Dentre os varios lemas que provaremos a partir de agora, o primeiro deles permitira a
maquina realizar uma computacdo e, ao final, reescrever o output de tal modo que ele esteja

pronto para iniciar uma nova computacao.

Lema 2.13 Para cada programa de Turing P, existe um programa de Turing n-regular P’ tal

que Respr(qom;B...BMy,) = qgpryPp(my,..., my).
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Prova:

O programa de Turing P’, obtido a partir de P, serd construido de tal modo que a
computacdo (principal) determinada por P® se desenvolvera entre dois marcadores: A (= s,)
e p (=s3). Caso ela exija mais espaco, os marcadores serdo afastados e, com isso, novos
espacos serdo disponibilizados. Concluida a computacdo, os |’s presentes na configuragido
instantanea terminal serdo reunidos em um uUnico bloco, os marcadores p e A serdo,
respectivamente, apagados e um | sera adicionado ao Unico bloco existente, no quadrado, até
entdo, ocupado por A. A esta altura, a maquina tera alcancado o estado interno qgpr),
observara o | mais a esquerda do bloco, estando, deste modo, pronta para iniciar uma nova

computacao.
Seja P; 0 seguinte programa de Turing:

dol|Lqo imprime A a esquerda
qoBARq;
q:1/|Rq; move-se a direita até encontrar um duplo vazio
q:BBRq;
qz/IRqy
q2BBLQ3

q3BpLg, imprime p a direita; move-se a esquerda até encontrar A; em seguida, move-

se um quadrado a direita
d4/1Lqy4

q4BBLq,
q4AARqs
Entdo, Resp (qom;B..Bm,) = Agsm;B...Bm,p. Impressos os marcadores nas

extremidades da n-upla, a maquina encontra-se pronta para iniciar a computagao principal.

Seja P, 0 programa de Turing que contém todas as quintuplas de P®) e, além disso,

contém, para cada q; de P, as quintuplas apresentadas abaixo, nas quais k = 6(P®).

q;ABLg,k4+; alcangcando A, apaga A; move-se um quadrado a esquerda, no qual imprime 2;

vai um guadrado a direita para dar continuidade a computacdo principal.
d2k+iBARg; a P putagao princip

q;pBRq4k+i alcancando p, apaga p; move-se um quadrado a direita, no qual imprime p;

vai um quadrado a esquerda para dar continuidade a computacédo principal.
d4k+iBPLQ;
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Durante a computagdo de acordo com P®), os marcadores podem ser alcangados. Se
isto ocorrer, as quintuplas acima apresentadas disponibilizardo novos espagos vazios a
esquerda e a direita a fim de que a computacdo em desenvolvimento seja concluida, o que
ocorrerd se, e somente se, 0 Resp(qom;B...Bm,) estiver definido. Sendo este o caso, 0
Resp, (Aqsm;B...Bm,p) = Aaqgpes) bp, onde a e b sdo, respectivamente, uma sequéncia
finita (possivelmente vazia) e uma sequéncia finita (ndo vazia), de simbolos da fita e
[Aaqe(P(S))bp] = [Resp(qom;B...Bmy)]. Caso contrario, 0 Resp, (Aqsm;B...Bm,p) também

estara indefinido.

Com P,, finalizamos a computacdo principal. O proximo passo na construcéo de P’
sera apresentar um programa que reina, em um unico bloco, a direita de A, todos os |’s até
entdo obtidos e, em seguida, substituiaA por |. Antes, porém, a fim de evitar quintuplas
inconsistentes, definiremos o programa P; do qual a Unica quintupla utilizada ordenara que a

maquina assuma um estado interno inédito no programa e mova-se um quadrado a esquerda.

Considerando u = 5k + 1, definimos P; como o programa de Turing que contém, para

cada s; de P,, todas as quintuplas da forma Qg(p()SjSjLqu, exceto aquelas cujos dois

primeiros simbolos também iniciam alguma quintupla de P, . Sendo assim,

quAabp, se a é uma sequéncia vazia
Resp, (Aaqe(P(s))bp) =1{ Aquabp, se a é uma sequéncia de comprimento 1
ASi ...Sp—19uSnbp, se a é uma sequéncia de comprimenton > 1
Seja P, 0 seguinte programa de Turing no qual s € qualquer simbolo da fita presente
em P diferente de | e de B.

qullLgy move-se a esquerda até alcancar A e vai um quadrado a direita
quBBLq,

qussLqy
unun+1

qu+1SBRq,4+; alcangando s, apaga s e vai um quadrado a direita; alcangando |, apaga | e
move-se um quadrado a esquerda; alcancando p, apaga p, preparando-se

BBR - ~
Qu1BP8u+1 o finalizar a computacéo

qu+1|BLqu+2
Qu+1PBLAyu+4
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qu+2BBLQgyu4+2 mMove-se a esquerda até alcancar A ou | e move-se um quadrado a direita

Qu+2 | |un+3
qu+2Mun+3

qu+3B|Rqus+1  alcangando B, substitui B por | e move-se um quadrado a direita

qu+4BBLQgu+s4 mMove-se & esquerda: alcangando A, substitui A por |, move-se um quadrado a

direita e, em seguida, um quadrado a esquerda
Qu+4l|LQusa

qu+4}\|un+5
Qu+s | |Lqu+6

De acordo com P,, independentemente do simbolo da fita que esta sendo observado, a
maquina vai a esquerda até alcancar A; quando isto acontece, ela procura | a direita; ao
encontra-lo, ela apaga-o e dirige-se novamente & esquerda para imprimi-lo a direita de A; mais
uma vez, a maquina vai a direita em busca de um outro |, quando o encontra, ela o apaga e
dirige-se a esquerda para imprimi-lo a direita do primeiro |; este processo se repete até que

todos os |’s presentes no Resp30\aqe(P(s))bp) estejam reunidos em um Unico bloco

imediatamente a direita de A; quando a maquina encontra p, ela apaga-o, dirige-se a esquerda
até alcancar A, o substitui por |, vai para o quadrado da direita e retorna ao quadrado da
esquerda, assumindo o estado interno q,4¢. A0 final de todas estas acbes, a maquina

encontra-se pronta para iniciar uma nova computagéo.

De posse dos quatro programas que acabamos de expor, considere, finalmente, P’ =
P, UP, UP; UP,. Sendo assim, para qualquer que seja o programa de Turing P, podemos
construir um programa P’ tal que se houver, de acordo com P, uma computacdo para a n-upla

(m4,...,m,), havera, de acordo com P’, uma computagdo para a mesma n-upla, sendo

ReSPI (qoﬁlBBﬁn) = qu+6 [ReSP(qomlB. . an)] = qe(P’) ‘I’B(ml, ey mn) . Portanto, P,

é n-regular.

Lema 2.14 Para cada programa de Turing n-regular P e para cada t > 0, existe um programa

de Turing (t+n)-regular P* tal que:

(1) se Resp(qom;B..BM,) = qgpT4B..BTs, entdo Resp#(qok,B..BkBm;B...BM,) =

qo(p# kiB...Bk BT, B...BT;.
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(2) se Resp(qom;B..Bm,) estiver indefinido, entdo Resp#(qok;B...Bk:Bm;B...Bm,)

também estara indefinido.
Prova:

O programa P#, obtido a partir de P, oferecera uma estratégia que, dado o input

k,B...Bk.Bm;,B...Bm,, permite a maquina omitir a t-upla k;B...Bk,, para desenvolver a
computacdo principal (segundo P(*2)) somente sobre a n-upla m;B...Bm,,, reescrevendo ao
término de tal computacéo a t-upla inicialmente omitida. A estratégia consiste em substituir
todos os |'s presentes em Kk, B...Bk, por €, exceto 0 mais & esquerda que sera substituido por
8 e, em seguida, imprimir € no lugar do B que separa k; e m;. De modo analogo ao lema 2.13,
se houver a necessidade de mais espagos para que a computacdo principal seja desenvolvida,
ha quintuplas em P# que disponibilizam novos espacos afastando os blocos de €’s para a

esquerda. Ao fim de tal computacdo, os marcadores 6 e €’s sdo substituidos, fazendo com que

k,B...BKk, reapareca tal como na configuracio instantanea inicial.

Seja T, 0 seguinte programa de Turing no qual & e € sdo simbolos da fita ndo

pertencentes ao programa P:

do|6Rq; substitui o | mais a esquerda por &

qileRq; paracadai,talque0<i<t
q;BBRqi4 1 substitui os |’s presentes em Ky...ke_, por e

qe|eRqy substitui os |’s presentes em Kk, por € move-se um quadrado a direita; em
q.BeRq.,, Seguida, substitui o B (localizado entre k. e m;) por € e vai um quadrado a
direita

Entdo, Resr,(qok;B...Bk.Bm;B...Bm,) = 8¢¥1B ... Bekttleq,,,m,B...Bm,, tal que

os indices sobrescritos determinam o niimero de ocorréncias de €. Omitida a t-upla k; B...Bk,

a maquina esta preparada para iniciar a computacédo principal.

Seja T, 0 programa de Turing que contém todas as quintuplas de P(t2) e  além disso,
contém, para cada q; de P(*2)_ as quintuplas apresentadas abaixo, nas quais N = (P(t+2) e

s é qualquer simbolo da fita presente em P, exceto | e B.
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q;€|Lqn+i interrompe a computacdo principal; substitui o € mais a direita por |;
move-se a esquerda até alcancar &; apaga 6 e dirige-se um quadrado a
qN+i€ELN+i ; ;
esquerda que estara vazio
qn+iBBLAN+i

an+iOBLg3N+i

q3n+iBORqun+i  iImprime & no quadrado vazio e move-se um quadrado a direita

qan+i€€RQgsn4i  MoOve-se a direita para observar o simbolo escrito no quadrado seguinte

d4n+iBBRQsN+i

gsn+i€€Lgenyi  Observando €, volta um quadrado no qual copiara €; observando B, volta
um quadrado no qual copiara B; observando |, apaga | e move-se um

.BBL i .
AsN+HEBLAIN+ o adrado & direita

dsn+ilBRAgN+i

den+i€ERA4Nyi  COpiaE

qoN+iBERQ 4N+

q7n+iEBRq4nyi  COpia B

d7n+iBBRQ4N+i

qsn+il|LG; dirige-se um quadrado a esquerda (que estard vazio) para retomar a
computacéo principal

den+iBBLq; putagao princip

den+iSSLq;

Sob os comandos de T,, a maquina de Turing realiza a computacdo principal,
deslocando todos 0s €’s um quadrado a esquerda todas as vezes que um & mais a direita é
alcancado. Sendo assim, sempre que Resp(qom;B...Bm,) estiver definido,

Resr, (8e1B ... Bekttleqy, ,m; B...Bm,) = 8¢X1B ... Be"t*eqyT, B...BT;.

Definimos T; como o programa de Turing composto pelas seguintes quintuplas, sendo
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qn||Lan dirige-se um quadrado a esquerda e apaga o € mais a direita

aneBLQgy 44

QL+1&|LqL+1 desloca-se para a esquerda, substituindo € por |; ao encontrar &, imprime

no seu lugar
QL+1BBLAL gar|

dr+18|RqL+2

Qr+2||LAL+3 dirige-se para o quadrado imediatamente a esquerda

qr+2BBLQL 43

De acordo com T;, a t-upla k; B...Bk, reaparece ao término da computag&o principal
por meio da substituicdo de & e de todos 0s €’s (com excec¢do do ultimo) por |. No quadrado

ocupado pelo ultimo €, primeiro simbolo a ser substituido sob os comandos de T;, € escrito B

para separar k; e T,

Por fim, seja P* =T, UT, U T;. Entdo, para qualquer que seja o programa de Turing
n-regular P e para qualquer t > 0, podemos construir um programa P# tal que se houver, de

acordo com P, uma computagdo para a n-upla (mg,...,m,), havera, de acordo com P# uma
computagio para a (t+n)-upla (ky,....K;, My,...,T,), sendo Resp#(qok;B...BkBm;B...Bm,) =

qr+3k1B...BkBT; B...BT; = qg(p# k; B... Bk BT, B...BT;. Portanto, P¥ é (t+n)-regular.

Lema 2.15 Paracadan > 0 e t > 0, existe um programa de Turing (t+n)-regular C; tal que

Resc, (qok; B...Bk;BM; B...BM,) = q(c,)M, B...BM, Bk, B...Bk,Bm, B...BM,,.
Prova:

Podemos concluir a partir do enunciado acima que o programa C, apenas copia a n-
upla m;B...Bm, & esquerda da t-upla k; B...Bk,. Em linhas gerais, a maquina comandada por
C, e alimentada pelo input k,B...Bk.Bm, B...Bm,, escreve dois marcadores nas extremidades
de Bk;B..Bk, obtendo como resultado de tal escrita a seguinte expressio:

ABK;B...Bk,6m; B...Bm,. Na sequéncia, ela dirige-se a direita, observa o Gltimo simbolo da
n-upla m;B...Bm, e retorna a esquerda para copia-lo no quadrado onde esta escrito A.
Novamente, ela dirige-se a direita, observa, desta vez, o pendltimo simbolo da n-upla

m,B...Bm,, e retorna a esquerda para copia-lo a esquerda do primeiro simbolo anteriormente
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copiado; este processo se repete até que todos os simbolos de m;B...Bm, sejam copiados a

esquerda de k,B...Bk,. Neste cenario, C, consiste das seguintes quintuplas:

dollLqo
qoBBLq,

d1BARq;

dil|Rq;
qiBBRq;4+1

Qes2||RGe42

Qe+2BORq 43

Qe+3]|Rqe43
dt+3BBRA¢+4
Q+4l|IRqt43
dt+4BBLG¢45
de+5BBLGt+6

o P [OV) o P
de+6Balqisio
Qe+60BLG 414

Q+7/|LGts+7
Qe+7BBLq 47
Q+768Lq¢4+7
Qt+7AWRA 113
Q+70|LGts9

Qt+70BLG 49

dt+9BwR413

escreve o marcador A dois quadrados a esquerda e move-se um quadrado a
direita

paracadai, talque2<i<t+1

move-se sobre t bloco(s) de |’s, escreve § entre k. e m; e, em seguida,
dirige-se um quadrado a direita

procura um duplo vazio & direita; ao encontré-lo, move-se um quadrado a
esquerda

observando |, substitui | por w, preparando-se para copiar | a esquerda;
observando B, substitui B por «, preparando-se para copiar B a esquerda;
observando &, substitui & por B, preparando-se para terminar a
computacéo

dirige-se a esquerda: alcancando A substitui A por w e vai um quadrado a
direita; alcangando w copia, em seu lugar, |; alcangando a copia, em seu
lugar, B; nos dois ultimos casos, vai um quadrado a esquerda

imprime w no quadrado mais a esquerda, marcando o lugar no qual sera
copiado |
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Qi+10llLgir10  MOvVe-se a esquerda até alcancar w, copia, em seu lugar, | e vai um

uadrado a esquerda
dt+10BBLG¢410 g g

Qt+1008Lq 410

Qe+100|Lget12

qi+12BaRqi413  iIMprime a no quadrado mais a esquerda, marcando o lugar no qual sera
copiado B

Qi+13/IRqe413  dirige-se a direita: alcancando w  substitui w por |; alcangando «

BBR substitui a por B; em ambos 0s casos move-se um quadrado a esquerda
dt+13 Qt+13

de+1300Rq 413
Aer130| LG ct6

qt+13aBLG¢46

qi+14]|Lgir14  desloca-se para a esquerda, substitui w por |; vai um quadrado a direita e,
em seguida, retorna para o quadrado da esquerda, terminando, assim, a

BBL
dt+14 dt+14 computacio

Qer14@|RG 415

des1s|ILder1e

Portanto, seguindo rigorosamente as instru¢fes de C., obtemos para qualquer input
k,B...Bk,Bm;, B...Bm, (sendot > 0 e n > 0) uma computagdo em cuja descricdo instantanea

terminal a n-upla m, B...Bm, ocorre também a esquerda de k,B...Bk,, sendo imediatamente

precedida por pelo simbolo de estado interno qec,)-

Lema 2.16 Para cada n > 0 e t > 0, existe um programa de Turing (t+n)-regular R; tal que

Resg, (qok; B...BkBMm, B...Bf,) = qg(r, M, B...BM, Bk, B...Bk,.
Prova:

O programa R, tal qual C,, faz a maquina copiar a n-upla m;B...Bm,, a esquerda de
k,B...Bk,, mas diferentemente de C,, R, ndo conserva do lado direito a n-upla original

m;B...Bm,,. De fato, a cada simbolo de m,B...Bm, copiado & esquerda de k;B...Bk,, a
maquina comandada por R, retorna a direita e, antes de observar qual sera o préximo simbolo

gue copiara, apaga o simbolo da n-upla original anteriormente copiado.
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Diante do exposto, definimos R, como o programa de Turing que contém todas as
quintuplas de C,, exceto a quintupla qi;13w|Lgise NO lugar da qual assumiremos
Ji+13wBLQ46. Esta substituicdo é fundamental. Com efeito, durante a coOpia sob os
comandos de C;, cada | presente na n-upla original é substituido por w que, por sua vez, serd
substituido por |. O programa R;, ao contrario, determina a substituicdo de w por B,

impedindo, desta forma, que a n-upla original seja reescrita.

Lema 2.17 Para cada programa de Turing n-regular P, existe um programa de Turing n-

regular P* tal que:

(1) se Resp(qom;B..Bm,) = qgpriB..Brs, entdo Resp+(qom;B..Bm,) =

qG(P*)FlB---BFSBﬁlB...Bﬁn.

(2) se Resp(qom;B...Bm,) estiver indefinido, entdo Resp~(q,m;B...Bm,) também estara

indefinido.
Prova:

Ora, como o programa de Turing P é n-regular, entdo, de acordo com o lema 2.14, ha

um programa de Turing (n+n)-regular P*, tal que Resp#(qom,B...Bm,Bm,B...Bm,) =
— — - _ . : #(16)
qg(p#yM;B...BM,BT,B...BTs. Sabendo disso, considere Co UP*(1®)u RO ) _ pr,

Portanto, como queriamos provar, se Resp(q,m;B...Bm,) estiver definido, n6s temos:
Resc,(qom;B...Bm,) = q;,m;B...Bm,Bm;B...Bm,

Resp#as) (q16m; B...Bm, Bm; B...Bm,) = qqprasym; B...Bm,Br, B...Br.
Reng(P#(la)) (dg(praeym; B... Bm,,Bry B... BTs) = qg(p~T1B...BTsBm;B...Bm,, .

Lema 2.18 Sejam Py, ..., P, programas de Turing (para k > 1). Entdo, hd um programa de

Turing n-regular pt tal que Respt(qom;B...Bmy) =

qe(Pf)‘{’E}1 (mgq, ..., mn)B...BLPf}k(ml, ., mp).
Prova (por indugédo em k):

Parak = 1, Pt é o programa P’ obtido de acordo com lema 2.13.

Considerando Y; o programa PT para um k qualquer, mostraremos, a seguir, que

também existe um programa P para k + 1.
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Sejam Py, ..., Py programas de Turing e seja ry = Wp, (my, ..., my), paral <i <k +

1. Por hipo6tese da inducdo, h& um programa de Turing n-regular Y, tal que

Resy, (qom;B..Bmy) = qoqv)¥p,(my, ..., my)B..BWp (my, ..., my) = gy, r1B...Bry.
Sendo assim, pelo lema 2.17, h& um programa de Turing n-regular Y, tal que
Resy, (qom;B...Bm,) = qg(y,)r1B...BryBm;B...Bm,. Além disso, dado o programa Py,
existe, de acordo com o lema 2.13, um programa de Turing n-regular Ys, tal que
Resy, (qom;B...Bm,) = qg(y,)Tk+1 € UMa vez, dispondo do programa Y;, existe, de acordo
com o lema 214, um programa de Turing (k+n)-regular Y,, tal que

Resy, (qor:B...BriBm;B...Bm,) = qg(y, 1 B...BryBry, 4. Portanto, em linhas gerais, para k

+1,PT=Y,U Yie(YZ)). Com estes resultados, o lema 2.18 esta provado.

Lema 2.19 Se g4, ..., gm Sao fungdes n-arias parcialmente Turing-computaveis e f € uma
funcdo m-aria parcialmente Turing-computavel, entdo a funcdo h(xq,..,x,) =

f(g1 (X4, o) Xpn), <oy 8m(Xq, ..., X)) também é parcialmente Turing-computével.
Prova:

De acordo com o lema anterior, hd um programa de Turing n-regular Pt tal que

Respt(qox1B...BX;) = qe(P+)g1(x1, vy Xn)B..Bgm (X4, ..., Xp). Se P, € um programa de Turing

para computar a funcéo f, entdo P = Pt U P,®®™) sera o programa de Turing que computara a
funcdo h obtida a partir de g e f por composicdo. Portanto, a fungdo h também é parcialmente

Turing-computavel.

Neste cenario, se f e cada g; (para 1 < i < m) estiverem definidos, nds teremos:

Respt(qoX1B...BXy) = qgpty 81(X1, -, Xn)B...Bgm (X1, ..., Xp)

ResP(B(Pf))(qe(PT)gl(xl,...,xn)B...Bgm(xl,...,xn)) = ¢, sendo [c] = f(g (X1, o r Xn)s oor
gm(Xq, o, X)) = h(Xq, oo, Xp)
Caso contrario, 0 Resp(qyx;B...BX,) permanecera indefinido.

Lema 2.20 Se g é uma funcdo n-aria parcialmente Turing-computavel, f € uma funcdo n+2-
aria parcialmente Turing-computavel e h é obtida a partir de g e f por recursdo primitiva,

entdo h é parcialmente Turing-computavel.
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Prova:

Para computar a funcdo h(xy, ..., x,,y), construiremos um programa de Turing Z tal
que dado o argumento X, B...Bx,By, a maquina comandada por Z verifica, inicialmente, sey
=0 ou sey # 0. Ocorrendo o primeiro caso, a maquina apaga o ultimo |, vai ao | mais a
esquerda, aplica o programa n-regular para g obtido pelo lema 2.13 (com os indices dos
simbolos de estado interno devidamente aumentados) sobre X;B...Bx, e finaliza a
computacdo, apagando o0 primeiro | dem. Caso contrario, ou seja, sendoy=z+1,a
maquina escrevera T depois do Gltimo |, obtendo, deste modo, X;B...BX,,Bz + 11; em seguida,
copiard esta n+l-upla & direita de T sem imprimir o Gltimo | de z+1 —
X,B...BX,Bz + 11X, B...BX,BZ — logo depois, a méquina escreverda m no quadrado
imediatamente a direita de z e copiara x;B...Bx,Bz, ndo imprimindo o ultimo | de z e
escrevendo 1 ao final. Este procedimento se repete até que todos os tracos de z + 1 sejam

eliminados, fato que ocorre quando alcangcamos a seguinte expressao:
x;B...Bx,Bz + 1mx,; B...Bx, Bz ...nX; B...Bx,B|nX, B...BX,

Em seguida, a maquina aplicara o programa n-regular para g a x;B...BX,,, acarretando

a expressao abaixo, na qual r; = g(x4, ..., Xp):
x,B...Bx,,Bz + 11x,; B...Bx,Bzn ...nX; B...Bx,B|nr;

Depois, a maquina apagara o Ultimo n e aplicara o programa n+2-regular para f
(também obtido pelo lema 2.13) a x,B...Bx,B|Br,. Este procedimento se repete até m ser
alcancado. Quando isso acontece, a maquina aplicard o programa n+2-regular para f a
x;B...Bx,Bz € eliminard um |. Na sequéncia, ela vai a até o primeiro |, apagara todos os |’s a

esquerda de m, inclusive e termina a computagéo.
Seja Z, 0 seguinte programa de Turing:

qolIRqp move-se a direita até alcancar um duplo vazio

qoBBRq,

d1l|Rqo
q:BBLqQ;
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q,BBLg,  move-se dois quadrados a esquerda para verificar sey =0ousey # 0

dz||Lags

Sendo assim, com respeito a Z;, n0s temos duas situacOes alternativas: (1) Se y = 0,
entio  Resz, (qoX;B..BX,B0) = X;B.BX,qsBl; (2 Se y = z+1, entio

Resz, (qoX;B...Bx,Bz + 1) =X, B...Bx,B|*q3]|

Se (1) ocorre, considere K como um programa n-regular para computar g e Z, como o
programa que consiste de todas as quintuplas de K® e das quintuplas abaixo, sendo U
=0(K®):

q;BBRq,  Vvai um quadrado a direita e apaga o ultimo traco

d4|BLgs

qsBBLgs move-se a esquerda até alcancar um duplo vazio e vai dois quadrados a direita
qs||Lae para iniciar a computagio de X, B...BX, segundo K,

del|Lgs
q¢BBLq;

d-||Lge
q7BBRqg

qsBBRqq

qulBRqu+1 apaga o primeiro | de g(xy, ..., x,) € termina

Entéo, Resz, (x;B...Bx,q3B|) = qe(22)|g(xl,...,xn) - qe(22)|h(xl~--ﬂ<n'°) e, assim, finaliza-

se a computacao.

Se (2) ocorre, considere o programa de Turing Z5 abaixo, sendo F = 6(Z,):

q3||IRqF41 move-se a direita até alcancar um duplo vazio

dr+1l|RQr41

dr+1BBRQF42

qr+2BALQE43 imprime A no segundo quadrado vazio; em seguida, imprime T no

rimeiro quadrado vazio
qr+3BTLgE,s P a



qr+s||Lgr+s
qr+5BBLGF+6
Qr+sNMRAF4g
dr+5TTRAE 48
dr+6l|LAF+s
dr+6BBRqF47
dr+7BBRqF4g
dr+7/IRqF+8

qr+s|WRgE49
qr+sBaRqpy 12
qr+8TTRAR 16

dr+s"MRAF+16

qr+9/[RAF+9
dr+9BBRQF49
qr+9MTRAF 9
dr+9NNRgF+9
qr+9AwLqF41s
qr+9®|RAF4+11

dr+9aBRqF411

qr+11BOLgpy1s

dr+12||IRAF+12

dr+12BBRqF+12
qr+12TMRGR4 12
dF+12MRAF+12

qp+12W|RQpi14

qr+14BaLlgpiqs
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dirige-se a esquerda até alcancar um n,  ou um duplo vazio para iniciar
0 procedimento de copia da Gltima n+1-upla a direita

observando |: substitui | por w, preparando-se para copiar | a direita;
observando B: substitui B por a, preparando-se para copiar B a direita;
observando Tt ou n: prepara-se para terminar a copia

move-se a direita; observando A: substitui A por w e vai um quadrado a
esquerda; observando w: copia, em seu lugar, |; observando a: copia, em
seu lugar, B; nos dois Gltimos casos, vai um quadrado a direita

imprime w no quadrado mais a direita, marcando o lugar no qual sera
copiado |

move-se a direita; observando w: copia, em seu lugar, |

imprime a no quadrado mais a direita, marcando o lugar no qual sera
copiado B
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qr+1sl|Lgrs1s  desloca-se a esquerda; observando w: substitui w por |; observando o:

substitui o por B
dr+15BBLAF 15 P

qp+15TTLgFy15
qr+15MMLgFs1s
dp+15W|RQp4g

dr+15%BRQpyg

qr+16/|RAr+16  Vai a direita; observando w: substitui w por B, finalizando, assim, a copia

da n+1-upla anterior sem imprimir o seu Ultimo
dr+16BBRQF116 P P |

dp+16WBLQE413

qr+18BBLgE,3 dirige-se um quadrado a esquerda; observando B, finaliza-se o

procedimento total de copia, tendo sido eliminados todos os |’s de z + 1;

observando |, vai um quadrado a direita e prepara-se para copiar a Gltima
9r+19BMRAF+20  p+1-upla

qr+20BALGE;22
Ar+22MMLgEss

dr+18l|[RAF+19

qrs+23||Lgrs23  Vai & esquerda; alcancando 1, vai um quadrado a direita para iniciar a

computacdo da n-upla x; B...Bx,, segundo o programa n-regular para g
qr+23BBLgF423

qr+23"MRAF424

Entdo, com respeito ao programa Zz;, nds temos que Resz,(X;B...BX,B|*qs]|) =

x1B...Bx,Bz + 1mx, B...Bx,,Bzn..nX; B...Bx,B|Nqp4 24X B...BX,.

Agora, sendo N = 8(KF+24) assuma Z, como o programa de Turing que contém
todas as quintuplas de K(F+24) e, além disso, contém, para cada q; de KF*24) as quintuplas
apresentadas abaixo:

qinPLgN+i interrompe a computacdo; alcancando r: substitui n por p; alcancando

substitui or 6.
qiTt6Lg N+ TP



qn+il |ILAN+i
dn+iBBLAaN+i
AN+iNMLAN+i
AN+ LN+
Q2N+il LN+
d2n+iBBRA3N+i

d3N+il IRQan+i

d3n+iBBRQyN+i
A3N+i TR 4N+
Q3N+iMMRAan+i
d3N+iPBLGoN+i
q3N+iOBLAgN+i

Qan+il|LGsN+i

d4N+iBBLgeN+i
qQ4N+iTTLA 7N+
qan+iMNLdgN-+i
dan+iPPLAgN+i
Qan+i86Lg 7N+

dsn+iBIRA3N+i
dsn+il|[RA3N+i

AsN+iTT|RA3N+i

dsn+iNIRA3N+i

den+ilBRA3N+i

q7N+iBTRq3N+i

d7N+i|TTRA3N+i

dsn+iINMRA3N+i
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vai a esquerda até alcancar um duplo vazio

move-se uma quadrado & direita: alcangando p ou 8, apaga-os.

observando |, B,  ou n, prepara para copiar no quadrado anterior |, B, 1
ou m, respectivamente; observando p ou & prepara para copiar no
guadrado anterior n ou T, respectivamente

copia |

copia B

copia T

copian
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Qon+iNMRQ; vai um quadrado a direita e retoma a computagéo

qoN+iTTTRQ;

Sob os comandos de Z,, a maquina de Turing aplica o programa n-regular
KF+2%) para g a x,B...BX,. Se durante esta computacdo, n é alcancado, ele e todos os
simbolos da fita que o antecedem s&o movidos um quadrado a esquerda, criando assim um
Novo espaco para que a computacio segundo K(F+24) seja concluida. Sendo assim, temos que
Resgz, (X,B...BX,Bz + 11X, B...BX, BZ1..NX; B...BX, B[NqF+24%; B...BX;) =
X,B...BX,Bz + 1nt
x,B...Bx,,Bzn..nX; B...BX,,B[nqnT;.

Considerando L = 8(Z,), assuma Zs como 0 seguinte programa de Turing:

qnlILan vai um quadrado a esquerda e apaga 1)

qannBLgL4+4

Ar+1|1LgL+1 dirige-se a esquerda; alcan¢ando n ou T, move-se um quadrado a direita
qL+1BBLqL+1
qL+1MMRAL42

qr+1TMRAL 42

A méaquina de Turing, seguindo as ordens do programa Zs, apaga 0 1 mais a direita e
procura o préximo n (ou ) a esquerda. Ao alcanc¢a-lo, vai um quadrado a direita para iniciar a
computacdo segundo o programa n+2-regular para a fungdo f. Neste contexto, temos que
Resz, (%;B...BX,Bz + 17X, B...BX,Bzn..1%,; B...BX,B[nqnT;) =
X,B...BX,Bz + 11X, B...BX,B
ZN..NqL+2X1B...Bx,B|BT; .

Agora, sendo R um programa n+2-regular para f e S = 8(R(:+2)), considere Z como o
programa de Turing que contém qs||Lqs, qsnBLqy., todas as quintuplas de R(:+2) e, além
disso, contém, para cada q; de R(“*2) as quintuplas adicionais de Z, sendo as ocorréncias de

N substituidas por S.
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De acordo com Z4, a maquina de Turing aplica o programa R“+2) sobre a n+2-upla
anteriormente obtida. Se durante esta computacdo, ™ ou n séo alcancados, eles e todos os
simbolos da fita que os antecedem sdo movidos um quadrado a esquerda, criando assim um
novo espaco para que a computacdo segundo RE*2) seja concluida. Quando isso acontece, a
maquina vai um quadrado a esquerda; encontrando 1, elimina-o e procura 0 proximo n (ou )
a esquerda. Ao alcanca-lo, a maquina vai para o quadrado imediatamente a direita e aplica o
programa R+ 3 n+2-upla que acabou de ser obtida com a dltima eliminacdo de n;

encontrando T, prepara-se para concluir a computacdo. Sendo assim, temos que:

Resz, (X; B..B X, Bz+ 171X, B..BX;Bzn..nqu42 %B..BX;B|Bry) = x,B..Bx,Bz+ 1

gsmh(xyq, ..., Xy, z + 1).
Seja M = 6(Z¢). O programa Z, é composto pelas seguintes quintuplas:

qsTRqM41 observando mt: vai um quadrado a direita, preparando-se para terminar

qm+1/BLAm+2  apaga um | do bloco h(xy, ..., %,z + 1)

qms2TnLgms, MOve-se a esquerda até alcangar um duplo vazio

Am+2||Ldm+2
dm+2BBLAM43
Adm+3|ILAdm+2

dm+3BBRQM 4

dm+4BBRAm+s4  apaga a n+1-upla X;B...BX,Bz + 1; apaga e termina
dm+4|BRAM+4

Am+4TBRqMm45

Entdo, Resz, (X;B...BX,Bz + 1qsm h(xy, ...,Xp,z + 1)) = qe(Z7)B|h(X1""'Xn'Z+1).

Finalmente, seja Z = Z, UZ,UZ3UZ, UZs UZ,UZ,. Entdo, se houver uma

computacdo para a n+1-upla (x4, ..., X,, y) de acordo com Z, teremos:
(1) Sendo y = 0, Resz(qoX; B...BX,BY) = qg(z,)|"*1-*n)

(2) Sendo y # 0, Resz(qoX,B...BX,BY) = qgz,,B|&1--*n)
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Evidentemente, se h(xy, ...,x,,y) estiver indefinida para y, estara indefinida também
para todo w>y. Neste termos, Z constitui um programa de Turing para computar
h(x4, ..., Xn,y). Portanto, como existe um tal programa, a funcdo h obtida por recursdo
primitiva a partir da fungGes parcialmente Turing-computaveis g e f é também parcialmente

Turing-computével.

Lema 2.21 Se g é uma funcdo n+1-aria parcialmente Turing-computéavel, entdo a funcdo

h(xy, ..., Xn) = Wy(8(X1, ..., Xn, ¥) = 0) € parcialmente Turing-computavel.
Prova:

Construiremos para a funcdo h um programa de Turing de acordo com o qual a
maquina computara para cada y > 0 a fungdo g(xy, ..., X,, ¥) até alcancar o primeiro y tal que

g(Xq, ..., Xp, ¥) = 0. Se um tal y ndo existir, a maquina entrara em loop.
Seja H; o seguinte programa de Turing:
dol|Rqe  imprime um | a direita do Gltimo B que encerra a n-upla

qoBBRq;

d1l|Rqo
d:B|Lg,

q2||Lg,; ~ move-se & esquerda até que um duplo vazio seja alcangado; em seguida, move-
se dois quadrados a direita
q2BBLQ3

dsl|Lg;
qsBBRq,

q4+BBRqs

Entéo, Resy, (qoX;B...BX,) = q5X; B...BX,BO0.

Seja Y o programa para computar a funcdo g(xq,...,X,,y) €, Y’ o programa n+1-
regular obtido a partir de Y pelo lema 2.13. Entdo, Resy/(qox;B...Bx,By) =
qe(Yf)m. Considere, agora, Y’ como sendo o programa de Turing P do lema 2.17.
Entdo, por este mesmo lema, ha um programa n+1-regular Y* tal que Resy~(qoX;B...BX,BY)
= qow"e(Xy, -, Xn, Y)BX;B...BX,By. Neste contexto, sendo N = 6(Y*®), temos

que Resy«s)(q5X1B...Bx,BY) = qng(xy, ..., Xp, ¥) BX; B...BX, BY.
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Seja H, o programa de Turing contendo as seguintes quintuplas:

qn|BRON+1
dn+1||LAN+2
dn+2BBRqN+3
dn+1BBRQN+9

apaga o primeiro | de g(xy,...,X,,y) € vai um quadrado a direita: (1)
observando | (caso em que g(xy, ..., Xn, Y) > 0), move-se um quadrado a
esquerda e retorna um quadrado a direita; (2) observando B (caso em que
g(x4, ..., Xp, Y) = 0), substitui B pelo proprio B, vai a direita e prepara para
terminar

Entdo, com respeito a H,, obtemos duas configuragOes instantaneas terminais

alternativas: (1) se g(xy,..,XnY) = K > 0, Resy,(qng(xy,...,Xn,y)BX;B...BX,BYy)

qn+3/¥BX;B...BX,BY; (2) se g(xy, ..., Xn, Y) = 0, Resy, (qng(Xy, -, Xn, ¥)BX; B...BX,BY)
qn+9X1B...Bx,By.

Assuma H; como o seguinte programa:

dn+3|BRaN+3
dn+3BBRON4

qn+4/[RAN+4
dn+4BBRQN+s
dn+5||RAN+4
dn+sBBLGN+6
dn+6BILAN+7

an+7||LaN+7
dn+7BBLON+s
dn+sl|Lan+7

dn+sBBRq,

apaga g(xy, ---, Xn, ¥) |’s e move-se um quadrado a direita

desloca-se a direita até alcangar um duplo vazio, acrescenta um | a y e vai
um quadrado a esquerda

move-se a esquerda até alcancar um duplo vazio e, em seguida, vai um
quadrado a direita, preparando—se, deste modo, para iniciar a computacao

de X;B...BX,y + 1 segundo Y*®

Entdo, nestes termos, Resy, (qn+3/“BX;B...BX,By) = q,BX;B...BX,By + 1

Seja W o programa de Turing que computa a funcdo URT1(x4, ..., x,, Y). Neste caso,

como sabemos, Resy (qoXx,B...Bx,By) = ¢, tal que [c] = y. Considere, agora, 0 programa

WN+9) De modo anélogo, Resyyn+9) (qntoX;B...BX,BY) = c, tal que [c] = y. Sendo assim,

sob os comandos de WN+9) | alcancamos, finalmente, o resultado que procurdvamos, a saber,

My (8(X4, ..., Xn, Y) = 0), ou seja, 0 valor da fungdo h(xy, ..., Xp).
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Portanto, em sintese, H = H; U Y*® U H, U Hy; U W+ constitui o programa de
Turing para computar h(xq, ...,X,). Como existe um tal programa, a funcdo h(x4, ..., xp)
obtida por minimizacdo ilimitada a partir da funcdo parcialmente Turing-computavel

g(xq, ..., Xp, ) € também parcialmente Turing-computavel.
Teorema 2.22 Toda funcdo parcial recursiva é parcialmente Turing-computavel.
Prova:

Como vimos, as func¢des iniciais sdo parcialmente Turing-computaveis e, de acordo
com os lemas 2.19, 2.20 e 2.21, o conjunto das funcdes parcialmente Turing-computaveis €
fechado em relagdo as operacdes basicas. Logo, o conjunto das funcdes parciais recursivas

esta contido no conjunto das fung¢Ges parcialmente Turing-computaveis.
Corolario 2.23 Toda fung&o recursiva é Turing-computavel.
Prova:

Obtida por particularizacéo do teorema anterior.
2.2.2 Toda funcéo parcialmente Turing-computével é parcial recursiva

Conforme dissemos anteriormente, em outras palavras, 0 nosso principal objetivo,
neste capitulo, é provar o seguinte teorema: uma funcdo numérica f € parcial recursiva se, e
somente se, f é parcialmente Turing-computavel. Parte deste objetivo acabou de ser alcancada
com a prova do teorema 2.22. Falta-nos ainda provar que se f é parcialmente Turing-
computavel, f é parcial recursiva. Para isso, aritmetizaremos, a la Godel, a teoria das

maquinas e programas de Turing.

A aritmetizacdo godeliana foi, inicialmente, utilizada para traduzir os enunciados
metamatematicos da Aritmética Elementar de Primeira Ordem de Peano para a linguagem da
prépria aritmética composta por nimeros naturais. De modo semelhante, podemos aritmetizar

qualquer linguagem formal, atribuindo nimeros aos seus componentes basicos de modo que:

(1) Objetos distintos tenham nimeros distintos.
(2) Dado um objeto qualquer, possamos efetivamente encontrar 0 seu nimero.
(3) Dado um numero qualquer, possamos efetivamente decidir se ele esta atribuido a algum

objeto e, se estiver, a qual objeto.
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Para aritmetizar a teoria das méaquinas e programas de Turing, comegaremos

codificando os simbolos, expressées e sequéncias finitas de expressdes de L.

Definigcdo 2.24 Seja A = {k : k é um simbolo de L}.O cddigo de k é o nimero natural g(k)

determinado pela funcdo injetiva g: A — N tal que:
(1)sek=R,g(k) =3;se k=1L, g(k) =5;

(2) sek=s;,g(k) =7 +4i, parai>0;
(3) se k=q;, g(k) =9 + 4i, parai>0.

Os codigos obtidos de acordo com a definicdo acima sdo facilmente gerados

obedecendo a sequéncia estabelecida na tabela abaixo.

R L So o 51 di1 S, qz S3 d3

3 5 7 9 11 13 15 17 19 21

Definigcdo 2.25 Seja B = {r : r € uma expressdo de L}. O codigo de r, parar = ky, ...,k,, € 0
namero natural g’(r) determinado pela fungéo injetiva g’: B — N tal que g’(r) = [[ij<p p;g(ki“).

Por convengao, se r € uma expressdo vazia, g’(r) = 1.

Nestes termos, se r = qgRs,q;L, g'(r) = 28(do) . 38(R) . 58(s2) . 78(A1) . 118(L) =
29 . 33 . 515 . 713 . 115

Definicdo 2.26 Seja C = {t : t ¢ uma sequéncia finita de expressdes de L}. O codigo de t, para

t=ry4,.., Iy, € 0 nimero natural g”’(t) determinado pela fungdo injetiva g’’: C — N tal que
0”0 = icn pf .

Dada a seguinte sequéncia de expressdes:

r; = qzRs;
r; =s179sS1R
r; = RL

Set=ry, Iy, I's, entio g’ (t) = 28'ry) . 38'(r2) . £g(rg) = 9217-33 515 3275.329.511.73 93,35

Considerando as codificagbes acima sugeridas, algumas observagdes serdo

convenientes:
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e Como g, g’ e g’ sdo fungdes injetivas totais, além de cada simbolo, cada expressao e
cada sequéncia de expressbes de L ter um unico codigo, simbolos diferentes,
expressdes diferentes e sequéncias diferentes de expressdes de L terdo codigos
diferentes.

e Dado um numero natural n > 0, podemos, sem grandes dificuldades, identificar se n é
codigo de um simbolo, expressdo ou de uma sequéncia de expressdes de L da seguinte

maneira:

(1) se n é impar e maior que 1, entdo n é cédigo de um Unico simbolo de L;

(2) se n =1 ousen épare asua decomposi¢cdo consiste no segmento inicial do
conjunto dos nimeros primos com expoentes impares maiores que 1, entdo n é codigo
de uma Unica expressao de L;

(3) se n é par e a sua decomposicao consiste no segmento inicial do conjunto dos
ndmeros primos com expoentes que satisfazem (2), entdo n € o cddigo de uma Unica

sequéncia de expressdes de L.

e Se n satisfaz alguma condicdo acima exposta, podemos ainda identificar exatamente o
simbolo, a expressdo ou a sequéncia de expressdes que n codifica; para isso, basta
recuperar, considerando a definicdo 2.24, os simbolos ou a expressdo vazia

codificados pelos expoentes impares.

Definicdo 2.27 Seja P um programa de Turing, 0 nimero natural n é um cédigo de P se, e

somente se, n € o coddigo de uma sequéncia das quintuplas de P.

Como consequéncia da definicdo anterior, se P contém X quintuplas, P possuira x!

codigos, correspondentes as x! permutacgdes de suas quintuplas.

Para concluirmos a aritmetizacdo a qual nos propomos, apresentaremos uma lista de
relacBes que transpdem para a linguagem aritmética as definicdes referentes a Teoria das
maquinas e dos programas de Turing apresentadas na primeira se¢do deste capitulo. Estas

relacOes sdo as seguintes:

(1) G, = {x: NVy<1h(x)—1[(X)y =0A (X)y+1 + 0]}
Gn (%) se, e somente se, a decomposicdo de x ocorre no segmento inicial dos numeros primos.

(2) Term = {(x,2) : G (2) A Vi< [x = @il}
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Term(x, z) se, e somente se, X € um dos expoentes da decomposicao de z.
(3) Sl ={Xx: Vy«[x =4y + 9]}

SI(x) se, e somente se, X é codigo de um simbolo de estado interno.

(4) Al = {x: Vyy[x = 4y + 7]}

Al(X) se, e somente se, X é codigo de um simbolo da fita.

(5) Quint = {X : G4(x) Alh(x) = 5 A SI((x)o) A Al((x)1) A Al((x)2) A (K3 =3V (x)3 =
5) ASI((x)4)}

Quint(x) se, e somente se, x é cddigo de uma quintupla.

(6) Inc = {(x, y) : Quint(x) A Quint(y) A (x)o = (¥)o A (X)1 = ()1 AX # ¥}
Inc(x, y) se, e somente se, X e y sdo codigos de quintuplas inconsistentes.
(7) PT ={z: Gn(2) A Aicin(zy [QUINt((2);) A ~Vjane [Inc((2);, (211}
PT(z) se, e somente se, z é cddigo de um programa de Turing.

(8) A funcdo NR(x) determina o codigo da expressdo x da seguinte maneira:

NR(0) = 211
NR(x + 1) = 211 « NR(X)

(9) A funcdo Init,(x,, ..., X,) determina o cddigo de uma configuracdo instantanea inicial

goX;B...Bx, da seguinte maneira:

Init, (Xq, ..., X) = 22 * NR(x;) * 27 * ... * 27 * NR(x,)

(10) C1 = £ : G (%) A Vicingo-1[SI(GI) A Aanco i # i = AT}
CI(x) se, e somente se, x é codigo de uma configuracdo instantanea.

(11) Acarr1 = {(X, Y, Z) : CI(X) A Cl(y) A PT(Z) A Vb1<x Vb2<x Vi<x Vk<x Vp<x Vt<y V1<y [X
=by *21 % 2K% 2P x b, Ay = by * 285 21 % 2P 5 b, A SI(i) A SI(I) A Al(K) A Al() A Al(p) A
Term(2'. 3. 5% 73.11}, 2)]}

Acarry (X, Y, z) se, e somente se, sendo t; e t, expressdes possivelmente vazias, x € o cddigo
de t;q;skSpty, Y € 0 codigo de tys¢q;spt,, € 0 programa de Turing, que z tem como um de

seus codigos, contem a quintupla (q;, sk, st, R, q;)
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(12) Acarrz = {(X, Y, Z) : CI(X) A Cl(y) A PT(Z) A Vb1<x Vb2<x Vi<x Vk<x Vt<y V1<y [X =
by *21%2K Ay = by#28x21x27A  SIG) A SI)A AIK) A AN A
Term(2L.3%.5% 73,11, 2)]}

Acarr, (X, Y, z) se, e somente se, sendo t; uma expressdo possivelmente vazia, X € o cédigo

de t;q;sk , Y € 0 cddigo de t;s:q;s, € 0 programa de Turing, que z tem como um de seus

codigos, contém a quintupla (q;, sk, St R, q1)

(13) Acarr3 = {(Xl Y, Z) . CI(X) A Cl(y) A PT(Z) A Vb1<x Vb2<x Vi<x vk<x vp<x Vt<y vl<y [X
= b, * 2P * 21 % 2Kx b, Ay = by 2% 2P« 285 b, A SI(i) A SI(I) A AI(K) A Al(t) A Al(p) A
Term(2L. 3%. 5% 75.11L, 2)]}

(14) Acarr, = {(X, ¥, 2) : CI(X) ACI(y) A PT(2) A Vp,<x Vb,<x Vicx Vikex Vicy Viey [X =
20x2K%«b, Ay = 21%27x2%xb, A SIi) A SI)A AKA Al A
Term(2'. 3. 5% 75. 11}, 2)]}

As relagBes Acarr; (X, Y, z), 1 < i < 4, correspondem a contraparte aritmética da definigéo
2.6.

(15) Acarrs = {(X, Y, z) : Acarry (X, Y, z) V Acarr, (X, Y, z) V Acarrz (X, Y, z) V Acarr, (X, Y,

2)}

Acarrs (X, Y, Z) se, e somente se, X acarreta y via z.

(16) Fin = {(X, 2) : CI(X) A PT(2) A Vi,<x Vi,<x Viex Viex [X = tg % 21 % 2K xt, A SI(i) A
Al(k) A /\n<lh(z) [((Z)n)o #iv ((Z)n)l ) * k]]}

Fin(x, z) se, e somente se, X é 0 cddigo de uma configuracdo instantanea terminal com

respeito a um programa de Turing que tem z como um de seus codigos.

(17) Comp = {(y, 2) : PT(2)A Vicy [Ga(D) A Ancin@-1 [Acarrs((Dn, (Ons1, 2) A
Fin((Dinw-1,2)] AY = 2% [licino pi(?i]}

Comp(y, z) se, e somente se, y é o codigo de uma computagdo com respeito ao programa de
Turing de codigo z. Deste modo, y ndo é simplesmente o cddigo de uma mera computagéo,
mas de uma computacao associado a um dos codigos do programa que a permite. Observe que
como um programa de Turing com n quintuplas possui n! cédigos, entdo uma computacdo de
acordo com este programa tera n! codigos, 0 que nos autorizard mencionarmos, mais adiante,

0 menor cédigo de uma computacdo com respeito a um programa de Turing.
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(18) Tn = {(Z: X1y =5 Xpy Y) : Comp(y, Z) A (Y)l = Initn(X1! ] Xn)}

T, (z, X4, ..., Xy, y) S€, € Somente se, y € 0 codigo de uma computacdo com input (x4, ..., x,,)

realizada de acordo com um programa de Turing de cddigo z.

Todas as relagdes acima definidas sdo claramente recursivas primitivas. Abaixo,
apresentaremos trés funcdes também recursivas primitivas, dentre as quais a Ultima delas

determina o valor de uma computacéo de acordo com um programa de Turing.
(@) A funcédo C(n, x) estabelece se (x), é ou ndo o cadigo de |.

(1, se(x)y =11
Cln.x) = {O, se (x), # 11

(b) Se x € codigo de uma expressao, entdo a fungdo Out(x) determina o nimeros de |’s de x.
Out(x) = Xn<inx) C(n,x)

(c) Se x é o codigo de uma computagéo de acordo com z, isto é, x = 2% - 3™1 . .. p.'™ sendo
m,, ..., m, codigos das configuracdes instantaneas c,, ..., c,, respectivamente, entdo U(X)

estabelece o nimero de |’s presentes na configuragdo instantanea terminal.

U(x) = Out((x)1n(x)-1)

Aritmetizada a teoria das maquinas e programas de Turing, dispomos agora dos
instrumentos necessarios para obtermos como corolario do Teorema da Forma Normal de
Kleene, que sera provado mais adiante, o resultado que buscavamos: toda fungdo
parcialmente Turing-computavel é parcial recursiva. A prova deste teorema requisitara o lema

seguinte.
Lema 2.28 Se P € um programa de Turing e z, um de seus possiveis cadigos, temos que:
(1) dom(¥p (xy, ..., Xn)) = dom(py (Tn(z Xy, ..., Xn, ¥)))

(2) Wp (X1, .oor Xn) = U(y(Ta(2 X1, ) Xn, ¥)))

Prova:

(1) Pela definicao 2.10, Wp (x4, ..., X,) ! Se e somente se existe uma computacdo de acordo

com P para a n-upla (x4, ..., Xp); em termos aritméticos, iSso ocorre se, e somente se, existe
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um ndmero Yy, tal que T,(z,Xq, ..., Xp,y). Sendo assim, neste caso, puy(Ty(z X1, ..., Xp,Y))

também esta definido.

(2) Como vimos, ainda pela defini¢do 2.10, se Wp(Xy, ..., Xp) 4, entdo  Wp(Xy, ..., Xp)

[Resp(qoxyB...Bx,)]. Por outro lado, se existe um y tal que T,(z,xq, ..., Xp,y) € W
Uy (Tn(Z X1, ..., Xp,¥)), €NtAO0 (W)1hw)—1 € O cOdigo da configuragdo instantanea terminal c,
de y e U(w) = [c,] = [Resp(qoXyB...BX,)]. Portanto, existindo uma computacdo de acordo

com P para a n-upla (xy, ..., Xp), Yp (X1, ..o Xpn) = U(Uy(Th (2 X1, ..., X, ¥)))-

Teorema 2.29 (Teorema da Forma Normal de Kleene) Uma fungdo numérica h(x4, ..., X,) €

parcialmente Turing-computavel se, e somente se, existe um z tal que h(xq, ..., X,) =
U(p-y(Tn(Zr X1y eo0r Xy Y)))

Prova:
1° lado: A funcdo h(x4,...,X,) € parcialmente Turing-computavel. Entdo, segundo a defini¢éo
2.10, existe um programa de Turing P tal que h(x4,...,%x,) = Wp(X4,...,X,). Pelo lema 2.28,
WE (X1, -s Xn) = Uy (Tn(z X1, ..., Xp,¥))). Portanto, h(xy, ..., xp) = Uy (Ty(z, X1, .y Xn, ),
para algum cédigo z de P.
2° lado: Existe um z tal que h(xy, ..., X5) = U(uy(Th(z X1, ..., Xp,y))). Pelo lema 2.28, Wg (x4,
vy Xn) = U(y(Ty(z, X1, ..., Xp,¥))). Portanto, h(xy,...,xp) = ¥Yp(Xy,...,X,), para algum
programa de Turing P. Em outras palavras, segundo a definicdo 2.10, h(xq, ..., X,) €
parcialmente Turing-computavel.
Coroléario 2.30 Se h(x4, ..., X,) € parcialmente Turing-computavel, entdo h(x4, ..., x,) €
parcial recursiva.
Prova:

De acordo com o teorema anterior, se h(xq, ..., X,) € parcialmente Turing-computavel,
entdo h(xq,...,xn) = U(uy(Ta(z X1, ..., Xn,y))), para algum z. Como U(uy(Ty(z %1, ...,

Xn,¥))) €, claramente, parcial recursiva, entdo, por consequéncia, h(xy, ..., x,) também o é.

Corolério 2.31 Se h(x4, ..., X,) € Turing-computavel, entdo h(x,, ..., x,) é recursiva.
Prova:

Obtida por particularizacdo do corolério anterior.
2.3 Tese de Church-Turing

No ano de 1936, Alan Turing publica o artigo On the Computable numbers with an

application to the Entscheidunsproblem, no qual apresenta as suas maquinas abstratas como
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representacdo formal para a nogéo intuitiva de procedimento efetivo, idealizadas segundo ele,
de acordo com o ato de computar do “computador humano”. Para Turing, os inumeros
procedimentos computacionais realizados pelo homem, orientados por instrucées previamente
estabelecidas, podiam também ser executados por suas maquinas. Esta constatacdo o levou a

enunciar a sua famosa tese - a Tese de Turing - apresentada, normalmente, sob duas versdes.
Tese de Turing (versao estrita)

Toda fungdo algoritmica é Turing-computével.
Tese de Turing (verséo estendida)

Toda funcdo parcial algoritmica é parcialmente Turing-computével.

Identificacdo equivalente a esta foi obtida, de maneira independente, por Alonzo
Church, utilizando as fungbes lambda-definiveis, versdo formal que ele propds para o
conceito de funcédo algoritmica. Na literatura especializada, usa-se comumente o termo “Tese

de Church-Turing”, fazendo jus a ambos os autores que a enunciaram.
Sobre esta tese, Kalmar afirma:

[Ela] ndo é um teorema matematico que possa ser provado ou refutado num
sentido matematico exato, pois estabelece a identidade de duas nocGes, em
que somente uma é definida matematicamente, enquanto a outra é usada
pelos matematicos sem uma definicdo exata. (KALMAR, 1957, p. 72-73)

Embora ndo haja, para esta tese, uma demonstracdo, ela é largamente admitida, pois
existem fortes argumentos “empiricos” que lhe ddo plausibilidade, dentre os quais

destacamos:

(1) Apesar das inUmeras tentativas, nunca se conseguiu apresentar uma funcao algoritmica ou
parcial algoritmica que ndo fosse, respectivamente, Turing-computavel ou parcialmente

Turing-computavel.

(2) Até hoje, todas as tentativas de caracterizar formalmente as no¢bes vagas e imprecisas de
funcgéo algoritmica e fungéo parcial algoritmica forneceram exatamente as mesmas classes de
funcOes, a saber, a classe das fungdes Turing-computaveis e a classe das funcdes parcialmente

Turing-computaveis.

Os argumentos contrarios a Tese de Church-Turing, por sua vez, nunca foram fortes o
suficiente para refuta-la. Ela é aceita pela maioria dos matematicos e cientistas da computacgéo

e 0S poucos que demonstram algum grau de descrencga quanto ao seu enunciado sdo tachados
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como excéntricos. No capitulo seguinte, vamos utiliza-la como método informal de prova
para a obtencdo de alguns resultados. Em Teoria da Computabilidade, esta pratica é
recorrente, como pode ser atestado a seguir nas palavras do matematico Cohen (apud
CARNIELLI, EPSTEIN, 2009, p.300):
Ou seja, desde que tenhamos dado um argumento intuitivo de que a fungéo é
[parcialmente] computavel [...] afirmamos entdo que a Tese de Church nos
diz que a fungdo é recursiva parcial. Isto simplifica calculos tediosos; os
leitores devem se convencer, no entanto, que todas as vezes que a Tese de

Church ¢é usada, uma prova formal pode ser elaborada por alguém que seja
suficientemente industrioso.

Por fim, atentos ao enunciado da Tese de Church-Turing, podemos, em Ultima anélise,
consideré-la como uma tentativa de se determinar precisamente o alcance e os limites da
computacdo tedrica. Com ela, acredita-se que se tenha definitivamente, captado, de forma

precisa, as nogoes intuitivas de algoritmo e de funcéo algoritmica.
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3 PROBLEMA DA DECISAO PARA OS SUBCONJUNTOS DAS FUNCOES
PARCIAIS RECURSIVAS

Nos capitulos anteriores, vimos que as fungdes (parciais) recursivas ou (parcialmente)
Turing-computaveis sdo (parciais) algoritmicas. Mas sera que 0s conjuntos dessas funcGes
também sdo algoritmicos? E os seus subconjuntos préprios: o que dizer sobre eles? Para
responder estas perguntas, mostraremos, neste capitulo, como enumerar efetivamente os
programas de Turing e as funcdes parciais recursivas. Com o auxilio desta enumeracéo,
vamos provar o Teorema s-m-n de Kleene, utilizado na demonstragéo de diversos teoremas da
Teoria da Computabilidade. Contextualizaremos o problema da decisdo para uma relagdo
numérica qualquer, introduzindo, deste modo, conceitos importantes como solubilidade e
insolubilidade recursiva a fim de apresentarmos, em termos formais, alguns problemas
insolveis, dentre eles, o famoso Problema da Parada. Por fim, apresentaremos o Teorema de
Rice, com o qual alcancaremos o0 nosso Ultimo objetivo, a saber: provar, por um lado, a
decidibilidade do conjunto das funcdes parciais recursivas e, por outro, a indecidibilidade dos

conjuntos das funcdes recursivas e das fungdes recursivas primitivas.
3.1 Lista efetiva de programas e funcoes

Considerando a codificagdo dos programas de Turing apresentada no capitulo anterior,
sabemos que cada programa possui ao menos um cédigo e cada um deles, por sua vez,
codifica um Unico programa. Isto posto, estabeleceremos, a seguir, um modo, dentre muitos,
de se construir uma lista Py, P;, P,, ... de todos os programas de Turing na qual P, denotard o

X-ésimo programa listado.

Definicédo 3.1 Seja Z, o programa de Turing que tem x como um de seus c6digos. O x-€simo

programa da lista P,, P,, P,, ... € determinado de acordo com a seguinte fungéo:

X

{Zx, se PT(x)
{d0lILgo, qoBBLqe}, se ~PT(x)

Em outras palavras, a construcdo da lista obedece ao seguinte raciocinio: dado um
numero natural x qualquer, se x é codigo de um programa de Turing, entdo P, 0 x-ésimo
programa da lista, sera Z,; se x ndo é codigo de um programa de Turing, P, Serd o programa

{qo!ILqo, qoBBLq,} que computa a fungéo vazia, indefinida para quaisquer argumentos.

A respeito desta lista, convém explicitar alguns aspectos a ela associados:
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(1) sua construgdo é efetiva: dado um namero natural x, podemos determinar mecanicamente
se X € ou ndo codigo de um programa de Turing; em caso afirmativo, podemos, via
decomposicéo de x, recuperar precisamente o programa que x codifica e, em ambos 0s casos,

somos capazes de identificar, também mecanicamente, o programa P,.

(2) ela comporta a possibilidade de repeticdes de programas: de acordo com a codificacdo
apresentada, um programa com n quintuplas, possui n! codigos; sendo assim, ele ocorrera n!
vezes na lista; além disso, o programa {q,||Lqo, qoBBLq} ocorrera na lista todas as vezes em

que x nao for cddigo de programa.

(3) ela torna possivel a elaboracdo de uma listagem efetiva de todas as funcbes parcialmente
Turing-computaveis: segundo a definicdo 2.10, um programa computa uma Unica fungdo n-
aria para cada n > 1, entdo a partir da lista de programas, podemos elaborar, também para
cada n > 1, uma lista de fungdes n-arias parcialmente Turing-computaveis (como vemos

abaixo) na qual @k denota a funcio k-aria (k > 1) computada segundo o programa P,.
L 95, 1, 97, 93, -
2.95, 91, 93, 93, ..

3.93, 903, 93, 03, ..

n. oy, 91, O3, P3, ...

Atentos as convencdes estabelecidas, cada funcdo ¢k acima listada ou é a fungéo
vazia (quando o indice subscrito ndo é cddigo de um programa de Turing) ou é uma funcéo

parcialmente Turing-computavel diferente da funcdo vazia (quando ocorre o caso contrario).

Os indices de uma funcédo serdo os indices do programa que a computa. No entanto,
seria um engano pensar que a funcdo ¢2 computada pelo programa P,, que possui um nimero
finito de indices, possuiria unicamente 0s mesmos e a mesma quantidade de indices de P,.
Com efeito, basta acrescentar ao conjunto P, quintuplas inutilizdveis nas computacGes
realizadas de acordo com tal conjunto para obtermos novos programas diferentes de P, que
computardo, da mesma forma, a fungdo ;. Deste modo, uma mesma fungdo pode ser

computada por mais de um programa e, portanto, os seus indices ndo se limitardo somente aos
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indices de um unico programa que a computa. Dentro desta perspectiva, apresentamos o

teorema seguinte.

Lema 3.2 (Padding Lemma) Cada funcédo parcial recursiva ¢, possui X, indices distintos e,

além disso, para cada x, é possivel determinar efetivamente um conjunto infinito de indices

para @,.
Prova:
Sendo P, um programa qualquer, considere:

(X, 0) = P,
(X, y+1) = (X, ¥) U {Qo(r(eyy+1l1Ldomeey) +1)

Cada programa m(x, y), para y=>1, é obtido pelo acréscimo de uma quintupla
inutilizavel nas computac6es de acordo com P, ao programa anterior (X, y-1). Deste modo,
obtemos um conjunto infinito enumeravel de programas - m(x, 0), m(x, 1), (X, 2), ... - que
embora distintos computam a funcéo ¢,. Portanto, ¢, possui X, indices distintos, cada um
dos quais pode ser efetivamente determinado pela seguinte funcéo:

(Ui (), se PT(x)
f(X, 0) = 229_311_511‘75‘119 . 329,37_57_75,119’ se~PT(x)

(Fxy)N+4.311. 511, 75, 11a(f(xy)+4
oy +1) =F (x y) » 227/t 70

sendo a(f (X, ¥)) = trcriey)Vicingooyy) ((FCGY)Do = 2 V (FG6LY)da = 2 A

Nj<in(raeyn ((FE Yo = 2 A (f(x,¥))j)a < 2)). Em outras palavras, a(f (x, y)) € o
cddigo do maior estado interno de f (x, y).

Tal como foi definida, nota-se claramente que a funcdo f é recursiva, ou seja, f esta
definida para todos os argumentos e cada um dos seus valores é obtido algoritmicamente.

Sendo assim, para cada x, podemos achar um conjunto infinito enumeravel de indices para

Py
3.2 Teorema s-m-n de Kleene

Nesta secdo, teremos como principal propdsito demonstrar um importante teorema da
Teoria da Computabilidade, o chamado Teorema s-m-n de Kleene. Nossa demonstracdo sera

construida mediante dois lemas, que provaremos a seguir.
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Lema 3.3 (a) Para cada nimero natural n, existe um programa de Turing B, com estados
INternos qg, qs, ..., An+2, tal que Resp [qol t] = qn42, BJt, sendo t qualquer expressao da fita;

(b) A funcéo a(n), que determina um dos cddigos de B,, é recursiva primitiva.
Prova:

(a) Devemos observar que a maquina comandada pelo programa PB,, achando-se no estado
interno q, e observando o traco mais a esquerda do input, vai para o quadrado imediatamente
anterior (que permanecera vazio), a esquerda dele imprime n+1 tracos e assume o estado

iNterno q,4».

Neste cenario, 0 programa P, € estabelecido recursivamente de acordo com as seguintes

clausulas:
Py ={qol|Lgo, 90BBLq;, q;B|Lq3, q2BBRq,}

Pyi1 = Py U{dn+21I1LAn+2, An+2BlLdnys, Ane3BBRAp43}

(b) Uma sequéncia recursiva primitiva para a funcdo a(n) pode ser obtida a partir das

seguintes clausulas:

9,911, 11,55, 119 9.27.27.75,1113 13,37 . 11, 55, 1417 17 .27 .27 .73, 1417
a(o):22 3 5 7°-11 .32 37.57.7°-11 _52 37.5 7°-11 _72 37.57.7°-11

_ 213+4(i+1). 311.gll 75, 1113+4(i+1) 213+4(i+1), 37.gll. 75, 1117+4(i+1)
a(n+1) = a(0) = [li<n [p2; * P2i+1 :
217+4(i+1), 37.57 .73, 1117+4(i+1)

2i+2 ]

Lema 3.4: A funcdo S(e, n), que determina um dos cddigos de Pe("), é recursiva primitiva.

Prova:

A titulo de recordacao, Pe(") é 0 programa de Turing obtido a partir da substituicdo de
todas as ocorréncias de q; em P, por q;+». Um de seus codigos € determinado pela funcéo

S(e, n) que, como podemos ver abaixo, é claramente recursiva primitiva.

(@po+an . 3(@1. 5(@Dz2 . 7(@D3 . 11(@patany
S(e, n) = (xpr(®) - isiney P3i ST AT + (58 (xer(6)) -

29+4Tl . 311 . 511 . 75, 119+4-Tl 329+4TL . 37 . 57 . 75. 119+4—TL)

2

Provados os lemas anteriores, podemos, agora, demonstrar 0 Teorema s-m-n de

Kleene.
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Teorema 3.5 (Teorema s-m-n de Kleene) Para cada m, n > 1, existe uma funcéo recursiva
primitiva s;7* de m+1 variaveis, tal que, paratodo e, x4, ..., X,
P& XL, s Xy V1 0 Yn) = Doz ) V1 o0 V),
sendo x, ..., X,, parametros.
Prova:
Dito de outro modo, o teorema s-m-n de Kleene garante que, sendo P, um programa de
Turing qualquer e x4, ..., x,, pardmetros, existe um programa de Turing Z cujo indice é

spt(e, xq1, ..., X;) tal que:
Resp,[qo%:B...Bx,By,B..By, ] = Res;[qoy,B...By, ]

O primeiro passo da prova consiste em elaborar um programa Z com 0s seguintes

comandos: observando o input y, B...By, , escreva o argumento x,B...Bx,, a esquerda de
y,B...By, obtendo como resultado a expressdo x,;B...Bx,,By, B..By ; por fim, aplique a

esta expressdo o programa P,. O passo seguinte consiste em mostrar que a funcéo

spt(e, xq, ..., xpy), pelaqual se obtém um dos indices do programa Z, é recursiva primitiva.

Sejam Z,_, ..., Z,, programas de Turing obtidos de acordo com o lema 3.3. Z,,_ instrui

amaquina a escrever x,, a esquerda de y, B...By , de modo que:

ReSme [qoilB...Bin] = qu+2EmBy1 B---Byn

(xm+2)

A partir de Z, _ , determine Z£Xm+2). O simbolo de estado interno de ¢ ™" =
m m-—1
Ay g +2)+xm+2 = Qap+am_y+4- A Maguina regida pelo programa Z,(C’;"_“;Z) escreve Xx,,_; a
esquerda de x,, By, B...By, , de tal maneira que:

ReS cms») [Qxp+2XmBY,B..BY, 1 = Qx, 42, +4%m-1B%, BY,B..BY,

Xm-1

De modo analogo, a partir de Z, _,, determine Z,(C’;"j:xm‘”‘*). O simbolo de estado

S Oemtxm—1+4)

. pais _ _
interno de ¢, "™ = Q(apy g +2)+xm+2xm1+4 = Dtytxmq+2xm_p+6- OO0 0S8 comandos de

Z(xm+xm—1+4’)
Xm-2

, @ maquina imprime x,,_, a esquerda de x,,_,Bx, By, B...BYy , de modo que:

ReSZ(xm+xm—1+4) [qu+xm_1+4fm—1BEmBy1B---Byn] =

Xm-2

me +Xm—-1+Xm-2 +6Em—2 Bfm_ 1 Bfm By1 B... Byn
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Para cada Z,, sendo m = i = 1, executamos o procedimento descrito acima. O

, . — . . + ... +x+2m-2
programa que escreverd, finalmente, x; na extremidade esquerda sera Z,(C’lc’" Xpt2m=2)

Sendo assim, teremos que:
RGSZQ(:;m+ wHXp+2m=2) [qu.,_ ...+x2+2m—2E2B BEmBleByn] =

qu+...+x1+2mE1B Bmeyl B---Byn

Considere Z = Zy U Z,(C::T)U 7 Om+dm_1+4) UZ)(Caim+...+x2+2m—2)U

Xm-2
Pe(xm+ ~+1+2M) Definido desta forma, Z é o programa de Turing que instrui a maquina a

realizar a computacao desejada.

De acordo com os lemas 3.3 e 3.4, 0s programas constituintes de Z, na ordem em que
foram apresentados possuem, respectivamente, a(x,,), S(@(X;-1), Xm+2), S(@(x;y,—2),
Xm + Xmo1 +4), ..., S(@(x1), X + ..+ x5, +2m —2) e S(e, x,, + ...+ x4 + 2m) cOmo um
de seus cddigos. Sabendo disso, um dos codigos do programa Z é o valor da funcgéo

spt(e, X1, ..., X;m), definida como segue:
S;Ln(e: X1y ey xm) = a(xm) * S(a(xm—l)’ xm+2) * S(a(xm—z): Xm + Xm-1 + 4) *o K S(a(xl)i
Xm+ o+ x,+2m—2)*S(e, xp, + ...+ x; +2m)

O carater recursivo primitivo da operacdo de concatenacdo e das funcdes obtidas pelos

lemas 3.3 e 3.4 garante, evidentemente, que a funcdo s;*(e, x4, ... , x,,) € recursiva primitiva.

O Teorema s-m-n de Kleene é um dos mais utilizados em Teoria da Computabilidade.
Em geral, suas aplicacdes, como veremos mais adiante, seguem, normalmente, 0 mesmo
modelo: apresentamos, em primeiro lugar, uma funcdo parcial algoritmica ¥ (m+n)-aria e,
concluimos, via Tese de Church, que W é parcial recursiva, isto é, ¥ = @I**"; por fim,
utilizando o Teorema s-m-n, concluimos que existe uma funcgdo recursiva primitiva s;* tal que
QI (X, ooy Xy Vs woer V) = <p;‘me_xl’__”xm)(y1,...,yn). Embora a funcdo s;* possua m+1
variaveis, este nimero pode ser reduzido a m variaveis: basta definirmos, por composicéo,
uma fungdo m-dria f tal que f(xy,..,xm) = ST(CLUM™(xq, ) X)), UM (xy, ..,
Xm)s oo, Ut (X4, <., X;m)). Procedendo desta maneira, suprimimos o indice e, deduzindo,

analogamente, pelo Teorema s-m-n, que existe uma funcdo recursiva primitiva f tal que
P& s Xy V1 0 V) = OF gy o) V10 000 Yn)-

3.3 Problema da Parada

Considerando a noc¢éo intuitiva de algoritmo, introduzimos o problema da deciséo para
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uma relacdo numérica n-aria R: Dada uma n-upla ordenada (x4,..., x;,) qualquer, ha um
algoritmo que nos permita sempre decidir se (x, .., x,) € R ou (x4, .., x,) € R*? Ou
simplesmente: ha um algoritmo para computar a funcdo caracteristica de R? Se houver,
afirmamos que o problema da deciséo para R € algoritmicamente sollvel e que, portanto, R é
decidivel. Caso contrario, dizemos que o problema da decisdo é algoritmicamente insolUvel
ou que R ¢ indecidivel. De modo menos intuitivo, podemos estabelecer, via Tese de Church, a

seguinte definicéo:

Definicédo 3.6 O problema da decisdo para uma relacdo n-aria R é recursivamente soluvel se, e

somente se, R € recursiva. Do contrario, o problema é recursivamente insoluvel.

Entre os diversos casos existentes de insolubilidade recursiva, um dos mais famosos é
0 Problema da Parada. Antes de apresenta-lo, vamos relembrar as duas situacdes alternativas
gue podem ocorrer quando alimentamos uma maquina de Turing com um determinado input:
(1) ou a méquina, de acordo com um programa previamente dado, executa a computagdo do
input e para apds algum intervalo de tempo, fornecendo um output ou (2) ela entra em loop,
isto €, continuara operando “eternamente” sem nunca atingir um termo. Neste caso, um output

jamais sera alcancado. Portanto, das duas, uma: ou a maquina para ou ndo para.

Neste cendrio, surge o Problema da parada, expresso, informalmente, pela seguinte
pergunta: existe um algoritmo que nos permita sempre decidir, dada uma maquina de Turing
alimentada com um input, sobre o qual ela opera, se ela para ou ndo? Em uma versdo menos
informal: existe um algoritmo para decidir se, dados x e y, o programa P, aplicado ao input x
gera um output? Finalmente, em termos estritamente formais: o problema da decisdo para o
conjunto K = {(x,y):¢,(y) {} é recursivamente solivel? Na literatura especializada, o
mesmo problema é, normalmente, apresentado em sua versdo autorreferente: existe um
algoritmo para decidir se, dado x, o programa P, aplicado ao input x gera um output? O

problema da deciséo para o conjunto K = {x:¢, (x) 1} € recursivamente solivel?

O préximo teorema, como veremos, estabelecera a insolubilidade recursiva do
Problema da parada. Este € um dos resultados negativos mais importantes da Teoria da
Computabilidade, a partir do qual podemos, facilmente, estabelecer a insolubilidade recursiva

de inumeros problemas de decisao.

Teorema 3.7 O Problema da parada é recursivamente insoltvel.

* Um algoritmo com esta caracteristica é também conhecido como procedimento de deciséo.
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Prova (por redugéo ao absurdo):

Considere a seguinte lista de todas as funcbes parciais recursivas unarias e de seus

possiveis valores:

©o(0) @o(1) @o(2)
01(0) ©:1(1) @1(2)
©02(0) @2(1) @2(2)

Suponhamos, por absurdo, que K é recursivo ou, equivalentemente, que a funcéo

caracteristica de K é recursiva:

(1, sep,( !
XK(x'y)_{O’ segox(y)T

Agora, a partir de yx(x,y), definimos a seguinte funcao:

(1, seyg(x,x)=0
Y = {T. se xx(x,x) =1

Evidentemente, W é parcial algoritmica. Entdo, pela Tese de Church, ¥ é parcial
recursiva e, portanto, W(x) € uma das fungdes da lista acima, isto é, W(x) = ¢;(x), para

algum i = 0. Sendo assim, W(i) = ¢;(i). Neste caso, derivamos as seguintes consequéncias:
Por um lado,
P 1= xx((,D=0=>¥YD) =1=¢;(O)=1=¢;D !
Por outro lado,
AORESNOHESEAJONEZHON
Logo, alcangcamos o seguinte absurdo:
HORT RGN

Portanto, a nossa suposicao inicial de que K é recursivo é falsa. Consequentemente, o

Problema da parada é recursivamente insoltvel.

Corolario 3.8 O Problema da parada, em sua versdo autorreferente, é recursivamente

insoluvel.
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Prova:
Analoga a prova do teorema anterior.
3.4 Teorema de Rice

O Teorema de Rice tem uma grande forca dedutiva. A partir dele, como veremos,
podemos inferir que qualquer conjunto de indices de um subconjunto proprio das funcdes
parciais recursivas que ndo seja vazio é indecidivel. O motivo pelo qual o Teorema de Rice
trata diretamente dos indices de funcbes em vez das funcbes propriamente ditas ficara claro

mais adiante.

Definicdo 3.9 Seja C um conjunto qualquer de funcdes parciais recursivas. O conjunto I =

{x: ¢, € C} denomina-se o conjunto dos indices de C.

Como consequéncia imediata da definicdo acima, note-se que se x € I & @, = @,

entdo y € I¢. Portanto, se ¢ € C, entdo I contém todos os indices de ¢.

Teorema 3.10 (Teorema de Rice) Seja FpR o conjunto de todas as fungdes parciais recursivas
unarias e seja C € FpR. O problema da decisdo para I é recursivamente soltvel se, e somente
se, C=0ouC =FpR.

Antes de provarmos o teorema acima, convém destacar que ele, em seu enunciado,
explicita apenas as funcOes parciais recursivas unarias. Isto, no entanto, ndo limita o seu
alcance, pois podemos reduzir todas as funcfes parciais recursivas n-arias, com n > 2, a
funcdes parciais recursivas de uma variavel, através da funcéo J de Cantor® que nos possibilita
codificar n-uplas ordenadas. Deste modo, os resultados do Teorema de Rice se estendem,

implicitamente, a fungdes parciais recursivas de qualquer aridade.
Prova:

Inicialmente, provaremos a segunda direcdo da bicondicional. Suponhamos que C = @
ou C = FpR. Por um lado, se C = @, entdo I = @. Como sabemos, a fun¢do caracteristica do
conjunto vazio, C}(x), é recursiva. Por outro lado, se C = FpR, entdo I = N. Sabemos
também que a funcdo caracteristica do conjunto dos nimeros naturais, Ci(x), é recursiva.

Portanto, em ambos 0s casos, 0 problema da deciséo para I € recursivamente soltvel.

® Uma exposicéo detalhada dessa fungdo pode ser encontrada em DIAS, M. F.; LIMA, L. W. C. Teoria da
recursdo. S&o Paulo: Editora UNESP, 2010, p.134.
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Agora, por redugdo ao absurdo, provaremos a primeira dire¢cdo da bicondicional.
Suponhamos que o problema da decisdo para I € recursivamente sollvel, ou seja,

suponhamos que existe uma funcao recursiva y tal que:

(1, sep,€C
X(x)‘{o, se @, &C

Sendo ¥’ a funcdo vazia, suponhamos, por absurdo, que C # @ e C # FpR. Entdo, ou
Y’ e Cou W' ¢ C. Analisemos, separadamente, ambos 0s casos, a fim de derivarmos em cada

um deles uma contradicéo.

1° caso: Admitamos que W' € C. Como C # FpR, existe ¢ € FpR — C, tal que

Y’ # ¢. Sabendo disso, considere a seguinte funcgéo:

(@), sepx(x) !
i(xy) = {T ) se @, (x) 1

Tal como foi definida, W¥; é, claramente, parcial algoritmica. Entdo, dada a Tese de
Church, W, é parcial recursiva. Logo, existe um indice e, tal que ¥; = ¢,. Pelo Teorema s-m-
n de Kleene, ¢, (x,y) = @n)(y), sendo h uma fungdo recursiva primitiva. Mas se este € o

caso, as seguintes consequéncias sdo validas:

Por um lado,

(Px(x) =
para todo y, ¥; (x,y) = ¢(y) = paratodoy, ¢.(x,y) = ¢(y) = paratodoy, p,u)(y) =
PY) = Prix) = P = Q) EFPR-C = @y € C

Por outro lado,

@x(x) T = paratodo y,¥;(x,y) T = paratodoy, ¢.(x,y) T= paratodoy,p,u(y) T=

Prx) = Y= P € C
Ora, em resumo:
(px(x) 1= (ph(x) Z€CA (Px(X) T= (ph(x) eC

A partir dessa conjungdo, podemos inferir, pela definicdo dos conectivos

proposicionais, as equivaléncias abaixo:

(Px(X) le (ph(x) ¢C
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(Px(X) Te (ph(x) eC
Agora, considere a seguinte funcéo recursiva obtida por composigéo:

B 1, se@px €C
XA ={g o gre

Ou, de acordo com as equivaléncias anteriores:

(1, se@y(x0)?
XhG) =) oo

Sendo assim, note-se que g(x) =5sg(x(h(x)) seria uma funcdo caracteristica
recursiva para K. Isto, porém, é um absurdo, pois, como ja vimos, o corolario 3.8 garante que

0 conjunto K ndo é recursivo.

2° caso: Suponhamos que W' ¢ C. Como C # @, existe ¢ € C, tal que ¥’ # o.

Sabendo disso, considere a seguinte fung&o:

_(e(), sepx(x) !
Pa(xy) = {T ) se @, (x) 1

Tal como foi definida, W, €é, nitidamente, parcial algoritmica. Entdo, considerando a
Tese de Church, W, é parcial recursiva. Logo, ha um indice e’, tal que ¥, = ¢,/. Dado o
Teorema s-m-n de Kleene, @.(x,¥) = @u((¥), para uma funcdo recursiva primitiva h’.

Mas se este € 0 caso, as seguintes consequéncias sdo validas:

Por um lado,

Px(x) 1 =
para todo y, ¥, (x,y) = ¢(y) = para todo y,

@' (x,y) = 9(y) = paratodo y, 9,/ ) (V) = (V) = @Ppi) = @ = Ppi(x) €C
Por outro lado,

@x(x) T= paratodo y,¥,(x,y) T= paratodoy, ¢, (x,y) T= paratodoy, @,/ )1
= Pn'(x) = Y= Pr' (x) ¢C

Ora, em resumo:

Px () L= Qi) ECAQ(X) T= @pr(y) €C
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A partir desta conjungdo, podemos inferir, pela definicdo dos conectivos

proposicionais, as equivaléncias abaixo:
Px(x) L © @pry EC
Px(X) T Qpr(y) €C
Agora, considere a seguinte funcéo recursiva obtida por composi¢éo:

1, se@p €C

xmwxnz{o,se¢ww)¢c

Ou, de acordo com as equivaléncias anteriores:

, (1, se@y(x)!
X“@*hswmn

Sendo assim, note-se que x(h'(x)) seria uma fungdo caracteristica recursiva para K.
Isto, porém, é um absurdo, pois, como ja vimos, o corolario 3.8 assegura que o conjunto K

nao é recursivo.

Por fim, em ambos os casos, obtivemos uma contradi¢cdo, 0 que garante que a nossa
hipotese segundo a qual C # @ e C # FpR, admitindo C como um conjunto recursivo, é falsa.
Portanto, como queriamos provar, o problema da decisdo para I é recursivamente soltvel se,

e somente se, C =@ ou C = FpR.

Como consequéncia imediata do Teorema de Rice, podemos obter inimeros resultados
de insolubilidade recursiva, tendo em vista que todo conjunto de indices de qualquer

subconjunto proprio de FpR que nédo seja vazio ndo é recursivo.

Corolario 3.11 Sejam FRP e FR, respectivamente, o conjunto das funcdes recursivas
primitivas e o conjunto das fungdes recursivas. O problema da decisdo para 0s conjuntos Iggp

= {x: ¢, € FRP} e Igg = {x: ¢, € FR} é recursivamente insoltvel.
Prova:

Os conjuntos FRP e FR sdo subconjuntos préprios de FpR diferentes do @. Entdo, o

problema da decisdo para Iggp € Igg € recursivamente insoltvel.

Apesar das consequéncias do Teorema de Rice, poderiamos deparar-nos com a
argumentacao apresentada nos paragrafos seguintes, segundo a qual o conjunto dos indices

das funcdes recursivas primitivas é recursivo.
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Assim como codificamos 0s programas de Turing, podemos também determinar uma
codificagdo com caracteristicas semelhantes para as derivagGes parciais recursivas, de modo
que cada uma delas tenha um cddigo. Neste contexto, dado um numero qualquer, decidimos
mecanicamente se ele é ou ndo codigo de uma derivacdo parcial recursiva. Em caso
afirmativo, podemos decodifica-lo e recuperar a derivacao que ele codifica. Por sua vez, dada
uma derivacéo parcial recursiva, determinamos mecanicamente se ela é ou ndo uma derivagéo
recursiva primitiva. Sendo assim, podemos definir tanto o conjunto de todos os numeros que
sdo codigos de derivacdes recursivas primitivas quanto o conjunto de todos os nimeros que

sdo codigos de derivagdes parciais recursivas que nao sao recursivas primitivas.

De modo analogo ao que foi apresentado no inicio deste capitulo, poderiamos, por
exemplo, indexar cada funcdo parcial recursiva com o codigo de sua respectiva derivacgéo.
Neste caso, 0 codigo de uma derivacdo recursiva primitiva seria o indice da funcdo recursiva
primitiva que ela deriva. Sabendo disso e considerando que conjunto dos codigos das
derivaces recursivas primitivas € recursivo, alguém poderia, erroneamente, alegar que o
conjunto dos indices das fungdes recursivas primitivas também é recursivo. Assim, dado um
namero qualquer, sendo ele cddigo de uma derivacdo parcial recursiva, poderiamos decidir
mecanicamente se ele seria ou ndo indice de uma funcdo recursiva primitiva. E, portanto,
contrariando o Teorema de Rice, o problema da decisdo para o conjunto dos indices das

funcBes recursivas primitivas seria recursivamente soltvel.

Esse resultado, a primeira vista, poderia ser bastante convincente se ndo fosse um
pequeno detalhe: o conjunto dos cddigos de todas as derivacfes recursivas primitivas ndo nos
oferece todos os indices possiveis de uma funcdo recursiva primitiva, pois podemos ter uma
derivacdo parcial recursiva ndo recursiva primitiva cuja ultima funcéo seja recursiva primitiva
e, portanto, essa funcdo terd como um de seus indices um nimero que ndo é codigo de uma
derivacdo recursiva primitiva. Sendo assim, o conjunto dos indices das fungdes recursivas
primitivas € mais abrangente que o conjunto dos codigos das derivacdes recursivas primitivas.
A rigor, o conjunto que nos oferece todos os indices de funcdes recursivas primitivas € aquele
que contem os cddigos de todas as derivagdes parciais recursivas que derivam uma funcao
recursiva primitiva, sejam elas recursivas primitivas ou ndo. E esse conjunto, como 0
Teorema de Rice demonstra, é claramente indecidivel. Tal resultado é, intuitivamente,
explicito: com efeito, dada uma derivacao parcial recursiva (ou um programa de Turing) nédo é
possivel decidir, em geral, se a funcdo que ela deriva (ou que ele computa) é recursiva

primitiva.
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Uma sintese dessas consideracdes € apresentada no esquema abaixo:

Cppr ={i : i € cddigo de uma derivagdo parcial recursiva}
Cprp ={i : i1 é cddigo de uma derivacdo recursiva primitiva}
Irpr= {x: @, € parcial recursiva}

Ierp = {x: @, € recursiva primitiva}

Cppr = Ippr =N
Cpre C Igrp

Cppr € recursivo e Ig,g € recursivo.

Cprp € recursivo, mas Iggp ndo é recursivo (corolario 3.11).

A falsa ideia de que o problema da decisdo para o conjunto dos indices das fungdes
recursivas primitivas € recursivamente soltvel provém do fato de, considerando a indexacédo
apresentada, admitir-se equivocadamente como iguais dois conjuntos que, na verdade, sdo
diversos, a saber: 0 conjunto dos codigos das derivacdes recursivas primitivas e o conjunto
dos indices das funcdes recursivas primitivas. O primeiro, como vimos, é decidivel, ao passo

que o segundo, por sua vez, é indecidivel e mais abrangente que o primeiro.

Estabelecemos a aritmetizacdo da teoria das maquinas e dos programas de Turing e
obtivemos, como consequéncia imediata do Teorema de Rice, a indecidibilidade dos
conjuntos de indices das funcdes recursivas e das funcdes recursivas primitivas. Com efeito, o
Teorema de Rice trata diretamente dos indices de funcGes em vez das funcBes por eles
indexadas. N&o é estranha esta abordagem. De fato, parece haver uma certa impropriedade em
se investigar se um conjunto de func¢des propriamente dito é ou ndo decidivel, pois devemos
lembrar que tal investigacdo serd protagonizada por uma maguina, cujas computacdes devem
partir de inputs finitos. Uma funcdo, ao contrario, pode ser um conjunto infinito de n-uplas,
possibilidade que inviabilizaria a investigacdo. Neste contexto, para que a maquina seja
minimamente capaz de nos responder se uma funcdo pertence ou ndo a um determinado
conjunto devemos entdo substituir o input: no lugar da funcdo apresentamos, sob um
determinado formalismo, uma de suas descrigdes. Deste modo, a maquina investigara, a rigor,
se a descricdo dada pertence ao conjunto das descricdes que especificam uma funcdo do
conjunto em questdo. Posto que os indices, tais como definimos, constituem um exemplo
particular dessas descri¢fes, podemos estabelecer as seguintes equivaléncias: dada uma

funcdo numérica f qualquer, f € {f: f ¢é parcial recursiva} se, e somente se, IAx(f = @, A
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x € Igpr} OU f € {f: f € recursiva primitiva} se, e somente se, 3x(f = @, A x € Iggp}ou,
ainda, f € {f:f é recursiva} se, e somente se, Ax(f = @, A x € Igg). Ora, como pelo
Teorema de Rice, Igpg € decidivel e pelo corolario 3.11, Iggp € Ipg Sd0 indecidiveis,
concluimos, indiretamente, que o conjunto das funcBes parciais recursivas € decidivel,
enquanto que o conjunto das funcOes recursivas e 0 conjunto das funcbes recursivas
primitivas sdo indecidiveis, alcancando, com este resultado, o Gltimo objetivo ao qual nos
propomos. Portanto, embora haja um algoritmo para computar as funcbes recursivas

(primitivas), ndo ha um algoritmo para decidir se uma funcéo é ou ndo recursiva (primitiva).



79

CONCLUSAO

O Entscheindungsproblem trouxe a tona a necessidade de se precisar as nogoes
intuitivas de algoritmo e funcéo algoritmica, abrindo espago para a instauracdo da Teoria da
Computabilidade. Acredita-se que estas nogdes tenham sido, rigorosamente, caracterizadas
sob diversos formalismos, dentre os quais apresentamos as fungfes parciais recursivas e as
funcBes parcialmente Turing-computaveis, acompanhadas de seus respectivos algoritmos: as
derivacdes parciais recursivas e as maquinas de Turing. Logicos e matematicos demonstraram
que todos os formalismos oferecidos para as referidas nogdes intuitivas eram equivalentes.
Essa equivaléncia ficou conhecida como Resultado fundamental da Teoria da
Computabilidade e constitui, até hoje, um dos argumentos fortes a favor da Tese de Church-

Turing que, apesar de nao ser matematicamente provada, é largamente aceita.

A partir da definicdo de funcdo recursiva, nogdo fundamental da Tese de Church-
Turing, inferimos, por um lado, de forma imediata, a existéncia de funcBes numeéricas
algoritmicas. Por outro lado, a partir de uma simples comparacdo entre a cardinalidade do
conjunto das funcdes recursivas (X,) e a cardinalidade do conjunto das funcdes numéricas
totais (2%), é possivel provar que existem fungbes numéricas para as quais ndo ha um
procedimento mecanico que determine o seu respectivo valor a partir de seus argumentos. Ou
seja, ndo existem algoritmos para computa-las. Por isso, elas sdo chamadas funcbes néo-
algoritmicas. Em outras palavras, podemos dizer que para tais funcdes ndo ha capacidade
computacional suficiente para soluciona-las. Sendo assim, descobrir os limites entre funcbes
algoritmicas e ndo-algoritmicas é equivalente a descobrir o alcance e os limites do
computador em geral. Nesse contexto, a Tese de Church-Turing representa um enorme ganho
computacional, pois, de antemdo, saberemos identificar as atividades que um computador
poderd ou ndo desenvolver. Esta tese, no entanto, pode vir a ser, algum dia, refutada,
possivelmente a partir de um contraexemplo. Mesmo que isto venha a ocorrer, a teoria das
funcBes parciais recursivas e a teoria das fungbes parcialmente Turing-computaveis ndo
perderdo a sua importancia, pois elas trazem consigo motivacdes suficientemente fortes para

se consolidarem (o que, de fato, ja aconteceu) como um campo vasto de estudo.

Como parte do Resultado Fundamental, demonstramos a equivaléncia entre as fungdes
parciais recursivas e as fungdes parcialmente Turing-computaveis. Ao desenvolvermos a
primeira parte desta demonstracéo, o que fizemos, nas entrelinhas, foi, na verdade, apresentar

programas de Turing para computar as funcfes parciais recursivas. Estes programas, como
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definimos, sdo constituidos por quintuplas em vez de quadruplas. Do ponto de vista
computacional, as computacOes realizadas de acordo com eles sdo, em geral, mais eficientes
qguando comparadas com aquelas realizadas de acordo com programas cujos elementos sdo
quédruplas, pois alcanca-se 0 output com um menor numero de passos e, evidentemente, em
um intervalo menor de tempo. Esse resultado nos introduz em um tépico muito discutido,
atualmente, em Ciéncia da Computacdo, a analise da eficiéncia de algoritmos, que ndo sé
considera 0 tempo de execucdo de um algoritmo como também a sua capacidade de

armazenar, efetuar e recuperar oS passos de uma computa(;éo.

Vimos que a Teoria da Computabilidade busca, entre outras coisas, oferecer uma
resposta matematicamente precisa para o problema da decisdo de indmeros conjuntos,
classificando-os como decidiveis ou indecidiveis. De modo particular, concluimos, utilizando
0 Teorema de Rice, que embora o conjunto de indices das funcdes parciais recursivas seja
decidivel, os conjuntos de indices das fungdes recursivas e das fungdes recursivas primitivas
ndo o sdo. Estabelecidas algumas equivaléncias, estendemos estes resultados sobre os
conjuntos de indices para os conjuntos de fungbes por eles indexadas e concluimos que a

recursividade de Igpg garante a decidibilidade de FpR, enquanto que a ndo-recursividade de

Irrp € Iggr Qarante, respectivamente, a indecidibilidade de FRP e FR.

Diante deste resultado, surge-nos uma outra questdo ainda mais geral: dado um
conjunto de funcdes parciais recursivas C e o seu respectivo conjunto de indices I que
propriedades de I¢ “espelham” propriedades de C? Ou ainda: todas as propriedades que (néo)
predicam-se de I também (ndo) predicam-se de C? Uma resposta para estas questdes seria
imediata se houvesse entre os conjuntos I e C uma funcéo biunivoca. Mas, como vimos, ndo
estamos diante de uma codificacdo ortodoxa, porque cada elemento de C possui infinitos
indices a ele associados. Isto posto, fica claro, de antemdo, que, pelo menos, quanto a
cardinalidade, ambos o0s conjuntos ndo coincidem. Mas, o que dizer quanto a outras
propriedades? Poderiamos aprofundar essa questdo a partir do estudo das hierarquias
(aritmética e analitica) de conjuntos de fungdes numeéricas, apresentadas em capitulos mais
avancados da Teoria da Computabilidade, investigando quais as propriedades de I na
hierarquia aritmética dos conjuntos numéricos "espelham" propriedades de C na hierarquia
aritmética dos conjuntos de fungbes numéricas. Esta discussdo, porém, demandaria o

desenvolvimento de um outro trabalho a ser analisado por n6s em uma proxima oportunidade.
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