

UNIVERSIDADE FEDERAL DA PARAÍBA

CENTRO DE CIÊNCIAS HUMANAS, LETRAS E ARTES

DEPARTAMENTO DE FILOSOFIA

PROGRAMA DE PÓS-GRADUAÇÃO EM FILOSOFIA

GUSTAVO CAVALCANTI DE MELO

FUNÇÕES PARCIAIS RECURSIVAS E FUNÇÕES PARCIALMENTE

TURING-COMPUTÁVEIS: UMA PROVA DE EQUIVALÊNCIA

JOÃO PESSOA – PB

2016

GUSTAVO CAVALCANTI DE MELO

FUNÇÕES PARCIAIS RECURSIVAS E FUNÇÕES PARCIALMENTE

TURING-COMPUTÁVEIS: UMA PROVA DE EQUIVALÊNCIA

JOÃO PESSOA – PB

2016

Dissertação apresentada ao Programa de

Pós-Graduação em Filosofia da

Universidade Federal da Paraíba como

requisito para obtenção do título de mestre

em Filosofia.

Orientador: Prof. Dr. Matias Francisco Dias

M528f Melo, Gustavo Cavalcanti de.

Funções parciais recursivas e funções parcialmente
Turing-computáveis: uma prova de equivalência / Gustavo
Cavalcanti de Melo. – João Pessoa, 2016.

83f.

Orientador: Matias Francisco Dias

Dissertação (Mestrado) – UFPB/CCHLA

1. Ciências da computação. 2. Função parcial recursiva.

3. Função parcialmente Turing-computável. 4. Teorema de
Rice. 5. Problema de decisão.

UFPB/BC CDU: 681.3(043)

AGRADECIMENTOS

A Cristo, por sua constante providência na minha vida e por colocar em meu caminho

pessoas tão especiais.

Aos meus alicerces, Francisco de Assis, Graciete Melo e Marcel Melo, pelo cuidado,

incentivo e pela sólida formação que proporcionou a continuidade dos meus estudos.

À minha namorada, Denise Pereira, por compartilhar comigo as alegrias e dificuldades

da vida acadêmica.

Ao meu amigo Paulo Fernando, pela convivência durante alguns dias da semana e pela

divisão dos trabalhos domésticos que, com certeza, me rendeu horas a mais de pesquisa.

À minha amiga Lucemar Gomes. Sem medir esforços, ela sempre foi para mim

sinônimo de companheirismo e dedicação.

Ao meu amigo Victor Pereira, pelas horas de estudo e pelos momentos indescritíveis

que passamos juntos durante estes anos de pós-graduação.

À professora Ana Lêda, com quem tive os primeiros contatos com a Teoria da

Computabilidade. Sob seu olhar, aperfeiçoei a arte de ensinar e, com suas atitudes, aprendi, na

prática, o significado do termo “ética profissional”.

Ao meu orientador, Matias Francisco, que, com muita paciência e disponibilidade,

transmitiu o seu saber, colaborando diretamente na construção deste trabalho.

Ao meu amigo Leonardo Weber, pelo seu constante empenho em esclarecer as minhas

dúvidas e pelas discussões, às terças-feiras à tarde, que me fizeram vislumbrar novas

possibilidades de estudo.

Aos professores Garibaldi Monteiro Sarmento e Rodrigo Costa Ferreira, por

aceitarem, de bom grado, compor a banca examinadora.

Para finalizar, meus sinceros agradecimentos a todas as pessoas que, de alguma

maneira, contribuíram com a minha formação acadêmica.

RESUMO

Na década de 30 do século passado, foram oferecidas várias versões formais para a noção

intuitiva de função algorítmica. Dentre elas, a versão das funções recursivas e a versão das

funções Turing-computáveis. Posteriormente, tais versões foram estendidas a fim de abranger

também as funções parciais algorítmicas, dando origem, deste modo, à versão das funções

parciais recursivas e à versão das funções parcialmente Turing-computáveis. Nesse contexto,

esta pesquisa, situada dentro do domínio da Teoria da Computabilidade e construída à luz dos

pressupostos teóricos de Davis (1982), Mendelson (2009), Dias e Weber (2010), Rogers

(1987), Soare (1987), Cooper (2004), entre outros, destina-se a reconstruir a prova de que as

referidas versões formais dadas para a noção intuitiva de função parcial algorítmica, apesar de

conceitualmente distintas, são extensionalmente equivalentes no sentido de que elas

determinam o mesmo conjunto de funções numéricas. Como parte desta reconstrução,

provaremos, de modo inédito, mediante o uso de quíntuplas, que toda função parcial recursiva

é parcialmente Turing-computável. Na literatura especializada, esse teorema é provado por

meio de um conjunto de quádruplas. Porém, definindo um conjunto de menor cardinalidade

constituído por quíntuplas, é possível prová-lo em um intervalo menor de tempo, o que

representa um ganho do ponto de vista computacional. Além de apresentar essa prova

alternativa, posto pela Tese de Church-Turing que o conjunto das funções parciais recursivas

contém todas as funções parciais algorítmicas, investigaremos se ele próprio e os seus

infinitos subconjuntos são ou não algorítmicos. Nesta investigação, demonstraremos, em

termos aritméticos, com o auxílio do Teorema de Rice, que embora o conjunto das funções

parciais recursivas seja algorítmico, todos os seus subconjuntos diferentes do conjunto vazio

não o são, dentre os quais estão o conjunto das funções recursivas e o conjunto das funções

recursivas primitivas.

Palavras-chave: função parcial recursiva, função parcialmente Turing-computável, teorema

de Rice, problema de decisão.

ABSTRACT

In the thirties of the last century, several formal versions for the intuitive notion of

algorithmic function were offered. Among them, the version of the recursive functions and the

version of the Turing-computable functions. Posteriorly, such versions were extended in order

to also include the partial algorithmic functions, giving rise, in this way, to the version of the

partial recursive functions and to the version of the partially Turing-computable functions. In

this context, this research, located into Computability Theory domain and built in the light of

theoretical assumptions of Davis (1982), Mendelson (2009), Dias & Weber (2010), Rogers

(1987), Soare (1987), Cooper (2004), among others, is intended to rebuild the proof that the

given formal versions referred to the intuitive notion of partial algorithmic function, despite

being conceptually distinct, they are extensionally equivalents in the sense that they determine

the same set of theoretical-numerical functions. As a part of this rebuilding, we shall prove, in

na unprecedented way, using quintuples, that every partial recursive function is partially

Turing-computable. In the literature, this theorem is proved by means of a set of quadruples.

However, defining a lower cardinality set constructed by quintuples, it is possible to prove it

in a smaller time interval, which representes a gain from the computational point of view.

Besides presenting this alternative proof, posed by the Church-Turing thesis that the set of

partial recursive functions includes all the partial algorithmic functions, we shall investigate if

this set itself and its infinite subsets are or are not algorithmic. In this survey, we shall

demonstrate, in arithmetical terms, with the aid of Rice‟s theorem, that although the set of

partial recursive functions is algorithmic, all its subsets which are different from the empty set

are not, among which are the set of recursive functions and the set of primitive recursive

functions.

Keywords: partial recursive functions, partially Turing-computable functions, Rice‟s

theorem, decision problem.

SUMÁRIO

INTRODUÇÃO .. 7

1 RECURSIVIDADE ... 12

1.1 Funções parciais recursivas .. 12

 1.1.1 Somas e produtos limitados ... 19

 1.1.2 Relações numéricas .. 20

 1.1.3 Derivações parciais recursivas ... 27

2 TURING-COMPUTABILIDADE ... 29

2.1 Máquinas e programas de Turing ... 29

2.2 Equivalência entre as funções parciais recursivas e as funções parcialmente Turing-

computáveis .. 33

2.2.1 Toda função parcial recursiva é parcialmente Turing-computável 33

2.2.2 Toda função parcialmente Turing-computável é parcial recursiva 55

2.3 Tese de Church-Turing ... 61

3 PROBLEMA DA DECISÃO PARA OS SUBONJUNTOS DAS FUNÇÕES PARCIAIS

RECURSIVAS.. 64

3.1 Lista efetiva de programas e funções ... 64

3.2 Teorema s-m-n de Kleene ... 66

3.3 Problema da Parada .. 69

3.4 Teorema de Rice ... 72

CONCLUSÃO ... 79

REFERÊNCIAS ... 81

7

INTRODUÇÃO

Nesta dissertação, pretendemos explicitar a equivalência entre duas versões formais

oferecidas para a noção intuitiva de função parcial algorítmica: a versão das funções parciais

recursivas sistematizada por Kleene a partir dos trabalhos de Herbrand e Gödel e a versão das

funções parcialmente Turing-computáveis concebida por Alan Turing. Em outras palavras,

pretendemos reconstruir a prova segundo a qual o conjunto das funções parciais recursivas e o

conjunto das funções parcialmente Turing-computáveis, apesar de conceitualmente distintos,

possuem os mesmos elementos. Em seguida, buscaremos demonstrar, em termos aritméticos,

com o auxílio do Teorema de Rice, que embora estes conjuntos sejam decidíveis, eles contêm

infinitos subconjuntos indecidíveis, dentre os quais, destacam-se o conjunto das funções

recursivas e o conjunto das funções recursivas primitivas.

Em Teoria da Computabilidade, ramo da Lógica no qual estará concentrada nossa

pesquisa, noções como algoritmo, função algorítmica e decidibilidade mantêm entre si uma

estreita relação. Intuitivamente, entende-se por algoritmo um procedimento mecânico para

computar uma função. Na prática, nós o identificamos como um conjunto finito de regras

inequívocas (em linguagem natural ou simbólica) que devem ser aplicadas, sem nenhum

recurso à criatividade, a um dado input finito, fornecendo, após a execução de um número

finito de operações elementares, um possível output também finito. Uma função, por sua vez,

é algorítmica se, e somente se, existe um algoritmo para computá-la. E um conjunto é

decidível (ou algorítmico) se, e somente se, existe um algoritmo que nos permita identificar,

dado um objeto qualquer, se ele pertence ou não a este conjunto. Caso contrário, o conjunto é

indecidível. A noção de decidibilidade é, analogamente, aplicável a teorias formais. Neste

caso, dizemos que uma teoria formal é decidível se, e somente se, o conjunto de seus teoremas

for decidível.

Nos primeiros anos do século XX, o surgimento de alguns paradoxos na recente

Teoria dos Conjuntos de Cantor abalou profundamente os fundamentos da Matemática.

Diante deste fato, o analista alemão David Hilbert (apud SOBRINHO, 1987, p. 4) proferiu as

seguintes palavras:

O atual estado de coisas, em que estamos nos defrontando com paradoxos, é,

de fato, absolutamente intolerável. Imagine se as definições e métodos

dedutivos que todos aprendemos, ensinamos e utilizamos em Matemática

nos conduzirem a absurdos! Se o próprio pensamento matemático já for

defeituoso, onde é que iremos encontrar a verdade e a certeza?

8

Entre as muitas tentativas de solucionar o problema, Hilbert propôs o programa

formalista de fundamentação da Matemática. Este programa era assim chamado por defender

a reconstrução do edifício matemático a partir de métodos axiomáticos formais, cujo rigor

característico, segundo Hilbert, impediria a ocorrência de contradições. Em última análise, a

Matemática, na visão dos formalistas, seria redutível a sistemas axiomáticos constituídos

exclusivamente por símbolos isentos de interpretação, manipulados através de regras precisas

e mecanismos finitários. Em termos mais elementares, eles encaravam a Matemática como

um mero jogo formal. Os passos permitidos pelas regras de inferência em uma demonstração

seriam, por exemplo, os lances possíveis de um jogo de tabuleiro, os axiomas

corresponderiam à configuração inicial do tabuleiro e as fórmulas, às peças do jogo. Além

disso, o ato de „jogar‟ seria análogo ao de „executar operações matemáticas‟ e as declarações

sobre o jogo equivaleriam a declarações sobre a Matemática.

Na tentativa de estabelecer bases sólidas para o pensamento matemático de modo a

evitar resultados contraditórios, além de propor o uso de métodos axiomáticos formais,

Hilbert convida a comunidade acadêmica a oferecer uma solução positiva para os três

problemas referentes aos fundamentos da Matemática. O primeiro deles, o problema da

consistência. Hilbert pretendia demonstrar que as diversas teorias matemáticas eram

consistentes, ou seja, não admitiriam contradições. O segundo, o problema da completude,

para o qual uma solução positiva implicaria afirmar que, dado um enunciado de uma teoria

matemática qualquer, ele ou a sua negação seriam demonstráveis nesta teoria. Por fim, o

terceiro problema, conhecido como Entscheidunsproblem, que investiga se o Cálculo de

Predicados de Primeira Ordem é decidível. Hilbert caracterizou o Entscheidunsproblem como

o problema fundamental da Lógica Matemática, pois ele acreditava que a solução deste

problema permitiria, pelo menos em princípio, decidir, sem nenhum recurso à criatividade, se,

dada uma teoria matemática qualquer, uma fórmula pertencente a esta teoria seria ou não um

de seus teoremas. Essa crença de Hilbert foi confirmada em 1929, quando Gödel demonstrou

a completude do Cálculo de Predicados de Primeira Ordem, apresentando-o como “uma

linguagem e uma lógica completa servindo de embasamento para a formalização das teorias

matemáticas” (SOBRINHO, 1987, p. 7).

Uma solução positiva para os três problemas hilbertianos estabeleceria a Matemática

como um grandioso cálculo axiomático formal - consistente, completo e decidível. A

Matemática seria, incontestavelmente, segura (livre de contradições) e responderia a todos os

problemas a ela referentes de modo efetivo. No entanto, as pretensões do programa formalista

9

fracassaram por duas vezes. Em 1931, Kurt Gödel publicou os famosos teoremas da

incompletude. De acordo com o primeiro teorema, toda axiomática consistente da aritmética

de Peano é incompleta. Por contraposição, toda axiomática completa da aritmética de Peano é

inconsistente. Sendo assim, ao contrário do que Hilbert acreditava, a Matemática, não poderia

ser completa e consistente ao mesmo tempo. Já o segundo teorema de Gödel garantiu que a

consistência de uma axiomática da aritmética de Peano não é demonstrável somente com os

recursos dessa axiomática. Seria então necessário, lançar mão de uma axiomática mais forte

na qual esta demonstração fosse possível. No entanto, a prova da consistência desta última

axiomática demandaria uma outra axiomática ainda mais forte e assim sucessivamente. Este

resultado, portanto, destruiu a esperança de Hilbert de encontrar uma prova finitária da

consistência da aritmética e, consequentemente, da consistência da Matemática. Em 1936, o

programa hilbertiano, mais uma vez, fracassou: Alonzo Church prova, formalmente, a

indecidibilidade do Cálculo de Predicados de Primeira Ordem, obtendo, desta maneira, uma

resposta negativa para o Entscheidunsproblem. Na mesma época, provou-se também, de

modo semelhante, a indecidibilidade de diversas teorias matemáticas, entre elas a Aritmética

de Peano.

Essas provas formais de indecidibilidade só foram possíveis a partir da década de 30

do século passado, com o advento da Teoria da Computabilidade, quando lógicos e

matemáticos propuseram várias caracterizações precisas para as noções intuitivas de

algoritmo e, consequentemente, de função algorítmica, visando à obtenção de uma resposta

em termos matemáticos para o Entscheidunsproblem. Neste contexto, podemos afirmar que o

surgimento da Teoria da Computabilidade foi motivado, em última análise, pela hipótese de

Hilbert segundo a qual as diversas teorias matemáticas eram decidíveis. Ainda na década de

30, provou-se que todas as versões formais oferecidas para as referidas noções intuitivas eram

equivalentes, gerando, desde então, a crença segundo a qual se tinha captado, de uma vez por

todas, de forma precisa, o que se entendia intuitivamente por algoritmo e função algorítmica.

Sobre este acontecimento, Hao Wang (apud SOBRINHO, 1987, p. 1) escreve:

Uma das grandes conquistas da Lógica desde os anos 30 foi o sucesso

experimentado ao ter sido dada uma definição absoluta (i.e., independente do

particular formalismo adotado) da interessante noção epistemológica de

processo mecânico (ou procedimento efetivo, computabilidade, algoritmo,

método finitista). Com efeito, pode-se afirmar que tenha sido o único

conceito epistemológico básico relacionado com a Matemática que tenhamos

sido capazes de iluminar até agora.

10

A fim de lograrmos êxito na realização dos objetivos mencionados no início desta

introdução, dividiremos o nosso trabalho em três capítulos, contando sempre com o suporte

teórico de vários autores importantes da Lógica e da Teoria da Computabilidade, entres eles:

Davis, Mendelson, Dias e Weber, Rogers, Soare e Cooper.

No primeiro capítulo, estabeleceremos indutivamente o conjunto das funções parciais

recursivas. De modo análogo, definiremos, em ordem decrescente de generalidade, outros

dois conjuntos: o das funções recursivas e o das funções recursivas primitivas. Explicitaremos

as diferenças e semelhanças entre eles, analisando detalhadamente as suas respectivas

definições. Para cada conjunto estabelecido, apresentaremos um modelo de algoritmo capaz

de computar suas funções. Por fim, investigaremos, em termos intuitivos, se os conjuntos de

algoritmos apresentados são ou não decidíveis.

No segundo capítulo, apresentaremos a teoria das máquinas e dos programas de

Turing, destacando o conjunto das funções parcialmente Turing-computáveis. Definiremos os

programas de Turing de modo ligeiramente diverso do habitual – normalmente, eles são

definidos como conjuntos de quádruplas e nós os definiremos como conjuntos de quíntuplas.

A partir desta maneira de defini-los, provaremos, de modo inédito, que toda função parcial

recursiva é parcialmente Turing-computável. Em seguida, utilizando a aritmetização das

máquinas de Turing, provaremos que a recíproca também é verdadeira. Estabelecida a

equivalência entre os dois formalismos propostos para a noção intuitiva de função

algorítmica, concluiremos o capítulo, expondo a famosa Tese de Church-Turing, segundo a

qual todo procedimento computacional é realizável por uma máquina de Turing ou, em outras

palavras, toda função algorítmica é Turing-computável.

Posto pela Tese de Church-Turing que o conjunto das funções parciais recursivas

contém todas as funções algorítmicas, cabe-nos perguntar se este conjunto é propriamente

algorítmico. E o que dizer de seus subconjuntos: são ou não algorítmicos? Investigaremos

estas questões no terceiro capítulo. Nele, veremos, inicialmente, como construir uma lista

efetiva dos programas de Turing e das funções parciais recursivas. Vamos utilizá-la na prova

de dois resultados importantes da Teoria da Computabilidade: o Teorema s-m-n de Kleene e a

indecidibilidade do Problema da Parada. Com base nestes resultados, demonstraremos o

Teorema de Rice a partir do qual provaremos, por um lado, a decidibilidade do conjunto das

funções parciais recursivas e, por outro, a indecidibilidade de qualquer um de seus

subconjuntos próprios, que não seja vazio.

11

Para iniciarmos o estudo ao qual nos propomos, alguns esclarecimentos serão

convenientes: (1) em concordância com a Teoria da Computabilidade, restringiremos o nosso

estudo ao conjunto de números naturais, tratando, deste modo, apenas de funções

numéricas n-árias, ou seja, funções cujos argumentos são n-uplas ordenadas de e os

valores são elementos de ; (2) classificaremos uma função numérica n-ária como total se ela

estiver definida para todas as n-uplas de e, como parcial, se ela estiver definida para

todas, algumas ou nenhuma n-upla de ; (3) diremos, em termos intuitivos, que uma função

numérica n-ária total é algorítmica se, e somente se, for possível calcular o seu valor para

cada n-upla de através de um algoritmo, isto é, em um número finito de passos e de

maneira inteiramente mecânica; diremos que uma função numérica n-ária parcial é

algorítmica se, e somente se, existe um algoritmo para computá-la sempre que ela estiver

definida para uma determinada n-upla de ; (4) por fim, acompanhando os autores citados

no início desta introdução, utilizaremos, nas páginas seguintes, o termo “função algorítmica”

para nos referirmos somente às funções numéricas totais algorítmicas.

12

1 RECURSIVIDADE

A fim de alcançarmos o primeiro objetivo ao qual nos propomos, qual seja, estabelecer

a igualdade entre o conjunto das funções parciais recursivas e o conjunto das funções

parcialmente Turing-computáveis, precisamos, antes de mais nada, definir cada um desses

conjuntos separadamente. Neste capítulo, apresentaremos o conjunto das funções parciais

recursivas. Dentre os seus inúmeros subconjuntos, destacaremos o conjunto das funções

recursivas e o conjunto das funções recursivas primitivas. Ambos, como veremos, contêm,

exclusivamente, funções numéricas totais.

1.1 Funções parciais recursivas

Em geral, o conjunto das funções parciais recursivas é estabelecido por meio de uma

definição indutiva. Para defini-lo, começaremos fixando os primeiros elementos deste

conjunto conhecidos como funções iniciais e, em seguida, listaremos algumas regras,

conhecidas como operações básicas, que nos permitem obter novas funções parciais

recursivas a partir de outras previamente dadas. Na sequência, utilizaremos o símbolo para

denotar o número que segue imediatamente x na ordem dos números naturais e a expressão

„ () ‟ para indicar que a função está definida para a n-upla ; para

indicar o caso contrário, escreveremos „ () ‟.

Definição 1.1 As funções iniciais são:

(1) Função sucessor: S() = , para qualquer .

(2) Funções-constante:
 () = k, para quaisquer e k.

(3) Funções-projeção:
 () = , 1 ≤ i ≤ n, para qualquer .

Definição 1.2 As operações básicas são:

(1) Composição (para n, m ≥ 1)

Se f é uma função m-ária e , ..., são funções n-árias, então a função n-ária h é obtida,

por composição, a partir de f , ..., se, e somente se:

h() = f((), ..., ())

(2) Recursão primitiva (para n ≥ 0)

Se é uma função n-ária e f uma função n+2-ária, então a função n+1-ária h é obtida, por

recursão primitiva, a partir de e f se, e somente se:

h() = ()

13

h(S(y)) = f(y, h(y))

Em particular, se n = 0, por recursão primitiva, é obtida a função unária h tal que:

h(0) = k

h(S(y)) = f(y, h(y)),

onde k é um número natural qualquer.

(3) Minimização ilimitada (para n ≥ 1)

Se é uma função n+1-ária, então a função n-ária h é obtida, por minimização ilimitada, a

partir de se, e somente se:

h() ((y) = 0) =

{

 ()

 (()

 ())

É oportuno esclarecer, em outras palavras, que a função () obtida por

minimização ilimitada, terá como valor o menor número natural tal que () =

0, sob a condição de não existir um para o qual () . Porém, se tal

 não existir, () permanecerá indefinida.

Apresentadas as funções iniciais e as operações básicas, podemos, agora, estabelecer,

de modo apropriado, o conjunto das funções parciais recursivas.

Definição 1.3 Uma função numérica f é parcial recursiva se, e somente se, uma das seguintes

condições é satisfeita:

(1) f é uma função inicial.

(2) f é obtida a partir de funções parciais recursivas pela aplicação de uma das operações

básicas.

(3) Somente são funções parciais recursivas as funções numéricas determinadas de acordo

com (1) ou (2).

Definição 1.4 Uma sequência parcial recursiva para uma função numérica f é uma sequência

finita de funções () se, e somente se, = f e, para cada 1 ≤ i ≤ n, uma das seguintes

condições é satisfeita:

(1) é uma função inicial;

14

(2) é obtida de funções anteriores da sequência por aplicação de uma das operações

básicas.

Teorema 1.5 Uma função numérica f é parcial recursiva se, e somente se, existe uma

sequência parcial recursiva para f.

Prova:

Imediata, pelas definições 1.3 e 1.4.

O conjunto das funções parciais recursivas, tal como foi definido, contém como seus

elementos funções totais e funções estritamente parciais. Uma simples restrição sobre o

campo de aplicação da operação de minimização ilimitada nos oferecerá um recorte deste

conjunto. Sabendo disso, estabeleceremos, utilizando a noção de função regular, o conjunto

das funções recursivas que, como veremos, contêm, exclusivamente, funções parciais

recursivas totais.

Definição 1.6 Uma função numérica (), , é regular se, e somente se, é

total e (()).

Definição 1.7 Uma função numérica f é recursiva se, e somente se, uma das seguintes

condições é satisfeita:

(1) f é uma função inicial.

(2) f é obtida a partir de funções recursivas por aplicação das operações de composição ou

recursão primitiva ou minimização ilimitada, sendo esta última aplicada exclusivamente a

funções regulares.

(3) Somente são funções recursivas as funções numéricas determinadas de acordo com (1) ou

(2).

Definição 1.8 Uma sequência recursiva para uma função numérica f é uma sequência finita

de funções () se, e somente se, = f e, para cada 1 ≤ i ≤ n, uma das seguintes

condições é satisfeita:

(1) é uma função inicial;

(2) é obtida de funções anteriores da sequência por aplicação das operações de composição

ou recursão primitiva ou minimização ilimitada, sendo esta última aplicada exclusivamente a

funções regulares.

15

Teorema 1.9 Uma função numérica f é recursiva se, e somente se, existe uma sequência

recursiva para f.

Prova:

Imediata, considerando as definições 1.7 e 1.8.

Deve-se notar que o conjunto das funções recursivas é definido exatamente igual ao

conjunto das funções parciais recursivas, salvaguardada a seguinte diferença: a operação de

minimização ilimitada, na definição das funções recursivas, é aplicada somente às funções

regulares, enquanto que na definição das funções parciais recursivas, tal operação pode ser

aplicada indistintamente. Esta restrição faz com que o conjunto das funções recursivas

contenha única e exclusivamente como seus elementos todas as funções parciais recursivas

totais, pois, pela definição de função regular, sempre existirá um número natural tal que

 ((y) = 0) = .

Sendo o conjunto das funções parciais recursivas uma versão formal oferecida para o

conceito intuitivo de função parcial algorítmica e sabendo que o conjunto das funções

recursivas contêm exclusivamente todas as funções parciais recursivas totais, o conjunto das

funções recursivas constitui, portanto, a versão formal oferecida para o conceito intuitivo de

função algorítmica.

Ainda sobre o conjunto das funções recursivas, destacamos, como uma de suas partes,

o conjunto das funções recursivas primitivas que, sendo estabelecido somente a partir das

funções iniciais e das operações de recursão primitiva e composição, contém, como

apresentaremos mais adiante, diversas funções numéricas conhecidas como claramente

algorítmicas.

Definição 1.10 Uma função numérica f é recursiva primitiva se, e somente se, uma das

seguintes condições é satisfeita:

(1) f é uma função inicial.

(2) f é obtida a partir de funções recursivas por aplicação das operações de composição ou

recursão primitiva.

(3) Somente são funções recursivas as funções numéricas determinadas de acordo com (1) ou

(2).

16

Definição 1.11 Uma sequência recursiva primitiva para uma função numérica f é uma

sequência finita de funções () se, e somente se, = f e, para cada 1 ≤ i ≤ n, uma das

seguintes condições é satisfeita:

(1) é uma função inicial;

(2) é obtida de funções anteriores da sequência por aplicação das operações de composição

ou recursão primitiva.

Teorema 1.12 Uma função numérica f é recursiva primitiva se, e somente se, existe uma

sequência recursiva primitiva para f.

Prova:

Imediata, tendo em vista as definições 1.10 e 1.11.

Uma sequência recursiva primitiva para f, cujas funções estão acompanhadas por uma

especificação de como foram obtidas, constitui uma derivação recursiva primitiva para f. Ora,

dada uma sequência recursiva primitiva é sempre possível especificar cada uma de suas

funções. Sendo assim, parafraseando o teorema anterior, uma função f é recursiva primitiva

se, e somente se, existe uma derivação recursiva primitiva para ela. De modo análogo,

falaremos também em derivações recursivas e derivações parciais recursivas.

Listaremos, a seguir, uma série de funções recursivas primitivas que serão essenciais

para a obtenção de vários resultados apresentados mais adiante.

Teorema 1.13 As seguintes funções são recursivas primitivas:

(1) adição: ad(x, y) = x + y

ad(x, 0) = x

ad(x, S(y)) = S(ad(x, y))

(2) multiplicação: ml(x, y) = x y

ml(x, 0) = 0

ml(x, S(y)) = ad(x, ml(x, y))

(3) exponenciação: ep(x, y) = x
y

ep(x, 0) = 1

ep(x, S(y)) = ml(x, ep(x, y))

17

(4) fatorial: ft(x) = x!

ft(0) = 1

ft(S(y)) = ml(S(y), ft(y))

(5) predecessor: pd(x) {

pd(0) = 0

pd(S(y)) = y

(6) subtração própria: sp(x, y) {

sp(x, 0) = x

sp(x, S(y)) = pd(sp(x, y))

(7) mínimo de um par ordenado: mn(x, y) {

mn(x, y) = sp(x, sp(x, y))

(8) máximo de um par ordenado: mx(x, y) {

mx(x, y) = ad(y, sp(x, y))

(9) mínimo de uma sequência finita: min() = : é o menor número da sequência

min() = mn(... mn(mn()))

(10) máximo de uma sequência finita: max() = : é o maior número da

sequência

max() = mx(... mx(mx()))

(11) diferença absoluta: db(x, y) {

db(x, y) = sp(mx(x, y), mn(x, y))

(12) sinal: sg(x) {

sg(0) = 0

sg(S(y)) = 1

18

(13) contrassinal: (x) {

 (0) = 1

 (S(y)) = 0

(14) resto da divisão de y por x: rt(x, y) {

 (

)

rt(x, 0) = 0

rt(x, S(y)) = ml(S(rt(x, y)), sg(db(x, S(rt(x, y)))))

(15) quociente da divisão de y por x: qt(x, y) {

 (

)

qt(x, 0) = 0

qt(x, S(y)) = ad(qt(x, y), (db(x,S(rt(x, y)))))

Prova:

Considerando o exposto, percebe-se que a prova deste teorema deverá consistir na

apresentação de pelo menos uma derivação recursiva primitiva para cada uma das funções

acima listadas. Tais derivações devem ser construídas de tal modo que os valores da última

função para um argumento qualquer seja igual aos valores da função que se deseja provar ser

recursiva primitiva para o mesmo argumento. Como ilustração, vejamos, a seguir, duas

derivações recursivas primitivas
1
:

(3) Exponenciação

1.
 (x) = 1 Função inicial (FI)

2.
 (x) = 0 FI

3.
 (x, y, z) = x FI

4.
 (x, y, z) = z FI

5. (x, y, z) = ad(
 (x, y, z),

 (x, y, z)) Função recursiva primitiva (FRP)

6. ml(x, 0) =
 (x)

 ml(x, S(y)) = (x, y, ml(x, y))

2, 5/Recursão primitiva (RP)

7. (x, y, z) = ml(
 (x, y, z),

 (x, y, z)) 6, 3, 4/Composição (C)

8. (x, 0) =
 (x)

 (x, S(y)) = (x, y, (x, y))

1, 7/RP

1
 Todas as derivações recursivas primitivas que constituem a prova deste teorema podem ser encontradas na obra

de DIAS e WEBER. Teoria da Recursão, 1. ed. São Paulo: Editora UNESP, 2010. p. 31-35.

19

Ora, (x, y) = ep(x, y). Portanto, ep é recursiva primitiva.

(11) Diferença absoluta

1.
 (x) = x FI

2. (x, y, z) = pd(
 (x, y, z)) FRP

3. sp(x, 0) =
 (x)

 sp(x, S(y)) = (x, y, sp(x, y))

1, 8/RP

4. mn(x, y) = sp(
 (x, y), sp(x, y)) FRP

5. mx(x, y) = ad(
 (x, y), sp(x, y)) FRP

6. (x, y) = sp(mx(x, y), mn(x, y)) 2, 4, 3/C

Ora, (x, y) = db(x, y). Portanto, db é recursiva primitiva.

Note-se que uma derivação recursiva primitiva para uma função n-ária f constitui, em

termos intuitivos, um algoritmo que computa tal função para qualquer n-upla ordenada. Com

efeito, para calcular o valor de f para (), basta instanciar as variáveis presentes na

última linha da derivação, substituindo-as, uniformemente, por e, em seguida,

calcular o valor das funções à direita da igualdade, que foram definidas em linhas anteriores,

sempre partindo das funções mais internas para as mais externas.

Convenção notacional

 Com o objetivo de facilitar a leitura de algumas funções que serão apresentadas

mais adiante, escreveremos, em alguns momentos, x y, |x – y| e x y para

expressar, respectivamente, sp(x, y), db(x, y) e rt(x, y).

1.1.1 Somas e produtos limitados

Nesta subseção, apresentaremos duas operações funcionais - a soma e o produto

limitados. Logo em seguida, provaremos que a aplicação de tais operações a funções

recursivas primitivas conduz também a funções recursivas primitivas.

Definição 1.14 A soma e o produto limitados são definidos da seguinte maneira:

(1) Soma (para n ≥ 0):

∑ () {

 () ()

(2) Produto (para n ≥ 0):

∏ () {

 () ()

20

Teorema 1.15 Se f(y) é recursiva primitiva, então as seguintes funções são

recursivas primitivas:

(1) ∑ ()

(2) ∏ ()

Prova
2
:

Considere a seguinte função recursiva primitiva:

 () = ()

 (S(z)) = (z, (z)),

onde () =
 (

 ()) e (y, w) = ad(f(
 (y, w), ...,

 (y, w)),

 (, y, w)).

Expresso de outra forma, (S(z)) = (z, (z-1, ...,

 (, z-z, (z-z)))). Ora, (z-z) = 0 e, tal como foi definida, a

função somará (z-z) a f(z-z) e, assim, obteremos (1)

que, por sua vez, será somado a f(1), resultando em (2). Este processo

se repetirá até que some (z) a f(z). O valor desta última soma será

 (S(z)). Esquematicamente, nós temos:

 (z-z) = 0

 (z-z) + f(z-z) = (1)

 (1) + f(1) = (2)

 (, z) + f(z) = (S(z))

Definida nestes termos, () ∑ () . Portanto,

∑ () é recursiva primitiva.

1.1.2 Relações numéricas

Além das funções numéricas, podemos também definir relações numéricas como

recursivas primitivas. Uma relação numérica n-ária (n ≥ 0) é qualquer subconjunto de .

2
Por questões práticas, provaremos apenas que ∑ () é recursiva primitiva. Analogamente, prova-

se o mesmo acerca da função ∏ () .

21

Sendo assim, {() } é uma relação ternária, enquanto que {(1, 3, 5, 7)} e

{() } são relações quaternárias.

Definição 1.16 Seja R uma relação n-ária, a função característica de R é a seguinte:

 () {
 ()

 ()

Em particular, se R é uma relação unária, R e sua função característica é a seguinte:

 () {

Definição 1.17 Uma relação n-ária R é recursiva primitiva se, e somente se, () é

recursiva primitiva.

Teorema 1.18 As seguintes relações são recursivas primitivas: x é igual a y, x é menor que y,

x divide y, x é metade de y, x é ímpar, x é primo.

Prova:

(1) x é igual a y se, e somente se, |x – y| = 0.

Então, () = (|x – y|)

(2) x é menor que y se, e somente se, x y = 0 e |x – y| 0.

Então, () = (x y) sg(|x – y|)

(3) x divide y se, e somente se, x y = 0.

Então, () = (x y)

(4) x é metade de y se, e somente se, x y = 0 e |qt(x, y) – 2| = 0.

Então, () = (x y) (|qt(x, y) –
 (x, y)|)

(5) x é ímpar se, e somente se, 2 x 0.

Então, () = sg(
 (x)

 (x))

(6) x é primo se, e somente se, |d(x) – 2| = 0, sendo d(x) o número de divisores de x

determinado pela função parcial recursiva ∑ () .

Então, () = (|d(x) –
 (x)|)

Com o auxílio das operações de complemento, união e interseção, dos conectivos

proposicionais, dos quantificadores limitados e da operação de minimização limitada,

podemos obter novas relações recursivas primitivas a partir de outras já disponíveis. Por

questões práticas, definiremos, em momento oportuno, apenas os quantificadores limitados e

a operação de minimização limitada.

22

Teorema 1.19 Se R() e S() são relações recursivas primitivas, então as

seguintes relações são recursivas primitivas:

(1) ()

(2) R() S()

(3) R() S()

Prova:

Considerando a definição das operações de complemento, união e interseção,

apresentamos, a seguir, as funções características de , R S e R S.

(1)

 () {
 ()

 ()

 {

 ()

 ()

 {

 ()

 ()

(2)

 () {

 ()

 ()

 {

 () ()

 () ()

 {

 () ()

 () ()

 (3)

 () {

 ()

 ()

 {

 () ()

 () ()

 {

 () ()

 () ()

 Em outros termos, as funções acima apresentadas podem ser definidas do seguinte

modo:

 () (())

23

 () ((() ()))

 () (() ())

 Portanto, conforme a definição 1.17, as relações n-árias, R S e R S são

recursivas primitivas.

Teorema 1.20 Se R() e S() são relações recursivas primitivas, então as

seguintes relações são recursivas primitivas:

(1) ~R()

(2) R() S()

(3) R() S()

(4) R() → S()

(5) R() ↔ S()

Prova:

 Imediata pela definição dos conectivos proposicionais.

Definição 1.21 Os quantificadores limitados são obtidos, por definição, a partir dos

quantificadores existencial e universal, conforme vemos abaixo:

(1) Quantificador existencial (para n ≥ 0):

 (, ..., , y) (0 ≤ y z (, ..., , y))

(2) Quantificador universal (para n ≥ 0):

 (, ..., , y) (0 ≤ y z (, ..., , y))

Teorema 1.22 Se R() é uma relação recursiva primitiva, então as relações abaixo

são recursivas primitivas:

(1) (, ..., , y)

(2) (, ..., , y)

Prova
3
:

Considere () = (, ..., , y).

3
 Exibiremos unicamente a prova de que (, ..., , y) é recursiva primitiva. De modo semelhante,

demonstra-se o mesmo acerca da relação (, ..., , y), cuja função caraterística é ∏ () .

24

Segundo a definição 1.21, (, ..., , y) = (, ..., , 0) ... (, ..., , z-1).

Consequentemente, () = (, ..., , 0) ... (, ..., , z-1).

Neste caso,

 () {

 ()

 ()

 {

 ()

 ()

 De outro modo, () = sg(∑ ()) . Portanto, tendo em vista

a nossa consideração inicial, (, ..., , y) é recursiva primitiva.

Definição 1.23 A operação de minimização limitada aplicada a uma relação n+1-ária R é

estabelecida do seguinte modo:

 (, ..., , y) = {
 () ()

 ()

Intuitivamente, a minimização limitada é uma operação de pesquisa. Tendo em vista

os limites impostos a sua aplicação, a pesquisa que ela faz, mais cedo ou mais tarde, chega ao

fim, tendo sempre como valor o menor y tal que () , caso ele, de fato, exista,

ou 0, caso contrário.

Teorema 1.24 Se () é uma relação recursiva primitiva, então a função

 (, ..., , y) é recursiva primitiva.

Prova:

Se não existe um tal que (), sg(∑ ()) = 0. Caso

contrário, sg(∑ ()) = 1, e o menor será o valor determinado pela

função ∑ ∏ (()) que a cada () = 0 soma 1 até

alcançar a primeira n+1-upla () tal que () = 1. Sendo assim, a

função (, ..., , y) é claramente recursiva primitiva, pois é obtida por composição,

como vemos abaixo:

 (, ..., , y) = ml(sg(∑ ()) , ∑ ∏ (()))

25

Como ilustração, vamos calcular (, y). Sabemos, de antemão, que um tal y

existe. Portanto, até o momento, (, y) = ml(1, ∑ ∏ (())). Nosso

próximo passo será identificá-lo calculando o somatório limitado do seguinte modo:

∑ ∏ (()) = ∏ (()) +

 ∏ (()) +

 ∏ (())

De outro modo:

∑ ∏ (()) = (()) +

 (()) (()) +

 (()) (())

 (())

Portanto, como queríamos, (, y) = ml(1, 2) = 2. Com efeito, sabemos que 2 é

o menor e único número do qual 1 é metade.

Exibiremos, a seguir, algumas funções recursivas primitivas determinadas a partir das

operações de minimização, soma e produto limitados.

(1) Para , a função p(x) determina o –ésimo número primo em ordem crescente. Ela

será definida levando-se em consideração o teorema de Euclides sobre a infinitude dos primos

segundo o qual se p é primo, então existe um primo y tal que Isto posto,

considerando A = {(x, y): () ()+, definimos a função p(x) como segue:

p(0) = 2

p(S(x)) = () ()

(2) Seja

 a decomposição de x em fatores primos. A função binária ()

determina o expoente do i-ésimo fator primo dessa decomposição, isto é, () = . Por

convenção, () = 0, para todo i. Note que na decomposição de x, o expoente de é o

(menor) número tal que

divide x e

 não divide x. Sendo assim, considerando a

relação B = {(x, i, y):

 (

)+ definimos a função () da seguinte maneira:

 () = ()

26

(3) Para , a função lh(x) determina o número de expoentes diferentes de zero na

decomposição de x em fatores primos ou, em outros termos, o número de primos distintos que

dividem x. Por convenção, lh(0) = 0. Considerando o exposto, é fácil notar que o valor de

lh(x) será obtido a partir da relação C = {(x, y): () }, como vemos abaixo:

 () ∑ ()

(4) Seja =
 e seja =

 , a função determina o valor

da sequência obtida pela justaposição de e como vemos a seguir:

 =

Ou seja:

 ∏ ()
()

 ()

(5) Para a função () , estabelece o –ésimo quadrado perfeito em ordem

crescente ao passo que função [√] determina o maior número natural √ Considerando

E = *() () +, definimos ,√ - da seguinte maneira:

[√] (())

(6) A função () determina o maior divisor comum de Considerando

F = *() () ()+, definimos () abaixo:

 () () ()

Concluindo esta subseção, queremos esclarecer que escolhemos destacar o conjunto

das funções recursivas primitivas, pois acreditou-se, durante algum tempo, que ele seria a

versão formal para o conjunto das funções algorítmicas, tendo em vista que, como falamos,

anteriormente, muitas funções reconhecidamente algorítmicas foram provadas ser recursivas

primitivas. No entanto, o matemático alemão Wilhelm Ackermann apresentou um

contraexemplo. Ele construiu uma função algorítmica que não era recursiva primitiva. A

partir daí, surgiu, então, a necessidade de se ampliar o conjunto das funções recursivas

primitivas, a fim de se obter um conjunto mais abrangente de funções que constituísse uma

versão formal para a noção intuitiva de função algorítmica. Como resultado desta ampliação,

definiu-se o conjunto das funções recursivas. Para compreender também as funções

27

estritamente parciais algorítmicas, o conjunto das funções recursivas foi mais uma vez

ampliado, o que resultou no conjunto das funções parciais recursivas.

1.1.3 Derivações parciais recursivas

Na subseção anterior, apresentamos resultados envolvendo unicamente funções

recursivas primitivas que, como vimos, são alcançadas a partir das funções iniciais e das

operações de recursão primitiva e composição. Falta-nos ainda apresentar, na prática, o uso da

operação de minimização ilimitada, a partir da qual obtemos funções (parciais) recursivas.

Com tal intuito, exibiremos o próximo teorema, cuja prova exigirá a construção de derivações

(parciais) recursivas para cada uma das funções listadas.

Teorema 1.25 As seguintes funções são parciais recursivas:

(1) zero-zero: (x) {

 (x) = ((y) = 0)

(2) função vazia: () = , para qualquer

 () = ((S(
 ())) = 0)

Prova:

(1) Zero-zero

1.
 (x, y) = y FI

2. (x, y, z) = S(
 (x, y, z)) FRP

3. ad(x, 0) =
 (x)

 ad(x, S(y)) = (x, y, ad(x, y))

FRP

4. sp(x, 0) =
 (x)

 sp(x, S(y)) = g8(x, y, sp(x, y))

FRP

5. mx(x, y) = ad(
 (x, y), sp(x, y)) 3, 1, 4/C

6. (x) = ((y) = 0) 5/Minimização ilimitada (MI)

Ora, (x) = zz(x). Portanto, zz é parcial recursiva.

(2) Função vazia

1.S(x) = x‟ FI

2.
 () = FI

28

3. () = S(
 ()) 1,2/C

4. () = (() = 0) 3/MI

Ora, () = (). Portanto, é parcial recursiva.

Similarmente ao que vimos na subseção precedente, uma derivação (parcial) recursiva

para uma função f é um algoritmo que computa tal função. Sabendo disso, vale ressaltar que

embora as derivações recursivas primitivas e as derivações (parciais) recursivas sejam

exemplos de algoritmos, apenas o conjunto das derivações recursivas primitivas e o conjunto

das derivações parciais recursivas são decidíveis, pois dada uma sequência qualquer de

funções, é possível reconhecer mecanicamente se cada função da sequência é uma função

inicial ou se foi obtida de funções anteriores, a partir das operações de composição, recursão

primitiva ou minimização ilimitada. No entanto, o mesmo não pode ser afirmado sobre o

conjunto das derivações recursivas. Com efeito, a restrição imposta à aplicação da

minimização ilimitada às funções regulares nos impede de identificarmos mecanicamente se

uma dada sequência de funções é ou não uma derivação recursiva, já que para decidir se uma

função f() é regular é necessário calcular, para cada (), os valores

f(), f(), f() etc., admitindo a real possibilidade deste cálculo

nunca terminar, pois pode ser que para esta n-upla não haja um y tal que f() = 0.

Portanto, em resumo, dada uma sequência qualquer de funções nunca saberemos, em geral, se

ela é de fato uma derivação recursiva, por não sabermos, previamente, se uma de suas funções

a qual foi aplicada a minimização ilimitada é regular.

Além das funções (parciais) recursivas, podemos também estabelecer relações

(parciais) recursivas. Estas são definidas de modo análogo às relações recursivas primitivas.

Por fim, posto que toda função recursiva primitiva é recursiva e toda função recursiva é

parcial recursiva, convém explicitar, de antemão, que os teoremas vistos nas subseções 1.1.1 e

1.1.2 se aplicam, sem maiores dificuldades, às funções e às relações (parciais) recursivas.

29

2 TURING-COMPUTABILIDADE

Definido o conjunto das funções parciais recursivas, definiremos, neste capítulo, o

conjunto das funções parcialmente Turing-computáveis, a fim de estabelecermos a igualdade

entre eles, que é, como já dissemos, um dos nossos objetivos. Para isso, apresentaremos,

previamente, as máquinas e os programas de Turing. Estes serão identificados como

conjuntos de quíntuplas, o que nos possibilitará reconstruirmos, de modo inédito, a prova

segundo a qual toda função parcial recursiva é parcialmente Turing-computável. A recíproca

também será provada. Ao final, apresentaremos alguns argumentos a favor da Tese de

Church-Turing que identifica as funções parciais algorítmicas às funções parcialmente

Turing-computáveis.

2.1 Máquinas e programas de Turing

Com o objetivo de formular uma definição precisa de computabilidade efetiva, Turing

definiu certos objetos teóricos que ficaram conhecidos como máquinas de Turing, a partir dos

quais define-se de maneira exata o conjunto das funções parcialmente Turing-computáveis.

Intuitivamente, entende-se por uma máquina de Turing M um mecanismo imaginário

constituído por um dispositivo chamado reading head e por uma fita infinita à esquerda e à

direita, secionada em quadrados, tal que:

(1) em cada quadrado está escrito apenas um símbolo da fita do conjunto S = { , , ,

...}.

(2) o dispositivo sempre está em um estado interno do conjunto Q = { , , , ...},

sempre observa um quadrado da fita por vez e executa um dos seguintes movimentos: move-

se para o quadrado imediatamente à direita daquele que está sendo observado (movimento que

simbolizaremos por „R‟, de right) ou move-se para o quadrado imediatamente à esquerda

daquele que está sendo observado (movimento que simbolizaremos por „L‟, de left).

(3) as ações do dispositivo são determinadas por um conjunto finito não-vazio P Q X S X S

X {R, L} X Q que chamaremos de programa de Turing. Se (, , , x,) P, então o

dispositivo, no estado interno e observando o quadrado no qual está escrito , substitui

por , move-se para o quadrado imediatamente à direita, quando x = R (ou à esquerda,

quando x = L) e assume o estado interno .

Definição 2.1 A linguagem L de uma máquina de Turing é o conjunto de símbolos S Q

{R, L}.

30

Definição 2.2 Uma expressão de L é uma sequência finita de símbolos de L.

Definição 2.3 Duas quíntuplas do conjunto Q X S X S X {R, L} X Q são inconsistentes se, e

somente se, são iguais quanto aos dois primeiros símbolos e diferentes quanto a, pelo menos,

um dos símbolos restantes. De outro modo, são consistentes.

Definição 2.4 Um programa de Turing P é um conjunto finito não-vazio de quíntuplas

consistentes de Q X S X S X {R, L} X Q.

A restrição presente na definição acima é chamada de “requisito de consistência”. Ela

evita comandos contraditórios, diante dos quais a máquina interromperia a sua computação.

Observando tal requisito, as quíntuplas (, , , L,) e (, , , L,), por exemplo,

não são admitidas em um programa de Turing.

Normalmente, a maioria dos manuais define um programa de Turing como um

conjunto finito de quádruplas consistentes. Nós, no entanto, optamos por defini-lo como um

conjunto finito de quíntuplas consistentes. Desta forma, obteremos, em geral, programas de

menor cardinalidade, tendo em vista que, muitas vezes, o comando dado por duas quádruplas

pode ser determinado por uma única quíntupla. As quádruplas (, , ,) e (, , R,),

por exemplo, podem ser substituídas, sem maiores dificuldades, pela quíntupla (, , , R,

). Este modo alternativo de definir um programa de Turing nos permitirá provarmos, mais

adiante, o enunciado segundo o qual toda função parcial recursiva é parcialmente Turing-

computável de modo ligeiramente diverso do habitual, pois conseguiremos prová-lo

utilizando programas menores, oportunizando, consequentemente, computações com um

menor número de passos.

Definição 2.5 Uma configuração instantânea de M é uma expressão de L do tipo a b, tal

que a e b são, respectivamente, uma sequência finita (possivelmente vazia) e uma sequência

finita (não vazia), de símbolos da fita.

Sendo assim, as expressões e constituem, por exemplo configurações

instantâneas de M; no entanto, o mesmo não pode ser dito das expressões e .

Observação

 Dada uma configuração instantânea c de M, assumimos os seguintes enunciados: (1)

nos quadrados da fita não referidos em c está escrito ; (2) o símbolo da fita

31

observado pelo dispositivo é aquele que segue imediatamente o símbolo de estado

interno.

Definição 2.6 Dados um programa de Turing P e as configurações instantâneas c e c‟ de M, c

acarreta c‟ via P (em símbolos: c

 c‟) se, e somente se, uma das seguintes condições é

satisfeita, sendo e sequências finitas (possivelmente vazias) de símbolos da fita:

(1) (, , , R,) P, c = e c‟ =

(2) (, , , R,) P, c = e c‟ =

(3) (, , , L,) P, c = e c‟ =

(4) (, , , L,) P, c = e c‟ =

Em outras palavras, a primeira condição é a seguinte: sendo (, , , R,) uma

quíntupla de P e sendo c = , isto é, estando o dispositivo no estado interno e

observando o quadrado no qual está escrito , ele substitui por , movimenta-se ao

quadrado imediatamente à direita e assume o estado interno , resultando em c‟. As demais

condições são análogas a esta que acabamos de explicitar.

Definição 2.7 Uma configuração instantânea c é terminal com respeito a um programa de

Turing P (em símbolos:
) se, e somente se, c = e P não contém quíntuplas da forma

(, , , x,).

Convenção notacional

 Assim como fizemos com as derivações parciais recursivas, utilizaremos os programas

de Turing para realizarmos computações numéricas. Para tanto, são necessárias

algumas convenções:

(1) No lugar de , escreveremos B para indicar um quadrado vazio durante a

computação; no lugar de , escreveremos | e, no lugar dos demais (desde que

haja a necessidade de usá-los), escreveremos alguns marcadores, que serão

apresentados mais adiante.

(2) Para representar um número natural x que ocorre no input, escreveremos | em x +

1 quadrados consecutivos. O output y será representado por y |‟s escritos em

quadrados não necessariamente consecutivos da configuração instantânea terminal.

32

Representaremos x + 1 |‟s por ou . Em geral, para representar uma n-upla

(), escreveremos B...B .

 Eliminaremos os pares de parênteses e as vírgulas presentes nas quíntuplas.

Escreveremos x , em vez de (, , , x,).

Definição 2.8 Uma computação segundo um programa de Turing P com input () é

uma sequência finita de configurações instantâneas de M, (, , ...,), tal que a

configuração instantânea inicial = B...B , =
 e

 , para cada 1 ≤ i < k.

Como ilustração, considere o programa de Turing P = { , } e a

seguinte sequência de configurações instantâneas que constitui uma computação segundo o

programa P com o input (2,0):

 :

 :

Definição 2.9 Dados um programa de Turing P e as configurações instantâneas c e c‟ de M, c‟

é resultante de c com respeito a P (em símbolos: c‟ = (c)) se e somente se existe uma

computação (, , ...,) segundo P com input (), tal que = c e = c‟.

Definição 2.10 Seja P um programa de Turing, a ele está associado, para cada n ≥ 1, uma

única função n-ária
 () tal que dado uma n-upla () duas situações

alternativas podem acontecer:

(1) há uma computação (, , ...,) segundo P com input (); neste caso,

 () = [], onde [] é o número de |‟s que ocorrem na descrição instantânea

terminal .

(2) não há uma computação (, , ...,) segundo P com input (); neste caso,

 () e, consequentemente, (B...B) estão indefinidos.

Definição 2.11 Uma função numérica n-ária h() é parcialmente Turing-computável

se, e somente se, existe um programa de Turing P tal que h() =
 (). Em

particular, se h() é uma função total, dizemos que h() é Turing-

computável.

33

Em outras palavras, uma função é (parcialmente) Turing-computável se e somente se

existe um programa de Turing para computá-la.

2.2 Equivalência entre as funções parciais recursivas e as funções parcialmente Turing-

computáveis

Reservaremos esta seção para reconstruirmos a prova segundo a qual o conjunto das

funções parciais recursivas e o conjunto das funções parcialmente Turing-computáveis,

embora sejam conceitualmente distintos, possuem as mesmas funções numéricas como seus

elementos.

2.2.1 Toda função parcial recursiva é parcialmente Turing-computável

Obviamente, para provarmos que as funções parciais recursivas são parcialmente

Turing-computáveis devemos provar os seguintes enunciados:

(1) as funções iniciais são parcialmente Turing-computáveis;

(2) o conjunto das funções parcialmente Turing-computáveis é fechado com respeito às

operações de composição, recursão primitiva e minimização ilimitada (ou, em outras palavras,

tais operações levam de funções parcialmente Turing-computáveis a funções parcialmente

Turing-computáveis).

A seguir, expomos a prova do primeiro enunciado, apresentando os programas para

computar as funções iniciais.

(1.1) Uma máquina de Turing computa a função sucessor S() de acordo com o programa

= { }. Ou seja,

 () = S(). Sabendo disso, vejamos a computação de

 ():

 :

Portanto,

 () ,
()] = , - = 4.

(1.2) Uma máquina de Turing computa as diversas funções-constante
 () de acordo

com o programa
 abaixo:

apaga todos os |‟s

34

para cada i, tal que 0 i k

escreve um | e vai para o quadrado imediatamente à direita

Assim sendo,

 () =
 (). Isto posto, vejamos, como exemplo, a

computação de

 () :

 :

 :

 :

 :

 :

 :

 :

 :

 :

Portanto,

 () ,

 ()] = , - = 3.

(1.3) Uma máquina de Turing computa as diversas funções-projeção
 () de acordo

com o programa
 abaixo:

para cada k, tal que 0 k n-1 e k i-1

apaga um bloco de |‟s

apaga o primeiro | do i-ésimo bloco

Consequentemente,

 () =
 (). Sabendo disso, vejamos a

computação de

 () :

 :

35

 :

 :

 :

 :

 :

 :

 :

 :

 :

Portanto,

 () ,

 ()] = , - = 1.

Com os programas que acabamos de expor, fica provado que as funções iniciais são

parcialmente Turing-computáveis. Nossa próxima atividade será provar, a partir de uma série

de lemas apresentados mais adiante, que as operações básicas, quando aplicadas a funções

parcialmente Turing-computáveis, geram novas funções parcialmente Turing-computáveis.

Convenção notacional

 Dado um programa de Turing P qualquer, () designará o maior número i tal que

é um estado interno de P; (), por sua vez, designará o programa de Turing obtido a

partir da substituição de todas as ocorrências de em P por .

Definição 2.12 Um programa de Turing P é n-regular () se, e somente se, as seguintes

condições são satisfeitas:

(1) sempre que (B...B) estiver definido, (B...B) = () B...B ,

para convenientes sendo s ;

(2) nenhuma quíntupla de P possui () como os dois primeiros símbolos.

Dentre os vários lemas que provaremos a partir de agora, o primeiro deles permitirá a

máquina realizar uma computação e, ao final, reescrever o output de tal modo que ele esteja

pronto para iniciar uma nova computação.

Lema 2.13 Para cada programa de Turing P, existe um programa de Turing n-regular tal

que (B...B) = ()
 ()

36

Prova:

O programa de Turing , obtido a partir de P, será construído de tal modo que a

computação (principal) determinada por () se desenvolverá entre dois marcadores: ()

e (). Caso ela exija mais espaço, os marcadores serão afastados e, com isso, novos

espaços serão disponibilizados. Concluída a computação, os |‟s presentes na configuração

instantânea terminal serão reunidos em um único bloco, os marcadores e serão,

respectivamente, apagados e um | será adicionado ao único bloco existente, no quadrado, até

então, ocupado por . A esta altura, a máquina terá alcançado o estado interno (),

observará o | mais à esquerda do bloco, estando, deste modo, pronta para iniciar uma nova

computação.

Seja o seguinte programa de Turing:

imprime à esquerda

move-se à direita até encontrar um duplo vazio

imprime à direita; move-se à esquerda até encontrar ; em seguida, move-

se um quadrado à direita

Então,
(B...B) = B...B . Impressos os marcadores nas

extremidades da n-upla, a máquina encontra-se pronta para iniciar a computação principal.

Seja o programa de Turing que contém todas as quíntuplas de () e, além disso,

contém, para cada de (), as quíntuplas apresentadas abaixo, nas quais (()).

alcançando , apaga ; move-se um quadrado à esquerda, no qual imprime ;

vai um quadrado à direita para dar continuidade à computação principal.

alcançando , apaga ; move-se um quadrado à direita, no qual imprime ;

vai um quadrado à esquerda para dar continuidade à computação principal.

37

Durante a computação de acordo com (), os marcadores podem ser alcançados. Se

isto ocorrer, as quíntuplas acima apresentadas disponibilizarão novos espaços vazios à

esquerda e à direita a fim de que a computação em desenvolvimento seja concluída, o que

ocorrerá se, e somente se, o (B...B) estiver definido. Sendo este o caso, o

(B...B) = (()) , onde a e b são, respectivamente, uma sequência

finita (possivelmente vazia) e uma sequência finita (não vazia), de símbolos da fita e

[(())] = , (B...B)]. Caso contrário, o
(B...B) também

estará indefinido.

Com , finalizamos a computação principal. O próximo passo na construção de

será apresentar um programa que reúna, em um único bloco, à direita de , todos os |‟s até

então obtidos e, em seguida, substituía por |. Antes, porém, a fim de evitar quíntuplas

inconsistentes, definiremos o programa do qual a única quíntupla utilizada ordenará que a

máquina assuma um estado interno inédito no programa e mova-se um quadrado à esquerda.

Considerando u = 5k + 1, definimos como o programa de Turing que contém, para

cada de , todas as quíntuplas da forma (()) , exceto aquelas cujos dois

primeiros símbolos também iniciam alguma quíntupla de . Sendo assim,

((())) = {

Seja o seguinte programa de Turing no qual s é qualquer símbolo da fita presente

em P diferente de | e de B.

move-se à esquerda até alcançar e vai um quadrado à direita

alcançando s, apaga s e vai um quadrado à direita; alcançando |, apaga | e

move-se um quadrado à esquerda; alcançando , apaga , preparando-se

para finalizar a computação

38

move-se à esquerda até alcançar ou | e move-se um quadrado à direita

alcançando , substitui B por | e move-se um quadrado à direita

move-se à esquerda: alcançando , substitui por |, move-se um quadrado à

direita e, em seguida, um quadrado à esquerda

De acordo com independentemente do símbolo da fita que está sendo observado, a

máquina vai à esquerda até alcançar ; quando isto acontece, ela procura | à direita; ao

encontrá-lo, ela apaga-o e dirige-se novamente à esquerda para imprimi-lo à direita de ; mais

uma vez, a máquina vai à direita em busca de um outro |, quando o encontra, ela o apaga e

dirige-se à esquerda para imprimi-lo à direita do primeiro |; este processo se repete até que

todos os |‟s presentes no
((())) estejam reunidos em um único bloco

imediatamente à direita de ; quando a máquina encontra , ela apaga-o, dirige-se à esquerda

até alcançar , o substitui por |, vai para o quadrado da direita e retorna ao quadrado da

esquerda, assumindo o estado interno . Ao final de todas estas ações, a máquina

encontra-se pronta para iniciar uma nova computação.

De posse dos quatro programas que acabamos de expor, considere, finalmente, =

 . Sendo assim, para qualquer que seja o programa de Turing P, podemos

construir um programa tal que se houver, de acordo com P, uma computação para a n-upla

(), haverá, de acordo com , uma computação para a mesma n-upla, sendo

 (B...B) = , ()- = ()
 () . Portanto,

é n-regular.

Lema 2.14 Para cada programa de Turing n-regular P e para cada , existe um programa

de Turing (t+n)-regular tal que:

(1) se (B...B) = () B...B , então (B...B B...B) =

 () B...B B B...B .

39

(2) se (B...B) estiver indefinido, então (B...B B...B)

também estará indefinido.

Prova:

O programa , obtido a partir de P, oferecerá uma estratégia que, dado o input

 B...B B...B , permite a máquina omitir a t-upla B...B , para desenvolver a

computação principal (segundo ()) somente sobre a n-upla B...B , reescrevendo ao

término de tal computação a t-upla inicialmente omitida. A estratégia consiste em substituir

todos os |‟s presentes em B...B por , exceto o mais à esquerda que será substituído por

 e, em seguida, imprimir no lugar do B que separa e . De modo análogo ao lema 2.13,

se houver a necessidade de mais espaços para que a computação principal seja desenvolvida,

há quíntuplas em que disponibilizam novos espaços afastando os blocos de ‟s para a

esquerda. Ao fim de tal computação, os marcadores e ‟s são substituídos, fazendo com que

 B...B reapareça tal como na configuração instantânea inicial.

Seja o seguinte programa de Turing no qual e são símbolos da fita não

pertencentes ao programa P:

substitui o | mais à esquerda por

para cada i, tal que 0 i

substitui os |‟s presentes em ... por

substitui os |‟s presentes em por ; move-se um quadrado à direita; em

seguida, substitui o B (localizado entre e) por e vai um quadrado à

direita

Então,
(B...B B...B) = B...B , tal que

os índices sobrescritos determinam o número de ocorrências de . Omitida a t-upla B...B ,

a máquina está preparada para iniciar a computação principal.

Seja o programa de Turing que contém todas as quíntuplas de () e, além disso,

contém, para cada de (), as quíntuplas apresentadas abaixo, nas quais (()) e

s é qualquer símbolo da fita presente em P, exceto | e B.

40

interrompe a computação principal; substitui o mais à direita por |;

move-se à esquerda até alcançar ; apaga e dirige-se um quadrado à

esquerda que estará vazio

 imprime no quadrado vazio e move-se um quadrado à direita

move-se à direita para observar o símbolo escrito no quadrado seguinte

observando , volta um quadrado no qual copiará ; observando B, volta

um quadrado no qual copiará B; observando |, apaga | e move-se um

quadrado à direita

copia

copia B

dirige-se um quadrado à esquerda (que estará vazio) para retomar a

computação principal

Sob os comandos de , a máquina de Turing realiza a computação principal,

deslocando todos os ‟s um quadrado à esquerda todas as vezes que um mais à direita é

alcançado. Sendo assim, sempre que (B...B) estiver definido,

(B...B) = B...B .

Definimos como o programa de Turing composto pelas seguintes quíntuplas, sendo

 ()

41

dirige-se um quadrado à esquerda e apaga o mais à direita

desloca-se para a esquerda, substituindo por |; ao encontrar , imprime

no seu lugar |

dirige-se para o quadrado imediatamente à esquerda

De acordo com , a t-upla B...B reaparece ao término da computação principal

por meio da substituição de e de todos os ‟s (com exceção do último) por |. No quadrado

ocupado pelo último , primeiro símbolo a ser substituído sob os comandos de , é escrito B

para separar

Por fim, seja = . Então, para qualquer que seja o programa de Turing

n-regular P e para qualquer t 0, podemos construir um programa tal que se houver, de

acordo com P, uma computação para a n-upla (,...,), haverá, de acordo com , uma

computação para a (t+n)-upla (,..., ,...,), sendo (B...B B...B) =

 B...B B...B = () B...B B...B . Portanto, é (t+n)-regular.

Lema 2.15 Para cada e , existe um programa de Turing (t+n)-regular tal que

(B...B B...B) = () B...B B...B B...B .

Prova:

Podemos concluir a partir do enunciado acima que o programa apenas copia a n-

upla B...B à esquerda da t-upla B...B . Em linhas gerais, a máquina comandada por

 e alimentada pelo input B...B B...B escreve dois marcadores nas extremidades

de B...B obtendo como resultado de tal escrita a seguinte expressão:

 B...B B...B . Na sequência, ela dirige-se à direita, observa o último símbolo da

n-upla B...B e retorna à esquerda para copiá-lo no quadrado onde está escrito .

Novamente, ela dirige-se à direita, observa, desta vez, o penúltimo símbolo da n-upla

 B...B e retorna à esquerda para copiá-lo à esquerda do primeiro símbolo anteriormente

42

copiado; este processo se repete até que todos os símbolos de B...B sejam copiados à

esquerda de B...B . Neste cenário, consiste das seguintes quíntuplas:

escreve o marcador dois quadrados à esquerda e move-se um quadrado à

direita

para cada i, tal que 2 i

move-se sobre t bloco(s) de |‟s, escreve entre e e, em seguida,

dirige-se um quadrado à direita

procura um duplo vazio à direita; ao encontrá-lo, move-se um quadrado à

esquerda

observando |, substitui | por , preparando-se para copiar | à esquerda;

observando B, substitui B por , preparando-se para copiar B à esquerda;

observando , substitui por B, preparando-se para terminar a

computação

dirige-se à esquerda: alcançando substitui por e vai um quadrado à

direita; alcançando copia, em seu lugar, |; alcançando copia, em seu

lugar, B; nos dois últimos casos, vai um quadrado à esquerda

imprime no quadrado mais à esquerda, marcando o lugar no qual será

copiado |

43

move-se à esquerda até alcançar , copia, em seu lugar, | e vai um

quadrado à esquerda

imprime no quadrado mais à esquerda, marcando o lugar no qual será

copiado B

dirige-se à direita: alcançando substitui por |; alcançando

substitui por B; em ambos os casos move-se um quadrado à esquerda

desloca-se para a esquerda, substitui por |; vai um quadrado à direita e,

em seguida, retorna para o quadrado da esquerda, terminando, assim, a

computação

Portanto, seguindo rigorosamente as instruções de , obtemos para qualquer input

 B...B B...B (sendo e) uma computação em cuja descrição instantânea

terminal a n-upla B...B ocorre também à esquerda de B...B , sendo imediatamente

precedida por pelo símbolo de estado interno ().

Lema 2.16 Para cada e , existe um programa de Turing (t+n)-regular tal que

(B...B B...B) = () B...B B...B .

Prova:

O programa , tal qual , faz a máquina copiar a n-upla B...B à esquerda de

 B...B , mas diferentemente de , não conserva do lado direito a n-upla original

 B...B . De fato, a cada símbolo de B...B copiado à esquerda de B...B , a

máquina comandada por retorna à direita e, antes de observar qual será o próximo símbolo

que copiará, apaga o símbolo da n-upla original anteriormente copiado.

44

Diante do exposto, definimos como o programa de Turing que contém todas as

quíntuplas de , exceto a quíntupla no lugar da qual assumiremos

 . Esta substituição é fundamental. Com efeito, durante a cópia sob os

comandos de , cada | presente na n-upla original é substituído por que, por sua vez, será

substituído por |. O programa , ao contrário, determina a substituição de por B,

impedindo, desta forma, que a n-upla original seja reescrita.

Lema 2.17 Para cada programa de Turing n-regular P, existe um programa de Turing n-

regular tal que:

(1) se (B...B) = () B...B , então (B...B) =

 () B...B B B...B .

(2) se (B...B) estiver indefinido, então (B...B) também estará

indefinido.

Prova:

Ora, como o programa de Turing P é n-regular, então, de acordo com o lema 2.14, há

um programa de Turing (n+n)-regular , tal que (B...B B...B) =

 () B...B B B...B . Sabendo disso, considere ()
 (())

 .

Portanto, como queríamos provar, se (B...B) estiver definido, nós temos:

(B...B) = B...B B...B

 ()(B...B B...B) = (()) B...B B B...B .

 (())((())) () B...B B B...B .

Lema 2.18 Sejam , ..., programas de Turing (para k 1). Então, há um programa de

Turing n-regular tal que (B...B) =

 ()

 ()B...B

 ().

Prova (por indução em k):

Para k = 1, é o programa obtido de acordo com lema 2.13.

Considerando o programa para um k qualquer, mostraremos, a seguir, que

também existe um programa para k + 1.

45

Sejam , ..., programas de Turing e seja =

 (), para 1 i k +

1. Por hipótese da indução, há um programa de Turing n-regular , tal que

(B...B) = ()

 ()B...B

 () = () B...B .

Sendo assim, pelo lema 2.17, há um programa de Turing n-regular tal que

(B...B) = () B...B B B...B . Além disso, dado o programa ,

existe, de acordo com o lema 2.13, um programa de Turing n-regular , tal que

(B...B) = () e, uma vez, dispondo do programa , existe, de acordo

com o lema 2.14, um programa de Turing (k+n)-regular , tal que

(B...B B B...B) = () B...B B . Portanto, em linhas gerais, para k

+ 1, =
(()). Com estes resultados, o lema 2.18 está provado.

Lema 2.19 Se , ..., são funções n-árias parcialmente Turing-computáveis e f é uma

função m-ária parcialmente Turing-computável, então a função h() =

f((), ..., ()) também é parcialmente Turing-computável.

Prova:

De acordo com o lema anterior, há um programa de Turing n-regular tal que

 (B...B) = () ()B...B (). Se é um programa de Turing

para computar a função f, então =
(()) será o programa de Turing que computará a

função h obtida a partir de g e f por composição. Portanto, a função h também é parcialmente

Turing-computável.

Neste cenário, se f e cada (para 1 i m) estiverem definidos, nós teremos:

 (B...B) = () ()B...B ()

(())(() ()B...B ()) = c, sendo [c] = f((), ...,

 ()) = h()

Caso contrário, o (B...B) permanecerá indefinido.

Lema 2.20 Se g é uma função n-ária parcialmente Turing-computável, f é uma função n+2-

ária parcialmente Turing-computável e h é obtida a partir de g e f por recursão primitiva,

então h é parcialmente Turing-computável.

46

Prova:

Para computar a função h(), construiremos um programa de Turing Z tal

que dado o argumento B...B , a máquina comandada por Z verifica, inicialmente, se y

= 0 ou se y 0. Ocorrendo o primeiro caso, a máquina apaga o último |, vai ao | mais à

esquerda, aplica o programa n-regular para g obtido pelo lema 2.13 (com os índices dos

símbolos de estado interno devidamente aumentados) sobre B...B e finaliza a

computação, apagando o primeiro | de (). Caso contrário, ou seja, sendo y = z + 1, a

máquina escreverá depois do último |, obtendo, deste modo, B...B ; em seguida,

copiará esta n+1-upla à direita de , sem imprimir o último | de –

 B...B B...B – logo depois, a máquina escreverá no quadrado

imediatamente à direita de e copiará B...B , não imprimindo o último | de e

escrevendo ao final. Este procedimento se repete até que todos os traços de sejam

eliminados, fato que ocorre quando alcançamos a seguinte expressão:

 B...B B...B B...B B...B

Em seguida, a máquina aplicará o programa n-regular para g à B...B , acarretando

a expressão abaixo, na qual = g():

 B...B B...B B...B

Depois, a máquina apagará o último e aplicará o programa n+2-regular para f

(também obtido pelo lema 2.13) à B...B . Este procedimento se repete até ser

alcançado. Quando isso acontece, a máquina aplicará o programa n+2-regular para f à

 B...B e eliminará um |. Na sequência, ela vai à até o primeiro |, apagará todos os |‟s à

esquerda de , inclusive e termina a computação.

Seja o seguinte programa de Turing:

move-se à direita até alcançar um duplo vazio

47

move-se dois quadrados à esquerda para verificar se y = 0 ou se y 0

Sendo assim, com respeito a , nós temos duas situações alternativas: (1) Se y = 0,

então
(B...B) = B...B ; (2) Se y = , então

(B...B) = B...B

 |

 Se (1) ocorre, considere K como um programa n-regular para computar g e como o

programa que consiste de todas as quíntuplas de () e das quíntuplas abaixo, sendo U

= (()):

vai um quadrado à direita e apaga o último traço

move-se à esquerda até alcançar um duplo vazio e vai dois quadrados à direita

para iniciar a computação de B...B segundo ()

apaga o primeiro | de () e termina

Então,
(B...B) = ()

 () = ()
 () e, assim, finaliza-

se a computação.

Se (2) ocorre, considere o programa de Turing abaixo, sendo F = ():

move-se à direita até alcançar um duplo vazio

imprime no segundo quadrado vazio; em seguida, imprime no

primeiro quadrado vazio

48

dirige-se à esquerda até alcançar um , ou um duplo vazio para iniciar

o procedimento de cópia da última n+1-upla à direita

observando |: substitui | por , preparando-se para copiar | à direita;

observando B: substitui B por , preparando-se para copiar B à direita;

observando ou : prepara-se para terminar a cópia

move-se à direita; observando : substitui por e vai um quadrado à

esquerda; observando : copia, em seu lugar, |; observando : copia, em

seu lugar, B; nos dois últimos casos, vai um quadrado à direita

imprime no quadrado mais à direita, marcando o lugar no qual será

copiado |

move-se à direita; observando : copia, em seu lugar, |

 imprime no quadrado mais à direita, marcando o lugar no qual será

copiado B

49

desloca-se à esquerda; observando : substitui por |; observando :

substitui por B

vai à direita; observando : substitui por B, finalizando, assim, a cópia

da n+1-upla anterior sem imprimir o seu último |

dirige-se um quadrado à esquerda; observando B, finaliza-se o

procedimento total de cópia, tendo sido eliminados todos os |‟s de ;

observando |, vai um quadrado à direita e prepara-se para copiar a última

n+1-upla

vai à esquerda; alcançando , vai um quadrado à direita para iniciar a

computação da n-upla B...B segundo o programa n-regular para g

Então, com respeito ao programa , nós temos que
(B...B

 |) =

 B...B B...B ... B...B B...B .

Agora, sendo N = (()), assuma como o programa de Turing que contém

todas as quíntuplas de () e, além disso, contém, para cada de (), as quíntuplas

apresentadas abaixo:

interrompe a computação; alcançando : substitui por ; alcançando :

substitui por .

50

vai à esquerda até alcançar um duplo vazio

move-se uma quadrado à direita: alcançando ou , apaga-os.

observando |, B, ou , prepara para copiar no quadrado anterior |, B,

ou , respectivamente; observando ou prepara para copiar no

quadrado anterior ou , respectivamente

copia |

copia B

copia

 copia

51

vai um quadrado à direita e retoma a computação

Sob os comandos de , a máquina de Turing aplica o programa n-regular

 () para g a B...B . Se durante esta computação, é alcançado, ele e todos os

símbolos da fita que o antecedem são movidos um quadrado à esquerda, criando assim um

novo espaço para que a computação segundo () seja concluída. Sendo assim, temos que

(B...B B...B ... B...B B...B) =

 B...B

 B...B ... B...B

Considerando L = (), assuma como o seguinte programa de Turing:

vai um quadrado à esquerda e apaga

dirige-se à esquerda; alcançando ou , move-se um quadrado à direita

A máquina de Turing, seguindo as ordens do programa , apaga o mais à direita e

procura o próximo (ou) à esquerda. Ao alcançá-lo, vai um quadrado à direita para iniciar a

computação segundo o programa n+2-regular para a função f. Neste contexto, temos que

(B...B B...B ... B...B) =

 B...B B...B

 ... B...B .

Agora, sendo R um programa n+2-regular para f e S = (()), considere como o

programa de Turing que contém , todas as quíntuplas de (), e, além

disso, contém, para cada de () as quíntuplas adicionais de sendo as ocorrências de

N substituídas por S.

52

De acordo com , a máquina de Turing aplica o programa () sobre a n+2-upla

anteriormente obtida. Se durante esta computação, ou são alcançados, eles e todos os

símbolos da fita que os antecedem são movidos um quadrado à esquerda, criando assim um

novo espaço para que a computação segundo () seja concluída. Quando isso acontece, a

máquina vai um quadrado à esquerda; encontrando elimina-o e procura o próximo (ou)

à esquerda. Ao alcançá-lo, a máquina vai para o quadrado imediatamente à direita e aplica o

programa () à n+2-upla que acabou de ser obtida com a última eliminação de ;

encontrando , prepara-se para concluir a computação. Sendo assim, temos que:

 (B...B B...B ... B...B) = B...B

 ().

Seja M = (). O programa é composto pelas seguintes quíntuplas:

observando : vai um quadrado à direita, preparando-se para terminar

apaga um | do bloco ()

move-se à esquerda até alcançar um duplo vazio

apaga a n+1-upla B...B ; apaga e termina

Então,
(B...B ()) = ()

 ().

Finalmente, seja Z = Então, se houver uma

computação para a n+1-upla () de acordo com Z, teremos:

(1) Sendo y = 0, (B...B) = ()
 ()

(2) Sendo y 0, (B...B) = ()
 ()

53

Evidentemente, se h() estiver indefinida para y, estará indefinida também

para todo w y. Neste termos, Z constitui um programa de Turing para computar

h(). Portanto, como existe um tal programa, a função h obtida por recursão

primitiva a partir da funções parcialmente Turing-computáveis e f é também parcialmente

Turing-computável.

Lema 2.21 Se g é uma função n+1-ária parcialmente Turing-computável, então a função

h() ((y) = 0) é parcialmente Turing-computável.

Prova:

Construiremos para a função h um programa de Turing de acordo com o qual a

máquina computará para cada y 0 a função (y) até alcançar o primeiro y tal que

 (y) = 0. Se um tal y não existir, a máquina entrará em loop.

Seja o seguinte programa de Turing:

imprime um | à direita do último B que encerra a n-upla

move-se à esquerda até que um duplo vazio seja alcançado; em seguida, move-

se dois quadrados à direita

Então,
(B...B) = B...B .

Seja Y o programa para computar a função (y) e, Y‟ o programa n+1-

regular obtido a partir de Y pelo lema 2.13. Então, (B...B) =

 () (). Considere, agora, Y‟ como sendo o programa de Turing P do lema 2.17.

Então, por este mesmo lema, há um programa n+1-regular tal que (B...B)

= () ()B B...B . Neste contexto, sendo N = (()), temos

que ()(B...B) = ()B B...B .

54

Seja o programa de Turing contendo as seguintes quíntuplas:

apaga o primeiro | de () e vai um quadrado à direita: (1)

observando | (caso em que (y) 0), move-se um quadrado à

esquerda e retorna um quadrado à direita; (2) observando B (caso em que

 (y) = 0), substitui B pelo próprio B, vai à direita e prepara para

terminar

Então, com respeito a , obtemos duas configurações instantâneas terminais

alternativas: (1) se (y) = k 0,
(()B B...B) =

 B B...B ; (2) se (y) = 0,

(()B B...B) =

 B...B .

Assuma como o seguinte programa:

apaga (y) |‟s e move-se um quadrado à direita

desloca-se à direita até alcançar um duplo vazio, acrescenta um | a e vai

um quadrado à esquerda

move-se à esquerda até alcançar um duplo vazio e, em seguida, vai um

quadrado à direita, preparando–se, deste modo, para iniciar a computação

de B...B segundo ()

Então, nestes termos,
(

 B B...B) = B B...B

Seja o programa de Turing que computa a função
 (y). Neste caso,

como sabemos, (B...B) = c, tal que [c] = y. Considere, agora, o programa

 (). De modo análogo, ()(B...B) = c, tal que [c] = y. Sendo assim,

sob os comandos de (), alcançamos, finalmente, o resultado que procurávamos, a saber,

 ((y) = 0), ou seja, o valor da função h()

55

Portanto, em síntese, H = () () constitui o programa de

Turing para computar h(). Como existe um tal programa, a função h()

obtida por minimização ilimitada a partir da função parcialmente Turing-computável

 (y) é também parcialmente Turing-computável.

Teorema 2.22 Toda função parcial recursiva é parcialmente Turing-computável.

Prova:

Como vimos, as funções iniciais são parcialmente Turing-computáveis e, de acordo

com os lemas 2.19, 2.20 e 2.21, o conjunto das funções parcialmente Turing-computáveis é

fechado em relação às operações básicas. Logo, o conjunto das funções parciais recursivas

está contido no conjunto das funções parcialmente Turing-computáveis.

Corolário 2.23 Toda função recursiva é Turing-computável.

Prova:

 Obtida por particularização do teorema anterior.

2.2.2 Toda função parcialmente Turing-computável é parcial recursiva

 Conforme dissemos anteriormente, em outras palavras, o nosso principal objetivo,

neste capítulo, é provar o seguinte teorema: uma função numérica f é parcial recursiva se, e

somente se, f é parcialmente Turing-computável. Parte deste objetivo acabou de ser alcançada

com a prova do teorema 2.22. Falta-nos ainda provar que se f é parcialmente Turing-

computável, f é parcial recursiva. Para isso, aritmetizaremos, a la Gödel, a teoria das

máquinas e programas de Turing.

A aritmetização godeliana foi, inicialmente, utilizada para traduzir os enunciados

metamatemáticos da Aritmética Elementar de Primeira Ordem de Peano para a linguagem da

própria aritmética composta por números naturais. De modo semelhante, podemos aritmetizar

qualquer linguagem formal, atribuindo números aos seus componentes básicos de modo que:

(1) Objetos distintos tenham números distintos.

(2) Dado um objeto qualquer, possamos efetivamente encontrar o seu número.

(3) Dado um número qualquer, possamos efetivamente decidir se ele está atribuído a algum

objeto e, se estiver, a qual objeto.

56

Para aritmetizar a teoria das máquinas e programas de Turing, começaremos

codificando os símbolos, expressões e sequências finitas de expressões de L.

Definição 2.24 Seja A = {k : k é um símbolo de L}.O código de k é o número natural g(k)

determinado pela função injetiva g: A → tal que:

(1) se k = R, g(k) = 3; se k = L, g(k) = 5;

(2) se k = , g(k) = 7 + 4i, para i ≥ 0;

(3) se k = , g(k) = 9 + 4i, para i ≥ 0.

Os códigos obtidos de acordo com a definição acima são facilmente gerados

obedecendo a sequência estabelecida na tabela abaixo.

R L

3 5 7 9 11 13 15 17 19 21

Definição 2.25 Seja B = {r : r é uma expressão de L}. O código de r, para r = , é o

número natural g‟(r) determinado pela função injetiva g‟: B → tal que g‟(r) = ∏
 ()

 .

Por convenção, se r é uma expressão vazia, g‟(r) = 1.

Nestes termos, se r = , g‟(r) =
 () () () () () =

 .

Definição 2.26 Seja C = {t : t é uma sequência finita de expressões de L}. O código de t, para

t = , é o número natural g‟‟(t) determinado pela função injetiva g‟‟: C → tal que

g‟‟(t) = ∏
 ()

 .

Dada a seguinte sequência de expressões:

 =

 =

 =

Se t = , então g‟‟(t) =
 () () () =

.

Considerando as codificações acima sugeridas, algumas observações serão

convenientes:

57

 Como g, g‟ e g‟‟ são funções injetivas totais, além de cada símbolo, cada expressão e

cada sequência de expressões de L ter um único código, símbolos diferentes,

expressões diferentes e sequências diferentes de expressões de L terão códigos

diferentes.

 Dado um número natural n 0, podemos, sem grandes dificuldades, identificar se n é

código de um símbolo, expressão ou de uma sequência de expressões de L da seguinte

maneira:

(1) se n é ímpar e maior que 1, então n é código de um único símbolo de L;

(2) se n = 1 ou se n é par e a sua decomposição consiste no segmento inicial do

conjunto dos números primos com expoentes ímpares maiores que 1, então n é código

de uma única expressão de L;

(3) se n é par e a sua decomposição consiste no segmento inicial do conjunto dos

números primos com expoentes que satisfazem (2), então n é o código de uma única

sequência de expressões de L.

 Se n satisfaz alguma condição acima exposta, podemos ainda identificar exatamente o

símbolo, a expressão ou a sequência de expressões que n codifica; para isso, basta

recuperar, considerando a definição 2.24, os símbolos ou a expressão vazia

codificados pelos expoentes ímpares.

Definição 2.27 Seja P um programa de Turing, o número natural n é um código de P se, e

somente se, n é o código de uma sequência das quíntuplas de P.

Como consequência da definição anterior, se P contém x quíntuplas, P possuirá x!

códigos, correspondentes às x! permutações de suas quíntuplas.

Para concluirmos a aritmetização a qual nos propomos, apresentaremos uma lista de

relações que transpõem para a linguagem aritmética as definições referentes à Teoria das

máquinas e dos programas de Turing apresentadas na primeira seção deste capítulo. Estas

relações são as seguintes:

(1) * () ,() () -+

 () se, e somente se, a decomposição de x ocorre no segmento inicial dos números primos.

(2) Term *() () (), () -+

58

Term() se, e somente se, x é um dos expoentes da decomposição de z.

(3) SI = {x : , -}

SI(x) se, e somente se, x é código de um símbolo de estado interno.

(4) AI * , -+

AI(x) se, e somente se, x é código de um símbolo da fita.

(5) Quint = {x : () () SI(()) AI(()) AI(()) (() ()

) SI(())}

Quint(x) se, e somente se, x é código de uma quíntupla.

(6) Inc = {(x, y) : Quint(x) Quint(y) () = () () = () x y}

Inc(x, y) se, e somente se, x e y são códigos de quíntuplas inconsistentes.

(7) PT = {z : () () [Quint(()) () [Inc(() , ())]]}

PT(z) se, e somente se, z é código de um programa de Turing.

(8) A função NR(x) determina o código da expressão da seguinte maneira:

NR(0) =

NR(x + 1) = NR(x)

(9) A função (, ...,) determina o código de uma configuração instantânea inicial

 B...B da seguinte maneira:

 (, ...,) = NR() ... NR()

(10) CI = {x : () () ,SI(()) (), AI(())]]}

CI(x) se, e somente se, x é código de uma configuração instantânea.

(11) = {(x, y, z) : CI(x) CI(y) PT(z) [x

= y = SI(i) SI(l) AI(k) AI(t) AI(p)

Term()]}

 (x, y, z) se, e somente se, sendo e expressões possivelmente vazias, x é o código

de , y é o código de , e o programa de Turing, que z tem como um de

seus códigos, contém a quíntupla (, , , R,)

59

(12) = {(x, y, z) : CI(x) CI(y) PT(z) [x =

 y = SI(i) SI(l) AI(k) AI(t)

Term()]}

 (x, y, z) se, e somente se, sendo uma expressão possivelmente vazia, x é o código

de , y é o código de e o programa de Turing, que z tem como um de seus

códigos, contém a quíntupla (, , , R,)

 (13) = {(x, y, z) : CI(x) CI(y) PT(z) [x

= y = SI(i) SI(l) AI(k) AI(t) AI(p)

Term()]}

(14) = {(x, y, z) : CI(x) CI(y) PT(z) [x =

 y = SI(i) SI(l) AI(k) AI(t)

Term()]}

As relações (x, y, z), , correspondem à contraparte aritmética da definição

2.6.

(15) = {(x, y, z) : (x, y, z) (x, y, z) (x, y, z) (x, y,

z)}

 (x, y, z) se, e somente se, x acarreta y via z.

(16) Fin = {(x, z) : CI(x) PT(z) [x = SI(i)

AI(k) (),(()) i (()))]]}

Fin(x, z) se, e somente se, x é o código de uma configuração instantânea terminal com

respeito a um programa de Turing que tem z como um de seus códigos.

(17) Comp = {(y, z) : PT(z) [() () [(() , () , z)

Fin(() ())- y = . ∏
()

 ()]}

Comp(y, z) se, e somente se, y é o código de uma computação com respeito ao programa de

Turing de código z. Deste modo, y não é simplesmente o código de uma mera computação,

mas de uma computação associado a um dos códigos do programa que a permite. Observe que

como um programa de Turing com n quíntuplas possui n! códigos, então uma computação de

acordo com este programa terá n! códigos, o que nos autorizará mencionarmos, mais adiante,

o menor código de uma computação com respeito a um programa de Turing.

60

(18) *() Comp(y, z) () = (, ...,)}

 () se, e somente se, y é o código de uma computação com input ()

realizada de acordo com um programa de Turing de código z.

Todas as relações acima definidas são claramente recursivas primitivas. Abaixo,

apresentaremos três funções também recursivas primitivas, dentre as quais a última delas

determina o valor de uma computação de acordo com um programa de Turing.

(a) A função C(n, x) estabelece se () é ou não o código de |.

C(n, x) {
 ()

 ()

(b) Se x é código de uma expressão, então a função Out(x) determina o números de |‟s de x.

Out(x) = ∑ () ()

(c) Se x é o código de uma computação de acordo com z, isto é, x =
 sendo

 , ..., códigos das configurações instantâneas , ..., , respectivamente, então U(x)

estabelece o número de |‟s presentes na configuração instantânea terminal.

U(x) = Out(() ())

Aritmetizada a teoria das máquinas e programas de Turing, dispomos agora dos

instrumentos necessários para obtermos como corolário do Teorema da Forma Normal de

Kleene, que será provado mais adiante, o resultado que buscávamos: toda função

parcialmente Turing-computável é parcial recursiva. A prova deste teorema requisitará o lema

seguinte.

Lema 2.28 Se P é um programa de Turing e z, um de seus possíveis códigos, temos que:

(1) dom(
 (, ...,)) = dom(((, ...,)))

(2)
 (, ...,) = U(((, ...,)))

Prova:

(1) Pela definição 2.10,
 (, ...,) se e somente se existe uma computação de acordo

com P para a n-upla (, ...,); em termos aritméticos, isso ocorre se, e somente se, existe

61

um número y, tal que (, ...,). Sendo assim, neste caso, ((, ...,))

também está definido.

(2) Como vimos, ainda pela definição 2.10, se
 (, ...,) , então

 (, ...,) =

, (B...B)]. Por outro lado, se existe um y tal que (, ...,) e w =

 ((, ...,)), então () () é o código da configuração instantânea terminal

de y e U(w) = [- = , (B...B)]. Portanto, existindo uma computação de acordo

com P para a n-upla (, ...,),
 (, ...,) = U(((, ...,))).

Teorema 2.29 (Teorema da Forma Normal de Kleene) Uma função numérica h(, ...,) é

parcialmente Turing-computável se, e somente se, existe um z tal que h(, ...,) =

U(((, ...,))).

Prova:

1º lado: A função h() é parcialmente Turing-computável. Então, segundo a definição

2.10, existe um programa de Turing P tal que h() =
 (). Pelo lema 2.28,

 (, ...,) = U(((, ...,))). Portanto, h() = U(((, ...,))),

para algum código z de P.

2º lado: Existe um z tal que h(, ...,) = U(((, ...,))). Pelo lema 2.28,
 (,

...,) = U(((, ...,))). Portanto, h() =
 (), para algum

programa de Turing P. Em outras palavras, segundo a definição 2.10, h(, ...,) é

parcialmente Turing-computável.

Corolário 2.30 Se h(, ...,) é parcialmente Turing-computável, então h(, ...,) é

parcial recursiva.

Prova:

De acordo com o teorema anterior, se h(, ...,) é parcialmente Turing-computável,

então h() = U(((, ...,))), para algum z. Como U(((, ...,

))) é, claramente, parcial recursiva, então, por consequência, h(, ...,) também o é.

Corolário 2.31 Se h(, ...,) é Turing-computável, então h(, ...,) é recursiva.

Prova:

Obtida por particularização do corolário anterior.

2.3 Tese de Church-Turing

No ano de 1936, Alan Turing publica o artigo On the Computable numbers with an

application to the Entscheidunsproblem, no qual apresenta as suas máquinas abstratas como

62

representação formal para a noção intuitiva de procedimento efetivo, idealizadas segundo ele,

de acordo com o ato de computar do “computador humano”. Para Turing, os inúmeros

procedimentos computacionais realizados pelo homem, orientados por instruções previamente

estabelecidas, podiam também ser executados por suas máquinas. Esta constatação o levou a

enunciar a sua famosa tese - a Tese de Turing - apresentada, normalmente, sob duas versões.

Tese de Turing (versão estrita)

Toda função algorítmica é Turing-computável.

Tese de Turing (versão estendida)

Toda função parcial algorítmica é parcialmente Turing-computável.

Identificação equivalente a esta foi obtida, de maneira independente, por Alonzo

Church, utilizando as funções lambda-definíveis, versão formal que ele propôs para o

conceito de função algorítmica. Na literatura especializada, usa-se comumente o termo “Tese

de Church-Turing”, fazendo jus a ambos os autores que a enunciaram.

Sobre esta tese, Kalmár afirma:

[Ela] não é um teorema matemático que possa ser provado ou refutado num

sentido matemático exato, pois estabelece a identidade de duas noções, em

que somente uma é definida matematicamente, enquanto a outra é usada

pelos matemáticos sem uma definição exata. (KALMÁR, 1957, p. 72-73)

Embora não haja, para esta tese, uma demonstração, ela é largamente admitida, pois

existem fortes argumentos “empíricos” que lhe dão plausibilidade, dentre os quais

destacamos:

(1) Apesar das inúmeras tentativas, nunca se conseguiu apresentar uma função algorítmica ou

parcial algorítmica que não fosse, respectivamente, Turing-computável ou parcialmente

Turing-computável.

(2) Até hoje, todas as tentativas de caracterizar formalmente as noções vagas e imprecisas de

função algorítmica e função parcial algorítmica forneceram exatamente as mesmas classes de

funções, a saber, a classe das funções Turing-computáveis e a classe das funções parcialmente

Turing-computáveis.

Os argumentos contrários à Tese de Church-Turing, por sua vez, nunca foram fortes o

suficiente para refutá-la. Ela é aceita pela maioria dos matemáticos e cientistas da computação

e os poucos que demonstram algum grau de descrença quanto ao seu enunciado são tachados

63

como excêntricos. No capítulo seguinte, vamos utilizá-la como método informal de prova

para a obtenção de alguns resultados. Em Teoria da Computabilidade, esta prática é

recorrente, como pode ser atestado a seguir nas palavras do matemático Cohen (apud

CARNIELLI, EPSTEIN, 2009, p.300):

Ou seja, desde que tenhamos dado um argumento intuitivo de que a função é

[parcialmente] computável [...] afirmamos então que a Tese de Church nos

diz que a função é recursiva parcial. Isto simplifica cálculos tediosos; os

leitores devem se convencer, no entanto, que todas as vezes que a Tese de

Church é usada, uma prova formal pode ser elaborada por alguém que seja

suficientemente industrioso.

Por fim, atentos ao enunciado da Tese de Church-Turing, podemos, em última análise,

considerá-la como uma tentativa de se determinar precisamente o alcance e os limites da

computação teórica. Com ela, acredita-se que se tenha definitivamente, captado, de forma

precisa, as noções intuitivas de algoritmo e de função algorítmica.

64

3 PROBLEMA DA DECISÃO PARA OS SUBCONJUNTOS DAS FUNÇÕES

PARCIAIS RECURSIVAS

Nos capítulos anteriores, vimos que as funções (parciais) recursivas ou (parcialmente)

Turing-computáveis são (parciais) algorítmicas. Mas será que os conjuntos dessas funções

também são algorítmicos? E os seus subconjuntos próprios: o que dizer sobre eles? Para

responder estas perguntas, mostraremos, neste capítulo, como enumerar efetivamente os

programas de Turing e as funções parciais recursivas. Com o auxílio desta enumeração,

vamos provar o Teorema s-m-n de Kleene, utilizado na demonstração de diversos teoremas da

Teoria da Computabilidade. Contextualizaremos o problema da decisão para uma relação

numérica qualquer, introduzindo, deste modo, conceitos importantes como solubilidade e

insolubilidade recursiva a fim de apresentarmos, em termos formais, alguns problemas

insolúveis, dentre eles, o famoso Problema da Parada. Por fim, apresentaremos o Teorema de

Rice, com o qual alcançaremos o nosso último objetivo, a saber: provar, por um lado, a

decidibilidade do conjunto das funções parciais recursivas e, por outro, a indecidibilidade dos

conjuntos das funções recursivas e das funções recursivas primitivas.

3.1 Lista efetiva de programas e funções

Considerando a codificação dos programas de Turing apresentada no capítulo anterior,

sabemos que cada programa possui ao menos um código e cada um deles, por sua vez,

codifica um único programa. Isto posto, estabeleceremos, a seguir, um modo, dentre muitos,

de se construir uma lista de todos os programas de Turing na qual denotará o

x-ésimo programa listado.

Definição 3.1 Seja o programa de Turing que tem x como um de seus códigos. O x-ésimo

programa da lista é determinado de acordo com a seguinte função:

 = {
 ()

* + ()

Em outras palavras, a construção da lista obedece ao seguinte raciocínio: dado um

número natural x qualquer, se x é código de um programa de Turing, então , o x-ésimo

programa da lista, será ; se x não é código de um programa de Turing, será o programa

* + que computa a função vazia, indefinida para quaisquer argumentos.

A respeito desta lista, convém explicitar alguns aspectos a ela associados:

65

(1) sua construção é efetiva: dado um número natural x, podemos determinar mecanicamente

se x é ou não código de um programa de Turing; em caso afirmativo, podemos, via

decomposição de x, recuperar precisamente o programa que x codifica e, em ambos os casos,

somos capazes de identificar, também mecanicamente, o programa .

(2) ela comporta a possibilidade de repetições de programas: de acordo com a codificação

apresentada, um programa com n quíntuplas, possui n! códigos; sendo assim, ele ocorrerá n!

vezes na lista; além disso, o programa * + ocorrerá na lista todas as vezes em

que x não for código de programa.

(3) ela torna possível a elaboração de uma listagem efetiva de todas as funções parcialmente

Turing-computáveis: segundo a definição 2.10, um programa computa uma única função n-

ária para cada n ≥ 1, então a partir da lista de programas, podemos elaborar, também para

cada n ≥ 1, uma lista de funções n-árias parcialmente Turing-computáveis (como vemos

abaixo) na qual
 denota a função k-ária (k ≥ 1) computada segundo o programa .

1.
 ,

 ,
 ,

 , ...

2.
 ,

 ,
 ,

 , ...

 3.
 ,

 ,
 ,

 , ...

n.
 ,

 ,
 ,

 , ...

Atentos às convenções estabelecidas, cada função
 acima listada ou é a função

vazia (quando o índice subscrito não é código de um programa de Turing) ou é uma função

parcialmente Turing-computável diferente da função vazia (quando ocorre o caso contrário).

Os índices de uma função serão os índices do programa que a computa. No entanto,

seria um engano pensar que a função
 computada pelo programa , que possui um número

finito de índices, possuiria unicamente os mesmos e a mesma quantidade de índices de .

Com efeito, basta acrescentar ao conjunto quíntuplas inutilizáveis nas computações

realizadas de acordo com tal conjunto para obtermos novos programas diferentes de que

computarão, da mesma forma, a função
 . Deste modo, uma mesma função pode ser

computada por mais de um programa e, portanto, os seus índices não se limitarão somente aos

66

índices de um único programa que a computa. Dentro desta perspectiva, apresentamos o

teorema seguinte.

Lema 3.2 (Padding Lemma) Cada função parcial recursiva possui índices distintos e,

além disso, para cada x, é possível determinar efetivamente um conjunto infinito de índices

para .

Prova:

Sendo um programa qualquer, considere:

 (x, 0) =

 (x, y+1) = (x, y) * (()) (()) +

Cada programa (x, y), para y 1, é obtido pelo acréscimo de uma quíntupla

inutilizável nas computações de acordo com ao programa anterior (x, y-1). Deste modo,

obtemos um conjunto infinito enumerável de programas - (x, 0), (x, 1), (x, 2), ... - que

embora distintos computam a função . Portanto, possui índices distintos, cada um

dos quais pode ser efetivamente determinado pela seguinte função:

f (x, 0) = {

 () ()

 ()

f (x, y +1) = f (x, y) (()) (()) ,

sendo (f (x, y)) = ()((()) (((())) = z ((())) = z

 (())(((())) z ((())) z)). Em outras palavras, (f (x, y)) é o

código do maior estado interno de f (x, y).

Tal como foi definida, nota-se claramente que a função f é recursiva, ou seja, f está

definida para todos os argumentos e cada um dos seus valores é obtido algoritmicamente.

Sendo assim, para cada x, podemos achar um conjunto infinito enumerável de índices para

 .

3.2 Teorema s-m-n de Kleene

Nesta seção, teremos como principal propósito demonstrar um importante teorema da

Teoria da Computabilidade, o chamado Teorema s-m-n de Kleene. Nossa demonstração será

construída mediante dois lemas, que provaremos a seguir.

67

Lema 3.3 (a) Para cada número natural n, existe um programa de Turing com estados

internos ..., tal que [t] = , sendo t qualquer expressão da fita;

(b) A função a(n), que determina um dos códigos de , é recursiva primitiva.

Prova:

(a) Devemos observar que a máquina comandada pelo programa , achando-se no estado

interno e observando o traço mais à esquerda do input, vai para o quadrado imediatamente

anterior (que permanecerá vazio), à esquerda dele imprime n+1 traços e assume o estado

interno .

Neste cenário, o programa é estabelecido recursivamente de acordo com as seguintes

cláusulas:

 = { , , , }

 = { , , }

(b) Uma sequência recursiva primitiva para a função a(n) pode ser obtida a partir das

seguintes cláusulas:

a(0) =

a(n+1) = a(0) ∏ ,
 () ()

 () ()

 () ()

-

Lema 3.4: A função S(e, n), que determina um dos códigos de
()

, é recursiva primitiva.

Prova:

A título de recordação,
()

 é o programa de Turing obtido a partir da substituição de

todas as ocorrências de em por . Um de seus códigos é determinado pela função

S(e, n) que, como podemos ver abaixo, é claramente recursiva primitiva.

S(e, n) = ((e) ∏
 (()) (()) (()) (()) (())

 ()) + (((e))

)

Provados os lemas anteriores, podemos, agora, demonstrar o Teorema s-m-n de

Kleene.

68

Teorema 3.5 (Teorema s-m-n de Kleene) Para cada m, n 1, existe uma função recursiva

primitiva
 de m+1 variáveis, tal que, para todo e, ,

 (,) =

 ()
 (),

sendo parâmetros.

Prova:

Dito de outro modo, o teorema s-m-n de Kleene garante que, sendo um programa de

Turing qualquer e parâmetros, existe um programa de Turing Z cujo índice é

 () tal que:

 [B...B B

B...B

] = [

B...B

]

O primeiro passo da prova consiste em elaborar um programa Z com os seguintes

comandos: observando o input

B...B

, escreva o argumento B...B à esquerda de

B...B

, obtendo como resultado a expressão B...B B

B...B

; por fim, aplique a

esta expressão o programa . O passo seguinte consiste em mostrar que a função

 (), pela qual se obtém um dos índices do programa Z, é recursiva primitiva.

Sejam
, ...,

 programas de Turing obtidos de acordo com o lema 3.3.
instrui

a máquina a escrever à esquerda de

B...B

, de modo que:

[

B...B

] =

B...B

A partir de
, determine

(). O símbolo de estado interno de

()

=

 () = . A máquina regida pelo programa

() escreve à

esquerda de

B...B

, de tal maneira que:

()[

B...B

] =

B...B

De modo análogo, a partir de
, determine

()
. O símbolo de estado

interno de

()

= () = . Sob os comandos de

()
, a máquina imprime à esquerda de

B...B

, de modo que:

()[

B...B

] =

B...B

69

Para cada
, sendo m i 1, executamos o procedimento descrito acima. O

programa que escreverá, finalmente, na extremidade esquerda será

()
.

Sendo assim, teremos que:

()[

B...B

] =

B...B

Considere =

()

()
 ...

()

()

. Definido desta forma, Z é o programa de Turing que instrui a máquina a

realizar a computação desejada.

De acordo com os lemas 3.3 e 3.4, os programas constituintes de Z, na ordem em que

foram apresentados possuem, respectivamente, a(), S(a(),), S(a(),

), ..., S(a(),) e S(e,) como um

de seus códigos. Sabendo disso, um dos códigos do programa Z é o valor da função

 (), definida como segue:

 () = a() S(a(),) S(a(),) ... S(a(),

) S(e,)

O caráter recursivo primitivo da operação de concatenação e das funções obtidas pelos

lemas 3.3 e 3.4 garante, evidentemente, que a função
 () é recursiva primitiva.

O Teorema s-m-n de Kleene é um dos mais utilizados em Teoria da Computabilidade.

Em geral, suas aplicações, como veremos mais adiante, seguem, normalmente, o mesmo

modelo: apresentamos, em primeiro lugar, uma função parcial algorítmica (m+n)-ária e,

concluímos, via Tese de Church, que é parcial recursiva, isto é, =
 ; por fim,

utilizando o Teorema s-m-n, concluímos que existe uma função recursiva primitiva
 tal que

 (,) =

 ()
 (). Embora a função

 possua m+1

variáveis, este número pode ser reduzido a m variáveis: basta definirmos, por composição,

uma função m-ária f tal que () =
 (

 (
 ())

 (

)
 ()). Procedendo desta maneira, suprimimos o índice e, deduzindo,

analogamente, pelo Teorema s-m-n, que existe uma função recursiva primitiva f tal que

 (,) = ()

 ().

3.3 Problema da Parada

Considerando a noção intuitiva de algoritmo, introduzimos o problema da decisão para

70

uma relação numérica n-ária R: Dada uma n-upla ordenada () qualquer, há um

algoritmo que nos permita sempre decidir se () R ou () R
4
? Ou

simplesmente: há um algoritmo para computar a função característica de R? Se houver,

afirmamos que o problema da decisão para R é algoritmicamente solúvel e que, portanto, R é

decidível. Caso contrário, dizemos que o problema da decisão é algoritmicamente insolúvel

ou que R é indecidível. De modo menos intuitivo, podemos estabelecer, via Tese de Church, a

seguinte definição:

Definição 3.6 O problema da decisão para uma relação n-ária R é recursivamente solúvel se, e

somente se, R é recursiva. Do contrário, o problema é recursivamente insolúvel.

Entre os diversos casos existentes de insolubilidade recursiva, um dos mais famosos é

o Problema da Parada. Antes de apresentá-lo, vamos relembrar as duas situações alternativas

que podem ocorrer quando alimentamos uma máquina de Turing com um determinado input:

(1) ou a máquina, de acordo com um programa previamente dado, executa a computação do

input e para após algum intervalo de tempo, fornecendo um output ou (2) ela entra em loop,

isto é, continuará operando “eternamente” sem nunca atingir um termo. Neste caso, um output

jamais será alcançado. Portanto, das duas, uma: ou a máquina para ou não para.

Neste cenário, surge o Problema da parada, expresso, informalmente, pela seguinte

pergunta: existe um algoritmo que nos permita sempre decidir, dada uma máquina de Turing

alimentada com um input, sobre o qual ela opera, se ela para ou não? Em uma versão menos

informal: existe um algoritmo para decidir se, dados e y, o programa aplicado ao input

gera um output? Finalmente, em termos estritamente formais: o problema da decisão para o

conjunto K = {(): () } é recursivamente solúvel? Na literatura especializada, o

mesmo problema é, normalmente, apresentado em sua versão autorreferente: existe um

algoritmo para decidir se, dado , o programa aplicado ao input gera um output? O

problema da decisão para o conjunto K = { : () } é recursivamente solúvel?

O próximo teorema, como veremos, estabelecerá a insolubilidade recursiva do

Problema da parada. Este é um dos resultados negativos mais importantes da Teoria da

Computabilidade, a partir do qual podemos, facilmente, estabelecer a insolubilidade recursiva

de inúmeros problemas de decisão.

Teorema 3.7 O Problema da parada é recursivamente insolúvel.

4
 Um algoritmo com esta característica é também conhecido como procedimento de decisão.

71

Prova (por redução ao absurdo):

Considere a seguinte lista de todas as funções parciais recursivas unárias e de seus

possíveis valores:

 (0) (1) (2) ...

 (0) (1) (2) ...

 (0) (1) (2) ...

Suponhamos, por absurdo, que K é recursivo ou, equivalentemente, que a função

característica de K é recursiva:

 () = {
 ()

 ()

Agora, a partir de (), definimos a seguinte função:

 () = {
 ()

 ()

Evidentemente, é parcial algorítmica. Então, pela Tese de Church, é parcial

recursiva e, portanto, () é uma das funções da lista acima, isto é, () = (), para

algum i 0. Sendo assim, () = (). Neste caso, derivamos as seguintes consequências:

Por um lado,

 () () () () ()

Por outro lado,

 () () () ()

Logo, alcançamos o seguinte absurdo:

 () ()

Portanto, a nossa suposição inicial de que K é recursivo é falsa. Consequentemente, o

Problema da parada é recursivamente insolúvel.

Corolário 3.8 O Problema da parada, em sua versão autorreferente, é recursivamente

insolúvel.

72

Prova:

 Análoga a prova do teorema anterior.

3.4 Teorema de Rice

O Teorema de Rice tem uma grande força dedutiva. A partir dele, como veremos,

podemos inferir que qualquer conjunto de índices de um subconjunto próprio das funções

parciais recursivas que não seja vazio é indecidível. O motivo pelo qual o Teorema de Rice

trata diretamente dos índices de funções em vez das funções propriamente ditas ficará claro

mais adiante.

Definição 3.9 Seja C um conjunto qualquer de funções parciais recursivas. O conjunto =

{ + denomina-se o conjunto dos índices de C.

Como consequência imediata da definição acima, note-se que se e ,

então . Portanto, se , então contém todos os índices de .

Teorema 3.10 (Teorema de Rice) Seja FpR o conjunto de todas as funções parciais recursivas

unárias e seja C FpR. O problema da decisão para é recursivamente solúvel se, e somente

se, C = ou C = FpR.

Antes de provarmos o teorema acima, convém destacar que ele, em seu enunciado,

explicita apenas as funções parciais recursivas unárias. Isto, no entanto, não limita o seu

alcance, pois podemos reduzir todas as funções parciais recursivas -árias, com ≥ 2, à

funções parciais recursivas de uma variável, através da função J de Cantor
5
 que nos possibilita

codificar -uplas ordenadas. Deste modo, os resultados do Teorema de Rice se estendem,

implicitamente, a funções parciais recursivas de qualquer aridade.

Prova:

Inicialmente, provaremos a segunda direção da bicondicional. Suponhamos que C =

ou C = FpR. Por um lado, se C = , então = . Como sabemos, a função característica do

conjunto vazio,
 (), é recursiva. Por outro lado, se C = FpR, então = . Sabemos

também que a função característica do conjunto dos números naturais,
 (), é recursiva.

Portanto, em ambos os casos, o problema da decisão para é recursivamente solúvel.

5
 Uma exposição detalhada dessa função pode ser encontrada em DIAS, M. F.; LIMA, L. W. C. Teoria da

recursão. São Paulo: Editora UNESP, 2010, p.134.

73

Agora, por redução ao absurdo, provaremos a primeira direção da bicondicional.

Suponhamos que o problema da decisão para é recursivamente solúvel, ou seja,

suponhamos que existe uma função recursiva tal que:

 () = {

Sendo a função vazia, suponhamos, por absurdo, que C e C FpR. Então, ou

 C ou C. Analisemos, separadamente, ambos os casos, a fim de derivarmos em cada

um deles uma contradição.

 1º caso: Admitamos que C. Como C FpR, existe FpR – C, tal que

 . Sabendo disso, considere a seguinte função:

 () = {
 () ()

 ()

 Tal como foi definida, é, claramente, parcial algorítmica. Então, dada a Tese de

Church, é parcial recursiva. Logo, existe um índice e, tal que . Pelo Teorema s-m-

n de Kleene, () = ()(), sendo h uma função recursiva primitiva. Mas se este é o

caso, as seguintes consequências são válidas:

Por um lado,

 ()

 () () () () ()()

 () () () FpR – C ()

Por outro lado,

 () () () ()()

 () () C

Ora, em resumo:

 () () () () C

A partir dessa conjunção, podemos inferir, pela definição dos conectivos

proposicionais, as equivalências abaixo:

 () ()

74

 () () C

Agora, considere a seguinte função recursiva obtida por composição:

 (()) = {
 ()

 ()

Ou, de acordo com as equivalências anteriores:

 (()) = {
 ()

 ()

Sendo assim, note-se que () ((()) seria uma função característica

recursiva para K. Isto, porém, é um absurdo, pois, como já vimos, o corolário 3.8 garante que

o conjunto K não é recursivo.

2º caso: Suponhamos que C. Como C , existe C, tal que .

Sabendo disso, considere a seguinte função:

 () = {
 () ()

 ()

 Tal como foi definida, é, nitidamente, parcial algorítmica. Então, considerando a

Tese de Church, é parcial recursiva. Logo, há um índice , tal que . Dado o

Teorema s-m-n de Kleene, () = ()(), para uma função recursiva primitiva .

Mas se este é o caso, as seguintes consequências são válidas:

Por um lado,

 ()

 () ()

 () () ()() () () ()

Por outro lado,

 () () () ()()

 () () C

Ora, em resumo:

 () () () () C

75

A partir desta conjunção, podemos inferir, pela definição dos conectivos

proposicionais, as equivalências abaixo:

 () ()

 () () C

Agora, considere a seguinte função recursiva obtida por composição:

 (()) = {
 ()

 ()

Ou, de acordo com as equivalências anteriores:

 (()) = {
 ()

 ()

Sendo assim, note-se que (()) seria uma função característica recursiva para K.

Isto, porém, é um absurdo, pois, como já vimos, o corolário 3.8 assegura que o conjunto K

não é recursivo.

Por fim, em ambos os casos, obtivemos uma contradição, o que garante que a nossa

hipótese segundo a qual C e C FpR, admitindo C como um conjunto recursivo, é falsa.

Portanto, como queríamos provar, o problema da decisão para é recursivamente solúvel se,

e somente se, C = ou C = FpR.

Como consequência imediata do Teorema de Rice, podemos obter inúmeros resultados

de insolubilidade recursiva, tendo em vista que todo conjunto de índices de qualquer

subconjunto próprio de FpR que não seja vazio não é recursivo.

Corolário 3.11 Sejam FRP e FR, respectivamente, o conjunto das funções recursivas

primitivas e o conjunto das funções recursivas. O problema da decisão para os conjuntos

= { + e = { + é recursivamente insolúvel.

Prova:

Os conjuntos FRP e FR são subconjuntos próprios de FpR diferentes do . Então, o

problema da decisão para e é recursivamente insolúvel.

Apesar das consequências do Teorema de Rice, poderíamos deparar-nos com a

argumentação apresentada nos parágrafos seguintes, segundo a qual o conjunto dos índices

das funções recursivas primitivas é recursivo.

76

Assim como codificamos os programas de Turing, podemos também determinar uma

codificação com características semelhantes para as derivações parciais recursivas, de modo

que cada uma delas tenha um código. Neste contexto, dado um número qualquer, decidimos

mecanicamente se ele é ou não código de uma derivação parcial recursiva. Em caso

afirmativo, podemos decodificá-lo e recuperar a derivação que ele codifica. Por sua vez, dada

uma derivação parcial recursiva, determinamos mecanicamente se ela é ou não uma derivação

recursiva primitiva. Sendo assim, podemos definir tanto o conjunto de todos os números que

são códigos de derivações recursivas primitivas quanto o conjunto de todos os números que

são códigos de derivações parciais recursivas que não são recursivas primitivas.

De modo análogo ao que foi apresentado no início deste capítulo, poderíamos, por

exemplo, indexar cada função parcial recursiva com o código de sua respectiva derivação.

Neste caso, o código de uma derivação recursiva primitiva seria o índice da função recursiva

primitiva que ela deriva. Sabendo disso e considerando que conjunto dos códigos das

derivações recursivas primitivas é recursivo, alguém poderia, erroneamente, alegar que o

conjunto dos índices das funções recursivas primitivas também é recursivo. Assim, dado um

número qualquer, sendo ele código de uma derivação parcial recursiva, poderíamos decidir

mecanicamente se ele seria ou não índice de uma função recursiva primitiva. E, portanto,

contrariando o Teorema de Rice, o problema da decisão para o conjunto dos índices das

funções recursivas primitivas seria recursivamente solúvel.

Esse resultado, à primeira vista, poderia ser bastante convincente se não fosse um

pequeno detalhe: o conjunto dos códigos de todas as derivações recursivas primitivas não nos

oferece todos os índices possíveis de uma função recursiva primitiva, pois podemos ter uma

derivação parcial recursiva não recursiva primitiva cuja última função seja recursiva primitiva

e, portanto, essa função terá como um de seus índices um número que não é código de uma

derivação recursiva primitiva. Sendo assim, o conjunto dos índices das funções recursivas

primitivas é mais abrangente que o conjunto dos códigos das derivações recursivas primitivas.

A rigor, o conjunto que nos oferece todos os índices de funções recursivas primitivas é aquele

que contém os códigos de todas as derivações parciais recursivas que derivam uma função

recursiva primitiva, sejam elas recursivas primitivas ou não. E esse conjunto, como o

Teorema de Rice demonstra, é claramente indecidível. Tal resultado é, intuitivamente,

explícito: com efeito, dada uma derivação parcial recursiva (ou um programa de Turing) não é

possível decidir, em geral, se a função que ela deriva (ou que ele computa) é recursiva

primitiva.

77

Uma síntese dessas considerações é apresentada no esquema abaixo:

 = {i : i é código de uma derivação parcial recursiva}

 = {i : i é código de uma derivação recursiva primitiva}

 = { é parcial recursiva}

 = { é recursiva primitiva}

 = =

 é recursivo e é recursivo.

 é recursivo, mas não é recursivo (corolário 3.11).

A falsa ideia de que o problema da decisão para o conjunto dos índices das funções

recursivas primitivas é recursivamente solúvel provém do fato de, considerando a indexação

apresentada, admitir-se equivocadamente como iguais dois conjuntos que, na verdade, são

diversos, a saber: o conjunto dos códigos das derivações recursivas primitivas e o conjunto

dos índices das funções recursivas primitivas. O primeiro, como vimos, é decidível, ao passo

que o segundo, por sua vez, é indecidível e mais abrangente que o primeiro.

Estabelecemos a aritmetização da teoria das máquinas e dos programas de Turing e

obtivemos, como consequência imediata do Teorema de Rice, a indecidibilidade dos

conjuntos de índices das funções recursivas e das funções recursivas primitivas. Com efeito, o

Teorema de Rice trata diretamente dos índices de funções em vez das funções por eles

indexadas. Não é estranha esta abordagem. De fato, parece haver uma certa impropriedade em

se investigar se um conjunto de funções propriamente dito é ou não decidível, pois devemos

lembrar que tal investigação será protagonizada por uma máquina, cujas computações devem

partir de inputs finitos. Uma função, ao contrário, pode ser um conjunto infinito de n-uplas,

possibilidade que inviabilizaria a investigação. Neste contexto, para que a máquina seja

minimamente capaz de nos responder se uma função pertence ou não a um determinado

conjunto devemos então substituir o input: no lugar da função apresentamos, sob um

determinado formalismo, uma de suas descrições. Deste modo, a máquina investigará, a rigor,

se a descrição dada pertence ao conjunto das descrições que especificam uma função do

conjunto em questão. Posto que os índices, tais como definimos, constituem um exemplo

particular dessas descrições, podemos estabelecer as seguintes equivalências: dada uma

função numérica qualquer, * é parcial recursiva} se, e somente se, (

78

 } ou * é recursiva primitiva} se, e somente se, (}ou,

ainda, * é recursiva} se, e somente se, (). Ora, como pelo

Teorema de Rice, é decidível e pelo corolário 3.11, e são indecidíveis,

concluímos, indiretamente, que o conjunto das funções parciais recursivas é decidível,

enquanto que o conjunto das funções recursivas e o conjunto das funções recursivas

primitivas são indecidíveis, alcançando, com este resultado, o último objetivo ao qual nos

propomos. Portanto, embora haja um algoritmo para computar as funções recursivas

(primitivas), não há um algoritmo para decidir se uma função é ou não recursiva (primitiva).

79

CONCLUSÃO

O Entscheindungsproblem trouxe à tona a necessidade de se precisar as noções

intuitivas de algoritmo e função algorítmica, abrindo espaço para a instauração da Teoria da

Computabilidade. Acredita-se que estas noções tenham sido, rigorosamente, caracterizadas

sob diversos formalismos, dentre os quais apresentamos as funções parciais recursivas e as

funções parcialmente Turing-computáveis, acompanhadas de seus respectivos algoritmos: as

derivações parciais recursivas e as máquinas de Turing. Lógicos e matemáticos demonstraram

que todos os formalismos oferecidos para as referidas noções intuitivas eram equivalentes.

Essa equivalência ficou conhecida como Resultado fundamental da Teoria da

Computabilidade e constitui, até hoje, um dos argumentos fortes a favor da Tese de Church-

Turing que, apesar de não ser matematicamente provada, é largamente aceita.

A partir da definição de função recursiva, noção fundamental da Tese de Church-

Turing, inferimos, por um lado, de forma imediata, a existência de funções numéricas

algorítmicas. Por outro lado, a partir de uma simples comparação entre a cardinalidade do

conjunto das funções recursivas () e a cardinalidade do conjunto das funções numéricas

totais (), é possível provar que existem funções numéricas para as quais não há um

procedimento mecânico que determine o seu respectivo valor a partir de seus argumentos. Ou

seja, não existem algoritmos para computá-las. Por isso, elas são chamadas funções não-

algorítmicas. Em outras palavras, podemos dizer que para tais funções não há capacidade

computacional suficiente para solucioná-las. Sendo assim, descobrir os limites entre funções

algorítmicas e não-algorítmicas é equivalente a descobrir o alcance e os limites do

computador em geral. Nesse contexto, a Tese de Church-Turing representa um enorme ganho

computacional, pois, de antemão, saberemos identificar as atividades que um computador

poderá ou não desenvolver. Esta tese, no entanto, pode vir a ser, algum dia, refutada,

possivelmente a partir de um contraexemplo. Mesmo que isto venha a ocorrer, a teoria das

funções parciais recursivas e a teoria das funções parcialmente Turing-computáveis não

perderão a sua importância, pois elas trazem consigo motivações suficientemente fortes para

se consolidarem (o que, de fato, já aconteceu) como um campo vasto de estudo.

Como parte do Resultado Fundamental, demonstramos a equivalência entre as funções

parciais recursivas e as funções parcialmente Turing-computáveis. Ao desenvolvermos a

primeira parte desta demonstração, o que fizemos, nas entrelinhas, foi, na verdade, apresentar

programas de Turing para computar as funções parciais recursivas. Estes programas, como

80

definimos, são constituídos por quíntuplas em vez de quádruplas. Do ponto de vista

computacional, as computações realizadas de acordo com eles são, em geral, mais eficientes

quando comparadas com aquelas realizadas de acordo com programas cujos elementos são

quádruplas, pois alcança-se o output com um menor número de passos e, evidentemente, em

um intervalo menor de tempo. Esse resultado nos introduz em um tópico muito discutido,

atualmente, em Ciência da Computação, a análise da eficiência de algoritmos, que não só

considera o tempo de execução de um algoritmo como também a sua capacidade de

armazenar, efetuar e recuperar os passos de uma computação.

Vimos que a Teoria da Computabilidade busca, entre outras coisas, oferecer uma

resposta matematicamente precisa para o problema da decisão de inúmeros conjuntos,

classificando-os como decidíveis ou indecidíveis. De modo particular, concluímos, utilizando

o Teorema de Rice, que embora o conjunto de índices das funções parciais recursivas seja

decidível, os conjuntos de índices das funções recursivas e das funções recursivas primitivas

não o são. Estabelecidas algumas equivalências, estendemos estes resultados sobre os

conjuntos de índices para os conjuntos de funções por eles indexadas e concluímos que a

recursividade de garante a decidibilidade de FpR, enquanto que a não-recursividade de

 e garante, respectivamente, a indecidibilidade de FRP e FR.

Diante deste resultado, surge-nos uma outra questão ainda mais geral: dado um

conjunto de funções parciais recursivas C e o seu respectivo conjunto de índices que

propriedades de “espelham” propriedades de C? Ou ainda: todas as propriedades que (não)

predicam-se de também (não) predicam-se de C? Uma resposta para estas questões seria

imediata se houvesse entre os conjuntos e C uma função biunívoca. Mas, como vimos, não

estamos diante de uma codificação ortodoxa, porque cada elemento de C possui infinitos

índices a ele associados. Isto posto, fica claro, de antemão, que, pelo menos, quanto à

cardinalidade, ambos os conjuntos não coincidem. Mas, o que dizer quanto a outras

propriedades? Poderíamos aprofundar essa questão a partir do estudo das hierarquias

(aritmética e analítica) de conjuntos de funções numéricas, apresentadas em capítulos mais

avançados da Teoria da Computabilidade, investigando quais as propriedades de na

hierarquia aritmética dos conjuntos numéricos "espelham" propriedades de C na hierarquia

aritmética dos conjuntos de funções numéricas. Esta discussão, porém, demandaria o

desenvolvimento de um outro trabalho a ser analisado por nós em uma próxima oportunidade.

81

REFERÊNCIAS

CHURCH, A. An Unsolvable Problem of Elementary Number Theory. The American Journal

of Mathematics, vol. 58, 1936, p. 345-363.

___________. A Note on the Entscheidungsproblem. The Journal of Symbolic Logic, v. 1, n.

1. p. 40-41, mar., 1936. Disponível em: <https://www.fdi.ucm.es/profesor/fraguas/CC/church-

A%20Note%20on%20the%20Entscheidungsproblem.pdf>. Acesso em: 10 de janeiro de

2016.

BOOLOS, G. S.; BURGESS, J. P.; JEFFREY, R. C. Computabilidade e lógica. Trad. Cezar

A. Mortari. São Paulo: Editora UNESP, 2012

COOPER, S. B. Computability Theory. New York: Chapman and Hall/CRC, 2004.

DAVIS, M. Computability and Unsolvability. Dover: New York, 1982.

___________. The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable

Problems and Computable Functions. Dover: New York, 1993.

DIAS, M. F.; FILHO, R. N. A. P. Teoria de la recursión y lógica. Revista de Filosofia.

Buenos Aires: Asociación de Estudios Filosóficos, 1987.

DIAS, M. F.; WEBER, L. Teoria da recursão. São Paulo: Ed. UNESP, 2010.

EPSTEIN, R. C.; CARNIELLI, W. A. Computabilidade, funções computáveis, lógica e os

fundamentos da Matemática. 2. ed. São Paulo: Editora UNESP, 2009

FONSECA FILHO, C. História da Computação: O caminho do pensamento e da tecnologia.

Porto Alegre: EDIPUCRS, 2007.

KALMÁR, L. An argument against the plausibility of Church‟s Thesis. Constructivity in

mathematics. Heyting: Amsterdam, North HOLLAND, 1959.

KLEENE, S. C. Introduction to Metamathematics. Ishi Press: New York and Tokyo, 2009.

MENDELSON, E. Introduction to Mathematical Logic, 5. Ed. New York: Chapman and

Hall/CRC, 2009.

MONK, J. D. Mathematical Logic. New York, Heidelberg, Berlin: Springer-Verlag, 1976.

ODIFREDDI, P. Classical Recursion Theory: The Theory of Functions and Sets of Natural

Numbers, I. North-Holland: Amsterdam, New York, 1989.

ROGERS, H. Theory of Recursive Functions and Effective Computability. Cambridge,

Massachusetts, London: MIT Press, 1987.

SOARE, R. Recursively Enumerable Sets and Degrees: A Study of Computable Functions and

Computably Generated Sets. Berlin, Heidelberg, New York: SpringerVerlag, 1987.

SOBRINHO, J.Z. Aspectos da Tese de Church-Turing. Matemática Universitária, nº 6, p. 1-

23, dez., 1987. Disponível em:

http://matematicauniversitaria.ime.usp.br/Conteudo/n06/n06_Artigo01.pdf. Acesso em: 12 de

dezembro de 2015.

http://matematicauniversitaria.ime.usp.br/Conteudo/n06/n06_Artigo01.pdf

82

TURING, A. On Computable Numbers, with an Application to the Entscheidungsproblem.

Proceedings of the London Mathematical Society, v. 42, p. 230-265, 1936. Disponível em:

http://plms.oxfordjournals.org/content/s2-

42/1/230.full.pdf+html?ijkey=bvNIrAXLJ7n4ODP&keytype=ref. Acesso em: 10 de janeiro

de 2016.

