Skip navigation

Use este identificador para citar ou linkar para este item: https://repositorio.ufpb.br/jspui/handle/123456789/11232
Tipo: Dissertação
Título: Números inteiros de Eisenstein
Autor(es): Lisboa, Diego de Lima
Primeiro Orientador: Carvalho, Bruno Henrique
Resumo: Norteado pelo desenvolvimento da Teoria dos Números Inteiros, o presente trabalho explorará de forma significativa o estudo das propriedades, teoremas, lemas e corolários desta teoria a um domínio mais geral, conhecido como o anel dos números Inteiros de Eisesntein, representado por Z[ω], baseado na relação existente entre eles e o anel dos Inteiros Gaussianos, Z[i], buscando compreender de forma mais significativa, simploria e sistemática a aritmética deste anel, construindo as noções de divisibilidade entre dois inteiros de Eisenstein quaisquer, de como determinar um máximo divisor comum, de como identificar os irredutíveis e quais critérios utilizá-los, porquê que certos elementos primos Z não são irredutíveis em Z[ω], construir a decomposição de irredutíveis deste anel tal como demonstrar a unicidade desta fatoração, além do interesse de ajudar ao aprimoramento de uma melhor compreensão de vários problemas envolvendo números inteiros e ampliar de forma significativa a teoria existente nos Inteiros de Eisenstein.
Abstract: Based on the development of the Theory of Integer Numbers, the present work will study of the properties, theorems, lemmas and corollaries of this theory to a more general domain, known as the Eisesntein Integer Ring, represented by Z[ω], based on the relationship between them and the ring of the Gaussian Integer,Z[i], seeking to understand in a most signi cant, simplistic and systematic way the arithmetic of this ring, constructing the notions of divisibility between two integers of Eisenstein, how to determine a common maximum divisor, how to identify the irreducible ones, and what criteria to use, why certain prime elements in Z are not irreducible in Z[ω]. We will also construct the irreducible decomposition of this ring as well as demonstrate the uniqueness of this factorization. Our interest is helping to improve a better understanding of various problems involving whole numbers and The theory of Eisenstein's Integers.
Palavras-chave: Inteiros
Anel
Eisenstein
Irredutíveis
Integers
Ring
Eisenstein
Irreducible
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
Idioma: por
País: Brasil
Editor: Universidade Federal da Paraíba
Sigla da Instituição: UFPB
Departamento: Matemática
Programa: Mestrado Profissional em Matemática
Tipo de Acesso: Acesso aberto
URI: https://repositorio.ufpb.br/jspui/handle/123456789/11232
Data do documento: 31-Ago-2017
Aparece nas coleções:Centro de Ciências Exatas e da Natureza (CCEN) - Mestrado Profissional em Matemática

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Arquivototal.pdfArquivo total663,95 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.