Skip navigation

Use este identificador para citar ou linkar para este item: https://repositorio.ufpb.br/jspui/handle/123456789/14008
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSilva, Sonaly de Lima-
dc.date.accessioned2019-04-11T16:11:43Z-
dc.date.available2018-10-16-
dc.date.available2019-04-11T16:11:43Z-
dc.date.issued2018-08-30-
dc.identifier.urihttps://repositorio.ufpb.br/jspui/handle/123456789/14008-
dc.description.abstractNon-ionizing radiation (NIR) is a type of electromagnetic radiation present in the most various types of environments, originating from diverse sources such as computers, printers, notebooks, telephones, power networks, electric power transformers, microwaves, and other consumer electronics. Despite not generating ionization, this type of radiation raises concerns regarding the exposure of employees in work environments with electronic equipment.The International Agency for Research on Cancer stated in a report from 2002 that exposure to electromagnetic radiation is possibly carcinogenic to humans. Several studies have been performed to identify the correlation between the human exposure to NIR and the development of several pathologies. Thus, work environments with electronic equipment may expose their employees to health problems. Therefore, this research presents an evaluation of the NIR levels in working environments with visual display terminals (VDT) and other electronic resources. Four rooms were selected from a public University - two department offices, a study laboratory and a computer room - all with different internal characteristics including the number of devices and employees, layout, area and location. The magnetic flux density was mapped in the work environment. Different points in the environment, spaced 1meter apart, were selected for measurement in six frequency band intervals: 1-8Hz, 8-25Hz, 25-50Hz, 50 -400Hz, 400-3kHz, 3 kHz-30 kHz. Graphical descriptive analyses of the magnetic flux density found in each environment were developed, and the oscillation in each frequency band interval was determined. Another analysis regarding the magnetic flux density, especially for the data measured near the employees, aimed to represent the density levels over time by means of a probability distribution. Simultaneously, both the profiles and reports of complaints of the employees who performing their activities in these rooms were obtained through surveys addressing questions regarding their professional life, characteristics of their work activities, physical activity, habits, and perceived symptoms throughout and after their workday. The data obtained from this questionnaire were summarized and a descriptive analysis of these data was performed to identify the employees working in the environments studied. To identify possible health damages to the employees, which would be indicated by heating of the skin, thermal images of an employee were obtained. These images were analyzed with the aid of Matlab software for quantitative verification of skin temperature increase, presented in the images. It was verified that the environments that have different internal characteristics present magnetic flux densities that vary according to the (1) positioning, the type and quantity of the NIR sources internal to the environment; o (2) layout and distribution of these sources in the environment; and (3) external factors, such as the presence of electric power frames. Reports of daytime drowsiness and difficulty getting out of bed were more frequent. From the thermal mapping that allowed to evaluate the induction of magnetic field generated in the body of the was verified low relation between the thermal variation and the magnetic flux density.pt_BR
dc.description.provenanceSubmitted by Glaucia Paes (glaucia.mpaes@gmail.com) on 2019-04-11T16:11:43Z No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) Arquivototal.pdf: 6642350 bytes, checksum: 11e4b5c01b4dc0cb79bd012ebe723965 (MD5)en
dc.description.provenanceMade available in DSpace on 2019-04-11T16:11:43Z (GMT). No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) Arquivototal.pdf: 6642350 bytes, checksum: 11e4b5c01b4dc0cb79bd012ebe723965 (MD5) Previous issue date: 2018-08-30en
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Paraíbapt_BR
dc.rightsAcesso abertopt_BR
dc.rightsAttribution-NoDerivs 3.0 Brazil*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/br/*
dc.subjectCampos eletromagnéticospt_BR
dc.subjectAmbientes com equipamentos eletrônicospt_BR
dc.subjectProblemas de saúdept_BR
dc.subjectEfeitos de campos eletromagnéticospt_BR
dc.subjectCampos de extrema baixa frequênciapt_BR
dc.subjectDensidade de fluxo magnéticopt_BR
dc.subjectTermografia infravermelhapt_BR
dc.subjectElectromagnetic fieldspt_BR
dc.subjectEnvironments with electronic equipment. Health problemspt_BR
dc.subjectEffects of electromagnetic fieldspt_BR
dc.subjectExtremely low frequency fieldspt_BR
dc.subjectMagnetic flux densitypt_BR
dc.subjectInfrared thermographypt_BR
dc.subjectHealth problemspt_BR
dc.subjectExtremely low frequency fieldspt_BR
dc.subjectMagnetic flux densitypt_BR
dc.subjectInfrared thermographypt_BR
dc.subjectRadiação não ionizante - Ambiente de trabalhopt_BR
dc.subjectCampo eletromagnético - Ambiente de trabalho - Radiação - Equipamentospt_BR
dc.titleAvaliação dos níveis de radiação não ionizante em ambientes de trabalho de uma universidade brasileirapt_BR
dc.typeDissertaçãopt_BR
dc.contributor.advisor1Silva, Luiz Bueno da-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/1455327957816397pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/7287991282662382pt_BR
dc.description.resumoA radiação não ionizante (RNI) é um tipo de radiação eletromagnética e está presente nos mais variados ambientes por meio de diversas fontes como computadores, impressoras, notebooks, telefones, rede de distribuição elétrica, transformadores de energia elétrica, microondas e outros eletroeletrônicos. Apesar de não gerar ionizações desperta o cuidado quanto à exposição dos funcionários nos ambientes de trabalho providos de equipamentos eletrônicos. A Agência Internacional de Pesquisa sobre o Câncer declarou em um relatório de 2002 que a exposição à radiação eletromagnética é possivelmente cancerígena para os seres humanos. Diversos estudos vêm sendo realizados buscando identificar a correlação entre a exposição do homem à RNI e o desenvolvimento de diversas patologias. Dessa forma, Ambientes de trabalho providos por equipamentos eletrônicos podem expor seus funcionários a problemas de saúde. Dentro desta perspectiva esta pesquisa apresenta uma avaliação dos níveis de radiação não ionizante em ambientes de trabalho portadores de VDT e outros recursos eletrônicos. Foram selecionadas quatro salas de uma Universidade pública, duas secretarias, um laboratório de estudos e uma sala de informática, todas com características internas diferentes - quantidade de equipamentos e de funcionários, layout, área e localização. Realizou-se um mapeamento da densidade de fluxo magnético nos ambientes de trabalho e sob uma distância de um metro foram determinados pontos no ambiente a serem medidos em seis intervalos de faixas de frequências: 1-8Hz, 8-25Hz, 25-50Hz, 50-400Hz, 400-3kHz, 3kHz-30kHz. Foram elaboradas análises descritivas gráficas dos níveis de densidade de fluxo magnético encontradas em cada ambiente, bem como sua oscilação em cada intervalo de faixa de frequência. Outra análise quanto à densidade de fluxo magnético, especialmente as mensuradas próximas aos funcionários voltou-se para a representação dos níveis de densidade de fluxo magnético ao longo do tempo, por meio de distribuição probabilística. Simultaneamente, foram coletados os perfis e relatos de queixas dos funcionários que desempenham suas atividades nesses locais através de questionários abordando perguntas acerca da vida profissional, das características de suas atividades ocupacionais, da prática de atividade física, hábitos de vida, e sintomas percebidos ao longo e posterior ao dia de trabalho. Tabelaram-se os dados do questionário e fez-se uma análise descritiva desses dados para identificar as características das pessoas que exercem atividades nos ambientes de trabalho. Para verificação de possíveis danos à saúde do trabalhador indicados pelo aquecimento da pele, obteve-se imagens térmicas de um funcionário, considerado apto ao estudo. Estas imagens foram analisadas com auxílio do software Matlab para verificação quantitativa do aumento de temperatura da pele, apresentada nas imagens. Constatou-se que os ambientes que possuem características internas diferentes apresentam densidade de fluxo magnético que variam de acordo com o (1) posicionamento, o tipo e a quantidade das fontes de RNI internas ao ambiente; o (2) layout e distribuição dessas fontes no ambiente; e (3) fatores externos, como a presença de quadros de energia elétrica. Relatos quanto à sonolência ao longo do dia e dificuldade de levantar da cama foram mais frequentes. Do mapeamento térmico que permitiu avaliar a indução de campo magnético gerado no corpo do constatou-se baixa relação entre a variação térmica e a densidade de fluxo magnético.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentEngenharia de Produçãopt_BR
dc.publisher.programPrograma de Pós-Graduação em Engenharia de Produçãopt_BR
dc.publisher.initialsUFPBpt_BR
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA DE PRODUCAOpt_BR
Aparece nas coleções:Centro de Tecnologia (CT) - Programa de Pós-Graduação em Engenharia de Produção

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
Arquivototal.pdfArquivo total6,49 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons