Skip navigation

Use este identificador para citar ou linkar para este item: https://repositorio.ufpb.br/jspui/handle/123456789/18913
Registro completo de metadados
Campo DCValorIdioma
dc.creatorFerreira, Williby da Silva-
dc.date.accessioned2020-12-28T02:15:03Z-
dc.date.available2020-12-15-
dc.date.available2020-12-28T02:15:03Z-
dc.date.issued2019-06-10-
dc.identifier.urihttps://repositorio.ufpb.br/jspui/handle/123456789/18913-
dc.description.abstractIntroduction: The health area produces daily a large volume of data that must be stored efficiently. In order for the information produced to be made available, it must be organized. In this sense, technologies focused on data collection, storage and manipulation have been evolving through automated computational techniques, methods and tools. One of the most used forms is known as ontology, which allows the representation of a set of concepts and portrays the semantics of information. However, the full use of ontologies in computational systems is still restricted. Considering this constraint and based on tha fact that relational databases provide several benefits such as scalability for queries, robustness, performance, maturity, availability and reliability; an alternative that have arisen is the ontological mapping. That is, developing mechanisms in the relational database that perform functions close to ontologies and still safeguard the data. In this context, it was observed the need to develop an approach to map an ontology from the biomedical domain to a relational database so that it would assist the decision making process in the diagnosis of chronic kidney diseases (CKD). Objectives: The general objective of this proposal is to present an approach for ontology mapping in the biomedical domain for relational databases with clinical decision support and emphasis on the diagnosis process of CKD. Methods: In order to develop this study, methodological stages were defined, involving knowledge construction, data modeling, mapping execution and validation of the developed technique. Initially, the bibliographical survey was carried out to refine the necessary knowledge and to understand the object under study. Then the mapping rules were elaborated and the data modeling stages were executed, resulting in the ontological mapping. Results: The main contribution presented is DB-Ontology, a relational database to support clinical decision in the diagnosis process of CKD. This approach allows the persistence of data in the database and preserves the semantics of the biomedical domain ontology. DB-Ontology is a result of the proposed ontological mapping. Conclusion: With the implementation of the steps defined in the methodology, it was possible to map the main classes of OntoDecideDRC to DB-Ontology. In addition, it was possible to understand the reality in USFs, so that such reality would be adapted to the hierarchy of the ontology and consequently reflect in the relational database that was developed. Although the literature presentes lacks regarding ontological mapping studies using stored procedures, it was possible to develop an efficient and appropriate approach to support clinical decision making.pt_BR
dc.description.provenanceSubmitted by Anna Regina Ribeiro (anna@biblioteca.ufpb.br) on 2020-12-16T19:11:45Z No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) WillibyDaSilvaFerreira_Dissert.pdf: 3115561 bytes, checksum: d4d0b9a6b1561d45c65a12331712c62a (MD5)en
dc.description.provenanceApproved for entry into archive by Biblioteca Digital de Teses e Dissertações BDTD (bdtd@biblioteca.ufpb.br) on 2020-12-28T02:15:03Z (GMT) No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) WillibyDaSilvaFerreira_Dissert.pdf: 3115561 bytes, checksum: d4d0b9a6b1561d45c65a12331712c62a (MD5)en
dc.description.provenanceMade available in DSpace on 2020-12-28T02:15:03Z (GMT). No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) WillibyDaSilvaFerreira_Dissert.pdf: 3115561 bytes, checksum: d4d0b9a6b1561d45c65a12331712c62a (MD5) Previous issue date: 2019-06-10en
dc.description.sponsorshipNenhumapt_BR
dc.languageporpt_BR
dc.publisherUniversidade Federal da Paraíbapt_BR
dc.rightsAcesso abertopt_BR
dc.rights.urihttp://creativecommons.org/licenses/by-nd/3.0/br/*
dc.subjectInformática em saúdept_BR
dc.subjectBanco de dados relacionalpt_BR
dc.subjectSistemas de suporte à decisão clínicapt_BR
dc.subjectOntologiaspt_BR
dc.subjectRelational databasept_BR
dc.subjectClinical decision support systemspt_BR
dc.subjectOntologiespt_BR
dc.subjectBiomedicalpt_BR
dc.titleMapeamento ontológico com aplicação no domínio biomédicopt_BR
dc.typeDissertaçãopt_BR
dc.contributor.advisor1Siebra, Clauirton de Albuquerque-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/7707799028683443pt_BR
dc.creator.Latteshttp://lattes.cnpq.br/9252828727383664pt_BR
dc.description.resumoIntrodução: A área da saúde produz diariamente um grande volume de dados que deve ser armazenado de maneira eficiente. É preciosa organizar as informações produzidas para que estas sejam disponibilizadas. Nesse sentido, as tecnologias voltadas para coleta, armazenamento e manipulação de dados vêm evoluindo por meio de técnicas, métodos e ferramentas computacionais automatizadas. Uma das formas mais utilizadas é conhecida como ontologia, a qual permite a representação de um conjunto de conceitos e retrata a semântica das informações. Contudo, o uso completo de ontologias em sistemas computacionais ainda é restrito. Assim, considerando essa restrição e sabendo que os bancos de dados relacionais fornecem, como benefício, escalabilidade para consultas, robustez, desempenho, maturidade, disponibilidade e confiabilidade. Uma alternativa que tem surgido é o mapeamento ontológico. Isto é, desenvolver mecanismos no banco de dados relacionais que executem funções próximas a de ontologias e ainda resguardem os dados. Nesse breve contexto, observou-se a necessidade de desenvolver uma abordagem para mapear uma ontologia do domínio biomédico para um banco de dados relacional de modo que o mesmo auxiliasse o processo decisório no diagnostico da doença renal crônica. Objetivos: O objetivo geral desta proposta é apresentar uma abordagem para mapeamento de ontologia no domínio biomédico para banco de dados relacionais com suporte a decisão clínica e ênfase no processo de diagnóstico das doenças renais crônicas (DRC). Métodos: Para desenvolver esse estudo foram definidas etapas metodológicas que envolvem a construção do conhecimento, a modelagem dos dados, a execução do mapeamento e a validação da técnica desenvolvida. Inicialmente foi realizado o levantamento bibliográfico para refinar o conhecimento necessário e compreender o objeto em estudo. Em seguida foram elaboradas as regras de mapeamento e executado as etapas da modelagem de dados, resultando no mapeamento ontológico. Resultados: A principal contribuição apresentada é o DB-Ontology, um banco de dados relacional eficiente para suporte a decisão clínica no processo de diagnostico da DRC. Essa abordagem permite a persistência de dados no banco e preserva a semântica da ontologia de domínio biomédico. O DB-Ontology é resultado do mapeamento ontológico proposto. Conclusão: Com a execução das etapas definidas na metodologia, foi possível mapear as principais classes da OntoDecideDRC para o DB-Ontology. Além disso, foi possível compreender a realidade na Unidade de Saúde da Família (USF), de modo que, tal realidade fosse adaptada a hierarquia da ontologia e consequentemente refletisse no banco de dados relacional que foi desenvolvido. Embora a literatura seja carente de estudos de mapeamento ontológico com uso de stored procedures, foi possível desenvolver uma abordagem eficiente e capaz de dar suporte a decisão clínica.pt_BR
dc.publisher.countryBrasilpt_BR
dc.publisher.departmentInformáticapt_BR
dc.publisher.programPrograma de Pós-Graduação em Informáticapt_BR
dc.publisher.initialsUFPBpt_BR
dc.subject.cnpqCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOpt_BR
Aparece nas coleções:Centro de Informática (CI) - Programa de Pós-Graduação em Informática

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
WillibyDaSilvaFerreira_Dissert.pdf3,04 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons