Use este identificador para citar ou linkar para este item:
https://repositorio.ufpb.br/jspui/handle/123456789/26323
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Lima, Luiz Fernando Fonsêca Pinheiro de | - |
dc.date.accessioned | 2023-02-23T16:15:13Z | - |
dc.date.available | 2023-01-11 | - |
dc.date.available | 2023-02-23T16:15:13Z | - |
dc.date.issued | 2022-08-26 | - |
dc.identifier.uri | https://repositorio.ufpb.br/jspui/handle/123456789/26323 | - |
dc.description.abstract | Artificial intelligence systems for decision-making have become increasingly popular in several areas. However, it is possible to identify biased decisions in many applications, which have become a concern for the computer science, artificial intelligence, and law communities. Therefore, researches are proposing solutions to mitigate bias and discrimination in decision-makers. Some explored strategies are based on generative adversarial networks to generate fair data. Others are based on adversarial learning to achieve fairness in machine learning by encoding fairness constraints through an adversarial model. Moreover, it is usual for each proposal to assess its model with a specific metric, making the comparison of current approaches a complex task. Therefore, this work proposes a benchmark procedure with a systematical method to assess the fair machine learning models. In this sense, we define the FU-score metric to evaluate the utility-fairness trade-off, the utility and fairness metrics to compose this assessment, the used dataset and applied data preparation, and the statistical test. We also performed this benchmark evaluation for the non-generative adversarial models, analyzing the literature models from the same metric perspective. This assessment could not indicate a single model which better performs for all datasets. However, we built an understanding of how each model performs on each dataset which statistical confidence. | pt_BR |
dc.description.provenance | Submitted by Fernando Augusto Alves Vieira (fernandovieira@biblioteca.ufpb.br) on 2023-02-13T16:16:25Z No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) LuizFernandoFonsêcaPinheiroDeLima_Dissert.pdf: 1308029 bytes, checksum: 25ad6d15c01dcdf7cc98d14bc23a84f4 (MD5) | en |
dc.description.provenance | Approved for entry into archive by Biblioteca Digital de Teses e Dissertações BDTD (bdtd@biblioteca.ufpb.br) on 2023-02-23T16:15:13Z (GMT) No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) LuizFernandoFonsêcaPinheiroDeLima_Dissert.pdf: 1308029 bytes, checksum: 25ad6d15c01dcdf7cc98d14bc23a84f4 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2023-02-23T16:15:13Z (GMT). No. of bitstreams: 2 license_rdf: 805 bytes, checksum: c4c98de35c20c53220c07884f4def27c (MD5) LuizFernandoFonsêcaPinheiroDeLima_Dissert.pdf: 1308029 bytes, checksum: 25ad6d15c01dcdf7cc98d14bc23a84f4 (MD5) Previous issue date: 2022-08-26 | en |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES | pt_BR |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal da Paraíba | pt_BR |
dc.rights | Acesso aberto | pt_BR |
dc.rights | Attribution-NoDerivs 3.0 Brazil | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nd/3.0/br/ | * |
dc.subject | Aprendizado adversário | pt_BR |
dc.subject | Aprendizado de máquina | pt_BR |
dc.subject | Benchmark | pt_BR |
dc.subject | Trade-off | pt_BR |
dc.subject | Adversarial Learning | pt_BR |
dc.subject | Machine Learning | pt_BR |
dc.subject | Justiça | pt_BR |
dc.subject | Fairness | pt_BR |
dc.title | Using a fairness-utility trade-off metric to systematically benchmark non-generative fair adversarial learning strategies | pt_BR |
dc.type | Dissertação | pt_BR |
dc.contributor.advisor1 | Siebra, Clauirton de Albuquerque | - |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/7707799028683443 | pt_BR |
dc.contributor.advisor2 | Ricarte, Danielle Rousy Dias | - |
dc.contributor.advisor2Lattes | http://lattes.cnpq.br/4603035287575568 | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/8727341617324704 | pt_BR |
dc.description.resumo | Os sistemas de inteligência artificial para tomada de decisão têm se tornado cada vez mais populares em diversas áreas. Entretanto, é possível identificar decisões enviesadas em muitas aplicações, que se tornaram uma preocupação para as comunidades de ciência da computação, inteligência artificial e direito. Portanto, as pesquisas vêm propondo soluções para mitigar o viés e a discriminação presente nos tomadores de decisão. Algumas estratégias exploradas são baseadas em redes adversários generativas para gerar dados justos. Outros são baseados no aprendizado adversário para alcançar a justiça no aprendizado de máquina codificando restrições de justiça por meio de um componente adversário. Além disso, é comum que cada proposta avalie seu modelo com uma métrica específica, tornando a comparação das abordagens atuais uma tarefa complexa. Portanto, este trabalho propõe um procedimento de benchmark com um método sistemático para avaliar os modelos de aprendizado de máquina justo. Nesse sentido, definimos a métrica FU-score para avaliar o trade-off de utilidade e justiça, as métricas de utilidade e justiça para compor essa avaliação, o conjunto de dados utilizado e a preparação aplicada e o teste estatístico. Também realizamos esta avaliação de benchmark para os modelos adversários não generativos, analisando os modelos da literatura sob a mesma métrica. Essa avaliação não pôde apontar um único modelo com melhor desempenho para todos os conjuntos de dados. No entanto, construímos um entendimento de como cada modelo funciona em cada conjunto de dados com confiança estatística. | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Informática | pt_BR |
dc.publisher.program | Programa de Pós-Graduação em Informática | pt_BR |
dc.publisher.initials | UFPB | pt_BR |
dc.subject.cnpq | CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO | pt_BR |
Aparece nas coleções: | Centro de Informática (CI) - Programa de Pós-Graduação em Informática |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
LuizFernandoFonsêcaPinheiroDeLima_Dissert.pdf | 1,28 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma
Licença Creative Commons