Use este identificador para citar ou linkar para este item:
https://repositorio.ufpb.br/jspui/handle/123456789/3611
Registro completo de metadados
Campo DC | Valor | Idioma |
---|---|---|
dc.creator | Bezerra, Daniel Souza | - |
dc.date.accessioned | 2018-03-06T14:30:34Z | - |
dc.date.available | 2017-06-26 | - |
dc.date.available | 2018-03-06T14:30:34Z | - |
dc.date.issued | 2017-06-09 | - |
dc.identifier.uri | https://repositorio.ufpb.br/jspui/handle/123456789/3611 | - |
dc.description.abstract | The developmental process of epilepsies involves diverse mechanisms that culminate in the hyperactivity of a population of neurons, resulting in a pattern of repeated and rhythmic depolarizations. Antiepileptic drugs act by increasing GABAergic neurotransmission, reducing the effects of glutamate, or blocking ion channels, and are endowed with serious adverse effects that make it difficult for patients to adhere to treatment. This fact has encouraged the search for compounds of natural origin with potential anticonvulsant effect. Thus, the present study aimed to evaluate the effect of eucalyptol in seizures induced by pentylenetetrazole (PTZ). For this, male Swiss mice, orally treated with monotrepene, were used. The first protocol evaluated the toxicity and the estimated LD50 of the compound. Based on the value of LD50, the doses of terpene used in the behavioral and neurochemical tests were selected. For the behavioral tests, groups of mice were pretreated with saline (10 mL/kg, vol), diazepam (2 mg/kg, ip) and eucalyptol (100, 200 and 400 mg/kg, vol) and then with pentylenetetrazole 80 mg/kg, ip) and evaluated for the following parameters: seizure intensity, latency for first seizure and time of death. For neurochemical tests, groups of mice were pretreated with saline (10 mL/kg, v.o.) and eucalyptol (400 mg/kg, i.p.) and subsequently with pentylenetetrazole (80 mg/kg, i.p.); The determination of the concentration of neurotransmitters (monoamines - dopamine, noradrenaline and serotonin) and oxidative stress markers (nitrite and thiobarbituric acid reactive substances - TBARs) were the parameters evaluated. The results were analyzed by ANOVA or Kruskal-Wallis, followed by Student-Newman-Keuls, and Dunns, respectively. Values of p <0.05 were considered significant. The results showed that oral administration of eucalyptol had low toxicity and the estimated LD50 was greater than 2000 mg / kg. In the PTZ-induced seizure test, only the higher dose of monoterpene (400 mg/kg) significantly reduced seizure intensity by 60%, increased latency for onset of the first seizure by 85% and time of death of the animals in 75% in relation to the control. Similarly, treatment with eucalyptol (400 mg/kg) significantly reduced the concentration of noradrenaline, dopamine and serotonin by 50%, 33% and 70%, respectively, in relation to the PTZ-treated group (80 mg/kg). In addition, treatment with eucalyptol (400 mg/kg) significantly reduced the concentration of TBARs by 33%, but not nitrite, relative to the PTZ treated group (80 mg/kg). Taken together, the results show that the monoterpene studied has low oral toxicity and an important anticonvulsant effect, since its administration is capable of attenuating the convulsions chemically induced by pentylenetetrazol with consequent reduction of the concentration of monoamines and the reactive substances of thiobarbituric acid, elements whose increase is associated with the epileptogenesis phenomenon. | pt_BR |
dc.description.provenance | Submitted by maria dalvanir lima (dalvanir07@gmail.com) on 2018-03-06T14:30:32Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) DSB 26062017.pdf: 1837595 bytes, checksum: 164a68cd057497d31fcf6d22ac7260f5 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2018-03-06T14:30:34Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) DSB 26062017.pdf: 1837595 bytes, checksum: 164a68cd057497d31fcf6d22ac7260f5 (MD5) Previous issue date: 2017-06-09 | en |
dc.language | por | pt_BR |
dc.publisher | Universidade Federal da Paraíba | pt_BR |
dc.rights | Acesso aberto | pt_BR |
dc.subject | Convulsão | pt_BR |
dc.subject | Pentilenotetrazol | pt_BR |
dc.subject | Eucaliptol | pt_BR |
dc.subject | Monoaminas | pt_BR |
dc.subject | Nitrito | pt_BR |
dc.subject | Tbars | pt_BR |
dc.title | Avaliação do efeito do eucaliptol nas convulsões induzidas por pentilenotetrazol em camundongos | pt_BR |
dc.type | TCC | pt_BR |
dc.contributor.advisor1 | Felipe, Cícero Francisco Bezerra | - |
dc.contributor.advisor1Lattes | http://lattes.cnpq.br/7960322400408876 | pt_BR |
dc.contributor.advisor-co1 | Monteiro, Álefe Brito | - |
dc.contributor.advisor-co1Lattes | http://lattes.cnpq.br/8965748162304409 | pt_BR |
dc.creator.Lattes | http://lattes.cnpq.br/3437225998703806 | pt_BR |
dc.description.resumo | O processo de desenvolvimento das epilepsias envolve mecanismos diversos que culminam na hiperatividade de uma população de neurônios, resultando em um padrão de despolarizações repetidas e rítmicas. Os fármacos antiepilépticos agem através do aumento da neurotransmissão GABAérgica, da redução dos efeitos do glutamato, ou do bloqueio de canais iônicos, sendo dotados de efeitos adversos sérios que dificultam a adesão do paciente ao tratamento. Este fato tem incentivado a busca por compostos de origem natural com potencial efeito anticonvulsivante. Desta forma, o presente trabalho teve como objetivo avaliar o efeito do eucaliptol nas convulsões induzidas por pentilenotetrazol (PTZ). Para tanto, foram utilizados camundongos Swiss machos, tratados oralmente com o monotrepeno. O primeiro protocolo realizado avaliou a toxicidade e a DL50 estimada do composto. Com base no valor da DL50, foram selecionadas as doses do terpeno utilizadas nos testes comportamentais e neuroqímicos. Para os testes comportamentais, grupos de camundongos foram previamente tratados com salina (10 mL/kg, v.o.), diazepam (2 mg/kg, i.p.) e eucaliptol (100, 200 e 400 mg/kg, v.o.) e posteriormente com pentilenotetrazol (80 mg/kg, i.p.) e avaliados quanto aos seguintes parâmetros: intensidade das convulsões, latência para primeira convulsão e tempo de morte. Para os testes neuroquímicos, grupos de camundongos foram previamente tratados com salina (10 mL/kg, v.o.) e eucaliptol (400 mg/kg, i.p.) e posteriormente com pentilenotetrazol (80 mg/kg, i.p.); a determinação da concentração de neurotransmissores (monoaminas – dopamina, noradrenalina e serotonina) e dos marcadores de estresse oxidativo (nitrito e substâncias reativas do ácido tiobarbitúrico – TBARs) foram os parâmetros avaliados. Os resultados foram analisados por ANOVA ou Kruskal-Wallis, seguido dos testes de Student-Newman-Keuls, e Dunns, respectivamente. Foram considerados significativos os valores de p < 0,05. Os resultados mostraram que a administração oral do eucaliptol apresentou baixa toxicidade e a DL50 estimada foi superior a 2000 mg/kg. No teste das convulsões induzidas por PTZ apenas a dose maior do monoterpeno (400 mg/kg) reduziu de forma significativa a intensidade das convulsões em 60%, aumentou a latência para aparecimento da primeira convulsão em 85% e o tempo de morte dos animais em 75% em relação ao controle. De forma semelhante, o tratamento com eucaliptol (400 mg/kg) reduziu de forma significativa a concentração de noradrenalina, dopamina e serotonina, em 50%, 33% e 70%, respectivamente, em relação ao grupo tratado com PTZ (80 mg/kg). Além disso, o tratamento com eucaliptol (400 mg/kg) reduziu de forma significativa a concentração de TBARs em 33%, mas não de nitrito, em relação ao grupo tratado com PTZ (80 mg/kg). Tomados em conjunto, os resultados mostram que o monoterpeno estudado apresenta baixa toxicidade oral e importante efeito anticonvulsivante, visto que sua administração é capaz de atenuar as convulsões quimicamente induzidas por pentilenotetrazol com consequente redução da concentração de monoaminas e das substâncias reativas do ácido tiobarbitúrico, elementos cujo aumento está associado ao fenômeno da epileptogênese. | pt_BR |
dc.publisher.country | Brasil | pt_BR |
dc.publisher.department | Ciências Farmacêuticas | pt_BR |
dc.publisher.initials | UFPB | pt_BR |
dc.relation.references | ACHARYA, M. M.; HATTIANGADY, B.; SHETTY, A. K. Progress in neuroprotective strategies for preventing epilepsy. Progress in neurobiology, v. 84, n. 4, p. 363-404, 2008. ISSN 0301-0082. ANGUS-LEPPAN, H.; PARSONS, L. M. Epilepsy: epidemiology, classification and natural history. Medicine, v. 36, n. 11, p. 571-578, 2008. ISSN 1357-3039. APPLEGATE, C. D.; BURCHFIEL, J. L.; KONKOL, R. J. Kindling antagonism: effects of norepinephrine depletion on kindled seizure suppression after concurrent, alternate stimulation in rats. Experimental neurology, v. 94, n. 2, p. 379-390, 1986. ISSN 0014-4886. APPLEGATE, C. D.; TECOTT, L. H. Global increases in seizure susceptibility in mice lacking 5-HT 2C receptors: a behavioral analysis. Experimental neurology, v. 154, n. 2, p. 522-530, 1998. ISSN 0014-4886. ASSIS, T. R. D. et al. Etiological prevalence of epilepsy and epileptic seizures in hospitalized elderly in a Brazilian tertiary center–Salvador-Brazil. Arquivos de neuro-psiquiatria, v. 73, n. 2, p. 83-89, 2015. ISSN 0004-282X. BAKSHI, P. et al. Novel role of CXCR2 in regulation of γ-secretase activity. ACS chemical biology, v. 3, n. 12, p. 777-789, 2008. ISSN 1554-8929. BALOSSO, S. et al. Molecular and functional interactions between tumor necrosis factor-alpha receptors and the glutamatergic system in the mouse hippocampus: implications for seizure susceptibility. Neuroscience, v. 161, n. 1, p. 293-300, 2009. ISSN 0306-4522. BARONE, P. et al. Dopamine D1 and D2 receptors mediate opposite functions in seizures induced by lithium-pilocarpine. European journal of pharmacology, v. 195, n. 1, p. 157-162, 1991. ISSN 0014-2999. BATTAGLIA, G. et al. Alpha‐1B adrenergic receptor knockout mice are protected against methamphetamine toxicity. Journal of neurochemistry, v. 86, n. 2, p. 413-421, 2003. ISSN 1471-4159. BENARROCH, E. E. Astrocyte-neuron interactions Implications for epilepsy. Neurology, v. 73, n. 16, p. 1323-1327, 2009. ISSN 0028-3878. 64 BERG, A. T. et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia, v. 51, n. 4, p. 676-685, 2010. ISSN 1528-1167. BERK, M. et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neuroscience & biobehavioral reviews, v. 35, n. 3, p. 804-817, 2011. ISSN 0149-7634. BLANCO, M. M. et al. Neurobehavioral effect of essential oil of Cymbopogon citratus in mice. Phytomedicine, v. 16, n. 2–3, p. 265-270, 3// 2009. ISSN 0944-7113. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0944711307000712 >. BORGES, M. A. et al. Urban prevalence of epilepsy: populational study in Sao Jose do Rio Preto, a medium-sized city in Brazil. Arquivos de neuro-psiquiatria, v. 62, n. 2A, p. 199-204, 2004. ISSN 0004-282X. BRODIE, M. J.; ELDER, A. T.; KWAN, P. Epilepsy in later life. The Lancet Neurology, v. 8, n. 11, p. 1019-1030, 2009. ISSN 1474-4422. CALDAS, G. F. R. et al. Repeated-doses and reproductive toxicity studies of the monoterpene 1, 8-cineole (eucalyptol) in Wistar rats. Food and Chemical Toxicology, v. 97, p. 297-306, 2016. ISSN 0278-6915. CANDAN, F. et al. Antioxidant and antimicrobial activity of the essential oil and methanol extracts of Achillea millefolium subsp. millefolium Afan.(Asteraceae). Journal of ethnopharmacology, v. 87, n. 2, p. 215-220, 2003. ISSN 0378-8741. CARLINI, E.; MENDES, F. Protocolos em Psicofarmacologia Comportamental: um Guia para a Pesquisa de Drogas com Ação sobre o SNC, com Ênfase nas Plantas Medicinais. Brasil: 2011. ISBN 978-85-61673-31-4. CAZARIN, K. C. C.; CORRÊA, C. L.; ZAMBRONE, F. A. D. Redução, refinamento e substituição do uso de animais em estudos toxicológicos: uma abordagem atual. Revista Brasileira de Ciências Farmacêuticas, v. 40, n. 3, p. 289-299, 2004. ISSN 1809-4562. CIFTCI, O. et al. Antioxidative effects of curcumin, beta-myrcene and 1,8-cineole against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicol Ind Health, v. 27, n. 5, p. 447-53, Jun 2011. ISSN 1477-0393 (Electronic) 0748-2337 (Linking). Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/21245202 >. 65 CIFTCI, O. et al. Antioxidative effects of curcumin, β-myrcene and 1, 8-cineole against 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicology and Industrial Health, v. 27, n. 5, p. 447-453, 2011. ISSN 0748-2337. COSTA, A. M. N. Estudo do efeito neuroprotetor da N-Acetilcisteina em ratas periadolescentes submetidas a convulsão pelo abrasamento induzido por nicotina. 2014. COUTURIER, J. et al. Prevention of the β-amyloid peptide-induced inflammatory process by inhibition of double-stranded RNA-dependent protein kinase in primary murine mixed co-cultures. Journal of neuroinflammation, v. 8, n. 1, p. 72, 2011. ISSN 1742-2094. CRESPEL, A. et al. Inflammatory reactions in human medial temporal lobe epilepsy with hippocampal sclerosis. Brain Research, v. 952, n. 2, p. 159-169, 10/18/ 2002. ISSN 0006-8993. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0006899302030500 >. DE FREITAS, R. M. et al. Modifications in muscarinic, dopaminergic and serotonergic receptors concentrations in the hippocampus and striatum of epileptic rats. Life sciences, v. 78, n. 3, p. 253-258, 2005. ISSN 0024-3205. DORANDEU, F. et al. Efficacy of the ketamine–atropine combination in the delayed treatment of soman-induced status epilepticus. Brain research, v. 1051, n. 1, p. 164-175, 2005. ISSN 0006-8993. FERREIRA-DA-SILVA, F. W. et al. Effects of 1,8-cineole on electrophysiological parameters of neurons of the rat superior cervical ganglion. Clin Exp Pharmacol Physiol, v. 36, n. 11, p. 1068-73, Nov 2009. ISSN 1440-1681 (Electronic) 0305-1870 (Linking). Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/19413602 >. FERRERO, A. J. et al. Chronic treatment with fluoxetine decreases seizure threshold in naive but not in rats exposed to the learned helplessness paradigm: correlation with the hippocampal glutamate release. Progress in Neuro-Psychopharmacology and Biological Psychiatry, v. 29, n. 5, p. 678-686, 2005. ISSN 0278-5846. FIORE, R.; SCHRATT, G. MicroRNAs in vertebrate synapse development. The Scientific World Journal, v. 7, p. 167-177, 2007. FISHER, R. S. et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia, v. 55, n. 4, p. 475-482, 2014. ISSN 1528-1167. 66 FISHER, R. S. et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia, v. 58, n. 4, p. 522-530, 2017. ISSN 1528-1167. FLOYD, R. A. Role of oxygen free radicals in carcinogenesis and brain ischemia. The FASEB journal, v. 4, n. 9, p. 2587-2597, 1990. ISSN 0892-6638. FREITAS, R. Neurotransmitter Systems Involved in Epilsepsy Model: A Literature Review. Endereço para correspondência: Laboratório de Pesquisa em Neuroquímica Experimental Programa de Pós-graduação em Ciências Farmacêuticas Centro de Ciências da Saúde Campus Ministro Petrônio Portela CEP, p. 64049-550, 2011. FREITAS, R. et al. Acetylcholinesterase activities in hippocampus, frontal cortex and striatum of Wistar rats after pilocarpine-induced status epilepticus. Neuroscience letters, v. 399, n. 1, p. 76-78, 2006a. ISSN 0304-3940. ______. Effect of gabaergic, glutamatergic, antipsychotic and antidepressant drugs on pilocarpine-induced seizures and status epilepticus. Neuroscience letters, v. 408, n. 2, p. 79-83, 2006b. ISSN 0304-3940. GUIX, F. et al. The physiology and pathophysiology of nitric oxide in the brain. Progress in neurobiology, v. 76, n. 2, p. 126-152, 2005. ISSN 0301-0082. HIRSCH, E. et al. Operational classification of seizure types by the International League Against Epilepsy. 2016. HORN, T. F. et al. Nitric oxide promotes intracellular calcium release from mitochondria in striatal neurons. The FASEB journal, v. 16, n. 12, p. 1611-1622, 2002. ISSN 0892-6638. HRNČIĆ, D. et al. Gaseous neurotransmitter nitric oxide: Its role in experimental models of epilepsy. Archives of Biological Sciences, v. 64, n. 3, p. 1207-1216, 2012. HRNČIĆ, D. et al. The role of nitric oxide in convulsions induced by lindane in rats. Food and chemical toxicology, v. 49, n. 4, p. 947-954, 2011. ISSN 0278-6915. HUBER, D. P.; GRIENER, R.; TRINKA, E. Antiepileptic drug use in Austrian nursing home residents. Seizure, v. 22, n. 1, p. 24-27, 2013. ISSN 1059-1311. HUNT, R. F. et al. GABA progenitors grafted into the adult epileptic brain control seizures and abnormal behavior. Nature neuroscience, v. 16, n. 6, p. 692, 2013. 67 ITOH, K.; WATANABE, M. Paradoxical facilitation of pentylenetetrazole-induced convulsion susceptibility in mice lacking neuronal nitric oxide synthase. Neuroscience, v. 159, n. 2, p. 735-743, 2009. ISSN 0306-4522. KANEKO, K. et al. Consequences of nitric oxide generation in epileptic‐seizure rodent models as studied by in vivo EPR. Magnetic resonance in medicine, v. 48, n. 6, p. 1051-1056, 2002. ISSN 1522-2594. KANG, T. C. et al. Anticonvulsant characteristics of pyridoxyl-gamma-aminobutyrate, PL-GABA. Neuropharmacology, v. 54, n. 6, p. 954-64, May 2008. ISSN 0028-3908 (Print) 0028-3908 (Linking). Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/18346762 >. KAUL, S.; FAIMAN, M. D.; LUNTE, C. E. Determination of GABA, glutamate, dopamine and carbamathione in brain microdialysis samples by micellar electrokinetic chromatography and laser-induced fluorescence (MEKC-LIF). Analytical Methods, v. 3, n. 7, p. 1514, 2011. ISSN 1759-9660 1759-9679. KAUR, H.; KUMAR, B.; MEDHI, B. Antiepileptic drugs in development pipeline: A recent update. eNeurologicalSci, v. 4, p. 42-51, 2016. ISSN 2405-6502. KHAN, A. et al. 1,8-cineole (eucalyptol) mitigates inflammation in amyloid Beta toxicated PC12 cells: relevance to Alzheimer's disease. Neurochem Res, v. 39, n. 2, p. 344-52, Feb 2014. ISSN 1573-6903 (Electronic) 0364-3190 (Linking). Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/24379109 >. KONG, Q. et al. Increased glial glutamate transporter EAAT2 expression reduces epileptogenic processes following pilocarpine-induced status epilepticus. Neurobiology of disease, v. 47, n. 2, p. 145-154, 2012. ISSN 0969-9961. KOUTROUMANIDOU, E. et al. Increased seizure latency and decreased severity of pentylenetetrazol-induced seizures in mice after essential oil administration. Epilepsy research and treatment, v. 2013, 2013. ISSN 2090-1348. KUNIEDA, T. et al. Systemic Overexpression of the α1B‐Adrenergic Receptor in Mice: An Animal Model of Epilepsy. Epilepsia, v. 43, n. 11, p. 1324-1329, 2002. ISSN 1528-1167. 68 LEHTIMÄKI, K. et al. Increased plasma levels of cytokines after seizures in localization‐related epilepsy. Acta Neurologica Scandinavica, v. 116, n. 4, p. 226-230, 2007. ISSN 1600-0404. LIMA-ACCIOLY, P. M. et al. Essential oil of croton nepetaefolius and its main constituent, 1,8-cineole, block excitability of rat sciatic nerve in vitro. Clin Exp Pharmacol Physiol, v. 33, n. 12, p. 1158-63, Dec 2006. ISSN 0305-1870 (Print) 0305-1870 (Linking). Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/17184495 >. LINEHAN, C. et al. Future directions for epidemiology in epilepsy. Epilepsy & Behavior, v. 22, n. 1, p. 112-117, 2011. ISSN 1525-5050. LÖSCHER, W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure, v. 20, n. 5, p. 359-368, 2011. ISSN 1059-1311. LOWSON, S.; GENT, J.; GOODCHILD, C. Anticonvulsant properties of propofol and thiopentone: comparison using two tests in laboratory mice. British journal of anaesthesia, v. 64, n. 1, p. 59-63, 1990. ISSN 0007-0912. MARCOLI, M. et al. Nitric oxide-evoked glutamate release and cGMP production in cerebellar slices: Control by presynaptic 5-HT 1D receptors. Neurochemistry international, v. 49, n. 1, p. 12-19, 2006. ISSN 0197-0186. MASOUMI-ARDAKANI, Y. et al. Chemical Composition, Anticonvulsant Activity, and Toxicity of Essential Oil and Methanolic Extract of Elettaria cardamomum. Planta Medica, v. 82, n. 17, p. 1482-1486, 2016. ISSN 0032-0943. MCCORMICK, D. A.; CONTRERAS, D. On the cellular and network bases of epileptic seizures. Annual review of physiology, v. 63, n. 1, p. 815-846, 2001. ISSN 0066-4278. MONFORTE, M. T. et al. Chemical Composition and Biological Activities of Calamintha officinalis Moench Essential Oil. Journal of Medicinal Food, v. 14, n. 3, p. 297-303, 2011/03/01 2010. ISSN 1096-620X. Disponível em: < http://dx.doi.org/10.1089/jmf.2009.0191 >. Acesso em: 2016/08/30. NDIMUBANZI, P. C. et al. A systematic review of the frequency of neurocyticercosis with a focus on people with epilepsy. PLoS Negl Trop Dis, v. 4, n. 11, p. e870, 2010. ISSN 1935-2735. NEWTON, C. R.; GARCIA, H. H. Epilepsy in poor regions of the world. The Lancet, v. 380, n. 9848, p. 1193-1201, 2012. ISSN 0140-6736. 69 NGUGI, A. K. et al. Estimation of the burden of active and life‐time epilepsy: a meta‐analytic approach. Epilepsia, v. 51, n. 5, p. 883-890, 2010. ISSN 1528-1167. NÓBREGA DE ALMEIDA, R. et al. Essential oils and their constituents: anticonvulsant activity. Molecules, v. 16, n. 3, p. 2726-2742, 2011. OBAY, B. D. et al. Dose dependent effects of ghrelin on pentylenetetrazole-induced oxidative stress in a rat seizure model. Peptides, v. 29, n. 3, p. 448-455, 2008. ISSN 0196-9781. OLIVEIRA, A. et al. Evaluation of levetiracetam effects on pilocarpine-induced seizures: Cholinergic muscarinic system involvement. Neuroscience letters, v. 385, n. 3, p. 184-188, 2005. ISSN 0304-3940. OZSOY, S.; AYDIN, D.; EKICI, F. Effects of modafinil on pentylenetetrazol-induced convulsive epilepsy. Bratislavske lekarske listy, v. 116, n. 3, p. 162-166, 2014. ISSN 0006-9248. PASSOS, C. D. S. et al. Terpenóides com atividade sobre o Sistema Nervoso Central (SNC). Revista brasileira de farmacognosia. Vol. 19, n. 1A (Jan./Mar. 2009), p. 140-149, 2009. ISSN 0102-695X. PIZZANELLI, C. et al. Lack of α1b‐adrenergic receptor protects against epileptic seizures. Epilepsia, v. 50, n. s1, p. 59-64, 2009. ISSN 1528-1167. RACINE, R. J. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalography and clinical neurophysiology, v. 32, n. 3, p. 281-294, 1972. ISSN 0013-4694. RAVIZZA, T. et al. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy. Neurobiology of Disease, v. 29, n. 1, p. 142-160, 1// 2008. ISSN 0969-9961. Disponível em: < http://www.sciencedirect.com/science/article/pii/S0969996107001933 >. REALDON, E. Modern classification of the terpenoids. Bollettino chimico farmaceutico, v. 99, p. 52, 1960. ISSN 0006-6648. RESCHKE, C. R. et al. Potent anti-seizure effects of locked nucleic acid antagomirs targeting miR-134 in multiple mouse and rat models of epilepsy. Molecular Therapy-Nucleic Acids, v. 6, p. 45-56, 2017. ISSN 2162-2531. 70 REYNOLDS, E. Todd, Hughlings Jackson, and the electrical basis of epilepsy. The Lancet, v. 358, n. 9281, p. 575-577, 2001. ISSN 0140-6736. ROBELLO, M. et al. NITRIC OXIDE AND GABA A RECEPTOR FUNCTION THE RAT CEREBRAL CORTEX AND CEREBELLAR GRANULE CELLS. Neuroscience, v. 74, n. 1, p. 99-105, 1996. ISSN 0306-4522. SAMPAIO, L. P. et al. Prevalence of epilepsy in children from a Brazilian area of high deprivation. Pediatric neurology, v. 42, n. 2, p. 111-117, 2010. ISSN 0887-8994. SANTOS, F.; RAO, V. Antiinflammatory and antinociceptive effects of 1, 8-cineole a terpenoid oxide present in many plant essential oils. Phytotherapy research, v. 14, n. 4, p. 240-244, 2000. ISSN 0951-418X. SCHMIDT, D.; SCHACHTER, S. C. Drug treatment of epilepsy in adults. Bmj, v. 348, n. 254, p. 130-136, 2014. SHOUSE, M. N. et al. Monoamines and seizures: microdialysis findings in locus ceruleus and amygdala before and during amygdala kindling. Brain research, v. 892, n. 1, p. 176-192, 2001. ISSN 0006-8993. SILLANPÄÄ, M.; SCHMIDT, D. Long-term outcome of medically treated epilepsy. Seizure, v. 44, p. 211-216, 2017. ISSN 1059-1311. SINGH, A.; TREVICK, S. The Epidemiology of Global Epilepsy. Neurologic Clinics, v. 34, n. 4, p. 837-847, 2016. ISSN 0733-8619. SMITH, M.; WILCOX, K. S.; WHITE, H. S. Discovery of antiepileptic drugs. Neurotherapeutics, v. 4, n. 1, p. 12-17, 2007. ISSN 1933-7213. SZYNDLER, J. et al. Effects of pentylenetetrazol-induced kindling of seizures on rat emotional behavior and brain monoaminergic systems. Pharmacology Biochemistry and Behavior, v. 73, n. 4, p. 851-861, 2002. ISSN 0091-3057. TAKAISHI, M. et al. 1, 8-cineole, a TRPM8 agonist, is a novel natural antagonist of human TRPA1. Molecular pain, v. 8, n. 1, p. 1, 2012. ISSN 1744-8069. ÜNVER, O. et al. The Epidemiology of epilepsy in children: a report from a Turkish pediatric neurology clinic. Journal of child neurology, v. 30, n. 6, p. 698-702, 2015. ISSN 0883-0738. 71 VENTURA, A. L. et al. Sistema colinérgico: revisitando receptores, regulação e a relação com a doença de Alzheimer, esquizofrenia, epilepsia e tabagismo:[revisão]. Arch. clin. psychiatry (São Paulo, Impr.), v. 37, n. 2, p. 66-72, 2010. ISSN 0101-6083. VERELLEN, R. M.; CAVAZOS, J. E. Pathophysiological considerations of seizures, epilepsy, and status epilepticus in the elderly. Aging and disease, v. 2, n. 4, p. 278-285, 2014. ISSN 2152-5250. VIVIANI, B. et al. Interleukin-1β enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. Journal of Neuroscience, v. 23, n. 25, p. 8692-8700, 2003. ISSN 0270-6474. VUČEVIĆ, D. et al. Correlation between electrocorticographic and motor phenomena in lindane-induced experimental epilepsy in rats This article is one of a selection of papers published in the special issue Bridging the Gap: Where Progress in Cardiovascular and Neurophysiologic Research Meet. Canadian journal of physiology and pharmacology, v. 86, n. 4, p. 173-179, 2008. ISSN 0008-4212. XU, J. et al. Acute and subacute toxicity study of 1, 8-cineole in mice. Int. J. Clin. Exp. Pathol, v. 7, p. 1495-1501, 2014. YAN, Q.-S.; JOBE, P. C.; DAILEY, J. W. Evidence that a serotonergic mechanism is involved in the anticonvulsant effect of fluoxetine in genetically epilepsy-prone rats. European journal of pharmacology, v. 252, n. 1, p. 105-112, 1994. ISSN 0014-2999. ZERAATPISHEH, Z.; VATANPARAST, J. Eucalyptol induces hyperexcitability and epileptiform activity in snail neurons by inhibiting potassium channels. Eur J Pharmacol, v. 764, p. 70-8, Oct 5 2015. ISSN 1879-0712 (Electronic) 0014-2999 (Linking). Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/26134504 >. ZUSCIK, M. J. et al. Overexpression of the α1B-adrenergic receptor causes apoptotic neurodegeneration: multiple system atrophy. Nature medicine, v. 6, n. 12, p. 1388-1394, 2000. 72 | pt_BR |
dc.subject.cnpq | CNPQ::Ciências da Saúde : Farmácia | pt_BR |
Aparece nas coleções: | TCC - Farmácia |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
DSB 26062017.pdf | 1,79 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma
Licença Creative Commons