Skip navigation

Use este identificador para citar ou linkar para este item: https://repositorio.ufpb.br/jspui/handle/tede/5383
Registro completo de metadados
Campo DCValorIdioma
dc.creatorSilva, Hamilton Soares da-
dc.date.accessioned2015-05-08T14:59:57Z-
dc.date.accessioned2018-07-21T00:04:26Z-
dc.date.available2014-11-26-
dc.date.available2018-07-21T00:04:26Z-
dc.date.issued2014-07-25-
dc.identifier.citationSILVA, Hamilton Soares da. Estudo para otimização do algoritmo Non-local means visando aplicações em tempo real. 2014. 92 f. Tese (Doutorado em Engenharia Mecânica) - Universidade Federal da Paraí­ba, João Pessoa, 2014.por
dc.identifier.urihttps://repositorio.ufpb.br/jspui/handle/tede/5383-
dc.description.abstractThe aim of this work is to study the non-local means algorithm and propose techniques to optimize and implement this algorithm for its application in real-time. Two alternatives are suggested for implementation. The first deals with the development of an accelerator card for computers, which has a PCI bus containing specialized hardware that implements the NLM filter. The second implementation uses densely GPU multiprocessor environment, which exists in the parent video. Both proposals significantly accelerates the NLM algorithm, while maintains the same visual quality of traditional software implementations, enabling real-time use. Image denoising is an important area for digital image processing. Recently, its use is becoming more popular due to improvements of of the new acquisition equipments and, thus, the increase of image resolution that favors the occurrence of such perturbations. It is widely studied in the fields of image processing, computer vision and predictive maintenance of electrical substations, motors, tires, building facilities, pipes and fittings, focusing on reducing the noise without removing details of the original image. Several approaches have been proposed for filtering noise. One of such approaches is the non-local method called Non-Local Means (NLM), which uses the entire image rather than local information and stands out as the state of the art. However, a problem in this method is its high computational complexity, which turns its application almost impossible in real time applications, even for small imageseng
dc.description.provenanceMade available in DSpace on 2015-05-08T14:59:57Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 3935872 bytes, checksum: 5a4c90590e53b3ea1d71bbe61a628b56 (MD5) Previous issue date: 2014-07-25eng
dc.description.provenanceMade available in DSpace on 2018-07-21T00:04:26Z (GMT). No. of bitstreams: 2 arquivototal.pdf: 3935872 bytes, checksum: 5a4c90590e53b3ea1d71bbe61a628b56 (MD5) arquivototal.pdf.jpg: 2120 bytes, checksum: 949fd11ab2121e753dfee9f52ef7919f (MD5) Previous issue date: 2014-07-25en
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior-
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal da Paraí­bapor
dc.rightsAcesso abertopor
dc.subjectProcessamento Digital de Imagenspor
dc.subjectRedução de Ruídopor
dc.subjectComputação Reconfigurávelpor
dc.subjectComputação Paralelapor
dc.subjectProgramação GPU CUDApor
dc.subjectDigital Image Processingeng
dc.subjectImage Denoisingeng
dc.subjectReconfigurable Computingeng
dc.subjectParallel Computingeng
dc.subjectProgramming CUDA GPUeng
dc.titleEstudo para otimização do algoritmo Non-local means visando aplicações em tempo realpor
dc.typeTesepor
dc.contributor.advisor1Belo, Francisco Antônio-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/9462923096505763por
dc.creator.Latteshttp://lattes.cnpq.br/3456576426658850por
dc.description.resumoO propósito deste trabalho é estudar o algoritmo non-local means(NLM) e propor técnicas para otimizar e implementar o referido algoritmo visando sua aplicação em tempo real. Ao todo são sugeridas duas alternativas de implementação. A primeira trata do desenvolvimento de uma placa aceleradora para computadores que possuam Barramento PCI, contendo um hardware especializado que implementa o Filtro NLM. A segunda implementação utiliza o ambiente densamente multiprocessado GPU, existente nas controladoras de vídeo. As duas propostas aceleraram significativamente o algoritmo NLM, mantendo a mesma qualidade visual das implementações tradicionais em software, tornando possível sua utilização em tempo real. A filtragem de ruídos é uma área importante para o processamento digital de imagens, sendo cada vez mais utilizada devido as melhorias dos novos equipamentos de captação, e o consequente aumento da resolução da imagem, que favorece o aparecimento dessas perturbações. Ela é amplamente estudada nos campos de tratamento de imagens, visão computacional e manutenção preditiva de subestações elétricas, motores, pneus, instalações prediais, tubos e conexões, focando em reduzir os ruídos sem que se remova os detalhes da imagem original. Várias abordagens foram propostas para filtragem de ruídos, uma delas é o método não-local, chamado de Non-Local Means (NLM), que não só utiliza as informações locais, mas a imagem inteira, destaca-se como o estado da arte, porém, há um problema neste método, que é a sua alta complexidade computacional, que o torna praticamente inviável de ser utilizado em aplicações em tempo real, até mesmo para imagens pequenaspor
dc.publisher.countryBRpor
dc.publisher.departmentEngenharia Mecânicapor
dc.publisher.programPrograma de Pós Graduação em Engenharia Mecânicapor
dc.publisher.initialsUFPBpor
dc.subject.cnpqCNPQ::ENGENHARIAS::ENGENHARIA MECANICApor
dc.thumbnail.urlhttp://tede.biblioteca.ufpb.br:8080/retrieve/14123/arquivototal.pdf.jpg*
Aparece nas coleções:Centro de Tecnologia (CT) - Programa de Pós-Graduação em Engenharia Mecânica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
arquivototal.pdf3,84 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.