Skip navigation

Use este identificador para citar ou linkar para este item: https://repositorio.ufpb.br/jspui/handle/tede/9249
Registro completo de metadados
Campo DCValorIdioma
dc.creatorQueiroga, Eduardo Vieira-
dc.date.accessioned2017-08-14T11:28:15Z-
dc.date.accessioned2018-07-21T00:14:59Z-
dc.date.available2018-07-21T00:14:59Z-
dc.date.issued2017-02-17-
dc.identifier.citationQUEIROGA, Eduardo Vieira. Abordagens meta-heurísticas para clusterização de dados e segmentação de imagens. 2017. 88 f. Dissertação (Mestrado em Informática)-Universidade Federal da Paraíba, João Pessoa, 2017.por
dc.identifier.urihttps://repositorio.ufpb.br/jspui/handle/tede/9249-
dc.description.abstractMany computational problems are considered to be hard due to their combinatorial nature. In such cases, the use of exaustive search techniques for solving medium and large size instances becomes unfeasible. Some data clustering and image segmentation problems belong to NP-Hard class, and require an adequate treatment by means of heuristic techniques such as metaheuristics. Data clustering is a set of problems in the fields of pattern recognition and unsupervised machine learning which aims at finding groups (or clusters) of similar objects in a benchmark dataset, using a predetermined measure of similarity. The partitional clustering problem aims at completely separating the data in disjont and non-empty clusters. For center-based clustering methods, the minimal intracluster distance criterion is one of the most employed. This work proposes an approach based on the metaheuristic Continuous Greedy Randomized Adaptive Search Procedure (CGRASP). High quality results were obtained through comparative experiments between the proposed method and other metaheuristics from the literature. In the computational vision field, image segmentation is the process of partitioning an image in regions of interest (set of pixels) without allowing overlap. Histogram thresholding is one of the simplest types of segmentation for images in grayscale. Thes Otsu’s method is one of the most populars and it proposes the search for the thresholds that maximize the variance between the segments. For images with deep levels of gray, exhaustive search techniques demand a high computational cost, since the number of possible solutions grows exponentially with an increase in the number of thresholds. Therefore, metaheuristics have been playing an important role in finding good quality thresholds. In this work, an approach based on Quantum-behaved Particle Swarm Optimization (QPSO) were investigated for multilevel thresholding of available images in the literature. A local search based on Variable Neighborhood Descent (VND) was proposed to improve the convergence of the search for the thresholds. An specific application of thresholding for electronic microscopy images for microstructural analysis of cementitious materials was investigated, as well as graph algorithms to crack detection and feature extraction.por
dc.description.provenanceSubmitted by Fernando Souza (fernandoafsou@gmail.com) on 2017-08-14T11:28:15Z No. of bitstreams: 1 arquivototal.pdf: 7134434 bytes, checksum: a99ec0d172a3be38a844f44b70616b16 (MD5)eng
dc.description.provenanceMade available in DSpace on 2017-08-14T11:28:15Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 7134434 bytes, checksum: a99ec0d172a3be38a844f44b70616b16 (MD5) Previous issue date: 2017-02-17eng
dc.description.provenanceMade available in DSpace on 2018-07-21T00:14:59Z (GMT). No. of bitstreams: 2 arquivototal.pdf: 7134434 bytes, checksum: a99ec0d172a3be38a844f44b70616b16 (MD5) arquivototal.pdf.jpg: 3635 bytes, checksum: a649427b5c5c7a6abdb611ce63e5d53b (MD5) Previous issue date: 2017-02-17en
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal da Paraíbapor
dc.rightsAcesso abertopor
dc.subjectOtimizaçãopor
dc.subjectMeta-heurísticaspor
dc.subjectClusterização particionalpor
dc.subjectSegmentação de imagenspor
dc.subjectOptimizationeng
dc.subjectMetaheuristicseng
dc.subjectPartitional clusteringeng
dc.subjectImage segmentationeng
dc.titleAbordagens meta-heurísticas para clusterização de dados e segmentação de imagenspor
dc.typeDissertaçãopor
dc.contributor.advisor1Cabral, Lucídio dos Anjos Formiga-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/6699185881827288por
dc.creator.Latteshttp://lattes.cnpq.br/1166210034438003por
dc.description.resumoMuitos problemas computacionais s˜ao considerados dif´ıceis devido `a sua natureza combinat´oria. Para esses problemas, o uso de t´ecnicas de busca exaustiva para resolver instˆancias de m´edio e grande porte torna-se impratic´avel. Quando modelados como problemas de otimiza¸c˜ao, alguns problemas de clusteriza¸c˜ao de dados e segmenta¸c˜ao de imagens pertencem `a classe NP-Dif´ıcil e requerem um tratamento adequado por m´etodos heur´ısticos. Clusteriza¸c˜ao de dados ´e um vasto conjunto de problemas em reconhecimento de padr˜oes e aprendizado de m´aquina n˜ao-supervisionado, cujo objetivo ´e encontrar grupos (ou clusters) de objetos similares em uma base de dados, utilizando uma medida de similaridade preestabelecida. O problema de clusteriza¸c˜ao particional consiste em separar completamente os dados em conjuntos disjuntos e n˜ao vazios. Para m´etodos de clusteriza ¸c˜ao baseados em centros de cluster, minimizar a soma das distˆancias intracluster ´e um dos crit´erios mais utilizados. Para tratar este problema, ´e proposta uma abordagem baseada na meta-heur´ıstica Continuous Greedy Randomized Adaptive Search Procedure (C-GRASP). Resultados de alta qualidade foram obtidos atrav´es de experimentos envolvendo o algoritmo proposto e outras meta-heur´ısticas da literatura. Em vis˜ao computacional, segmenta¸c˜ao de imagens ´e o processo de particionar uma imagem em regi˜oes de interesse (conjuntos de pixels) sem que haja sobreposi¸c˜ao. Um dos tipos mais simples de segmenta¸c˜ao ´e a limiariza¸c˜ao do histograma para imagens em n´ıvel de cinza. O m´etodo de Otsu ´e um dos mais populares e prop˜oe a busca pelos limiares que maximizam a variˆancia entre os segmentos. Para imagens com grande profundidade de cinza, t´ecnicas de busca exaustiva possuem alto custo computacional, uma vez que o n´umero de solu¸c˜oes poss´ıveis cresce exponencialmente com o aumento no n´umero de limiares. Dessa forma, as meta-heur´ısticas tem desempenhado um papel importante em encontrar limiares de boa qualidade. Neste trabalho, uma abordagem baseada em Quantum-behaved Particle Swarm Optimization (QPSO) foi investigada para limiariza¸c˜ao multin´ıvel de imagens dispon´ıveis na literatura. Uma busca local baseada em Variable Neighborhood Descent (VND) foi proposta para acelerar a convergˆencia da busca pelos limiares. Al´em disso, uma aplica¸c˜ao espec´ıfica de segmenta¸c˜ao de imagens de microscopia eletrˆonica para an´alise microestrutural de materiais ciment´ıcios foi investigada, bem como a utiliza¸c˜ao de algoritmos em grafos para detec¸c˜ao de trincas e extra¸c˜ao de caracter´ısticas de interesse.por
dc.publisher.countryBrasilpor
dc.publisher.departmentInformáticapor
dc.publisher.programPrograma de Pós-Graduação em Informáticapor
dc.publisher.initialsUFPBpor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOpor
dc.thumbnail.urlhttp://tede.biblioteca.ufpb.br:8080/retrieve/17883/arquivototal.pdf.jpg*
Aparece nas coleções:Centro de Informática (CI) - Programa de Pós-Graduação em Informática

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
arquivototal.pdfArquivo Total6,97 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.