Please use this identifier to cite or link to this item: https://repositorio.ufpb.br/jspui/handle/123456789/12910
metadata.dc.type: Dissertação
Title: Otimização do algoritmo Non Local Means mediante agrupamento por similaridade no domínio da frequência
metadata.dc.creator: Meneses, Douglas Andrade de
metadata.dc.contributor.advisor1: Batista, Leonardo Vidal
metadata.dc.description.resumo: Dentre os algoritmos de remoção de ruído de imagens no estado da arte, o Non Local Means (NLM) ganha destaque devido a sua eficiência. No entanto, sua complexidade computacional torna-se um obstáculo para a maioria das aplicações atuais. Neste trabalho propõe-se uma nova abordagem que visa reduzir o tempo de processamento, sem recorrer a janelas de busca, preservando assim os cálculos não locais que caracterizam o NLM. O método proposto usa o algoritmo de agrupamento K-means para agrupar pixels com vizinhanças semelhantes no domínio da frequência através da Transformada discreta do cosseno. Para evitar transações severas nas bordas dos agrupamentos, um pixel pode ser atribuído a diferentes clusters. Após esse passo inicial, o algoritmo NLM executa uma pesquisa baseada em cluster. Os resultados experimentais testificam uma redução em torno de 19 vezes no tempo computacional e, em alguns casos, melhorias nos valores de Erro Quadrático Médio, quando comparados ao algoritmo original.
Abstract: Among the image denoising methods in state-of-the-art the Non Local Means (NLM) is highlighted due to its efficiency. However, its computational complexity becomes an obstacle to most applications. In this paper, we propose a new approach which aims to reduce processing time, without resorting to search windows, thus preserving the non-local calculations that characterize NLM. The proposed method uses K-means clustering to group pixels with similar neighborhood in the frequency domain by Discrete Cosine Transform. In order to avoid harsh transitions at cluster borders, one pixel can be assigned to different clusters. After this initial step, the NLM algorithm performs a cluster-based search. Experimental results testify a reduction in the computational time around 19 times and, in some cases, improvements in the Mean Squared Error values, when compared to the original algorithm.
Keywords: Remoção de ruído
Non Local Means
Transformada discreta do cosseno
Denoising
Discrete cosine transform
metadata.dc.subject.cnpq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
metadata.dc.language: por
metadata.dc.publisher.country: Brasil
Publisher: Universidade Federal da Paraíba
metadata.dc.publisher.initials: UFPB
metadata.dc.publisher.department: Informática
metadata.dc.publisher.program: Programa de Pós-Graduação em Informática
metadata.dc.rights: Acesso Aberto
Attribution-NoDerivs 3.0 Brazil
metadata.dc.rights.uri: http://creativecommons.org/licenses/by-nd/3.0/br/
URI: https://repositorio.ufpb.br/jspui/handle/123456789/12910
Issue Date: 31-Aug-2017
Appears in Collections:Centro de Informática (CI) - Programa de Pós-Graduação em Informática

Files in This Item:
File Description SizeFormat 
Arquivototal.pdfArquivo total2,33 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons