Skip navigation

Use este identificador para citar ou linkar para este item: https://repositorio.ufpb.br/jspui/handle/123456789/23455
Tipo: Dissertação
Título: Distâncias adaptativas e kernelizadas aplicadas a agrupamento de séries temporais tipo intervalo
Autor(es): Castro, Katy Sylvia Batista
Primeiro Orientador: Lima Neto, Eufrásio de Andrade
Segundo Orientador: Ferreira, Marcelo R. Portela
Resumo: A tarefa de agrupar faz parte do cotidiano e da natureza humana. A literatura que trata de agrupamentos disponibiliza técnicas, métricas e algoritmos para realizar essa tarefa. Em particular, o agrupamento de dados observados ao longo do tempo e em forma de intervalos representa um desafio, com novos métodos sendo propostos para essa finalidade. A vantagem das distâncias adaptativas é que elas atribuem pesos diferentes às variáveis do agrupamentos, e um algoritmo que consegue se adaptar a isso pode trazer resultados muito superiores aos algoritmos que tratam todas as variáveis da mesma forma, com o mesmo nível de importância. Ademais, a kernelização torna possível trabalhar com dados em um novo espaço, diferente do espaço original, onde os grupos venham a apresentar uma melhor separação. O objetivo deste trabalho é considerar novas distâncias para o método K-Means no agrupamento de séries temporais de dados tipo intervalo. Utilizaremos distâncias adaptativas e distâncias calculadas através da kernelização da métrica e do espaço de características. Para validar os algoritmos propostos realizamos um estudo com séries temporais geradas a partir dos parâmetros de modelos Autorregressivo Espaço-Tempo (STAR, do inglês Space-Time Autoregressive), utilizando simulações Monte Carlo, bem como dados reais. A comparação dar-se-á através de índices externos e internos. Os resultados obtidos nas simulações demonstram que os algoritmos propostos apresentaram desempenho superior em relação aos métodos existentes. A aplicação a dados reais considerou séries de criptomoedas e índices tradicionais como ouro, petróleo, bolsas de valores, entre outros. Os resultados apontam insights que poderão ser usados para trabalhos futuros na área de aprendizagem de máquina e economia.
Abstract: The task of clustering is part of everyday life and human nature. The literature that deals with clustering provides techniques, metrics and algorithms to accomplish this task. In particular, the clustering of observed data over time and in the form of intervals represents a challenge, with new methods being proposed for this purpose. The advantage of adaptive distances is that they assign different weights to the variables of clusters, and an algorithm that succeeds in adapting to this can bring results far superior to algorithms that treat all variables in the same way, with the same level of importance. Moreover, kernelization makes it possible to work with data in a new space, different from the original space, where the groups will present a better separation. The objective of this work is to consider new distances for the KMeans method in the clustering of interval time series. We will use adaptive distances and distances calculated through the kernelization of the metric and the feature space. To validate the proposed algorithms, we performed a study with time series generated from the parameters of Space-Time Autoregressive (STAR) models, using Monte Carlo simulations as well as real data. The comparison will take place through external and internal indices. The results obtained in the simulations demonstrate that the proposed algorithms performed better than the existing methods. The application to real data considered cryptocurrency series and traditional indices such as gold, oil, stock exchanges, among others. The results point to insights that can be used for future work in machine learning and economics.
Palavras-chave: Distâncias adaptativas
Distâncias kernelizadas
Agrupamento de séries temporais
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Idioma: por
País: Brasil
Editor: Universidade Federal da Paraíba
Sigla da Instituição: UFPB
Departamento: Informática
Programa: Programa de Pós-Graduação em Modelagem Matemática e computacional
Tipo de Acesso: Acesso aberto
Attribution-NoDerivs 3.0 Brazil
URI: http://creativecommons.org/licenses/by-nd/3.0/br/
URI: https://repositorio.ufpb.br/jspui/handle/123456789/23455
Data do documento: 30-Mar-2022
Aparece nas coleções:Centro de Informática (CI) - Programa de Pós-Graduação em Modelagem Matemática Computacional

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
KatySylviaBatistaCastro_Dissert.pdf3,55 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons