Skip navigation

Use este identificador para citar ou linkar para este item: https://repositorio.ufpb.br/jspui/handle/123456789/26069
Tipo: Tese
Título: Spacelike submanifolds in semi-Riemannian product spaces: an approach via maximum principles, parabolicity and conditions of volume growth
Autor(es): Silva, Danilo Ferreira da
Primeiro Orientador: Lima Júnior, Eraldo Almeida
Resumo: O objetivo principal dessa tese é o estudo de subvariedades imersas em certos espaços produto semi-Riemanniano. Para isso, aplicando um princípio do máximo de Omori- Yau mais geral devido a Chen e Qiu e resultados devido a Alías, Caminha e do Nascimento, obtemos novos princípios do máximo para o drift Laplaciano em variedades Riemannianas com tensor de Bakry-´Emery-Ricci limitado inferiormente por uma função contínua ou com condição de crescimento de volume polinomial. Aplicamos esses novos princípios do máximo para obter diversos resultados de unicidade de hipersuperfície tipoespa ço em espaços produto Lorentziano ponderado da forma −R × Mn f e resultados análogos no espaço produto ponderado da forma R ×Mn f . Em ambos os casos, obtemos também resultados tipo Calabi-Bernstein para gráficos inteiro de funções definida na base Riemannian Mn. Determinamos resultados de rigidez e unicidade de subvariedade imersas com vetor curvatura média Gaussiano paralelo nos clássicos espaço Gaussiano e pseudo- Gaussiano. Por fim, usando parabolicidade, determinamos diversas condições suficientes de rigidez sobre superfícies estacionária tipo-espaço imersa no espaço-tempo de Roberston- Walker generalizado e apresentamos alguns exemplos justificando a necessidade dessas condições.
Abstract: The main objective of this thesis is the study of submanifolds immersed in certain semi- Riemannian products. For this, applying a more general Omori-Yau maximum principle due to Chen and Qiu and results due to Alias, Caminha and Nascimento, we obtain new principles of the maximum for the Laplacian drift in Riemannian manifolds with Bakry- ´Emery-Ricci tensor bounded from below by a continuous function or with polynomial volume growth condition. We apply these new maximal principles to obtain various uniqueness results of hypersurface in weighted Lorentzian product spaces of type −R×Mn f and analogous results in weighted product space of the form R × Mn f . In both cases, we also obtain Calabi-Bernstein type results for the entire graph of functions defined in the Riemannian basis Mn. We determined uniqueness and rigidity results to submanifold immersed with parallel Gaussian mean curvature vector in the classical Gaussian and pseudo-Gaussian spaces. Finally, using for parabolicity, we determine various rigidity conditions onto stationary spacelike surface into generalized Roberston-Walker spacetime and we present examples justifying the need for these conditions.
Palavras-chave: Matemática
Geometria Riemanniana
Subvariedade tipo-espaço
Princípio do máximo
Espaço Gaussiano
Espaço pseudo-Gaussiano
Math
Riemannian Geometry
Spacelike submanifold
Maximum principles
Gaussian space
Pseudo-Gaussian space
Espaços produto semi-Riemanniano
Crescimento de volume
Superfície estacionária
Parabolicidade
Semi-Riemannian product space
Volume growth
Stationary surface
Parabolicity
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
Idioma: por
País: Brasil
Editor: Universidade Federal da Paraíba
Sigla da Instituição: UFPB
Departamento: Matemática
Programa: Programa Associado de Pós-Graduação em Matemática
Tipo de Acesso: Acesso aberto
Attribution-NoDerivs 3.0 Brazil
URI: http://creativecommons.org/licenses/by-nd/3.0/br/
URI: https://repositorio.ufpb.br/jspui/handle/123456789/26069
Data do documento: 29-Jun-2022
Aparece nas coleções:Centro de Ciências Exatas e da Natureza (CCEN) - Programa Associado de Pós Graduação em Matemática

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
DaniloFerreiraDaSilva_Tese.pdf818,02 kBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons