Use este identificador para citar ou linkar para este item:
https://repositorio.ufpb.br/jspui/handle/123456789/26329
Tipo: | Dissertação |
Título: | Estratégia e projeto de interação baseados em agrupamento de itens para a elicitação de preferências de novos usuários em sistemas de recomendação |
Autor(es): | Soares, Fabrício Leite |
Primeiro Orientador: | Rêgo, Thaís Gaudencio do |
Primeiro Coorientador: | Barbosa, Yuri de Almeida Malheiros |
Resumo: | Para oferecer recomendações personalizadas a um usuário, um Sistema de Recomendação faz uso de um processo de elicitação de preferências sempre que um novo usuário é registrado no sistema. Propomos que esta tarefa é melhor alcançada não pelo método clássico, onde os usuários começam por expressar preferências por itens individuais, mas sim expressando preferências por grupos de itens, uma vez que o método clássico converte de forma ineficiente o esforço de um usuário em um perfil personalizado. Testamos esta ideia desenvolvendo e avaliando um processo interativo, onde os usuários expressam preferências através de grupos de itens gerados automaticamente por algoritmos de clusterização (clustering). Tal estratégia de recomendação pode ser generalizada para qualquer sistema baseado em Filtragem Colaborativa. Avaliamos nosso processo, tanto com métodos de simulação offline usando o conjunto de dados MovieLens, quanto com um experimento online com 312 usuários. Nossa avaliação revela vantagens e desvantagens envolvidas na passagem da elicitação de preferências por item para a elicitação de preferências por grupo. Os experimentos com usuários mostraram que a lista de recomendações top-N gerada por nossa proposta contém mais filmes que usuários poderão estar interessados, em comparação com o método clássico, e que um maior número de grupos impacta positivamente a acurácia de previsões, ao custo de maior esforço de escolha do usuário. Constatamos ainda que, em comparação com uma interface baseline de 15 itens, os usuários são capazes de completar o processo de elicitação de preferências em menos da metade do tempo. |
Abstract: | In order to provide tailored recommendations to a user, a Recommendation System makes use of a preference elicitation process whenever a new user is registered in the system. We propose that this task is best achieved not by the classic method, in which users first express their preferences for individual items, but instead by expressing preferences for groups of items, since the classic method inefficiently converts a user’s effort into a personalized profile. We tested this idea by developing and evaluating an interactive process, where users express preferences through groups of items that are automatically generated by clustering algorithms (clustering). This strategy of recommendation can be applied to any collaborative filtering based system. We assess our process, both with offline simulation methods, using the MovieLens data set; and with an online experiment with 312 users. Our evaluation reveals pros and cons associated with moving from preference elicitation per item to preference elicitation per group. The user experiments showed that the top-N recommendations list generated by our proposal contains more itens which users may be interested than the classic method, and that a greater number of groups positively impacts prediction accuracy, at the expense of greater user effort. Furthermore, we have found that, in comparison with a baseline interface of 15 items, users are able to complete the preference elicitation process in less than half the time. |
Palavras-chave: | Informática Aprendizagem de máquina Problema da inicialização fria Filtragem colaborativa Clusterização Interação homem-máquina Sistemas de recomendação Computing Machine learning Cold start problem Collaborative filtering Clustering Human–computer interaction Recommendation systems |
CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
Idioma: | por |
País: | Brasil |
Editor: | Universidade Federal da Paraíba |
Sigla da Instituição: | UFPB |
Departamento: | Informática |
Programa: | Programa de Pós-Graduação em Informática |
Tipo de Acesso: | Acesso aberto Attribution-NoDerivs 3.0 Brazil |
URI: | http://creativecommons.org/licenses/by-nd/3.0/br/ |
URI: | https://repositorio.ufpb.br/jspui/handle/123456789/26329 |
Data do documento: | 1-Fev-2021 |
Aparece nas coleções: | Centro de Informática (CI) - Programa de Pós-Graduação em Informática |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
FabrícioLeiteSoares_Dissert.pdf | 2,1 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma
Licença Creative Commons