Skip navigation

Use este identificador para citar ou linkar para este item: https://repositorio.ufpb.br/jspui/handle/123456789/26329
Tipo: Dissertação
Título: Estratégia e projeto de interação baseados em agrupamento de itens para a elicitação de preferências de novos usuários em sistemas de recomendação
Autor(es): Soares, Fabrício Leite
Primeiro Orientador: Rêgo, Thaís Gaudencio do
Primeiro Coorientador: Barbosa, Yuri de Almeida Malheiros
Resumo: Para oferecer recomendações personalizadas a um usuário, um Sistema de Recomendação faz uso de um processo de elicitação de preferências sempre que um novo usuário é registrado no sistema. Propomos que esta tarefa é melhor alcançada não pelo método clássico, onde os usuários começam por expressar preferências por itens individuais, mas sim expressando preferências por grupos de itens, uma vez que o método clássico converte de forma ineficiente o esforço de um usuário em um perfil personalizado. Testamos esta ideia desenvolvendo e avaliando um processo interativo, onde os usuários expressam preferências através de grupos de itens gerados automaticamente por algoritmos de clusterização (clustering). Tal estratégia de recomendação pode ser generalizada para qualquer sistema baseado em Filtragem Colaborativa. Avaliamos nosso processo, tanto com métodos de simulação offline usando o conjunto de dados MovieLens, quanto com um experimento online com 312 usuários. Nossa avaliação revela vantagens e desvantagens envolvidas na passagem da elicitação de preferências por item para a elicitação de preferências por grupo. Os experimentos com usuários mostraram que a lista de recomendações top-N gerada por nossa proposta contém mais filmes que usuários poderão estar interessados, em comparação com o método clássico, e que um maior número de grupos impacta positivamente a acurácia de previsões, ao custo de maior esforço de escolha do usuário. Constatamos ainda que, em comparação com uma interface baseline de 15 itens, os usuários são capazes de completar o processo de elicitação de preferências em menos da metade do tempo.
Abstract: In order to provide tailored recommendations to a user, a Recommendation System makes use of a preference elicitation process whenever a new user is registered in the system. We propose that this task is best achieved not by the classic method, in which users first express their preferences for individual items, but instead by expressing preferences for groups of items, since the classic method inefficiently converts a user’s effort into a personalized profile. We tested this idea by developing and evaluating an interactive process, where users express preferences through groups of items that are automatically generated by clustering algorithms (clustering). This strategy of recommendation can be applied to any collaborative filtering based system. We assess our process, both with offline simulation methods, using the MovieLens data set; and with an online experiment with 312 users. Our evaluation reveals pros and cons associated with moving from preference elicitation per item to preference elicitation per group. The user experiments showed that the top-N recommendations list generated by our proposal contains more itens which users may be interested than the classic method, and that a greater number of groups positively impacts prediction accuracy, at the expense of greater user effort. Furthermore, we have found that, in comparison with a baseline interface of 15 items, users are able to complete the preference elicitation process in less than half the time.
Palavras-chave: Informática
Aprendizagem de máquina
Problema da inicialização fria
Filtragem colaborativa
Clusterização
Interação homem-máquina
Sistemas de recomendação
Computing
Machine learning
Cold start problem
Collaborative filtering
Clustering
Human–computer interaction
Recommendation systems
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Idioma: por
País: Brasil
Editor: Universidade Federal da Paraíba
Sigla da Instituição: UFPB
Departamento: Informática
Programa: Programa de Pós-Graduação em Informática
Tipo de Acesso: Acesso aberto
Attribution-NoDerivs 3.0 Brazil
URI: http://creativecommons.org/licenses/by-nd/3.0/br/
URI: https://repositorio.ufpb.br/jspui/handle/123456789/26329
Data do documento: 1-Fev-2021
Aparece nas coleções:Centro de Informática (CI) - Programa de Pós-Graduação em Informática

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
FabrícioLeiteSoares_Dissert.pdf2,1 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons