Skip navigation

Use este identificador para citar ou linkar para este item: https://repositorio.ufpb.br/jspui/handle/123456789/26401
Tipo: Dissertação
Título: Estratégia de gerenciamento de microrrede trifásica com PV e bateria incluindo o corte de carga baseado na tensão do barramento CC
Autor(es): Soares, Luana Crispim Santiago
Primeiro Orientador: Barros, Camila Mara Vital
Primeiro Coorientador: Barros, Luciano Sales
Resumo: Microrredes baseadas em geração fotovoltaica não têm capacidade de regulação de tensão e frequência durante a operação ilhada. Em vista disso, baterias são inseridas para auxiliar na regulação da microrrede por apresentarem resposta rápida e controlável. As baterias podem ser conectadas de forma individual ou junto à geração fotovoltaica formando uma unidade híbrida, tendo esta última configuração a vantagem do melhor custo-benefício. Elas operam em ciclo de carga quando a geração fotovoltaica é maior do que a carga e em ciclo de descarga quando a carga é maior do que a geração fotovoltaica. No entanto, esta capacidade de regulação é limitada em situações de limite de carga, limite de descarga, SoC máximo e SoC mínimo. Isto dá origem a vários estados de operação: 1. Quando a demanda de carga da microrrede é menor que a geração fotovoltaica, a bateria absorve o excedente de potência; ou quando a demanda de carga da microrrede é maior que a geração fotovoltaica, a bateria injeta o déficit de potência; 2. Quando a demanda de carga da microrrede é menor que a geração fotovoltaica e a bateria está na potência limite de carga, o corte de geração fotovoltaica é realizado; 3. Quando a demanda de carga da microrrede é menor que a geração fotovoltaica e a bateria está em SoC máximo, o corte de geração fotovoltaica é realizado; 4. Quando a demanda de carga da microrrede é maior que a geração fotovoltaica e a bateria está na potência limite de descarga, o corte de carga é realizado; 5. Quando a demanda de carga da microrrede é maior que a geração fotovoltaica e a bateria está em SoC mínimo, o corte de carga é realizado. No estado 1 a bateria é responsável por regular a tensão do barramento CC ao injetar ou absorver potência, enquanto a fotovoltaica trabalha em MPPT. Nos estados 2 e 3, a bateria se torna incapaz de regular a tensão do barramento CC, assim, a fotovoltaica sai do MPPT e se torna responsável por regular esta tensão. Nos estados 4 e 5, a bateria se torna incapaz de regular a tensão do barramento CC e a geração fotovoltaica deve se manter em MPPT, portanto, para controlar o barramento CC e manter o equilíbrio da microrrede, deve-se realizar o corte de carga. Em contraste com os métodos existentes na literatura, neste trabalho é proposto um método para corte de cargas baseado na tensão do barramento CC, permitindo que o controle não dependa da estimativa de frequência baseada em PLL que apresenta desvantagens em sistemas onde são necessários alto desempenho e alta confiabilidade. Portanto, o método proposto apresenta a vantagem em depender apenas de medição de tensão local. Para implementar e testar a estratégia de corte de carga proposta, fez-se necessário o desenvolvimento da modelagem da fonte de geração fotovoltaica e da bateria, assim como a de seus conversores boost e buck-boost bidirecional. Da mesma maneira, foram modelados o filtro de rede e o VSI, além das cargas, baseadas no modelo de impedância constante. Por fim, foi implementada a estratégia de controle para atender os diferentes estados de operação da microrrede. A eficácia do método proposto é validada sob diferentes condições através de simulações no software MATLAB/Simulink.
Abstract: Microgrids based on photovoltaic generation do not have the capability to regulate voltage and frequency during islanded operation. In view of this, batteries are inserted to assist in the regulation of the microgrid as they present a quick and controllable response. The batteries can be connected individually or together with the photovoltaic generation, forming a hybrid unit, with the latter configuration having the advantage of being more cost-effective. They operate in a charge cycle when the PV generation is higher than the load and in a discharge cycle when the load is higher than the PV generation. However, this regulation capability is limited in charge limit, discharge limit, maximum SoC and minimum SoC situations. This gives rise to several operating states: 1. When the load demand of the microgrid is lower than the photovoltaic generation, the battery absorbs the excess power; or when the microgrid load demand is higher than the photovoltaic generation, the battery injects the deficit power; 2. When the load demand of the microgrid is lower than the photovoltaic generation and the battery is at the charge limit power, photovoltaic generation curtailment is performed; 3. When the load demand of the microgrid is lower than the photovoltaic generation and the battery is at maximum SoC, photovoltaic generation curtailment is performed; 4. When the load demand of the microgrid is higher than the photovoltaic generation and the battery is at the discharge limit power, load shedding is performed; 5. When the load demand of the microgrid is higher than the photovoltaic generation and the battery is at minimum SoC, load shedding is performed. In state 1, the battery is responsible for regulating the DC-bus voltage by injecting or absorbing power, while the photovoltaic works in MPPT. In states 2 and 3, the battery becomes unable to regulate the DC-bus voltage, thus, the photovoltaic leaves the MPPT and becomes responsible for regulating this voltage. In states 4 and 5, the battery becomes unable to regulate DC-bus voltage and the photovoltaic generation must remain in MPPT, therefore, to control the DC-bus and maintain the balance of the microgrid, load shedding must be performed. In contrast to the existing methods in the literature, this work proposes a method for load shedding based on the DC-bus voltage, allowing the control not to depend on the frequency estimation based on PLL, which has disadvantages in systems where high performance and high reliability are needed. Therefore, the proposed method has the advantage of relying only on local voltage measurement. To implement and test the proposed load shedding strategy, it was necessary to develop the modeling of the photovoltaic generation source and the battery, as well as its boost and bidirectional buck-boost converters. In the same way, the grid filter and the VSI were modeled, in addition to the loads, based on the constant impedance model. Finally, the control strategy was implemented to meet the different operating states of the microgrid. The effectiveness of the proposed method is validated under different conditions through simulations in MATLAB/Simulink software.
Palavras-chave: Engenharia elétrica
Microrrede trifásica - Operação - Gerenciamento
Rede - Controle formador - Controle seguidor
Geração híbrida fotovoltaica - Bateria
Corte de carga
Electrical engineering
Three-phase microgrid - Operation - Management
Network - Trainer control - Follower control
Photovoltaic hybrid generation - Battery
Load shedding
CNPq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Idioma: por
País: Brasil
Editor: Universidade Federal da Paraíba
Sigla da Instituição: UFPB
Departamento: Engenharia Elétrica
Programa: Programa de Pós-Graduação em Engenharia Elétrica
Tipo de Acesso: Acesso aberto
Attribution-NoDerivs 3.0 Brazil
URI: http://creativecommons.org/licenses/by-nd/3.0/br/
URI: https://repositorio.ufpb.br/jspui/handle/123456789/26401
Data do documento: 25-Nov-2022
Aparece nas coleções:Centro de Energias Alternativas e Renováveis (CEAR) - Programa de Pós-Graduação em Engenharia Elétrica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
LuanaCrispimSantiagoSoares_Dissert.pdf2,76 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons