Skip navigation

Use este identificador para citar ou linkar para este item: https://repositorio.ufpb.br/jspui/handle/123456789/27059
Tipo: Dissertação
Título: Detecção e correção de outliers em curvas de demanda de energia utilizando redes neurais artificiais autoencoders
Autor(es): Pimentel, Levi da Costa
Primeiro Orientador: Villanueva, Juan Maurício Moises
Resumo: Um dos principais problemas encontrados em Smart Grids é a ocorrência de outliers, que podem corromper dados, modificando então as informações trazidas por eles, dificultando a tomada de decisão com base nestas informações por parte dos operadores do sistema elétrico. Portanto, este trabalho propõe uma metodologia integrada de detecção e correção de outliers, baseada em redes neurais artificiais. Mais especificamente, foi desenvolvido um sistema de detecção baseado em Autoencoders, com auxílio de uma camada softmax, e um sistema de correção baseado em Autoencoders. A metodologia proposta foi submetida a diversos cenários, utilizando dados de uma subestação real, onde avalia-se a influência da variação do número de outliers presentes no banco de dados, assim como da variação da amplitude destes, sobre o funcionamento dos algoritmos. Nos testes conduzidos, a técnica de detecção chegou a alcançar Acurácia e F-score superiores a 99,7% e 97,4%, respectivamente. A técnica de correção chegou a obter erro percentual absoluto médio MAPE de 1,42%, enquanto a raiz do erro médio quadrático se manteve, na maioria dos cenários avaliados, inferior a 0,15 MW, valor que representa cerca de 1,7% do valor máximo de potência disponível no banco de dados.
Abstract: One of the main problems encountered in Smart Grids is the occurrence of outliers, which can corrupt data, thus modifying the information brought by them, making it difficult for electrical system operators to make decisions based on this information. Therefore, this work proposes an integrated outlier detection and correction methodology, based on artificial neural networks. More specifically, a detection system based on Autoencoders was developed, with the aid of a softmax layer, and a correction system based on Autoencoders. The proposed methodology was contemplated in several scenarios, using data from a real substation, where the influence of the variation in the number of outliers present in the database, as well as the variation of their amplitude, on the functioning of the algorithms, is evaluated. In the tests performed, the detection technique achieved Accuracy and F-scores greater than 99.7% and 97.4%, respectively. The correction technique obtained MAPE mean absolute percentage error of 1.42%, while the root mean square error remained, in most of the evaluated scenarios, below 0.15 MW, a value that represents about 1.7% of the maximum power value available in the database.
Palavras-chave: Inteligência artificial
Medidores inteligentes
Redes Neurais Artificiais (RNA)
Redes elétricas inteligentes
Detecção e correção de outliers
Autoencoders
Artificial intelligence
Smart meters
Artificial Neural Networks (ANN)
Smart grids
Outlier detection and correction
CNPq: CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
Idioma: por
País: Brasil
Editor: Universidade Federal da Paraíba
Sigla da Instituição: UFPB
Departamento: Engenharia Elétrica
Programa: Programa de Pós-Graduação em Engenharia Elétrica
Tipo de Acesso: Acesso aberto
Attribution-NoDerivs 3.0 Brazil
URI: http://creativecommons.org/licenses/by-nd/3.0/br/
URI: https://repositorio.ufpb.br/jspui/handle/123456789/27059
Data do documento: 30-Mar-2023
Aparece nas coleções:Centro de Energias Alternativas e Renováveis (CEAR) - Programa de Pós-Graduação em Engenharia Elétrica

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
LeviDaCostaPimentel_Dissert.pdf3,04 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons