Use este identificador para citar ou linkar para este item:
https://repositorio.ufpb.br/jspui/handle/123456789/28171
Tipo: | Dissertação |
Título: | Análise de performance de algoritmos de reconstrução para um conversor analógico para informação |
Autor(es): | Araujo, Hugo Bruno Santos |
Primeiro Orientador: | Souza, Cleonilson Protásio de |
Resumo: | A abordagem convencional para amostragem de sinais analógicos para digital segue o Teorema de Nyquist, em que a taxa de amostragem, chamada de Taxa de Nyquist, deve ser pelo menos duas vezes o valor da frequência máxima dos inalanalógico. Em termos práticos, no geral, as taxas de amostragem de conversores analógicos digitais (ADC) são bem superiores à taxa de Nyquist afim de otimizar a recuperação do sinal, porém aumenta-se também a necessidade de memória e de poder de processamento, os custos dos sistemas como um todo e um maior consumo de energia. A Amostragem Compressiva (AC) é uma técnica que explora a esparsidade de um sinal em um determinado domínio, i.e., a informação do sinal se concentra em poucos coeficientes, e a maior parte de seus coeficientes é igual ou próxima de zero. O Conversor Analógico para Informação (AIC) é o dispositivo que implementa o conceito de amostragem compressiva, em que, ao passo que realiza a amostragem do sinal analógico de entrada, um processo de compressão é realizado e, assim, obtém-se como saída uma versão digitalizada e comprimida do sinal de entrada que será transmitido e reconstruído no receptor. Diante do exposto, este trabalho tem como objetivo a análise de performance dos algoritmos de reconstrução Busca de Base (BP), Busca por Correspondência Ortogonal (OMP) e Amostragem Compressiva com Busca por Correspondência (CoSaMP) para uma configuração adaptada de AIC baseada no Pré-Integrador de Modulação Aleatória(RMPI). Simulações foram feitas no Proteus e no Simulink para validação da configuração do AIC, e sinais de um tom e de dois tons foram reconstruídos com componentes de frequência aproximados dos sinais originais. O desempenho dos três métodos de reconstrução foi avaliado com a métrica do erro quadrático médio (MSE). |
Abstract: | The conventionalapproachtosamplinganalogsignalstodigitalfollowstheNyquistThe- orem,inwhichthesamplingrate,calledNyquistrate,mustbeatleasttwotimesbigger than themaximumfrequencyoftheanalogsignal.Inpracticalterms,generally,analogto digital converters’(ADC)samplingratesaremuchhighertooptimizesignalreconstruc- tion, however,theyincreasetheneedformemoryandprocessingpower,systemscosts, and alsoincreaseenergyconsumption.CompressiveSensing(CS)isatechniquethattakes advantage ofsignalsparsityinagivendomain,thatis,thenumberofnon-zerovaluesof a signal,andcapturesonlytheregionsthatconcentrateinformation,withsamplingrates lowerthanwhattheNyquistTheoremsays.AdevicethatimplementstheCSmodelis the Analog-to-InformationConverter(AIC),whichobtainsanoutputthatisadigitized and compressedversionoftheinput.Themainobjectiveistoanalyzetheperformanceof reconstruction algorithms-BasisPursuit(BP),OrthogonalMathingPursuit(OMP)and CompressiveSamplingMatchingPursuit(CoSaMP)-foranadaptedAICconfiguration based onRandomModulatorPre-Integration(RMPI).SimulationsweredoneonProteus and SimulinktovalidatetheAICconfigurationused,andsingle-toneandduo-tonessig- nals werereconstructedwithfrequencycomponentssimlartotheoriginalsignals.Mean squarederror(MSE)wascalculatedforthethreereconstructionmethodstodetermine which onehadbetterperformance. |
Palavras-chave: | Engenharia elétrica Amostragem compressiva Conversor analógico para informação Sinais esparsos Algoritmos de reconstrução Electrical engineering Compressed Sensing Analog-to-information Converter Sparse signals Re-construction algorithms |
CNPq: | CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
Idioma: | por |
País: | Brasil |
Editor: | Universidade Federal da Paraíba |
Sigla da Instituição: | UFPB |
Departamento: | Engenharia Elétrica |
Programa: | Programa de Pós-Graduação em Engenharia Elétrica |
Tipo de Acesso: | Acesso aberto Attribution-NoDerivs 3.0 Brazil |
URI: | http://creativecommons.org/licenses/by-nd/3.0/br/ |
URI: | https://repositorio.ufpb.br/jspui/handle/123456789/28171 |
Data do documento: | 29-Set-2022 |
Aparece nas coleções: | Centro de Energias Alternativas e Renováveis (CEAR) - Programa de Pós-Graduação em Engenharia Elétrica |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
HugoBrunoSantosAraujo_Dissert.pdf | 2,51 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma
Licença Creative Commons