Use este identificador para citar ou linkar para este item:
https://repositorio.ufpb.br/jspui/handle/123456789/30202
Tipo: | Tese |
Título: | Desenvolvimento de um sistema inteligente de monitoramento prescritivo para severidade das condições de funcionamento de um redutor do tipo coroa sem-fim |
Autor(es): | Oliveira Neto, João Manoel de |
Primeiro Orientador: | Rodrigues, Marcelo Cavalcanti |
Primeiro Coorientador: | Silva, Antônio Almeida |
Resumo: | As máquinas industriais, de uma forma geral, se caracterizam pelo funcionamento proveniente de um motor elétrico associado a um sistema de redução de velocidade ou transmissão de força do tipo mecânico, como por exemplo através de engrenagens. Vários outros elementos compõem o sistema de funcionamento de uma máquina, e devido a carga cíclica imposta e as más condições de uso a que são impostos esse conjunto, se faz um acompanhamento preventivo ou são adotadas técnicas de manutenção preditiva de modo a prever o surgimento de falhas. Essa pesquisa tem por objetivo desenvolver um sistema inteligente, por meio da coleta de dados via análise de sinais sonoros, para realizar o diagnóstico prescritivo sobre a severidade relacionada a más condições de funcionamento em um sistema rotativo, cujo sistema de transmissão se dá por engrenagens do tipo coroa sem-fim, onde a severidade de funcionamento foi classificada em “leve”, “média” e “grave”. Os sinais sonoros foram coletados com um microfone e em simultaneidade realizou-se a análise de vibração de modo a validar os resultados obtidos. A extração das características dos sinais se deu por análise multi resolução wavelet, utilizando as informações contidas no coeficiente de detalhe 4, assim como ferramentas estatísticas, sendo essas desvio-padrão, variância e coeficiente de curtose. Identificados os padrões de funcionamento, elaborou-se a arquitetura de uma rede neural artificial multicamadas do tipo perceptron, com algoritmo backpropagation para classificação desses sinais. Como resultado obteve-se uma RNA com eficiência geral de 99,7%. Concluiu-se, que o desenvolvimento do sistema inteligente prescritivo foi capaz de detectar a severidade decorrente de más condições de funcionamento inseridas no protótipo em laboratório e em um equipamento industrial, podendo servir como ferramenta auxiliar em rotinas de manutenção. |
Abstract: | Industrial machines, in general, are characterized by the operation coming from an electric motor associated with a speed reduction system or mechanical power transmission, such as through gears. Several other elements make up the operating system of a machine, and due to the imposed cyclic load and the poor conditions of use to which this set is imposed, preventive monitoring is carried out or predictive maintenance techniques are adopted in order to predict the appearance of failures. This research aims to develop an intelligent system, through the collection of data via analysis of sound signals, to carry out the prescriptive diagnosis on the severity related to bad operating conditions in a rotating system, whose transmission system is given by gears of the worm type crown, where the operating severity was classified as “light”, “medium” and “severe”. The sound signals were collected with a microphone and at the same time the vibration analysis was carried out in order to validate the obtained results. The extraction of the characteristics of the signals was carried out by multi-resolution wavelet analysis, using the information contained in the coefficient of detail 4, as well as statistical tools, these being standard deviation, variance and kurtosis coefficient. Once the operating patterns were identified, the architecture of a perceptron-type multilayer artificial neural network was elaborated, with a backpropagation algorithm for classifying these signals. As a result, an ANN with a general efficiency of 99.7% was obtained. It was concluded that the development of the prescriptive intelligent system was able to detect the severity resulting from poor operating conditions inserted in the prototype in the laboratory and in industrial equipment, and can serve as an auxiliary tool in maintenance routines. |
Palavras-chave: | Engenharia Mecânica Severidade de vibrações Transformada de wavelet Estatística Rede neural artificial Análise sonora Redutor coroa sem-fim Mechanical Engineering Vibration severity Wavelet transform Statistic Artificial neural network Sound analysis Worm gear reducer |
CNPq: | CNPQ::ENGENHARIAS::ENGENHARIA MECANICA |
Idioma: | por |
País: | Brasil |
Editor: | Universidade Federal da Paraíba |
Sigla da Instituição: | UFPB |
Departamento: | Engenharia Mecânica |
Programa: | Programa de Pós-Graduação em Engenharia Mecânica |
Tipo de Acesso: | Acesso aberto Attribution-NoDerivs 3.0 Brazil |
URI: | http://creativecommons.org/licenses/by-nd/3.0/br/ |
URI: | https://repositorio.ufpb.br/jspui/handle/123456789/30202 |
Data do documento: | 26-Mai-2023 |
Aparece nas coleções: | Centro de Tecnologia (CT) - Programa de Pós-Graduação em Engenharia Mecânica |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
JoãoManoelDeOliveiraNeto_Tese.pdf | 11,13 MB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma
Licença Creative Commons