Skip navigation

Use este identificador para citar ou linkar para este item: https://repositorio.ufpb.br/jspui/handle/tede/7465
Tipo: Dissertação
Título: Hipersuperfícies com Hessiano nulo
Autor(es): Livi, Maikon dos Santos
Primeiro Orientador: Arancibia, Jacqueline Fabiola Rojas
Resumo: Hesse a rmou em um dos seus artigos que uma hipersuperfície no espaço projetivo Pn que tenha o hessiano polinomial nulo é um cone. Mais tarde, Gordam e Noether provam que a a rmação de Hesse é valida apenas para n 3, apresentando contra- exemplos para n 4. Inicialmente tentamos resolver o problema de maneira direta e elementar, tendo sucesso só no caso de P1, então partimos para o estudo de dual de uma variedade e de mapa polar associado a uma hipersuperfície X = Z(F) Pn. Tendo em consideração que X IF , onde IF é a imagem do mapa polar, e que X é um Cone se, e somente se, X é degenerado. Somos levados a mostrar uma série de resultados técnicos a m de concluir que IF é uma variedade linear, especi camente uma reta se n = 2 e um plano ou uma reta se n = 3. Provando assim que dada uma hipersuperfície X = Z(F) Pn. Se n 3, então X é um cone () det [Hess (F)] = 0.
Abstract: Hesse said in one of his articles that a hypersurface in the projective space Pn that has null hessian polynomial is a cone. Later, Gordam and Noether prove that the statement of Hesse is valid only for n 3, presenting counter-examples for n 4. Initially we tried to solve the problem in a direct and elementary form, been well succeeding only in the case of P1, so we set out to study the dual of variety and polar map associated to the hypersurface X = Z(F) Pn. Having mind that X IF , where IF is the polar map image, and that X is a cone if and only if, X is degenerate. Which brings us to display a series of technical results in order to conclude that IF is a linear variety, speci cally a line if n = 2 and a plane or line if n = 3. Thus we prove for a given hypersurface X = Z(F) Pn. If n 3, then X is a Cone () det [Hess (F)] = 0.
Palavras-chave: Hipersuperfície
Hessiano nulo
Dualidade
Cone
Hypersurface
Hessian null
Duality
Cone
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
Idioma: por
País: BR
Editor: Universidade Federal da Paraí­ba
Sigla da Instituição: UFPB
Departamento: Matemática
Programa: Programa de Pós Graduação em Matemática
Citação: LIVI, Maikon dos Santos. Hipersuperfícies com Hessiano nulo. 2011. 56 f. Dissertação (Mestrado em Matemática) - Universidade Federal da Paraí­ba, João Pessoa, 2011.
Tipo de Acesso: Acesso aberto
URI: https://repositorio.ufpb.br/jspui/handle/tede/7465
Data do documento: 24-Fev-2011
Aparece nas coleções:Centro de Ciências Exatas e da Natureza (CCEN) - Programa de Pós-Graduação em Matemática

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
arquivototal.pdf957,92 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.