Please use this identifier to cite or link to this item: https://repositorio.ufpb.br/jspui/handle/tede/8071
metadata.dc.type: Tese
Title: Sylvester forms and Rees algebras
metadata.dc.creator: Macêdo, Ricado Burity croccia
metadata.dc.contributor.advisor1: Simis, Aron
metadata.dc.description.resumo: Este trabalho versa sobre a algebra de Rees de um ideal quase intersec cão completa, de cocomprimento nito, gerado por formas de mesmo grau em um anel de polinômios sobre um corpo. Considera-se duas situa c~oes inteiramente diversas: na primeira, as formas s~ao mon^omios em um n umero qualquer de vari aveis, enquanto na segunda, s~ao formas bin arias gerais. O objetivo essencial em ambos os casos e obter a profundidade da algebra de Rees. E conhecido que tal algebra e raramente Cohen{Macaulay (isto e, de profundidade m axima). Assim, a quest~ao que permanece e qua o distante são do caso Cohen{Macaulay. No caso de monômios prova-se, mediante certa restri cão, uma conjectura de Vasconcelos no sentido de que a algébra de Rees e quase Cohen {Macaulay. No outro caso extremo, estabelece-se uma prova de uma conjectura de Simis sobre formas bin arias gerais, baseada no trabalho de Huckaba{Marley e em um teorema sobre a ltera cão de Ratli {Rush. Al em disso, apresenta-se um par de conjecturas mais fortes que implicam a conjectura de Simis, juntamente com uma evidência s olida.
Abstract: This work is about the Rees algebra of a nite colength almost complete intersection ideal generated by forms of the same degree in a polynomial ring over a eld. We deal with two situations which are quite apart from each other: in the rst the forms are monomials in an unrestricted number of variables, while the second is for general binary forms. The essential goal in both cases is to obtain the depth of the Rees algebra. It is known that for such ideals the latter is rarely Cohen{Macaulay (i.e., of maximal depth). Thus, the question remains as to how far one is from the Cohen{Macaulay case. In the case of monomials one proves under certain restriction a conjecture of Vasconcelos to the e ect that the Rees algebra is almost Cohen{ Macaulay. At the other end of the spectrum, one proposes a proof of a conjecture of Simis on general binary forms, based on work of Huckaba{Marley and on a theorem concerning the Ratli {Rush ltration. Still within this frame, one states a couple of stronger conjectures that imply Simis conjecture, along with some solid evidence.
Keywords: Algebra de Rees
Rees algebra
Numero de reducão
Formas de Sylvester
Funcão de Hilbert
Ideais iniciais
Quase Cohen-Macaulay
Mapping cone
Reduction number
metadata.dc.subject.cnpq: CIENCIAS EXATAS E DA TERRA::MATEMATICA
metadata.dc.language: por
metadata.dc.publisher.country: Brasil
Publisher: Universidade Federal da Paraíba
metadata.dc.publisher.initials: UFPB
metadata.dc.publisher.department: Matemática
metadata.dc.publisher.program: Programa de Pós-Graduação em Matemática
Citation: MACÊDO, Ricardo Burity Croccia. Sylvester forms and Rees algebras, 2015. 99 f. Tese (Doutorado em Matemática) - Universidade Federal da Paraíba, João Pessoa, 2015.
metadata.dc.rights: Acesso Aberto
URI: https://repositorio.ufpb.br/jspui/handle/tede/8071
Issue Date: 24-Jul-2015
Appears in Collections:Centro de Ciências Exatas e da Natureza (CCEN) - Programa de Pós-Graduação em Matemática

Files in This Item:
File Description SizeFormat 
arquivo total.pdf1,33 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.