Skip navigation

Use este identificador para citar ou linkar para este item: https://repositorio.ufpb.br/jspui/handle/tede/9316
Tipo: Tese
Título: On linearly coupled systems of Schrödinger equations with critical growth
Autor(es): Melo Júnior, José Carlos de Albuquerque
Primeiro Orientador: Do Ó, Joao Marcos Bezerra
Resumo: Neste trabalhoestudamosaexistênciadegroundstatesparaaseguinteclassede sistemas acopladosenvolvendoequaçõesdeSchrödingernão-lineares 8<: 􀀀 u + V1(x)u = f1(x; u) + (x)v;x 2 RN; 􀀀 v + V2(x)v = f2(x; v) + (x)u; x 2 RN; onde ospotenciais V1 : RN ! R, V2 : RN ! R são não-negativoseestãorelacionados com otermodeacomplamento : RN ! R por j (x)j < pV1(x)V2(x), paraalgum 0 < < 1. Nocaso N = 2, asnão-linearidades f1 e f2 possuemcrescimentocrítico exponencialnosentidodadesigualdadedeTrudinger-Moser.Nocaso N 3, asnão- linearidades sãopolinômioscomexpoentesubcríticoecríticonosentidodeSobolev. Estudamos aindaaseguinteclassedesistemasacopladosnão-locais 8<: (􀀀 )1=2u + V1(x)u = f1(u) + (x)v;x 2 R; (􀀀 )1=2v + V2(x)v = f2(v) + (x)u; x 2 R; onde (􀀀 )1=2 denota ooperadorraízquadradadolaplacianoeasnão-linearidades possuemcrescimentocríticoexponencial.Nossaabordagemévariacionalebaseadana técnica deminimizaçãosobreavariedadedeNehari.
Abstract: In thisworkwestudytheexistenceofgroundstatesforthefollowingclassofcoupled systems involvingnonlinearSchrödingerequations 8<: 􀀀 u + V1(x)u = f1(x; u) + (x)v;x 2 RN; 􀀀 v + V2(x)v = f2(x; v) + (x)u; x 2 RN; where thepotentials V1 : RN ! R, V2 : RN ! R are nonnegativeandrelatedwith the couplingterm : RN ! R by j (x)j < pV1(x)V2(x), forsome 0 < < 1. In the case N = 2, thenonlinearities f1 e f2 havecriticalexponentialgrowthinthesense of Trudinger-Moserinequality.Inthecase N 3, thenonlinearitiesarepolynomials with subcriticalandcriticalexponentintheSobolevsense.Westudyalsothefollowing class ofnonlocalcoupledsystems 8<: (􀀀 )1=2u + V1(x)u = f1(u) + (x)v;x 2 R; (􀀀 )1=2v + V2(x)v = f2(v) + (x)u; x 2 R; where (􀀀 )1=2 denotes thesquarerootoftheLaplacianoperatorandthenonlinearities havecriticalexponentialgrowth.Ourapproachisvariationalandbasedon minimization techniqueovertheNeharimanifold
Palavras-chave: Sistemas linearmente acoplados
Soluções de energia mínima
Variedade de Nehari
Crescimento crítico
Desigualdade de Trudinger-Moser
Linearly couples systems
Ground state solution
Nehari manifold
Critical growth
Trudinger-Moser inequality
CNPq: CIENCIAS EXATAS E DA TERRA::MATEMATICA
Idioma: por
País: Brasil
Editor: Universidade Federal da Paraíba
Sigla da Instituição: UFPB
Departamento: Matemática
Programa: Programa de Pós-Graduação em Matemática
Citação: MELO JÚNIOR, José Carlos de Albuquerque. On linearly coupled systems of Schrödinger equations with critical growth. 2017. 102 f. Tese. (Doutorado em Matemática)- Universidade Federal da Paraíba, João Pessoa, 2017.
Tipo de Acesso: Acesso aberto
URI: https://repositorio.ufpb.br/jspui/handle/tede/9316
Data do documento: 24-Fev-2017
Aparece nas coleções:Centro de Ciências Exatas e da Natureza (CCEN) - Programa de Pós-Graduação em Matemática

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
arquivototal.pdfArquivo total1,29 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.