Please use this identifier to cite or link to this item: https://repositorio.ufpb.br/jspui/handle/tede/9316
metadata.dc.type: Tese
Title: On linearly coupled systems of Schrödinger equations with critical growth
metadata.dc.creator: Melo Júnior, José Carlos de Albuquerque
metadata.dc.contributor.advisor1: Do Ó, Joao Marcos Bezerra
metadata.dc.description.resumo: Neste trabalhoestudamosaexistênciadegroundstatesparaaseguinteclassede sistemas acopladosenvolvendoequaçõesdeSchrödingernão-lineares 8<: 􀀀 u + V1(x)u = f1(x; u) + (x)v;x 2 RN; 􀀀 v + V2(x)v = f2(x; v) + (x)u; x 2 RN; onde ospotenciais V1 : RN ! R, V2 : RN ! R são não-negativoseestãorelacionados com otermodeacomplamento : RN ! R por j (x)j < pV1(x)V2(x), paraalgum 0 < < 1. Nocaso N = 2, asnão-linearidades f1 e f2 possuemcrescimentocrítico exponencialnosentidodadesigualdadedeTrudinger-Moser.Nocaso N 3, asnão- linearidades sãopolinômioscomexpoentesubcríticoecríticonosentidodeSobolev. Estudamos aindaaseguinteclassedesistemasacopladosnão-locais 8<: (􀀀 )1=2u + V1(x)u = f1(u) + (x)v;x 2 R; (􀀀 )1=2v + V2(x)v = f2(v) + (x)u; x 2 R; onde (􀀀 )1=2 denota ooperadorraízquadradadolaplacianoeasnão-linearidades possuemcrescimentocríticoexponencial.Nossaabordagemévariacionalebaseadana técnica deminimizaçãosobreavariedadedeNehari.
Abstract: In thisworkwestudytheexistenceofgroundstatesforthefollowingclassofcoupled systems involvingnonlinearSchrödingerequations 8<: 􀀀 u + V1(x)u = f1(x; u) + (x)v;x 2 RN; 􀀀 v + V2(x)v = f2(x; v) + (x)u; x 2 RN; where thepotentials V1 : RN ! R, V2 : RN ! R are nonnegativeandrelatedwith the couplingterm : RN ! R by j (x)j < pV1(x)V2(x), forsome 0 < < 1. In the case N = 2, thenonlinearities f1 e f2 havecriticalexponentialgrowthinthesense of Trudinger-Moserinequality.Inthecase N 3, thenonlinearitiesarepolynomials with subcriticalandcriticalexponentintheSobolevsense.Westudyalsothefollowing class ofnonlocalcoupledsystems 8<: (􀀀 )1=2u + V1(x)u = f1(u) + (x)v;x 2 R; (􀀀 )1=2v + V2(x)v = f2(v) + (x)u; x 2 R; where (􀀀 )1=2 denotes thesquarerootoftheLaplacianoperatorandthenonlinearities havecriticalexponentialgrowth.Ourapproachisvariationalandbasedon minimization techniqueovertheNeharimanifold
Keywords: Sistemas linearmente acoplados
Soluções de energia mínima
Variedade de Nehari
Crescimento crítico
Desigualdade de Trudinger-Moser
Linearly couples systems
Ground state solution
Nehari manifold
Critical growth
Trudinger-Moser inequality
metadata.dc.subject.cnpq: CIENCIAS EXATAS E DA TERRA::MATEMATICA
metadata.dc.language: por
metadata.dc.publisher.country: Brasil
Publisher: Universidade Federal da Paraíba
metadata.dc.publisher.initials: UFPB
metadata.dc.publisher.department: Matemática
metadata.dc.publisher.program: Programa de Pós-Graduação em Matemática
Citation: MELO JÚNIOR, José Carlos de Albuquerque. On linearly coupled systems of Schrödinger equations with critical growth. 2017. 102 f. Tese. (Doutorado em Matemática)- Universidade Federal da Paraíba, João Pessoa, 2017.
metadata.dc.rights: Acesso aberto
URI: https://repositorio.ufpb.br/jspui/handle/tede/9316
Issue Date: 24-Feb-2017
Appears in Collections:Centro de Ciências Exatas e da Natureza (CCEN) - Programa de Pós-Graduação em Matemática

Files in This Item:
File Description SizeFormat 
arquivototal.pdfArquivo total1,29 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.