Use este identificador para citar ou linkar para este item:
https://repositorio.ufpb.br/jspui/handle/tede/9316
Tipo: | Tese |
Título: | On linearly coupled systems of Schrödinger equations with critical growth |
Autor(es): | Melo Júnior, José Carlos de Albuquerque |
Primeiro Orientador: | Do Ó, Joao Marcos Bezerra |
Resumo: | Neste trabalhoestudamosaexistênciadegroundstatesparaaseguinteclassede sistemas acopladosenvolvendoequaçõesdeSchrödingernão-lineares 8<: u + V1(x)u = f1(x; u) + (x)v;x 2 RN; v + V2(x)v = f2(x; v) + (x)u; x 2 RN; onde ospotenciais V1 : RN ! R, V2 : RN ! R são não-negativoseestãorelacionados com otermodeacomplamento : RN ! R por j (x)j < pV1(x)V2(x), paraalgum 0 < < 1. Nocaso N = 2, asnão-linearidades f1 e f2 possuemcrescimentocrítico exponencialnosentidodadesigualdadedeTrudinger-Moser.Nocaso N 3, asnão- linearidades sãopolinômioscomexpoentesubcríticoecríticonosentidodeSobolev. Estudamos aindaaseguinteclassedesistemasacopladosnão-locais 8<: ( )1=2u + V1(x)u = f1(u) + (x)v;x 2 R; ( )1=2v + V2(x)v = f2(v) + (x)u; x 2 R; onde ( )1=2 denota ooperadorraízquadradadolaplacianoeasnão-linearidades possuemcrescimentocríticoexponencial.Nossaabordagemévariacionalebaseadana técnica deminimizaçãosobreavariedadedeNehari. |
Abstract: | In thisworkwestudytheexistenceofgroundstatesforthefollowingclassofcoupled systems involvingnonlinearSchrödingerequations 8<: u + V1(x)u = f1(x; u) + (x)v;x 2 RN; v + V2(x)v = f2(x; v) + (x)u; x 2 RN; where thepotentials V1 : RN ! R, V2 : RN ! R are nonnegativeandrelatedwith the couplingterm : RN ! R by j (x)j < pV1(x)V2(x), forsome 0 < < 1. In the case N = 2, thenonlinearities f1 e f2 havecriticalexponentialgrowthinthesense of Trudinger-Moserinequality.Inthecase N 3, thenonlinearitiesarepolynomials with subcriticalandcriticalexponentintheSobolevsense.Westudyalsothefollowing class ofnonlocalcoupledsystems 8<: ( )1=2u + V1(x)u = f1(u) + (x)v;x 2 R; ( )1=2v + V2(x)v = f2(v) + (x)u; x 2 R; where ( )1=2 denotes thesquarerootoftheLaplacianoperatorandthenonlinearities havecriticalexponentialgrowth.Ourapproachisvariationalandbasedon minimization techniqueovertheNeharimanifold |
Palavras-chave: | Sistemas linearmente acoplados Soluções de energia mínima Variedade de Nehari Crescimento crítico Desigualdade de Trudinger-Moser Linearly couples systems Ground state solution Nehari manifold Critical growth Trudinger-Moser inequality |
CNPq: | CIENCIAS EXATAS E DA TERRA::MATEMATICA |
Idioma: | por |
País: | Brasil |
Editor: | Universidade Federal da Paraíba |
Sigla da Instituição: | UFPB |
Departamento: | Matemática |
Programa: | Programa de Pós-Graduação em Matemática |
Citação: | MELO JÚNIOR, José Carlos de Albuquerque. On linearly coupled systems of Schrödinger equations with critical growth. 2017. 102 f. Tese. (Doutorado em Matemática)- Universidade Federal da Paraíba, João Pessoa, 2017. |
Tipo de Acesso: | Acesso aberto |
URI: | https://repositorio.ufpb.br/jspui/handle/tede/9316 |
Data do documento: | 24-Fev-2017 |
Aparece nas coleções: | Centro de Ciências Exatas e da Natureza (CCEN) - Programa de Pós-Graduação em Matemática |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
arquivototal.pdf | Arquivo total | 1,29 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.