Skip navigation

Use este identificador para citar ou linkar para este item: https://repositorio.ufpb.br/jspui/handle/tede/9429
Tipo: Dissertação
Título: A Transformada Discreta de Fourier no círculo finito ℤ/nℤ
Autor(es): Farias Filho, Antonio Pereira de
Primeiro Orientador: Caro Tuesta, Napoleón
Resumo: Faremos, aqui, um estudo teórico sobre a Transformada Discreta de Fourier no círculo finito ℤ/nℤ. Nosso principal objetivo é verificar se podemos obter propriedades análogas às encontradas nas transformadas de Fourier para o caso contínuo. Nesse trabalho mostraremos que ℤ/nℤ tem uma estrutura de anel, dando condições para o desenvolvimento de temas bastante discutidos na Aritmética como, por exemplo, o Teorema Chinês do Resto, função Phi de Euler e raízes primitivas, temas estes que serão tratados no primeiro capítulo. O assunto principal desse estudo é desenvolvido no segundo capítulo, onde definiremos o espaço L2(ℤ/nℤ) e provaremos que este é um espaço vetorial com produto interno, dimensão finita e uma base ortonormal. Tal fato será de extrema importância quando estivermos determinando a matriz e demonstrando as propriedades da transformada discreta de Fourier. Também faremos interpretações geométricas do Teorema Chinês do Resto e do círculo finito ℤ/nℤ assim como daremos a representação gráfica da DFT de algumas funções que calcularemos. Durante o desenvolvimento desse estudo faremos uso recorrente de definições e resultados tratados na Aritmética, Álgebra e Álgebra Linear.
Abstract: We will do here a theoretical study of the Discrete Fourier Transform on the finite circle ℤ/nℤ. Our main objective is to see if we can get properties analogous to those found in the Fourier transform for the continuous case. In this work we show that ℤ/nℤ has a ring structure, providing conditions for the development of extensively discussed topics in arithmetic, for example, The Chinese Remainder Theorem, Euler’s Phi Function and primitive roots, themes these to be dealt with in first chapter. The main subject of this study is developed in the second chapter, which define the space L2(ℤ/nℤ) and prove that this is a finite-dimensional inner product vector space, with an orthonormal basis. This fact is of utmost importance when we are determining the matrix and demonstrating the properties of the discrete Fourier transform. We will also make geometric interpretations of the Chinese Remainder Theorem and the finite circle ℤ/nℤ as well as give a graphical representation of the DFT of some functions that calculate. During the development of this study we will make recurrent use of definitions and results treated in Arithmetic, Algebra and Linear Algebra.
Palavras-chave: Transformada Discreta de Fourier
Anel quociente ℤ/nℤ
Convolução de funções discretas
Raízes primitivas
Grupos cíclicos
Discrete Fourier Transform
Quotient ring ℤ/nℤ
Discrete convolution functions
Primitive roots
Cyclic groups
CNPq: MATEMATICA::MATEMATICA APLICADA
Idioma: por
País: Brasil
Editor: Universidade Federal da Paraíba
Sigla da Instituição: UFPB
Departamento: Matemática
Programa: Mestrado Profissional em Matemática
Citação: FARIAS FILHO, Antonio Pereira de. A Transformada Discreta de Fourier no círculo finito ℤ/nℤ. 2016. 89f. Dissertação (Mestrado Profissional em Matemática)- Universidade Federal da Paraíba, João Pessoa, 2016.
Tipo de Acesso: Acesso aberto
URI: https://repositorio.ufpb.br/jspui/handle/tede/9429
Data do documento: 26-Ago-2016
Aparece nas coleções:Centro de Ciências Exatas e da Natureza (CCEN) - Mestrado Profissional em Matemática

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
arquivototal.pdfArquivo total2 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.