Skip navigation

Use este identificador para citar ou linkar para este item: https://repositorio.ufpb.br/jspui/handle/tede/9565
Registro completo de metadados
Campo DCValorIdioma
dc.creatorPucheu, María Laura-
dc.date.accessioned2017-09-19T13:39:47Z-
dc.date.accessioned2018-07-21T00:09:24Z-
dc.date.available2018-07-21T00:09:24Z-
dc.date.issued2013-06-28-
dc.identifier.citationPUCHEU, María Laura. Teorias da gravitação e geometria de Weyl. 2013. 93 f. Tese (Doutorado em Física) - Universidade Federal da Paraíba, João Pessoa, 2013.por
dc.identifier.urihttps://repositorio.ufpb.br/jspui/handle/tede/9565-
dc.description.abstractWe show that the theory of General Relativity can be entirely formulated in the language of the integrable Weyl geometry. We develop the concept of Weyl frames and state the fact that they are completely equivalent as far as geodesic motion is concerned. In the case of General Relativity, we build an action that is manifestly invariant with respect to Weyl transformations. In this scenario, the gravitational field is described by a combination of both the metric and a geometrical scalar field. We illustrate this point by examining how distinct geometrical and physical pictures of the same phenomena may arise in different frames for the particular case of conformally flat spacetimes. Besides, we show that our choice of Weyl geometry for describing the space-time of General Relativity completely agrees with Poincare ideas that the geometry of space was merely a convention and that no geometry is more correct than any other, only more convenient. On the other hand, we consider the Brans-Dicke gravitational theory as a point of departure for constructing a geometric scalar-field theory. In this approach we apply the Palatini variational method to the Brans-Dicke action. We then are naturally led to conclude that space-time has the geometrical structure of a Weyl integrable manifold. We briefly examine some features of this scalar-tensor theory in which Brans-Dicke scalar field now plays the role of a geometrical field.eng
dc.description.provenanceSubmitted by Vasti Diniz (vastijpa@hotmail.com) on 2017-09-19T13:39:47Z No. of bitstreams: 1 arquivototal.pdf: 1029692 bytes, checksum: e88e69e5c9a3cffdaf665a4b3a2d8d85 (MD5)eng
dc.description.provenanceMade available in DSpace on 2017-09-19T13:39:47Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 1029692 bytes, checksum: e88e69e5c9a3cffdaf665a4b3a2d8d85 (MD5) Previous issue date: 2013-06-28eng
dc.description.provenanceMade available in DSpace on 2018-07-21T00:09:24Z (GMT). No. of bitstreams: 2 arquivototal.pdf: 1029692 bytes, checksum: e88e69e5c9a3cffdaf665a4b3a2d8d85 (MD5) arquivototal.pdf.jpg: 3537 bytes, checksum: 02a967cf084aaf5563afff1c433de1bf (MD5) Previous issue date: 2013-06-28en
dc.description.sponsorshipConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqpor
dc.formatapplication/pdf*
dc.languageporpor
dc.publisherUniversidade Federal da Paraíbapor
dc.rightsAcesso abertopor
dc.subjectRelatividade Geralpor
dc.subjectGeometria Riemannianapor
dc.subjectGeometria de Weyl inte­grablepor
dc.subjectConvencionalismopor
dc.subjectTeoria gravitacional de Brans-Dickepor
dc.subjectGeneral Relativityeng
dc.subjectRiemannian geometryeng
dc.subjectIntegrable Weyl geometryeng
dc.subjectConven­tionalismeng
dc.subjectBrans-Dicke theory of Gravitationeng
dc.titleTeorias da gravitação e geometria de Weylpor
dc.typeTesepor
dc.contributor.advisor1Romero Filho, Carlos Augusto-
dc.contributor.advisor1Latteshttp://lattes.cnpq.br/5887261302613510por
dc.creator.Latteshttp://lattes.cnpq.br/8102166260027850por
dc.description.resumoA gravitagao tern lido atribuida, desde a aparigao da relatividade geral, a curvatura do espago­tempo. A linguagem geometrodinamica por esta teoria introduzida, representa uma ferra­menta conveniente para predizer o comportamento da materia. Partindo da ideia proposta por Poincare de que a geometria do espago é apenas uma convengao, afirmando que nenhuma geometria é mais correta que outra, mas mais conveniente, mostramos como certas teorias da gravitagao, ern particular a teoria geral da relatividade, assim como a teoria de Brans-Dicke, podem ser completamente reformuladas numa geometria que é uma generalizagao da geometria riemanniana: a geometria de Weyl integravel. Corn esta escolha da linguagem matematica, o movimento das particulas e raios de luz correspondem a geodesicas weylia­nas, as quais satisfazem uma nova classe de invariancia, a invariancia por transformagoes de Weyl. Estas transformagoes permitem definir os chamados referenciais de Weyl e, no caso da teoria da gravitagao criada por Einstein, recupera-la na sua formulagao riemanniana, num gauge particular. Por outro lado, esta modificagao na dinamica dos objetos traz uma nova percepgao dos fenomenos fisicos que tentaremos explorar.por
dc.publisher.countryBrasilpor
dc.publisher.departmentFísicapor
dc.publisher.programPrograma de Pós-Graduação em Físicapor
dc.publisher.initialsUFPBpor
dc.subject.cnpqCIENCIAS EXATAS E DA TERRA::FISICApor
dc.thumbnail.urlhttp://tede.biblioteca.ufpb.br:8080/retrieve/18815/arquivototal.pdf.jpg*
Aparece nas coleções:Centro de Ciências Exatas e da Natureza (CCEN) - Programa de Pós-Graduação em Física

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
arquivototal.pdfArquivo Total1,01 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.