Skip navigation

Use este identificador para citar ou linkar para este item: https://repositorio.ufpb.br/jspui/handle/123456789/19379
Tipo: Tese
Título: Redes neurais artificiais nomonitoramento de inibidores de tirosina quinase na leucemia mieloide crônica
Autor(es): Albuquerque, Patrícia Maria Simões de
Primeiro Orientador: Diniz, Margareth de Fátima Formiga Melo
Segundo Orientador: Ximenes, Daniele Idalino Janebro
Resumo: A pesquisa objetivou construir um modelo de inteligência computacional para monitorar o tratamento de pacientes com Leucemia Mieloide Crônica (LMC) com inibidores da tirosina quinase (TKI). Caracteriza-se como um estudo clínico, observacional e longitudinal, baseado em dados institucionais cujos resultados foram analisados, a partir de informações obtidas da análise de prontuários de cada participante, o qual foi monitorado por 12 meses.A amostra foi composta de 105 pacientes do setor de ambulatório de quimioterapia de um hospital do município de João Pessoa-PB, no período de setembro de 2015 a setembro de 2016. Para a coleta de dados, foi utilizado três instrumentos: o de dados sociodemográficos, clínicos e terapêuticos; o acompanhamento dos pacientes correspondente às reações adversas; e o contendo o questionárioWorld Health Organization Quality of Life (WHOQOL-bref), para avaliação da qualidade de vida. A base de dados foi obtida , e um total de 689 variáveis submetidos a estudos de mapas autoorganizados (SOMs– do inglês “self-organized mapping”). Das técnicas de aprendizado de máquina não supervisionadas para pacientes com LMC em grupos baseados em variáveis específicas, pôde-se observar eventos adversos considerados não graves em pacientes tratados com imatinibe e dasatinibe e causas prováveis responsáveis da ruptura não intencional do tratamento: hipopigmentação cutânea, graus de vômitos, graus de edema orbital e graus de lacrimejamento, vômito, diarreia, fadiga e síndrome de mão e pé.A literatura mostra que os eventos adversos (EAs) estão significamente relacionados á qualidade de vida do paciente, interferindo na vida diária dos mesmos e afetando negativamente a adesão à terapia como demonstrado neste estudo.Assim, existe a necessidade de atualizar os modelos do SOM usando novos dados para melhorar a robustez na previsão da descontinuação do tratamento devido a eventos adversos e para identificar os principais fatores para a falha do tratamento.
Abstract: The research aimed to build a computational intelligence model to monitor the treatment of patients with chronic myeloid leukemia (CML) with tyrosine kinase inhibitors (TKI). It is characterized as a clinical, observational and longitudinal study, based on institutional data whose results were analyzed, based on information obtained from the analysis of each participant's medical records, which was monitored for 12 months. The sample consisted of 105 patients from the outpatient chemotherapy sector of a hospital in the city of João Pessoa-PB, from September 2015 to September 2016. For data collection, three instruments were used: sociodemographic, clinical and therapeutic data; patient follow-up corresponding to adverse reactions; and the one containing the World Health Organization Quality of Life (WHOQOL-bref) questionnaire, to assess quality of life. The database was obtained, and a total of 689 variables submitted to self-organized mapping (SOMs) studies. From unsupervised machine learning techniques for CML patients in groups based on specific variables, non-serious adverse events were observed in patients treated with imatinib and dasatinib and probable causes responsible for unintentional treatment disruption: cutaneous hypopigmentation, degrees vomiting, degrees of orbital edema and degrees of tearing, vomiting, diarrhea, fatigue and hand and foot syndrome. The literature shows that adverse events (AEs) are significantly related to the patient's quality of life, interfering with their daily life and negatively affecting adherence to therapy as shown in this study. Thus, there is a need to update SOM models using new data to improve robustness in predicting treatment discontinuation due to adverse events and to identify key factors for treatment failure.
Palavras-chave: Leucemia mieloide crônica
Inibidores de tirosina quinase
Descontinuação do tratamento
Mapas auto-organizados
Eventos adversos
Chronic myeloid leukemia
Tyrosine kinase inhibitors
Discontinuation of treatment
Self-organized maps
Adverse events
CNPq: CNPQ::CIENCIAS BIOLOGICAS::FARMACOLOGIA
Idioma: por
País: Brasil
Editor: Universidade Federal da Paraíba
Sigla da Instituição: UFPB
Departamento: Farmacologia
Programa: Programa de Pós-Graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos
Tipo de Acesso: Acesso aberto
URI: http://creativecommons.org/licenses/by-nd/3.0/br/
URI: https://repositorio.ufpb.br/jspui/handle/123456789/19379
Data do documento: 29-Jul-2019
Aparece nas coleções:Centro de Ciências da Saúde (CCS) - Programa de Pós-Graduação em Desenvolvimento e Inovacao Tecnologica em Medicamentos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
PatríciaMariaSimõesDeAlbuquerque_Tese.pdf6,77 MBAdobe PDFVisualizar/Abrir


Este item está licenciada sob uma Licença Creative Commons Creative Commons