Use este identificador para citar ou linkar para este item:
https://repositorio.ufpb.br/jspui/handle/123456789/20353
Tipo: | Dissertação |
Título: | Multiplicidade de solucões nodais para um problema do tipo Yamabe |
Autor(es): | Assis, Lázaro Rangel Silva de |
Primeiro Orientador: | Souza, Manasses Xavier de |
Resumo: | Neste trabalho, estudamos a existência e multiplicidade de soluções para a seguinte classe de equações do tipo Yamabe −divg(a(x)∇gu) + b(x)u = c(x)|u| 2 ∗−2u, onde (M, g) ´e uma variedade Riemanniana compacta sem bordo de dimensão m > 3, a, b, c ∈ C ∞(M), com a e c positivas, e 2∗ = 2m m−2 denota o expoente crítico de Sobolev. Assumindo que operador −divg(a∇g) +b ´e coercivo e algumas hipóteses de simetria sobre a variedade M, aplicando o princípio de concentração e compacidade e um m´e todo variacional para soluções nodais, provamos a existência de uma solução positiva e múltiplas soluções nodais. |
Abstract: | In this work, we study the existence and multiplicity of solutions for the following class of Yamabe-type equations −divg(a(x)∇gu) + b(x)u = c(x)|u| 2 ∗−2u, where (M, g) is a compact Riemannian manifold without boundary of dimension m > 3, a, b, c ∈ C ∞(M), with a and c positive functions, and 2∗ = 2m m−2 denotes the critical Sobolev exponent. Assuming that the operator −divg(a∇g) + b is coercive and some hypotheses of symmetry on the manifold M, by applying the Concentration-Compactness Principle and a variational method for nodal solutions, we prove the existence of a positive solution and multiple nodal solutions. |
Palavras-chave: | Problema de Yamabe Simetria Princípio de concentracão e compacidade Métodos variacionais Yamabe problem Symmetry Concentration-compactness principle Variational methods |
CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
Idioma: | por |
País: | Brasil |
Editor: | Universidade Federal da Paraíba |
Sigla da Instituição: | UFPB |
Departamento: | Matemática |
Programa: | Programa de Pós-Graduação em Matemática |
Tipo de Acesso: | Acesso aberto |
URI: | http://creativecommons.org/licenses/by-nd/3.0/br/ |
URI: | https://repositorio.ufpb.br/jspui/handle/123456789/20353 |
Data do documento: | 22-Jul-2020 |
Aparece nas coleções: | Centro de Ciências Exatas e da Natureza (CCEN) - Programa de Pós-Graduação em Matemática |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
LázaroRangelSilvaDeAssis_Dissert.pdf | 903,4 kB | Adobe PDF | Visualizar/Abrir |
Este item está licenciada sob uma
Licença Creative Commons