Skip navigation

Use este identificador para citar ou linkar para este item: https://repositorio.ufpb.br/jspui/handle/tede/7409
Tipo: Dissertação
Título: Conjectura de De Giorgi em dimensões 2 e 3
Autor(es): Sousa, Ivaldo Tributino de
Primeiro Orientador: ó, João Marcos Bezerra do
Resumo: Este trabalho se preocupa com o estudo de soluções limitadas de equações elípticas semilineares u − F0(u) = 0 em todo espaço Rn, sob o pressuposto que u é monótona em uma direção, digamos @u/@xn > 0 em Rn. O objetivo é estabelecer o caráter unidimensional ou simetria de u, ou seja, que u depende apenas de uma variável ou equivalentemente, que os conjuntos de nível de u são hiperplanos. Este tipo de questão da simetria foi levantada por De Giorgi em 1978 (ver [6]), que fez a seguinte conjectura: Conjectura Suponha que u 2 C2(Rn) é solução da equação u + u − u3 = 0 satisfazendo |u(x)| 1 e @u @xn > 0 em todo Rn. Então os conjuntos de nível de u são hiperplanos. Mostraremos que uma versão forte da conjectura de De Giorgi é de fato verdade em dimensão 2 e 3 usando somente técnicas da teoria linear desenvolvida por Berestychi, Caffarelli e Nirenberg [5] em um dos seus artigos sobre as propriedades qualitativas de equações elípticas semilineares.
Abstract: This word is concerned with the study of bounded solutions of semilinear elliptic equations u − F0(u) = 0 in the whole space Rn, under the assumption that u is monotone in one direction, say, @u/@xn > 0 em Rn. The goal is to establish the one-dimensional character or symmetry of u, namely, that u only depends on one variable or, equivalently, that the level sets of u are hyperplanos. This type of symmetry question was raised by de Giorgi in 1978 (see [6]), who made the folowing conjecture: Conjecture Suppose that u 2 C2(Rn) is solution of the equation u + u − u3 = 0 satisfying |u(x)| 1 and @u @xn > 0 in the whole Rn. Then the level sets of u must be hyperplanes. We show a stronger version of De Giorgi s conjecture is indeed true in dimension 2 and 3 using some techniques in the linear theory developed by Berestychi, Caffarelli and Nirenberg [5] in one of their papers on qualitative properties of solutions of semilinear elliptic equations.
Palavras-chave: Conjectura de De Giorgi
Equações elípticas semilineares
Hiperplanos
De Giorgi s conjecture
Semilinear elliptic equations
Hyperplanos
CNPq: CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA
Idioma: por
País: BR
Editor: Universidade Federal da Paraí­ba
Sigla da Instituição: UFPB
Departamento: Matemática
Programa: Programa de Pós Graduação em Matemática
Citação: SOUSA, Ivaldo Tributino de. Conjectura de De Giorgi em dimensões 2 e 3. 2012. 66 f. Dissertação (Mestrado em Matemática) - Universidade Federal da Paraí­ba, João Pessoa, 2012.
Tipo de Acesso: Acesso aberto
URI: https://repositorio.ufpb.br/jspui/handle/tede/7409
Data do documento: 8-Mar-2012
Aparece nas coleções:Centro de Ciências Exatas e da Natureza (CCEN) - Programa de Pós-Graduação em Matemática

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
arquivototal.pdf558,88 kBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.