Use este identificador para citar ou linkar para este item:
https://repositorio.ufpb.br/jspui/handle/tede/9308
Tipo: | Tese |
Título: | Concentration-compactness principle and applications to nonlocal elliptic problems |
Autor(es): | Souza, Diego Ferraz de |
Primeiro Orientador: | Do Ó, Joao Marcos Bezerra |
Resumo: | O objetivo principal deste trabalho é analisar princípios de concentração de compacidade para espaços de Sobolev fracionários baseados na concentração de compacidade de P.-L. Lions e no per l de decomposição para convergência fraca em espaços de Hilbert devido a K. Tintarev e K.-H Fieseler. Como aplicação, abordamos questões sobre a compacidade do funcional energia associado aos seguintes problems elípticos não locais, $' ''''''&' ''''''% p qsu fpx; uq em RN; p qsu apxqu fpx; uq em RN; $&% p qsu V pxqu Kpxq u fpx; uq gpx; uq em R3; p q Kpxqu2 em R3; onde 0 s 1; 0 1; 2 4s ¥ 3; ¡ 0 e Kpxq ¥ 0 pertence a um espaço de Lebesgue adequado. Obtemos resultados de existência para uma vasta classe de potenciais apxq possivelmente singulares, não necessariamente limitados por baixo por uma constante positiva e para não linearidades oscilatórias em ambos os crescimentos subcríticos e críticos que podem não satisfazer a condição de Ambrosetti-Rabinowitz. |
Abstract: | The main goal of this work is to analyze concentration-compactness principles for fractional Sobolev spaces based on the concentration compactness principle of P.-L. Lions and in the pro le decomposition for weak convergence in Hilbert spaces due to K. Tintarev and K.-H Fieseler. As application, we address questions on compactness of the associated energy functional to the following nonlocal elliptic problems, $' ''''''&' ''''''% p qsu fpx; uq in RN; p qsu apxqu fpx; uq in RN; $&% p qsu V pxqu Kpxq u fpx; uq gpx; uq in R3; p q Kpxqu2 in R3; where 0 s 1; 0 1; 2 4s ¥ 3; ¡ 0 and Kpxq ¥ 0 belongs to a suitable Lebesgue space. We obtain existence results for a wide class of possible singular potentials apxq; not necessarily bounded away from zero and for oscillatory nonlinearities in both subcritical and critical growth range that may not satisfy the Ambrosetti-Rabinowitz condition. |
Palavras-chave: | Concentração de compacidade Laplaciano fracionário Expoente crítico de Sobolev Métodos variacionais Concentration-compactness Factional Laplacian Critical Sobolev exponent Variational methods |
CNPq: | CIENCIAS EXATAS E DA TERRA::MATEMATICA |
Idioma: | por |
País: | Brasil |
Editor: | Universidade Federal da Paraíba |
Sigla da Instituição: | UFPB |
Departamento: | Matemática |
Programa: | Programa de Pós-Graduação em Matemática |
Citação: | SOUZA, Diego Ferraz de. Concentration-compactness principle and applications to nonlocal elliptic problems. 2016. 179 f. Tese (Doutorado em Matemática)- Universidade Federal da Paraíba, João Pessoa, 2016. |
Tipo de Acesso: | Acesso aberto |
URI: | https://repositorio.ufpb.br/jspui/handle/tede/9308 |
Data do documento: | 13-Dez-2016 |
Aparece nas coleções: | Centro de Ciências Exatas e da Natureza (CCEN) - Programa de Pós-Graduação em Matemática |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
arquivototal.pdf | Arquivo total | 1,01 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.