Use este identificador para citar ou linkar para este item:
https://repositorio.ufpb.br/jspui/handle/tede/9565
Tipo: | Tese |
Título: | Teorias da gravitação e geometria de Weyl |
Autor(es): | Pucheu, María Laura |
Primeiro Orientador: | Romero Filho, Carlos Augusto |
Resumo: | A gravitagao tern lido atribuida, desde a aparigao da relatividade geral, a curvatura do espagotempo. A linguagem geometrodinamica por esta teoria introduzida, representa uma ferramenta conveniente para predizer o comportamento da materia. Partindo da ideia proposta por Poincare de que a geometria do espago é apenas uma convengao, afirmando que nenhuma geometria é mais correta que outra, mas mais conveniente, mostramos como certas teorias da gravitagao, ern particular a teoria geral da relatividade, assim como a teoria de Brans-Dicke, podem ser completamente reformuladas numa geometria que é uma generalizagao da geometria riemanniana: a geometria de Weyl integravel. Corn esta escolha da linguagem matematica, o movimento das particulas e raios de luz correspondem a geodesicas weylianas, as quais satisfazem uma nova classe de invariancia, a invariancia por transformagoes de Weyl. Estas transformagoes permitem definir os chamados referenciais de Weyl e, no caso da teoria da gravitagao criada por Einstein, recupera-la na sua formulagao riemanniana, num gauge particular. Por outro lado, esta modificagao na dinamica dos objetos traz uma nova percepgao dos fenomenos fisicos que tentaremos explorar. |
Abstract: | We show that the theory of General Relativity can be entirely formulated in the language of the integrable Weyl geometry. We develop the concept of Weyl frames and state the fact that they are completely equivalent as far as geodesic motion is concerned. In the case of General Relativity, we build an action that is manifestly invariant with respect to Weyl transformations. In this scenario, the gravitational field is described by a combination of both the metric and a geometrical scalar field. We illustrate this point by examining how distinct geometrical and physical pictures of the same phenomena may arise in different frames for the particular case of conformally flat spacetimes. Besides, we show that our choice of Weyl geometry for describing the space-time of General Relativity completely agrees with Poincare ideas that the geometry of space was merely a convention and that no geometry is more correct than any other, only more convenient. On the other hand, we consider the Brans-Dicke gravitational theory as a point of departure for constructing a geometric scalar-field theory. In this approach we apply the Palatini variational method to the Brans-Dicke action. We then are naturally led to conclude that space-time has the geometrical structure of a Weyl integrable manifold. We briefly examine some features of this scalar-tensor theory in which Brans-Dicke scalar field now plays the role of a geometrical field. |
Palavras-chave: | Relatividade Geral Geometria Riemanniana Geometria de Weyl integrable Convencionalismo Teoria gravitacional de Brans-Dicke General Relativity Riemannian geometry Integrable Weyl geometry Conventionalism Brans-Dicke theory of Gravitation |
CNPq: | CIENCIAS EXATAS E DA TERRA::FISICA |
Idioma: | por |
País: | Brasil |
Editor: | Universidade Federal da Paraíba |
Sigla da Instituição: | UFPB |
Departamento: | Física |
Programa: | Programa de Pós-Graduação em Física |
Citação: | PUCHEU, María Laura. Teorias da gravitação e geometria de Weyl. 2013. 93 f. Tese (Doutorado em Física) - Universidade Federal da Paraíba, João Pessoa, 2013. |
Tipo de Acesso: | Acesso aberto |
URI: | https://repositorio.ufpb.br/jspui/handle/tede/9565 |
Data do documento: | 28-Jun-2013 |
Aparece nas coleções: | Centro de Ciências Exatas e da Natureza (CCEN) - Programa de Pós-Graduação em Física |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
arquivototal.pdf | Arquivo Total | 1,01 MB | Adobe PDF | Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.